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ABSTRACT

We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated
parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon
Muon with a novel QK-clip technique to address training instability while enjoying the advanced
token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero
loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a
large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the
model improves its capabilities through interactions with real and synthetic environments.
Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with
strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench
(En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual — surpassing most open
and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding,
mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025,
75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position
Kimi K2 as one of the most capable open-source large language models to date, particularly in
software engineering and agentic tasks. We release our base and post-trained model checkpoints1 to
facilitate future research and applications of agentic intelligence.
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Figure 1: Kimi K2 main results.2

1https://huggingface.co/moonshotai/Kimi-K2-Instruct
2All models evaluated above are non-thinking models. For SWE-bench Multilingual, we evaluated only Claude 4 Sonnet because

the cost of Claude 4 Opus was prohibitive.
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1 Introduction

The development of Large Language Models (LLMs) is undergoing a profound paradigm shift towards Agentic
Intelligence – the capabilities for models to autonomously perceive, plan, reason, and act within complex and dynamic
environments. This transition marks a departure from static imitation learning towards models that actively learn
through interactions, acquire new skills beyond their training distribution, and adapt behavior through experiences [63].
It is believed that this approach allows an AI agent to go beyond the limitation of static human-generated data, and
acquire superhuman capabilities through its own exploration and exploitation. Agentic intelligence is thus rapidly
emerging as a defining capability for the next generation of foundation models, with wide-ranging implications across
tool use, software development, and real-world autonomy.

Achieving agentic intelligence introduces challenges in both pre-training and post-training. Pre-training must en-
dow models with broad general-purpose priors under constraints of limited high-quality data, elevating token effi-
ciency—learning signal per token—as a critical scaling coefficient. Post-training must transform those priors into
actionable behaviors, yet agentic capabilities such as multi-step reasoning, long-term planning, and tool use are rare
in natural data and costly to scale. Scalable synthesis of structured, high-quality agentic trajectories, combined with
general reinforcement learning (RL) techniques that incorporate preferences and self-critique, are essential to bridge
this gap.

In this work, we introduce Kimi K2, a 1.04 trillion-parameter Mixture-of-Experts (MoE) LLM with 32 billion activated
parameters, purposefully designed to address the core challenges and push the boundaries of agentic capability. Our
contributions span both the pre-training and post-training frontiers:

• We present MuonClip, a novel optimizer that integrates the token-efficient Muon algorithm with a stability-
enhancing mechanism called QK-Clip. Using MuonClip, we successfully pre-trained Kimi K2 on 15.5 trillion
tokens without a single loss spike.

• We introduce a large-scale agentic data synthesis pipeline that systematically generates tool-use demonstrations
via simulated and real-world environments. This system constructs diverse tools, agents, tasks, and trajectories to
create high-fidelity, verifiably correct agentic interactions at scale.

• We design a general reinforcement learning framework that combines verifiable rewards (RLVR) with a self-
critique rubric reward mechanism. The model learns not only from externally defined tasks but also from evaluating
its own outputs, extending alignment from static into open-ended domains.

Kimi K2 demonstrates strong performance across a broad spectrum of agentic and frontier benchmarks. It achieves
scores of 66.1 on Tau2-bench, 76.5 on ACEBench (en), 65.8 on SWE-bench Verified, and 47.3 on SWE-bench
Multilingual, outperforming most open- and closed-weight baselines under non-thinking evaluation settings, closing the
gap with Claude 4 Opus and Sonnet. In coding, mathematics, and broader STEM domains, Kimi K2 achieves 53.7
on LiveCodeBench v6, 27.1 on OJBench, 49.5 on AIME 2025, and 75.1 on GPQA-Diamond, further highlighting
its capabilities in general tasks. On the LMSYS Arena leaderboard (July 17, 2025)3, Kimi K2 ranks as the top 1
open-source model and 5th overall based on over 3,000 user votes.

To spur further progress in Agentic Intelligence, we are open-sourcing our base and post-trained checkpoints, enabling
the community to explore, refine, and deploy agentic intelligence at scale.

2 Pre-training

The base model of Kimi K2 is a trillion-parameter mixture-of-experts (MoE) transformer [72] model, pre-trained
on 15.5 trillion high-quality tokens. Given the increasingly limited availability of high-quality human data, we posit
that token efficiency is emerging as a critical coefficient in the scaling of large language models. To address this,
we introduce a suite of pre-training techniques explicitly designed for maximizing token efficiency. Specifically, we
employ the token-efficient Muon optimizer [34, 47] and mitigate its training instabilities through the introduction of
QK-Clip. Additionally, we incorporate synthetic data generation to further squeeze the intelligence out of available
high-quality tokens. The model architecture follows an ultra-sparse MoE with multi-head latent attention (MLA) similar
to DeepSeek-V3 [11] , derived from empirical scaling law analysis. The underlying infrastructure is built to optimize
both training efficiency and research efficiency.

3https://lmarena.ai/leaderboard/text
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2.1 MuonClip: Stable Training with Weight Clipping

We train Kimi K2 using the token-efficient Muon optimizer [34], incorporating weight decay and consistent update
RMS scaling [47]. Experiments in our previous work Moonlight [47] show that, under the same compute budget and
model size — and therefore the same amount of training data — Muon substantially outperforms AdamW [37, 49],
making it an effective choice for improving token efficiency in large language model training.

Training instability when scaling Muon Despite its efficiency, scaling up Muon training reveals a challenge: training
instability due to exploding attention logits, an issue that occurs more frequently with Muon but less with AdamW
in our experiments. Existing mitigation strategies are insufficient. For instance, logit soft-cap [69] directly clips the
attention logits, but the dot products between queries and keys can still grow excessively before capping is applied. On
the other hand, Query-Key Normalization (QK-Norm) [12, 81] is not applicable to multi-head latent attention (MLA),
because its Key matrices are not fully materialized during inference.

Taming Muon with QK-Clip To address this issue, we propose a novel weight-clipping mechanism QK-Clip to
explicitly constrain attention logits. QK-Clip works by rescaling the query and key projection weights post-update to
bound the growth of attention logits.

Let the input representation of a transformer layer be X. For each attention head h, its query, key, and value projections
are computed as

Qh = XWh
q , Kh = XWh

k , Vh = XWh
v .

where Wq,Wk,Wv are model parameters. The attention output is:

Oh = softmax

(
1√
d
QhKh⊤

)
Vh.

We define the max logit, a per-head scalar, as the maximum input to softmax in this batch B:

Sh
max =

1√
d
max
X∈B

max
i,j

Qh
i K

h⊤
j

where i, j are indices of different tokens in a training sample X.

The core idea of QK-Clip is to rescale Wk,Wq whenever Sh
max exceeds a target threshold τ . Importantly, this operation

does not alter the forward/backward computation in the current step — we merely use the max logit as a guiding signal
to determine the strength to control the weight growth.

A naïve implementation clips all heads at the same time:

Wh
q ← γαWh

q Wh
k ← γ1−αWh

k

where γ = min(1, τ/Smax) with Smax = maxh S
h
max, and α is a balancing parameter typically set to 0.5, applying

equal scaling to queries and keys.

However, we observe that in practice, only a small subset of heads exhibit exploding logits. In order to minimize our
intervention on model training, we determine a per-head scaling factor γh = min(1, τ/Sh

max), and opt to apply per-head
QK-Clip. Such clipping is straightforward for regular multi-head attention (MHA). For MLA, we apply clipping only
on unshared attention head components:

• qC and kC (head-specific components): each scaled by
√
γh

• qR (head-specific rotary): scaled by γh,

• kR (shared rotary): left untouched to avoid effect across heads.

MuonClip: The New Optimizer We integrate Muon with weight decay, consistent RMS matching, and QK-Clip
into a single optimizer, which we refer to as MuonClip (see Algorithm 1).

We demonstrate the effectiveness of MuonClip from several scaling experiments. First, we train a mid-scale 9B activated
and 53B total parameters Mixture-of-Experts (MoE) model using the vanilla Muon. As shown in Figure 2 (Left), we
observe that the maximum attention logits quickly exceed a magnitude of 1000, showing that attention logits explosion
is already evident in Muon training to this scale. Max logits at this level usually result in instability during training,
including significant loss spikes and occasional divergence.

3
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Algorithm 1 MuonClip Optimizer

1: for each training step t do
2: // 1. Muon optimizer step
3: for each weight W ∈ Rn×m do
4: Mt = µMt−1 +Gt ▷ M0 = 0, Gt is the grad of Wt, µ is momentum
5: Ot = Newton-Schulz(Mt) ·

√
max(n,m) · 0.2 ▷ Match Adam RMS

6: Wt = Wt−1 − η
(
Ot + λWt−1

)
▷ learning rate η, weight decay λ

7: end for
8: // 2. QK-Clip
9: for each attention head h in every attention layer of the model do

10: Obtain Sh
max already computed during forward

11: if Sh
max > τ then

12: γ ← τ/Sh
max

13: Wh
qc ←Wh

qc ·
√
γ

14: Wh
kc ←Wh

kc ·
√
γ

15: Wh
qr ←Wh

qr · γ
16: end if
17: end for
18: end for
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Figure 2: Left: During a mid-scale training run, attention logits rapidly exceed 1000, which could lead to potential
numerical instabilities and even training divergence. Right: Maximum logits for Kimi K2 with MuonClip and τ = 100
over the entire training run. The max logits rapidly increase to the capped value of 100, and only decay to a stable range
after approximately 30% of the training steps, demonstrating the effective regulation effect of QK-Clip.

Next, we demonstrate that QK-Clip does not degrade model performance and confirm that the MuonClip optimizer
preserves the optimization characteristics of Muon without adversely affecting the loss trajectory. A detailed discussion
of the experiment designs and findings is provided in the Appendix D.

Finally, we train Kimi K2, a large-scale MoE model, using MuonClip with τ = 100 and monitor the maximum attention
logits throughout the training run (Figure 2 (Right)). Initially, the logits are capped at 100 due to QK-Clip. Over the
course of training, the maximum logits gradually decay to a typical operating range without requiring any adjustment to
τ . Importantly, the training loss remains smooth and stable, with no observable spikes, as shown in Figure 3, validating
that MuonClip provides robust and scalable control over attention dynamics in large-scale language model training.

2.2 Pre-training Data: Improving Token Utility with Rephrasing

Token efficiency in pre-training refers to how much performance improvement is achieved for each token consumed
during training. Increasing token utility—the effective learning signal each token contributes—enhances the per-token
impact on model updates, thereby directly improving token efficiency. This is particularly important when the supply of
high-quality tokens is limited and must be maximally leveraged. A naive approach to increasing token utility is through
repeated exposure to the same tokens, which can lead to overfitting and reduced generalization.

4
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Figure 3: Per-step training loss curve of Kimi K2, without smoothing or sub-sampling. It shows no spikes throughout
the entire training process. Note that we omit the very beginning of training for clarity.

A key advancement in the pre-training data of Kimi K2 over Kimi K1.5 is the introduction of a synthetic data generation
strategy to increase token utility. Specifically, a carefully designed rephrasing pipeline is employed to amplify the volume
of high-quality tokens without inducing significant overfitting. In this report, we describe two domain-specialized
rephrasing techniques—targeted respectively at the Knowledge and Mathematics domains—that enable this controlled
data augmentation.

Knowledge Data Rephrasing Pre-training on natural, knowledge-intensive text presents a trade-off: a single epoch
is insufficient for comprehensive knowledge absorption, while multi-epoch repetition yields diminishing returns and
increases the risk of overfitting. To improve the token utility of high-quality knowledge tokens, we propose a synthetic
rephrasing framework composed of the following key components:

• Style- and perspective-diverse prompting: To enhance linguistic diversity while maintaining factual integrity, we
apply a range of carefully engineered prompts. These prompts guide a large language model to generate faithful
rephrasings of the original texts in varied styles and from different perspectives.

• Chunk-wise autoregressive generation: To preserve global coherence and avoid information loss in long
documents, we adopt a chunk-based autoregressive rewriting strategy. Texts are divided into segments, rephrased
individually, and then stitched back together to form complete passages. This method mitigates implicit output
length limitations that typically exist with LLMs. An overview of this pipeline is presented in Figure 4.

• Fidelity verification: To ensure consistency between original and rewritten content, we perform fidelity checks
that compare the semantic alignment of each rephrased passage with its source. This serves as an initial quality
control step prior to training.

We compare data rephrasing with multi-epoch repetition by testing their corresponding accuracy on SimpleQA. We
experiment with an early checkpoint of K2 and evaluate three training strategies: (1) repeating the original dataset for
10 epochs, (2) rephrasing the data once and repeating it for 10 epochs, and (3) rephrasing the data 10 times with a
single training pass. As shown in Table 1, the accuracy consistently improves across these strategies, demonstrating the
efficacy of our rephrasing-based augmentation. We extended this method to other large-scale knowledge corpora and
observed similarly encouraging results, and each corpora is rephrased at most twice.

Table 1: SimpleQA Accuracy under three rephrasing-epoch configurations
# Rephrasings # Epochs SimpleQA Accuracy

0 (raw wiki-text) 10 23.76
1 10 27.39
10 1 28.94
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Figure 4: Auto-regressive chunk-wise rephrasing pipeline for long input excerpts. The input is
split into smaller chunks with preserved context, rewritten sequentially, and then concatenated
into a full rewritten passage.

Mathematics Data Rephrasing To enhance mathematical reasoning capabilities, we rewrite high-quality mathemati-
cal documents into a “learning-note” style, following the methodology introduced in SwallowMath [16]. In addition,
we increased data diversity by translating high-quality mathematical materials from other languages into English.

Although initial experiments with rephrased subsets of our datasets show promising results, the use of synthetic data
as a strategy for continued scaling remains an active area of investigation. Key challenges include generalizing the
approach to diverse source domains without compromising factual accuracy, minimizing hallucinations and unintended
toxicity, and ensuring scalability to large-scale datasets.

Pre-training Data Overall The Kimi K2 pre-training corpus comprises 15.5 trillion tokens of curated, high-quality
data spanning four primary domains: Web Text, Code, Mathematics, and Knowledge. Most data processing pipelines
follow the methodologies outlined in Kimi K1.5 [36]. For each domain, we performed rigorous correctness and
quality validation and designed targeted data experiments to ensure the curated dataset achieved both high diversity and
effectiveness.

2.3 Model Architecture

Kimi K2 is a 1.04 trillion-parameter Mixture-of-Experts (MoE) transformer model with 32 billion activated parameters.
The architecture follows a similar design to DeepSeek-V3 [11] , employing Multi-head Latent Attention (MLA) [45] as
the attention mechanism, with a model hidden dimension of 7168 and an MoE expert hidden dimension of 2048. Our
scaling law analysis reveals that continued increases in sparsity yield substantial performance improvements, which
motivated us to increase the number of experts to 384, compared to 256 in DeepSeek-V3. To reduce computational
overhead during inference, we cut the number of attention heads to 64, as opposed to 128 in DeepSeek-V3. Table 2
presents a detailed comparison of architectural parameters between Kimi K2 and DeepSeek-V3.

Table 2: Architectural comparison between Kimi K2 and DeepSeek-V3
DeepSeek-V3 Kimi K2 ∆

#Layers 61 61 =
Total Parameters 671B 1.04T ↑ 54%
Activated Parameters 37B 32.6B ↓ 13%
Experts (total) 256 384 ↑ 50%
Experts Active per Token 8 8 =
Shared Experts 1 1 =
Attention Heads 128 64 ↓ 50%
Number of Dense Layers 3 1 ↓ 67%
Expert Grouping Yes No -

6
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Sparsity Scaling Law We develop a sparsity scaling law tailored for the Mixture-of-Experts (MoE) model family
using Muon. Sparsity is defined as the ratio of the total number of experts to the number of activated experts. Through
carefully controlled small-scale experiments, we observe that — under a fixed number of activated parameters (i.e.,
constant FLOPs) — increasing the total number of experts (i.e., increasing sparsity) consistently lowers both the training
and validation loss, thereby enhancing overall model performance (Figure 5). Concretely, under the compute-optimal
sparsity scaling law, achieving the same validation loss of 1.5, sparsity 48 reduces FLOPs by 1.69×, 1.39×, and 1.15×
compared to sparsity levels 8, 16, and 32, respectively. Though increasing sparsity leads to better performance, this
gain comes with increased infrastructure complexity. To balance model performance with cost, we adopt a sparsity of
48 for Kimi K2, activating 8 out of 384 experts per forward pass.
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Figure 5: Sparsity Scaling Law. Increasing sparsity leads
to improved model performance. We fixed the number of
activated experts to 8 and the number of shared experts
to 1, and varied the total number of experts, resulting in
models with different sparsity levels.
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Figure 6: Scaling curves for models with number of atten-
tion heads equals to number of layers and their counter-
parts with doubled attention heads. Doubling the number
of attention heads leads to a reduction in validation loss
of approximately 0.5% to 1.2%.

Number of Attention Heads DeepSeek-V3 [11] sets the number of attention heads to roughly twice the number of
model layers to better utilize memory bandwidth and enhance computational efficiency. However, as the context length
increases, doubling the number of attention heads leads to significant inference overhead, reducing efficiency at longer
sequence lengths. This becomes a major limitation in agentic applications, where efficient long context processing is
essential. For example, with a sequence length of 128k, increasing the number of attention heads from 64 to 128, while
keeping the total expert count fixed at 384, leads to an 83% increase in inference FLOPs. To evaluate the impact of
this design, we conduct controlled experiments comparing configurations where the number of attention heads equals
the number of layers against those with double number of heads, under varying training FLOPs. Under iso-token
training conditions, we observe that doubling the attention heads yields only modest improvements in validation loss
(ranging from 0.5% to 1.2%) across different compute budgets (Figure 6). Given that sparsity 48 already offers strong
performance, the marginal gains from doubling attention heads do not justify the inference cost. Therefore we choose
to 64 attention heads.

2.4 Training Infrastructure

2.4.1 Compute Cluster

Kimi K2 was trained on a cluster equipped with NVIDIA H800 GPUs. Each node in the H800 cluster contains 2 TB
RAM and 8 GPUs connected by NVLink and NVSwitch within nodes. Across different nodes, 8×400 Gbps RoCE
interconnects are utilized to facilitate communications.

2.4.2 Parallelism for Model Scaling

Training of large language models often progresses under dynamic resource availability. Instead of optimizing one
parallelism strategy that’s only applicable under specific amount of resources, we pursue a flexible strategy that allows
Kimi K2 to be trained on any number of nodes that is a multiple of 32. Our strategy leverages a combination of 16-way

7
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Figure 7: Computation, communication and offloading overlapped in different PP phases.

Pipeline Parallelism (PP) with virtual stages [29, 53, 39, 57, 48, 22], 16-way Expert Parallelism (EP) [40], and ZeRO-1
Data Parallelism [60].

Under this setting, storing the model parameters in BF16 and their gradient accumulation buffer in FP32 requires
approximately 6 TB of GPU memory, distributed over a model-parallel group of 256 GPUs. Placement of optimizer
states depends on the training configurations. When the total number of training nodes is large, the optimizer states are
distributed, reducing its per-device memory footprint to a negligible level. When the total number of training nodes is
small (e.g., 32), we can offload some optimizer states to CPU.

This approach allows us to reuse an identical parallelism configuration for both small- and large-scale experiments,
while letting each GPU hold approximately 30 GB of GPU memory for all states. The rest of the GPU memory are used
for activations, as described in Sec. 2.4.3. Such a consistent design is important for research efficiency, as it simplifies
the system and substantially accelerates experimental iteration.

EP communication overlap with interleaved 1F1B By increasing the number of warm-up micro-batches, we can
overlap EP all-to-all communication with computation under the standard interleaved 1F1B schedule [22, 53]. In
comparison, DualPipe [11] doubles the memory required for parameters and gradients, necessitating an increase in
parallelism to compensate. Increasing PP introduces more bubbles, while increasing EP, as discussed below, incurs
higher overhead. The additional costs are prohibitively high for training a large model with over 1 trillion parameters
and thus we opted not to use DualPipe.

However, interleaved 1F1B splits the model into more stages, introducing non-trivial PP communication overhead. To
mitigate this cost, we decouple the weight-gradient computation from each micro-batch’s backward pass and execute
it in parallel with the corresponding PP communication. Consequently, all PP communications can be effectively
overlapped except for the warm-up phase.

Smaller EP size To ensure full computation-communication overlap during the 1F1B stage, the reduced attention
computation time in K2 (which has 64 attention heads compared to 128 heads in DeepSeek-V3) necessitates minimizing
the time of EP operations. This is achieved by adopting the smallest feasible EP parallelization strategy, specifically
EP = 16. Utilizing a smaller EP group also relaxes expert-balance constraints, allowing for near-optimal speed to be
achieved without further tuning.

2.4.3 Activation Reduction

After reserving space for parameters, gradient buffers, and optimizer states, the remaining GPU memory on each device
is insufficient to hold the full MoE activations. To ensure the activation memory fits within the constraints, especially
for the initial pipeline stages that accumulate the largest activations during the 1F1B warm-up phase, the following
techniques are employed.

Selective recomputation Recomputation is applied to inexpensive, high-footprint stages, including LayerNorm,
SwiGLU, and MLA up-projections [11]. Additionally, MoE down-projections are recomputed during training to further
reduce activation memory. While optional, this recomputation maintains adequate GPU memory, preventing crashes
caused by expert imbalance in early training stages.

FP8 storage for insensitive activations Inputs of MoE up-projections and SwiGLU are compressed to FP8-E4M3 in
1× 128 tiles with FP32 scales. Small-scale experiments show no measurable loss increase. Due to potential risks of
performance degradation that we observed during preliminary study, we do not apply FP8 in computation.

8



Kimi K2 TECHNICAL REPORT

Activation CPU offload All remaining activations are offloaded to CPU RAM. A copy engine is responsible for
streaming the offload and onload, overlapping with both computation and communication kernels. During the 1F1B
phase, we offload the forward activations of the previous micro-batch while prefetching the backward activations of the
next. The warm-up and cool-down phases are handled similarly and the overall pattern is shown in Figure 7. Although
offloading may slightly affect EP traffic due to PCIe traffic congestion, our tests show that EP communication remains
fully overlapped.

2.5 Training recipe

We pre-trained the model with a 4,096-token context window using the MuonClip optimizer (Algorithm 1) and the
WSD learning rate schedule [26], processing a total of 15.5T tokens. The first 10T tokens were trained with a constant
learning rate of 2e-4 after a 500-step warm-up, followed by 5.5T tokens with a cosine decay from 2e-4 to 2e-5. Weight
decay was set to 0.1 throughout, and the global batch size was held at 67M tokens. The overall training curve is shown
in Figure 3.

Towards the end of pre-training, we conducted an annealing phase followed by a long-context activation stage. The
batch size was kept constant at 67M tokens, while the learning rate was decayed from 2e-5 to 7e-6. In this phase, the
model was trained on 400 billion tokens with a 4k sequence length, followed by an additional 60 billion tokens with a
32k sequence length. To extend the context window to 128k, we employed the YaRN method [55].

3 Post-Training

3.1 Supervised Fine-Tuning

We employ the Muon optimizer [34] in our post-training and recommend its use for fine-tuning with K2. This follows
from the conclusion of our previous work [47] that a Muon-pre-trained checkpoint produces the best performance with
Muon fine-tuning.

We construct a large-scale instruction-tuning dataset spanning diverse domains, guided by two core principles: max-
imizing prompt diversity and ensuring high response quality. To this end, we develop a suite of data generation
pipelines tailored to different task domains, each utilizing a combination of human annotation, prompt engineering, and
verification processes. We adopt K1.5 [36] and other in-house domain-specialized expert models to generate candidate
responses for various tasks, followed by LLMs or human-based judges to perform automated quality evaluation and
filtering. For agentic data, we create a data synthesis pipeline to teach models tool-use capabilities through multi-step,
interactive reasoning.

3.1.1 Large-Scale Agentic Data Synthesis for Tool Use Learning

A critical capability of modern LLM agents is their ability to autonomously use unfamiliar tools, interact with external
environments, and iteratively refine their actions through reasoning, execution, and error correction. Agentic tool use
capability is essential for solving complex, multi-step tasks that require dynamic interaction with real-world systems.
Recent benchmarks such as ACEBench [7] and τ -bench [85] have highlighted the importance of comprehensive tool-use
evaluation, while frameworks like ToolLLM [58] and ACEBench [7] have demonstrated the potential of teaching
models to use thousands of tools effectively.

However, training such capabilities at scale presents a significant challenge: while real-world environments provide
rich and authentic interaction signals, they are often difficult to construct at scale due to cost, complexity, privacy
and accessibility constraints. Recent work on synthetic data generation (AgentInstruct [51]; Self-Instruct [75];
StableToolBench [21]; ZeroSearch [66]) has shown promising results in creating large-scale data without relying on
real-world interactions. Building on these advances and inspired by ACEBench [7]’s comprehensive data synthesis
framework, we developed a pipeline that simulates real-world tool-use scenarios at scale, enabling the generation of
tens of thousands of diverse and high-quality training examples.

There are three stages in our data synthesis pipeline, depicted in Fig. 8.

• Tool spec generation: we first construct a large repository of tool specs from both real-world tools and LLM-
synthetic tools;

• Agent and task generation: for each tool-set sampled from the tool repository, we generate an agent to use the
toolset and some corresponding tasks;

• Trajectory generation: for each agent and task, we generate trajectories where the agent finishes the task by
invoking tools.
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(a) Synthesizing tool specs, agents and tasks
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Figure 8: Data synthesis pipeline for tool use. (a) Tool specs are from both real-world tools and LLMs; agents and tasks
are the generated from the tool repo. (b) Multi-agent pipeline to generate and filter trajectories with tool calling.
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(a) t-SNE visualization of real MCP tools, colored by their
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(b) t-SNE visualization of synthetic tools, colored by pre-defined
domain categories

Figure 9: t-SNE visualizations of tool embeddings. (a) Real-world MCP tools exhibit natural clustering based on their
original source categories. (b) Synthetic tools are organized into pre-defined domain categories, providing systematic
coverage of the tool space. Together, they ensure comprehensive representation across different tool functionalities.

Domain Evolution and Tool Generation. We construct a comprehensive tool repository through two complementary
approaches. First, we directly fetch 3000+ real MCP (Model Context Protocol) tools from GitHub repositories,
leveraging existing high-quality tool specs. Second, we systematically evolve [82] synthetic tools through a hierarchical
domain generation process: we begin with key categories (e.g., financial trading, software applications, robot control),
then evolve multiple specific application domains within each category. Specialized tools are then synthesized for each
domain, with clear interfaces, descriptions, and operational semantics. This evolution process produces over 20,000
synthetic tools. Figure 9 visualizes the diversity of our tool collection through t-SNE embeddings, demonstrating that
both MCP and synthetic tools cover complementary regions of the tool space.

Agent Diversification. We generate thousands of distinct agents by synthesizing various system prompts and
equipping them with different combinations of tools from our repository. This creates a diverse population of agents
with varied capabilities, areas of expertise, and behavioral patterns, ensuring a broad coverage of potential use cases.

Rubric-Based Task Generation. For each agent configuration, we generate tasks that range from simple to complex
operations. Each task is paired with an explicit rubric that specifies success criteria, expected tool-use patterns, and
evaluation checkpoints. This rubric-based approach ensures a consistent and objective evaluation of agent performance.

Multi-turn Trajectory Generation. We simulate realistic tool-use scenarios through several components:

• User Simulation: LLM-generated user personas with distinct communication styles and preferences engage in
multi-turn dialogues with agents, creating naturalistic interaction patterns.
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• Tool Execution Environment: A sophisticated tool simulator (functionally equivalent to a world model) executes
tool calls and provides realistic feedback. The simulator maintains and updates state after each tool execution,
enabling complex multi-step interactions with persistent effects. It introduces controlled stochasticity to produce
varied outcomes including successes, partial failures, and edge cases.

Quality Evaluation and Filtering. An LLM-based judge evaluates each trajectory against the task rubrics. Only
trajectories that meet the success criteria are retained for training, ensuring high-quality data while allowing natural
variation in task-completion strategies.

Hybrid Approach with Real Execution Environments. While simulation provides scalability, we acknowledge
the inherent limitation of simulation fidelity. To address this, we complement our simulated environments with real
execution sandboxes for scenarios where authenticity is crucial, particularly in coding and software engineering tasks.
These real sandboxes execute actual code, interact with genuine development environments, and provide ground-truth
feedback through objective metrics such as test suite pass rates. This combination ensures that our models learn from
both the diversity of simulated scenarios and the authenticity of real executions, significantly strengthening practical
agent capabilities.

By leveraging this hybrid pipeline that combines scalable simulation with targeted real-world execution, we generate
diverse, high-quality tool-use demonstrations that balance coverage and authenticity. The scale and automation of our
synthetic data generation, coupled with the grounding provided by real execution environments, effectively implements
large-scale rejection sampling [27, 87] through our quality filtering process. This high-quality synthetic data, when
used for supervised fine-tuning, has demonstrated significant improvements in the model’s tool-use capabilities across a
wide range of real-world applications.

3.2 Reinforcement Learning

Reinforcement learning (RL) is believed to have better token efficiency and generalization than SFT. Based on the work
of K1.5 [36], we continue to scale RL in both task diversity and training FLOPs in K2. To support this, we develop a
Gym-like extensible framework that facilitates RL across a wide range of scenarios. We extend the framework with a
large number of tasks with verifiable rewards. For tasks that rely on subjective preferences, such as creative writing and
open-ended question answering, we introduce a self-critic reward in which the model performs pairwise comparisons to
judge its own outputs. This approach allows tasks from various domains to all benefit from the RL paradigm.

3.2.1 Verifiable Rewards Gym

Math, STEM and Logical Tasks For math, stem and logical reasoning domains, our RL data preparation follows
two key principles, diverse coverage and moderate difficulty.

Diverse Coverage. For math and stem tasks, we collect high-quality QA pairs using a combination of expert annotations,
internal QA extraction pipelines, and open datasets [42, 52]. During the collection process, we leverage a tagging
system to deliberately increase coverage of under-covered domains. For logical tasks, our dataset comprises a variety of
formats, including structured data tasks (e.g., multi-hop tabular reasoning, cross-table aggregation) and logic puzzles
(e.g., the 24-game, Sudoku, riddles, cryptarithms, and Morse-code decoding).

Moderate Difficulty. The RL prompt-set should be neither too easy nor too hard, both of which may produce little signal
and reduce learning efficiency. We assess the difficulty of each problem using the SFT model’s pass@k accuracy and
select only problems with moderate difficulty.

Complex Instruction Following Effective instruction following requires not only understanding explicit constraints
but also navigating implicit requirements, handling edge cases, and maintaining consistency over extended dialogues.
We address these challenges through a hybrid verification framework that combines automated verification with
adversarial detection, coupled with a scalable curriculum generation pipeline. Our approach employs a dual-path system
to ensure both precision and robustness:

Hybrid Rule Verification. We implement two verification mechanisms: (1) deterministic evaluation via code interpreters
for instructions with verifiable outputs (e.g., length, style constraints), and (2) LLM-as-judge evaluation for instructions
requiring nuanced understanding of constraints. To address potential adversarial behaviors where models might claim
instruction fulfillment without actual compliance, we incorporate an additional hack-check layer that specifically detects
such deceptive claims.

Multi-Source Instruction Generation. To construct our training data, we employ three distinct generation strategies to
ensure comprehensive coverage: (1) expert-crafted complex conditional prompts and rubrics developed by our data
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team (2) agentic instruction augmentation inspired by AutoIF [13], and (3) a fine-tuned model specialized for generating
additional instructions that probe specific failure modes or edge cases. This multipronged approach ensures both breadth
and depth in instruction coverage.

Faithfulness Faithfulness is essential for an agentic model operating in scenarios such as multi-turn tool use, self-
generated reasoning chains, and open-environment interactions. Inspired by the evaluation framework from FACTS
Grounding [31], we train a sentence-level faithfulness judge model to perform automated verification. The judge is
effective in detecting sentences that make a factual claim without supporting evidence in context. It serves as a reward
model to enhance overall faithfulness performance.

Coding & Software Engineering To enhance our capability in tackling competition-level programming problems,
we gather problems and their judges from both open-source datasets [28, 83] and synthetic sources. To ensure the
diversity of the synthetic data and the correctness of reward signals, we incorporate high-quality human-written unit
tests retrieved from pre-training data.

For software engineering tasks, we collect a vast amount of pull requests and issues from GitHub to build software
development environment that consists of user prompts/issues and executable unit tests. This environment was built on
a robust sandbox infrastructure, powered by Kubernetes for scalability and security. It supports over 10,000 concurrent
sandbox instances with stable performance, making it ideal for both competitive coding and software engineering tasks.

Safety Our work to enhance the safety begins with a human-curated set of seed prompts, manually crafted to
encompass prevalent risk categories such as violence, fraud, and discrimination.

To simulate sophisticated jailbreak attempts (e.g., role-playing, literary narratives, and academic discourse), we employ
an automated prompt evolution pipeline with three key components:

• Attack Model: Iteratively generates adversarial prompts designed to elicit unsafe responses from the target LLM.

• Target Model: Produces responses to these prompts, simulating potential vulnerabilities.

• Judge Model: Evaluates the interaction to determine if the adversarial prompt successfully bypasses safety
mechanisms.

Each interaction is assessed using a task-specific rubric, enabling the judge model to provide a binary success/failure
label.

3.2.2 Beyond Verification: Self-Critique Rubric Reward

To extend model alignment beyond tasks with verifiable reward, we introduce a framework for general reinforcement
learning from self-critic feedbacks. This approach is designed to align LLMs with nuanced human preferences,
including helpfulness, creativity, depth of reasoning, factuality, and safety, by extending the capabilities learned from
verifiable scenarios to a broader range of subjective tasks. The framework operates using a Self-Critique Rubric Reward
mechanism, where the model evaluates its own outputs to generate preference signals. To bootstrap K2 as a competent
judge, we curated a mixture of open-source and in-house preference datasets and initialize its critic capability in the
SFT stage.

Self-Critiqued Policy Optimization In the first core process of the learning loop, the K2 actor generates responses
for general prompts that cover a wide range of use cases. The K2 critic then ranks all results by performing pairwise
evaluations against a combination of rubrics, which incorporates both core rubrics (Appendix. F.1), which represent the
fundamental values of our AI assistant that Kimi cherish, prescriptive rubrics (Appendix. F.2) that aim to eliminate
reward hacking, and human-annotated rubrics crafted by our data team for specific instructional contexts. Although
certain rubrics can be designated as mandatory, K2 retains the flexibility to weigh them against its internal priors. This
capacity enables a dynamic and continuous alignment with its evolving on-policy behavior, ensuring that the model’s
responses remain coherent with its core identity while adapting to specific instructions.

Closed-Loop Critic Refinement and Alignment During RL training, the critic model is refined using verifiable
signals. On-policy rollouts generated from verifiable-reward prompts are used to continuously update the critic, a crucial
step that distills objective performance signals from RLVR directly into its evaluation model. This transfer learning
process grounds its more subjective judgments in verifiable data, allowing the performance gains from verifiable
tasks to enhance the critic’s judgment on complex tasks that lack explicit reward signals. This closed-loop process
ensures that the critic continuously recalibrates its evaluation standards in lockstep with the policy’s evolution. By
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grounding subjective evaluation in verifiable data, the framework enables robust and scalable alignment with complex,
non-verifiable human objectives.

Consequently, this holistic alignment yields comprehensive performance improvements across a wide spectrum of do-
mains, including user intent understanding, creative writing, complex reasoning, and nuanced language comprehension.

3.2.3 RL Algorithm

We adopt the policy optimization algorithm introduced in K1.5 [36] as the foundation for K2. For each problem x,
we sample K responses {y1, . . . , yk} from the previous policy πold, and optimize the model πθ with respect to the
following objective:

LRL(θ) = Ex∼D

[
1

K

K∑
i=1

[(
r(x, yi)− r̄(x)− τ log

πθ(yi|x)
πold(yi|x)

)2
]]

,

where r̄(x) = 1
k

∑k
i=1 r(x, yi) is the mean rewards of the sampled responses, τ > 0 is a regularization parameter that

promotes stable learning. As in SFT, we employ the Muon optimizer [34] to minimize this objective. As we scale
RL training to encompass a broader range of tasks in K2, a primary challenge is achieving consistent performance
improvements across all domains. To address this, we introduce several additions to the RL algorithm.

Budget Control It has been widely observed that RL often results in a substantial increase in the length of model-
generated responses [36, 20]. While longer responses can enable the model to utilize additional test-time compute for
improved performance on complex reasoning tasks, the benefits often do not justify its inference cost in non-reasoning
domains. To encourage the model to properly distribute inference budget, we enforce a per-sample maximum token
budget throughout RL training, where the budget is determined based on the type of task. Responses that exceed
this token budget are truncated and assigned a penalty, which incentivizes the model to generate solutions within the
specified limit. Empirically, this approach significantly enhances the model’s token efficiency, encouraging concise yet
effective solutions across all domains.

PTX Loss To prevent the potential forgetting of valuable, high-quality data during joint RL training, we curate a
dataset comprising hand-selected, high-quality samples and integrate it into the RL objective through an auxiliary PTX
loss [54]. This strategy not only leverages the advantages of high-quality data, but also mitigates the risk of overfitting
to the limited set of tasks explicitly present in the training regime. This augmentation substantially improves the model’s
generalization across a broader range of domains.

Temperature Decay For tasks such as creative writing and complex reasoning, we find that promoting exploration
via a high sampling temperature during the initial stages of training is crucial. A high temperature allow the model to
generate diverse and innovative responses, thereby facilitating the discovery of effective strategies and reducing the risk
of premature convergence to suboptimal solutions. However, retaining a high temperature in the later stages of training
or during evaluation can be detrimental, as it introduces excessive randomness and compromises the reliability and
consistency of the model’s outputs. To address this, we employ a temperature decay schedule, to shift from exploration
to exploitation throughout the training. This strategy ensures that the model leverages exploration when it is most
beneficial, while ultimately converge on stable and high-quality outputs.

3.3 RL Infrastructure

3.3.1 Colocated Architecture

Similar to K1.5 [36], we adopt a hybrid colocated architecture for our synchronized RL training, where the training and
inference engines live on the same workers. When one engine is actively working, the other engine releases or offloads
its GPU resources to accommodate. In each iteration of RL training, a centralized controller first calls the inference
engine to generate new data for training. It then notifies the training engine to train on the new data, and send updated
parameters to the inference engine for the next iteration.

Each engine is heavily optimized for throughput. In addition, as the model scales to the size of K2, the latency of engine
switching and failure recovery becomes significant. We present our system design considerations in these aspects.
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Figure 10: Parameter update utilizing a checkpoint engine

3.3.2 Efficient Engine Switching

During rollout, the parameters of the training engine are offloaded to DRAM. Bringing up the training engine is
therefore a simple step of H2D transmission. However, bringing up the inference engine is a bigger challenge, as it
must obtain updated parameters from the training engine with a different sharding paradigm.

Given the scale of K2 and the vast number of devices involved, using a network file system for resharding and
broadcasting parameters is impractical. The aggregate bandwidth required to keep overhead low reaches several
petabytes per second. To address this challenge, we developed a distributed checkpoint engine co-located on training
nodes to manage parameter states. To perform a parameter update, each checkpoint engine worker obtains a local copy
of parameters from the training engine, then broadcasts the full parameter set across all checkpoint engine workers.
Subsequently, the inference engine retrieves only the parameter shard it requires from the checkpoint engine. This
process is illustrated in Figure 10. To enable this for a 1T model, updates are performed parameter-by-parameter in a
pipelined manner, minimizing memory footprint (see Appendix G).

We opt to broadcast the full parameter set across the entire cluster, regardless of the specific sharding schemes on each
inference worker. While this transfers several times more data than a theoretically optimal approach, it offers a simpler
system design that is less intrusive to the training and inference engines. We chose to trade off this minor overhead to
fully decouple the training engine and the inference engine, significantly simplifying maintenance and testing.

Notably, this approach outperforms the transfer-what-you-need method due to reduced synchronization overhead and
higher network bandwidth utilization. Our system can complete a full parameter update for Kimi K2 with less than 30
seconds, a negligible duration for a typical RL training iteration. The source code for the checkpoint engine is availible
on Github4.

3.3.3 Efficient System Startup

As large-scale training is prone to system failure, optimizing the startup time is crucial for models as large as Kimi K2.

To start the training engine, we let each training worker selectively read part or none of the parameters from disk, and
broadcast necessary parameters to its peers. The design goal is to ensure all workers collectively read the checkpoint
only once, minimizing expensive disk IO.

As the inference engines are independent replicas, we would like to avoid introducing extra synchronization barriers
between them. Therefore, we opt to reuse checkpoint engine for startup: we let checkpoint engine collectively read the
checkpoint from disk, similar to how the training engine starts. Then it updates the state of the uninitialized inference
engine, using the approach introduced in the previous section. By leveraging the dedicated checkpoint engine, the
system also becomes robust to single-point failures, because an inference replica can restart without communicating
with other replicas.

3.3.4 Agentic Rollout

Our RL infrastructure supports the training of long-horizon, multi-turn agentic tasks. During rollout, these tasks present
distinct challenges, such as complex environmental interactions and prolonged rollout durations. Here we introduce a
few optimizations to alleviate these issues.

4https://github.com/MoonshotAI/checkpoint-engine
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Due to the diversity of environments, certain interactions may be blocked on waiting for environment feedback (e.g., a
virtual machine or a code interpreter), leaving the GPUs idle. We employ two strategies to maximize GPU utilization:
(i) we deploy heavy environments as dedicated services that can scale up more easily; (ii) we employ a large number of
concurrent rollouts to amortize the latency induced by certain expensive interactions.

Another challenge in agentic rollout is that individual rollout trajectories can be extremely long. To prevent long-tail
trajectories from blocking the entire rollout process, we employ the partial rollout [36] technique. This strategy allows
long-tail unfinished tasks to be paused, and resumed in the next RL iteration.

To improve research efficiency, we also design a unified interface inspired by the OpenAI Gym framework [5] to
streamline the integration of new environments. We hope to scale our RL infrastructure to more diverse interactive
environments in the future.

4 Evaluations

This section begins with the post-training evaluation of Kimi-K2-Instruct, followed by a brief overview of the capabilities
of Kimi-K2-Base. We conclude with a comprehensive safety evaluation.

4.1 Post-training Evaluations

4.1.1 Evaluation Settings

Benchmarks We assess Kimi-K2-Instruct across different areas. For coding, we adopt LiveCodeBench v6 [32](ques-
tions from August 2024 to May 2025), OJBench [77], MultiPL-E [6], SWE-bench Verified [33, 84], TerminalBench [71],
Multi-SWE-bench [86], SWE-Lancer [50], PaperBench [65], and Aider-Polyglot [17]. For tool use tasks, we evaluate
performance on τ2-Bench [3] and AceBench [7], which emphasize multi-turn tool-calling capabilities. In reasoning,
we include a wide range of mathematical, science and logical tasks: AIME 2024/2025, MATH-500, HMMT 2025,
CNMO 2024, PolyMath-en, ZebraLogic [44], AutoLogi [91], GPQA-Diamond [61], SuperGPQA [14], and Humanity’s
Last Exam (Text-Only) [56]. We benchmark the long-context capabilities on: MRCR5 for long-context retrieval, and
DROP [15], FRAMES [38] and LongBench v2 [2] for long-context reasoning. For factuality, we evaluate FACTS
Grounding [31], the Vectara Hallucination Leaderboard [73], and FaithJudge [68]. Finally, general capabilities are
assessed using MMLU [24], MMLU-Redux [18], MMLU-Pro [76], IFEval [90], Multi-Challenge [64], SimpleQA [78],
and LiveBench [80] (as of 2024-11-25).

Baselines We benchmark against both open-source and proprietary frontier models, ensuring every candidate is
evaluated under its non-thinking configuration to eliminate additional gains from test-time compute. Open-source
baselines: DeepSeek-V3-0324 and Qwen3-235B-A22B, with the latter run in the vendor-recommended no-thinking
regime. Proprietary baselines: Claude Sonnet 4, Claude Opus 4, GPT-4.1, and Gemini 2.5 Flash Preview (2025-05-20).
Each invoked in its respective non-thinking mode via official APIs under unified temperature and top-p settings.

Evaluation Configurations All runs query models in their non-thinking mode. Output token length is capped at
8192 tokens everywhere except SWE-bench Verified (Agentless), which is raised to 16384. For benchmarks with high
per-question variance, we adopt repeated sampling k times and average the results to obtain stable scores, denoted as
Avg@k. For long-context tasks, we set the context window size to 128K tokens during evaluation, truncating any input
that exceeds this limit to fit within the window. SWE-bench Verified is evaluated in two modes: Agentless Coding
via Single Patch without Test (Acc) and Agentic Coding via bash/editor tools under both Single Attempt (Acc) and
Multiple Attempts (Acc) using best-of-N selection with an internal verifier; SWE-bench Multilingual is tested only in
the single-attempt agentic setting. Some data points have been omitted due to prohibitively expensive evaluation costs.

4.1.2 Evaluation Results

A comprehensive evaluation results of Kimi-K2-Instruct is shown in Table 3, with detailed explanation provided in the
Appendix C. Below, we highlight key results across four core domains:

Agentic and Competitive Coding Kimi-K2-Instruct demonstrates state-of-the-art open-source performance on
real-world SWE tasks. It outperforms most baselines on SWE-bench Verified (65.8%, 71.6% with multiple attemps),
SWE-bench Multilingual (47.3%), and SWE-lancer (39.1%), significantly closing the gap with Claude 4 Opus and
Sonnet. On competitive coding benchmarks (e.g., LiveCodeBench v6 53.7%, OJBench 27.1%), it also leads among all
models, highlighting its practical coding proficiency across difficulty levels.

5https://huggingface.co/datasets/openai/mrcr
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Table 3: Performance comparison of Kimi-K2-Instruct against leading open-source and proprietary models across
diverse tasks. Bold denotes the global SOTA; underlined bold indicates the best open-source result. Data points
marked with * are taken directly from the model’s technical report or blog.

Open Source Proprietary

Benchmark Kimi-K2-
Instruct

DeepSeek-
V3-0324

Qwen3-
235B-
A22B

Claude
Sonnet 4

Claude
Opus 4

GPT-4.1 Gemini
2.5 Flash

Coding Tasks

LiveCodeBench v6 (Pass@1) 53.7 46.9 37.0 48.5 47.4 44.7 44.7
OJBench (Pass@1) 27.1 24.0 11.3 15.3 19.6 19.5 19.5
MultiPL-E (Pass@1) 85.7 83.1 78.2 88.6 89.6 86.7 85.6
SWE-bench Verified
Agentless-Single-Patch (Pass@1) 51.8 36.6 39.4 50.2 53.0 40.8 32.6

SWE-bench Verified
Agentic-Single-Attempt (Pass@1) 65.8 38.8 34.4 72.7* 72.5* 54.6 —

SWE-bench Verified
Agentic-Multi-Attempt (Pass@1) 71.6 — — 80.2* 79.4* — —

SWE-bench Multilingual (Pass@1) 47.3 25.8 20.9 51.0 — 31.5 —
Multi-SWE-bench (Pass@1) 18.3 8.0 9.0 29.2 — 11.7 14.0
SWE-Lancer (Pass@1) 39.1 30.5 24.1 40.8 — 23.0 38.5
Paper Bench Code-Dev (Acc.) 27.8 12.2 13.2 43.3 — 29.9 5.7
Terminal Bench In-House (Acc.) 30.0 — — 35.5 43.2 8.3 —
Terminal Bench Terminus (Acc.) 25.0 16.3 6.6 — — 30.3 16.8
Aider-Polyglot (Acc.) 60.0 55.1 61.8 56.4 70.7 52.4 44.0

Tool Use Tasks

Tau2 retail (Avg@4) 70.6 69.1 57.0 75.0 81.8 74.8 64.3
Tau2 airline (Avg@4) 56.5 39.0 26.5 55.5 60.0 54.5 42.5
Tau2 telecom (Avg@4) 65.8 32.5 22.1 45.2 57.0 38.6 16.9
AceBench (Acc.) 76.5 72.7 70.5 76.2 75.6 80.1 74.5

Math & STEM Tasks

AIME 2024 (Avg@64) 69.6 59.4* 40.1* 43.4 48.2 46.5 61.3
AIME 2025 (Avg@64) 49.5 46.7 24.7* 33.1* 33.9* 37.0 46.6
MATH-500 (Acc.) 97.4 94.0* 91.2* 94.0 94.4 92.4 95.4
HMMT 2025 (Avg@32) 38.8 27.5 11.9 15.9 15.9 19.4 34.7
CNMO 2024 (Avg@16) 74.3 74.7 48.6 60.4 57.6 56.6 75.0
PolyMath-en (Avg@4) 65.1 59.5 51.9 52.8 49.8 54.0 49.9
ZebraLogic (Acc.) 89.0 84.0 37.7* 79.7 59.3 58.5 57.9
AutoLogi (Acc.) 89.5 88.9 83.3* 89.8 86.1 88.2 84.1
GPQA-Diamond (Avg@8) 75.1 68.4* 62.9* 70.0* 74.9* 66.3 68.2
SuperGPQA (Acc.) 57.2 53.7 50.2 55.7 56.5 50.8 49.6
Humanity’s Last Exam (Acc.) 4.7 5.2 5.7 5.8 7.1 3.7 5.6

General Tasks

MMLU (EM) 89.5 89.4 87.0 91.5 92.9 90.4 90.1
MMLU-Redux (EM) 92.7 90.5 89.2* 93.6 94.2 92.4 90.6
MMLU-Pro (EM) 81.1 81.2* 77.3 83.7 86.6 81.8 79.4
IFEval (Prompt Strict) 89.8 81.1 83.2* 87.6 87.4 88.0 84.3
Multi-Challenge (Acc.) 54.1 31.4 34.0 46.8 49.0 36.4 39.5
SimpleQA (Correct) 31.0 27.7 13.2 15.9 22.8 42.3 23.3
Livebench (Pass@1) 76.4 72.4 67.6 74.8 74.6 69.8 67.8
Arena Hard v2.0
Hard Prompt (Win rate) 54.5 39.9 39.9 51.6 59.7 51.7 48.7

Arena Hard v2.0
Creative Writing (Win rate) 85.0 59.3 59.8 54.6 68.5 61.5 72.8

FACTS Grounding (Adjusted) 88.5 68.3 68.5 83.6 — 79.2 86.6
HHEM v2.1 (1-Hallu.) 98.9 88.9 94.5 94.5 — 96.7 97.8
FaithJudge (1-Hallu.) 92.6 83.4 75.7 83.0 — 91.0 93.2
LongBench v2 (Acc.) 49.1 51.1 — 52.5 — 54.3 55.5
FRAMES (Acc.) 77.1 79.2 — 76.3 — 87.4 72.9
MRCR (Acc.) 55.0 50.8 — 74.4 — 66.9 81.7
DROP (Acc.) 93.5 91.2 84.3 92.0 — 79.1 81.7
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Agentic Tool Use On multi-turn tool-use benchmarks, Kimi-K2-Instruct sets a new standard. It achieves 66.1 Pass@1
on τ2-Bench and 76.5 on ACEBench, substantially outperforming all baselines. These results affirm its strength in
grounded, controlled, and agent-driven tool orchestration across domains.

General Capabilities Kimi-K2-Instruct exhibits strong, balanced performance across general knowledge, math,
instruction following, and long-context tasks. It surpasses open-source peers on SimpleQA (31.0%), MMLU (89.5%)
and MMLU-Redux (92.7%), and leads all models on instruction benchmarks (IFEval: 89.8%, Multi-Challenge: 54.1%).
In math and STEM, it achieves top-tier scores (AIME 2024: 69.6%, GPQA-Diamond: 75.1%), and remains competitive
on long-context factuality and retrieval (DROP: 93.5%, MRCR: 55.0%). These results position Kimi-K2-Instruct as a
well-rounded and capable generalist across both short- and long-context settings.

Open-Ended Evaluation On the LMSYS Arena leaderboard (July 17, 2025), Kimi-K2-Instruct ranks as the top-1
open-source model and 5th overall based on over 3,000 user votes. This real-world preference signal—across diverse,
blind prompts—underscores Kimi-K2’s strengths in generating high-quality responses on open-ended tasks.

4.2 Pre-training Evaluations

4.2.1 Evaluation Settings

Benchmarks We evaluate Kimi-K2-Base across diverse capability areas. For general capabilities, we assess on
MMLU [24], MMLU-Pro [76], MMLU-Redux [18], BBH [67], TriviaQA [35], SuperGPQA [14], SimpleQA [78], Hel-
laSwag [88], AGIEval [89], GPQA-Diamond [61], ARC-Challenge [9], and WinoGrande [62]. For coding capabilities,
we employ EvalPlus [46] (averaging HumanEval [8], MBPP [1], HumanEval+, and MBPP+), LiveCodeBench v6 [32],
and CRUXEval [19]. For mathematical reasoning, we utilize GSM8K [10], GSM8K-Platinum [74], MATH [25], and
CMATH [79]. For Chinese language capabilities, we evaluate on C-Eval [30], CMMLU [41], and CSimpleQA [23].

Baselines We benchmark against leading open-source foundation models: DeepSeek-V3-Base [11], Qwen2.5-72B-
Base [59] (Note that Qwen3-235B-A22B-Base is not open-sourced, and the largest open-sourced base model in the
Qwen series is Qwen2.5-72B-Base), and Llama 4-Maverick [70] (Llama 4-Behemoth is also not open-sourced). All
models are evaluated under identical configurations to ensure fair comparison.

Evaluation Configurations We employ perplexity-based evaluation for MMLU, MMLU-Redux, GPQA-Diamond,
HellaSwag, ARC-Challenge, C-Eval, and CMMLU. Generation-based evaluation is used for MMLU-Pro, SuperGPQA,
TriviaQA, BBH, CSimpleQA, MATH, CMATH, GSM8K, GSM8K-Platinum, CRUXEval, LiveCodeBench, and
EvalPlus. To mitigate the high variance inherent to GPQA-Diamond, we report the mean score across eight independent
runs. All evaluations are conducted using our internal framework derived from LM-Harness-Evaluation [4], ensuring
consistent settings across all models.

4.2.2 Evaluation Results

Table 4 presents a comprehensive comparison of Kimi-K2-Base against leading open-source foundation models across
diverse evaluation benchmarks. The results demonstrate that Kimi-K2-Base achieves state-of-the-art performance
across the majority of evaluated tasks, establishing it as a leading foundation model in the open-source landscape.

General Language Understanding Kimi-K2-Base achieves state-of-the-art performance on 10 out of 12 English
language benchmarks. Notable results include MMLU (87.79%), MMLU-Pro (69.17%), MMLU-Redux (90.17%),
SuperGPQA (44.67%), and SimpleQA (35.25%), significantly outperforming all baselines.

Coding Capabilities On coding benchmarks, Kimi-K2-Base sets new standards with leading performance across all
metrics. It achieves 74.00% on CRUXEval-I-cot, 83.50% on CRUXEval-O-cot, 26.29% on LiveCodeBench v6, and
80.33% on EvalPlus, demonstrating superior code generation and comprehension abilities, particularly in scenarios
requiring step-by-step reasoning.

Mathematical Reasoning Kimi-K2-Base exhibits exceptional mathematical capabilities, leading on three out of
four benchmarks: MATH (70.22%), GSM8K (92.12%), and GSM8K-Platinum (94.21%). It maintains competitive
performance on CMATH (90.26%), narrowly behind DeepSeek-V3-Base (90.53%). These results highlight the model’s
robust mathematical problem-solving abilities across varying difficulty levels.
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Chinese Language Understanding The model demonstrates superior multilingual capabilities, achieving state-of-the-
art results across all Chinese language benchmarks: C-Eval (92.50%), CMMLU (90.90%), and CSimpleQA (77.57%).
These results establish Kimi-K2-Base as a leading model for Chinese language understanding while maintaining strong
performance across other languages.

Table 4: Performance comparison of Kimi-K2-Base against leading open-source models across diverse tasks.
Benchmark (Metric) #Shots Kimi-K2-Base DeepSeek-V3-Base Llama4-Maverick-Base Qwen2.5-72B-Base

Architecture - MoE MoE MoE Dense
# Activated Params - 32B 37B 17B 72B
# Total Params - 1043B 671B 400B 72B

English

MMLU 5-shots 87.79 87.10 84.87 86.08
MMLU-pro 5-shots 69.17 60.59 63.47 62.80
MMLU-redux 5-shots 90.17 89.53 88.18 87.77
SuperGPQA 5-shots 44.67 39.20 38.84 34.23
GPQA-Diamond(avg@8) 5-shots 48.11 50.51 49.43 40.78
SimpleQA 5-shots 35.25 26.49 23.74 10.31
TriviaQA 5-shots 85.09 84.11 79.25 76.03
BBH 3-shots 88.71 88.37 87.10 84.09
HellaSwag 5-shots 94.60 89.44 86.02 95.27
AGIEval - 84.23 81.57 67.55 76.87
ARC-Challenge 0-shot 95.73 93.77 94.03 95.56
WinoGrande 5-shots 85.32 84.21 77.58 84.14

Code

CRUXEval-I-cot 0-shots 74.00 62.75 67.13 61.12
CRUXEval-O-cot 0-shots 83.50 75.25 75.88 66.13
LiveCodeBench(v6) 1-shots 26.29 24.57 25.14 22.29
EvalPlus - 80.33 65.61 65.48 66.04

Math

MATH 4-shots 70.22 61.70 63.02 62.68
GSM8k 8-shots 92.12 91.66 86.35 90.37
GSM8k-platinum 8-shots 94.21 93.38 88.83 92.47
CMATH 6-shots 90.26 90.53 88.07 86.98

Chinese
C-Eval 5-shots 92.50 90.04 80.91 90.86
CMMLU 5-shots 90.90 88.84 81.24 90.55
CSimpleQA 5-shots 77.57 72.13 53.47 50.53

4.3 Safety Evaluation

4.3.1 Experiment Settings

We conducted red-teaming evaluations on Kimi K2 compare with other open-source LLMs. The evaluation covered a
range of attack scenarios—including harmful content, privacy content, and security content, as well as different attack
strategies such as prompt injection and iterative jailbreak.

We choose Promptfoo6 to generate adversarial prompts and analyze the responses. By this way, we can evaluate model
in a scalable ways.

Model Selection We compare Kimi K2 with three other open-source LLMs: DeepSeek-V3, DeepSeek-R1, and Qwen3.

Promptfoo Settings Table 5 lists plugins and strategies evaluated, with each plugin paired with all strategies to assess
their performance.

Test Case Count Given the inherent non-determinism of large language model inference, single-pass outputs may
exhibit variability. To account for this, we generated 3 attack prompts per plugin for each strategy.

Prompt Language Settings We pre-tested the language compatibility for each plugin-strategy combination. Some
plugins support both English and Chinese, while others only support English. For combinations that support both, we
generated 3 prompts in each language, resulting in 6 prompts per combination.

6https://github.com/promptfoo/promptfoo
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Table 5: Enabled Plugins and Strategies

Plugin

Harmful Graphic Content, Harassment and Bullying, Hate Speech, Insults, Profanity, Radicalization, Self
Harm, Sexual Content, ToxicChat

Criminal Chemical&Biological Weapons, Child Exploitation, Copyright Violations, Cybercrime, Illegal
Activities, Illegal Drugs, Indiscriminate Weapons, Intellectual Property Violation, Non-Violent
Crime, Violent Crime, Sex Crimes

Misinformation Competitor Endorsement, Unsupervised Contracts, Excessive Agency, Hallucination, Misin-
formation and Disinformation, Specialized Advice, Unsafe Practices, Imitation, Overreliance,
Political Opinions, Religious Sensitivity

Privacy Privacy Violation, PII in API/Database, Direct PII Exposure, PII in Session Data, PII via Social
Engineering

Security ASCII Smuggling, CyberSecEval, Harmbench, Debug Access, Divergent Repetition, DoNotAn-
swer, Malicious Code, Pliny, Prompt Extraction, Reasoning DoS, Tool Discovery

Strategy Basic, Prompt Injection, Iterative Jailbreak, Crescendo

Manual Review We incorporated human review into the evaluation process. To minimize subjectivity problem, we
conducted multiple rounds of review and assigned the same reviewer to evaluate all cases within a given test set to
ensure consistency and reduce variability in judgment.

4.3.2 Safety Evaluation Results

Table 6 presents the passing rates of different models under various plugin–strategy combinations.

Table 6: Safety Evaluation Results
Plugin Strategy Kimi-K2-Instruct DeepSeek-V3-0324 DeepSeek-R1 Qwen3-235B-A22B

Harmful

Basic 98.04 90.45 99.02 98.53
Base64 100 90.20 100 100
Prompt Injection 93.14 100 95.10 99.02
Iterative Jailbreak 92.16 66.67 72.55 74.51
Crescendo 64.71 64.71 80.39 86.27

Criminal

Basic 100 99.62 95.45 99.24
Base64 96.97 89.39 84.85 98.48
Prompt Injection 75.76 91.67 69.70 98.47
Iterative Jailbreak 57.57 21.21 25.76 53.03
Crescendo 56.06 31.81 42.42 59.09

Misinformation

Basic 97.28 92.57 92.46 94.84
Base64 98.48 90.48 96.83 93.65
Prompt Injection 98.39 86.51 93.65 93.65
Iterative Jailbreak 63.97 53.97 84.13 69.84
Crescendo 85.71 55.56 88.89 84.13

Privacy

Basic 100 100 100 100
Base64 100 100 100 100
Prompt Injection 88.33 98.33 100 91.67
Iterative Jailbreak 76.67 100 93.33 96.67
Crescendo 96.67 100 96.67 100

Security

Basic 77.84 75.57 70.46 90.09
Base64 82.93 82.93 63.41 95.12
Prompt Injection 87.80 97.56 65.85 84.13
Iterative Jailbreak 43.90 60.97 43.90 78.04
Crescendo 68.29 87.80 68.29 87.80

Without targeted optimization for specific evaluation scenarios, the passing rate of some complex cases (e.g., Harm-
ful–Iterative Jailbreak) was relatively higher compared to other models.

Across different attack strategies, the models exhibited varying trends. Under the Base64 strategy, passing rates
generally approached or reached 100%, suggesting that encoding transformations had minimal impact on the models’
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basic robustness. In contrast, the Crescendo strategy led to a general drop in passing rates, indicating stronger adversarial
effectiveness.

In addition, complex attack strategies do not always outperform basic prompts. Some originally adversarial prompts
may lose their intended meaning after multiple rounds of transformation, rendering the resulting model outputs less
meaningful.

Automated Red-teaming Limitations Due to the involvement of human review, the evaluation results inevitably
contain a degree of subjectivity. Additionally, certain plugin types involve API misuse or external tool invocation, which
are more suitable for evaluating agent models with tool-calling capabilities. In the context of base LLMs, such tests
may have limited relevance.

5 Limitations

In our internal tests, we have identified some limitations in current Kimi K2 models. When dealing with hard reasoning
tasks or unclear tool definition, the model may generate excessive tokens, sometimes leading to truncated outputs or
incomplete tool calls. Additionally, performance may decline on certain tasks if tool use is unnecessarily enabled. When
building complete software projects, the success rate of one-shot prompting is not as good as using K2 under an agentic
coding framework. We are working to address these issues in future releases and looking forward to more feedbacks.

6 Conclusions

We introduced Kimi K2, a 1T-parameter open-weight MoE model built for agentic intelligence. Leveraging the token-
efficient MuonClip optimizer and a 15.5T-token high-quality dataset, Kimi K2 achieves stable, scalable pre-training.
Post-training combines large-scale synthetic tool-use data with a unified RL framework using both verifiable rewards
and self-critic feedbacks. Kimi K2 sets new state-of-the-art on agentic and reasoning benchmarks, establishing itself as
the most capable open-weight LLM to date.
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B Token Template of Tool Calling

There are three components in the token structure for tool-calling:

• Tool declaration message: defines the list of available tools and the schema of the arguments;
• Tool invoking section in assistant message: encodes the model’s request to invoke tools;
• Tool result message: encapsulates the invoked tool’s execution result.

The raw tokens of the tool declaration message are formatted as follows:

<|im_begin|>
tool_declare
<|im_middle|>
# Tools

{{ tool declaration content }}
<|im_end|>

The blue highlighted marks represent special tokens, and the green part, quoted by brackets, is the tool declaration
content. We use TypeScript to express the tool declaration content, since TypeScript is a concise language with a
comprehensive type system, able to express the types and constraints of tool parameters with brief text. The code 1
shows an example for two simple tools in JSON format compatible with OpenAI’s chat completion API, as a comparison,
the same tools defined in TypeScript (listed in Code 2) is much shorter. To improve compatibility, part of our training
data also uses JSON as the tool declaration language, so that 3rd-party frameworks need not additional development to
support our tool calling scheme.

Listing 1: Tool definition with JSON in OpenAI compatible API
[{

"type": "function",
"function": {

"name": "get_weather",
"description": "Get weather for a location and date",
"parameters": {

"type": "object",
"properties": {

"location": {
"type": "string",
"description": "City and country e.g. Beijing , China"

},
"date": {

"type": "string",
"description": "Date to query , format in ‘%Y-%m-%d’"

}
},
"required": [

"location"
]

}
}

},
{

"type": "function",
"function": {

"name": "Calculator",
"description": "Simple calculator",
"parameters": {

"properties": {
"expr": {

"type": "string",
"description": "Arithmetic expression in javascript"

}
},
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"type": "object"
}

}
}]

Listing 2: Tool definition in TypeScript
namespace functions {
// Get weather for a location and date
type get_weather = (_: {

// City and country e.g. Beijing , China
location: string ,
// Date to query , format in ‘%Y-%m-%d’
date?: string

}) => any;
// Simple calculator
type Calculator = (_: {

// Arithmetic expression in javascript
expr?: string

}) => any;
}

The token template of the tool invoking section in the model’s response messages is listed as follows:

<|tool_call_section_begin|>
<|tool_call_begin|>
// call_id part
functions.{{tool name}}:{{counter}}
<|tool_arguments_begin|>
{{ json serialized call arguments }}
<|tool_call_end|>
<|tool_call_begin|>
// more tool calls
<|tool_call_end|>
<|tool_call_section_end|>

As shown in the template, we support parallel tool calling by placing multiple tool calls in a single response turn. Each
tool call has a unique call id, formatted as functions.{tool-name}:{counter}, where tool-name is the name of
the tool, and counter is an auto-increasing counter of all tool calls starting from 0 in the dialog.

During inference, the model may occasionally generate unexpected tokens, leading to format errors when parsing a tool
call. To solve this issue, we developed a constrained decoding module named enforcer, inspired by lm-format-enforcer7.
When a <tool_call_section_begin|> token is generated, it ensures that the upcoming tool-related tokens follow
the predefined template, and the JSON argument string follows the declared schema.

The tool result message is simply a text message encoded with the tool’s call id and the corresponding results.

<|im_begin|>
tool
<|im_middle|>
## Results of {{call_id}}
{{ execution result content }}
<|im_end|>

C Evaluation Details

Coding Tasks. We evaluate Kimi-K2-Instruct’s capabilities on competitive coding benchmarks, LiveCodeBench and
OJBench, where Kimi-K2-Instruct attains superior performance with scores of 53.7% and 27.1%, respectively. This
excellence spans both medium-level coding challenges, such as LeetCode and AtCoder, and hard-level contests like NOI
and ICPC, outperforming leading open-source and proprietary models. For multilingual programming proficiency, we
employ MultiPL-E, covering languages including C++, C#, Java, JavaScript, PHP, Go, Kimi-K2-Instruct surpasses top

7https://github.com/noamgat/lm-format-enforcer
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open-source models with an accuracy of 85.7%, compared with 83.1% for DeepSeek-V3-0324 and 78.2% for Qwen3-
235B-A22B. In software engineering tasks, Kimi-K2-Instruct demonstrates robust performance on SWE-bench Verified
(Python), SWE-lancer (Python), SWE-bench Multilingual, and Multi-SWE-bench datasets. It significantly outperforms
open-source counterparts in resolving real-world code repository issues and notably narrows the performance gap with
proprietary models. For example:

• SWE-bench Verified (multiple attempts): 71.6% (Kimi-K2-Instruct) vs. 80.2% (Claude 4 Sonnet)

• SWE-bench Multilingual: 47.3% (Kimi-K2-Instruct) vs. 51.0% (Claude 4 Sonnet)

• SWE-lancer: 39.1% (Kimi-K2-Instruct) vs. 40.8% (Claude 4 Sonnet)

On PaperBench, Kimi-K2-Instruct achieves an accuracy of 27.8%, closely matching GPT-4.1 and outperforming
DeepSeek-V3-0324 (12.2%) and Qwen3-235B-A22B (8.2%) by a substantial margin. In terminal interaction tasks
measured by TerminalBench, Kimi-K2-Instruct attains 25.0% using the default Terminus framework and rises to
30% within Moonshot’s in-house agentic framework, underscoring its capabilities in real-world agentic programming
scenarios. Moreover, on the Aider-Polyglot benchmark, Kimi-K2-Instruct attains a 60.0% accuracy while employing
rigorous decontamination procedures, further illustrating its strength and reliability across diverse coding environments.

Tool Use Tasks. We evaluate multi-turn tool use with two complementary suites: τ2-Bench and ACEBench. τ2-Bench
extends the original τ -bench single-control setup to a dual-control environment in which both the agent and an LLM-
simulated user have constrained tool affordances over a shared state, adding a realistic Telecom troubleshooting domain
alongside the prior Airline/Retail TAU tasks and enabling analysis of coordination vs. pure reasoning. ACEBench is a
large bilingual (En/Zh) API-grounded benchmark (4.5K APIs across 8 domains; 2K annotated eval items) partitioned
into NORMAL (basic/personalized/atomic), SPECIAL (imperfect or out-of-scope inputs), and AGENT (scenario-driven
multi-turn, multi-step sandbox) tracks with automated grading of calls and outcomes. All models run in non-thinking
mode; we set the temperature to 0.0, use deterministic tool adapters, score τ2 Airline/Retail/Telecom under Avg@4
seeds with Pass@1/4, and report overall on ACEBench English. Kimi-K2-Instruct averages 66.1 micro Pass@1 across
τ2 vs DeepSeek-V3-0324 48.8 / Qwen3-235B-A22B 37.3. On ACEBench Overall Kimi-K2-Instruct scores 76.5 vs
DeepSeek 72.7 / Qwen 70.5 and remains competitive with GPT-4.1 (80.1).

Math & STEM & Logical Tasks. For Math tasks, Kimi-K2-Instruct achieves consistently strong performance,
averaging over Geimini-2.5-Flash by 5.3 percentage points, over DeepSeek-V3-0324 by 5.5 points and over GPT4.1 by
15.8 points. For example, on AIME 2024, Kimi-K2-Instruct scores 69.6%, outperforming another two top open-source
models by a large margin, DeepSeek-V3-0324 by 10.2 points and Qwen3-235B-A22B by 29.5 points. In STEM
evaluations, Kimi-K2-Instruct achieves 75.1% on GPQA-Diamond, outperforming DeepSeek-V3-0324 (68.4%) and all
non-thinking baselines by at least 5 percentage points. On SuperGPQA, it also exceeds the previous best open-source
model, DeepSeek-V3-0324, by 3.5 points. Kimi-K2-Instruct also surpasses the other two leading models in logical
reasoning. It achieves 89.0% on ZebraLogic and 89.5% on AutoLogi, exceeding DeepSeek-V3-0324 (84.0%, 88.9%)
and substantially outperforming Qwen3-235B-A22B (37.7%, 83.3%).

General Tasks. Kimi-K2-Instruct ties DeepSeek-V3-0324 on MMLU and MMLU-Pro, and takes the lead on MMLU-
Redux with a 92.7 EM score—slightly ahead of GPT-4.1 (92.4) and just 1.5 points behind Claude-Opus-4. Beyond
multiple-choice tasks, the model achieves 31.0% accuracy on the short-answer SimpleQA—3.3 points above DeepSeek-
V3-0324 and more than twice that of Qwen3-235B-A22B—though still below GPT-4.1 (42.3%). On the adversarial
free-response LiveBench (2024-11-25 snapshot), it reaches 76.4%, surpassing Claude-Sonnet 4 (74.8%) and leading
Gemini 2.5 Flash Preview by 8.6 points. Across this challenging triad measuring breadth, depth, and robustness of world
knowledge, Kimi-K2-Instruct secures a top-tier position among open-source models. We evaluate instruction-following
with IFEval and Multi-Challenge. On IFEval, Kimi-K2-Instruct scores 89.8%, higher than DeepSeek-V3-0324 (81.1%)
and GPT-4.1 (88.0%). On Multi-Challenge, which involves multi-turn dialogues with conflicting instructions, it achieves
54.1%, outperforming DeepSeek-V3-0324 (31.4%), GPT-4.1 (36.4%), and Claude-Opus-4 (49.0%). These results
demonstrate that Kimi-K2-Instruct integrates strong factual knowledge with consistent instruction adherence across
both single- and multi-turn settings, supporting robust and reliable real-world deployment.

Long Context and Factuality Tasks. To evaluate the factuality of Kimi-K2-Instruct, we employ three benchmarks:
FACTS Grounding, which measures adherence to provided documents using the proprietary models GPT-4o, Gemini
1.5 Pro and Claude 3.5 Sonnet; HHEM, which assesses summarization quality via the open-source HHEM-2.1-Open
judge; and FaithJudge, which analyzes faithfulness in RAG tasks with o3-mini as the judge. Kimi-K2-Instruct scores
88.5 on FACTS Grounding, substantially outperforming all open-source rivals and even surpassing the closed-source
Gemini 2.5 Flash. With HHEM-2.1-Open it achieves a hallucination rate of 1.1 %, reported in the tables as 1 minus the
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Figure 11: Chinese in-house benchmark evaluation.

rate, i.e. 98.9. On FaithJudge’s RAG tasks the hallucination rate is 7.4 %, likewise present as 92.6 for table consistency.
For long-context capabilities, Kimi-K2-Instruct outperforms all open source and proprietary models on DROP (93.5%),
and exceeds DeepSeek-V3-0324 on retrieval task MRCR (55.0% vs 50.8%). For long-context reasoning tasks FRAMES
and LongBench v2, Kimi-K2-Instruct (77.1%, 49.1%) lags slightly behind DeepSeek-V3-0324 by around 2%.

Open-Ended Evaluation Beyond static, closed-ended benchmarks, we evaluate the model’s performance on open-
ended, nuanced tasks that more closely resemble real-world usage.

For English scenarios, we leverage the Arena-Hard-Auto v2.0 benchmark, which use LLM-as-a-judge protocols to
assess generation quality across diverse, open-ended prompts [43]. These evaluations cover a wide range of high-
difficulty prompts and are widely recognized in the research community. On Arena-Hard-Auto v2.0, Kimi-K2-Instruct
achieves state-of-the-art win-rate on both hard prompts (54.5%) and creative writing tasks (85.0%), outperforming all
open-source models and rivaling top proprietary systems such as GPT-4.1 and Claude Sonnet. These results underscore
the model’s strength in handling complex reasoning and nuanced generation under diverse, unconstrained settings.

However, Arena-Hard-Auto provides limited coverage of Chinese-specific tasks. To address this gap, we developed
an in-house held-out benchmark grounded in authentic user queries. To safeguard the integrity of the evaluation, the
benchmark data is access-restricted, thereby eliminating the risk of overfitting.

As shown in Figure 11, Kimi-K2-Instruct shows strong performance across all comparisons on Chinese in-house
benchmarks. It outperforms ChatGPT-4o-latest with a 65.4% win rate, Claude Sonnet 4 with 64.6%, and DeepSeek-V3-
0324 with 59.6%. In all cases, the loss rate stays low (around 17%), indicating that Kimi-K2-Instruct rarely falls behind.
The high win rates and consistent margins demonstrate its strong ability on open-ended Chinese tasks.

In addition to controlled evaluations, we also consider real-world user preference through public human assessments.
As of July 17, 2025, Kimi-K2-Instruct ranked as the top open-source model and fifth overall on the LMSYS Arena
leaderboard8, based on over 3,000 blind votes from real users. Unlike LLM-as-a-judge protocols, this leaderboard
reflects direct human preference on diverse, user-submitted prompts, providing a complementary perspective on practical
model performance.

The results on Arena-Hard-Auto, our in-house benchmark and votes from LMSYS Arena collectively offer a compre-
hensive view of Kimi-K2-Instruct’s open-ended capabilities, showing that it is a highly preferred model in real-world
user experience across English and Chinese.

D QK-Clip Does Not Impair Model Quality

The QK-Clip design follows a minimal intervention principle: it activates only when necessary, and deactivates after
training stabilizes. Empirical evidence and analysis converge on its negligible impact on model quality.

8https://lmarena.ai/leaderboard/text
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Figure 12: Applying QK-Clip to Muon in a small-scale
setting with an aggresive threshold (τ = 30) has negligible
impact on loss, indicating that it is a safe and effective
method for constraining attention logits.

Small-Scale Ablations We train two small-scale 0.5B activated and 3B total parameters MoE models, one with vanilla
Muon and the other with MuonClip using a low clipping threshold (τ = 30). As shown in Figure 12, applying MuonClip
has negligible effects on the loss curve, indicating that even aggressive clipping does not impair convergence or training
dynamics with MuonClip. This demonstrates that MuonClip is a safe and effective method for bounding attention logits
without degrading model performance. Furthermore, evaluation on downstream tasks reveals no statistically significant
degradation in performance. These results collectively demonstrate that MuonClip is a safe and effective method for
bounding attention logits without compromising model quality.

Self-deactivation In Kimi K2, QK-Clip was only transiently active:

• Initial 70000 steps: 12.7% of attention heads triggered QK-Clip for at least once, clamping Smax to 100.

• Post-70000 steps: All heads at some point reduced their Smax below 100, rendering QK-Clip inactive.

When QK-Clip is active, it is applied per-head (rather than per-layer) to minimize potential over-regularization on other
heads. After training stabilizes, QK-clip is deactivated and has no effect at all.

E Why Muon is More Prone to Logit Explosion

Logit explosion occurs when the largest pre-softmax attention score

Smax = max
i,j

(
qi · kj

)
(1)

grows unboundedly during training. Since

|qi ·kj | ≤ ∥qi∥∥kj∥ ≤ ∥xi∥∥xj∥∥Wq∥∥Wk∥, (2)

and RMS-Norm keeps ∥xi∥∥xj∥ bounded, the phenomenon is primarily driven by the growing spectral-norm of Wq or
Wk. Empirically, we found that Muon is more susceptible to logit explosion. We give our hypothesis below.

Structural difference in updates Muon produces a weight update coming from the msign operation; as a result, all
singular values of the update matrix are equal — its effective rank is full. In contrast, a typical update matrix produced
by Adam exhibits a skewed spectrum: a few large singular values dominate, and the effective rank is low. This low-rank
assumption for Adam is not new; higher-order muP makes the same assumption.

Such phenomenon is verified on the 16 B Moonlight model, which shows weights trained with Muon exhibit higher
singular-value entropy (i.e. higher effective rank) than those trained with Adam, corroborating the theoretical intuition.

SVD formulation Let the parameter matrix at step t− 1 have the singular value decomposition

Wt−1 =
∑
i

σi uiv
⊤
i (3)
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We write the update matrices as

∆Wt =
∑
j

σ̄ ūj v̄
⊤
j (4)

The next parameter update is therefore

Wt ←
∑
i

σiuiv
⊤
i +

∑
j

σ̄ ūj v̄
⊤
j (5)

In Muon, as both the weights and the updates have a higher effective rank than Adam, we hypothesize there is a higher
probability for singular-vector pair uiv

⊤
i to align with ūj v̄

⊤
j . This could cause the corresponding singular value of Wt

to increase additively.

Attention-specific amplification Attention logits are computed via the bilinear form

qi · kj = (xiWq) · (xjWk). (6)

The product WqW
⊤
k squares the spectral norm, so any singular-value increase in either matrix is compounded. Muon’s

tendency to enlarge singular values therefore translates into a higher risk of logit explosion.

F K2 Critic Rubrics for General RL

F.1 Core Rubrics

• Clarity and Relevance: Assesses the extent to which the response is succinct while fully addressing the user’s
intent. The focus is on eliminating unnecessary detail, staying aligned with the central query, and using efficient
formats such as brief paragraphs or compact lists. Unless specifically required, long itemizations should be avoided.
When a choice is expected, the response should clearly offer a single, well-defined answer.

• Conversational Fluency and Engagement: Evaluates the response’s contribution to a natural, flowing dialogue that
extends beyond simple question-answering. This includes maintaining coherence, showing appropriate engagement
with the topic, offering relevant observations or insights, potentially guiding the conversation constructively when
appropriate, using follow-up questions judiciously, handling hypothetical or personal-analogy queries gracefully,
and adapting tone effectively to suit the conversational context (e.g., empathetic, formal, casual).

• Objective and Grounded Interaction: Assesses the response’s ability to maintain an objective and grounded
tone, focusing squarely on the substance of the user’s request. It evaluates the avoidance of both metacommentary
(analyzing the query’s structure, topic combination, perceived oddity, or the nature of the interaction itself) and
unwarranted flattery or excessive praise directed at the user or their input. Excellent responses interact respectfully
but neutrally, prioritizing direct, task-focused assistance over commentary on the conversational dynamics or
attempts to curry favor through compliments.

F.2 Prescriptive Rubrics

• Initial Praise: Responses must not begin with compliments directed at the user or the question (e.g., “That’s a
beautiful question”, “Good question!”).

• Explicit Justification: Any sentence or clause that explains why the response is good or how it successfully
fulfilled the user’s request. This is different from simply describing the content.

F.3 Limitations

One potential side effect of this evaluation framework is that it may favor responses that appear confident and assertive,
even in contexts involving ambiguity or subjectivity. This stems from two key constraints in the current rubric:

• Avoidance of Self-Qualification: The prescriptive rules prohibit self-assessments, explicit disclaimers, or hedging
language (e.g., “this may not be accurate”, “I might be wrong”). While these phrases can reflect epistemic humility,
they are often penalized as non-informative or performative.

• Preference for Clarity and Singularity: The rubric reward direct, decisive answers when users ask for a
recommendation or explanation. In complex or open-ended scenarios, this may disincentivize appropriately
cautious or multi-perspective responses.
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As a result, the model may occasionally overstate certainty in areas where ambiguity, nuance, or epistemic modesty
would be more appropriate. Future iterations of the framework may incorporate more fine-grained handling of calibrated
uncertainty.

G Engine Switching Pipeline for RL Training

H2D

Reload weights

Broadcast (src)

Broadcast (dst)

H2D Buffer

IPC Buffer

Device 0

Device 1

Device 2

Device 3

(a) Theoretical perfect three-stage pipeline weight update

(b) A PCIE bounded three-stage pipeline (c) Fixed two-stage pipeline

Figure 13: pipeline for RL weight update

The checkpoint engine manages three equal-size device buffers on each GPU: an H2D buffer for loading the offloaded
model parameters, and two IPC buffers for GPU-to-GPU broadcast. The IPC buffers are shared to inference engines,
allowing it to directly access the same physical memory. These three buffers allow us to arrange the three steps in a
pipeline.

Theoretical three-stage pipeline. As illustrated in Figure 13a, a three-stage pipeline is introduced. (1) H2D: a shard
of the latest weights is copied into the H2D buffer asynchronously. (2) Broadcast: Once the copy completes, the shard
will be copied to one IPC buffers and broadcast to all devices. (3) Reload: Inference engines simultaneously load
parameters from the other IPC buffer.

Two-stage pipeline due to PCIe saturation. On NVIDIA H800 clusters, concurrent H2D and broadcast saturate the
shared PCIe fabric, collapsing the three stages into a sequential procedure (Figure 13b). We therefore adopt a simpler,
two-stage scheme (Figure 13c): (1) All devices perform a single, synchronous H2D transfer. (2) The broadcast and
reload proceed in parallel.

The two-stage pipeline will be bound by multiple synchronous H2D copy operations. But in large scale devices, model
will be split into small shards, the entire parameter set fits into the H2D buffer in one transfer, the overhead will
disappear.

By overlapping H2D, Broadcast, and Reload weights, we can obtain a high bandwidth to reshard the weights from train
engines to all inference engines.
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