
Page iii

Table of Contents

Page

��� ���������������

���� ����������������������

��� ��������������������

1.1 8C-Ref: Who Defines C?

1.2 9C-Ref: An Overview of C Programming

1.3 10C-Ref: Syntax Notation

��� �������������������������

2.1 11C-Ref: Character Set

2.1.1 12C-Ref: Execution Character Set

2.1.2 12C-Ref: Whitespace and Line Termination

2.1.3 13C-Ref: Character Encodings

2.2 14C-Ref: Comments

2.3 15C-Ref: Tokens

2.4 15C-Ref: Operators and Separators

2.5 16C-Ref: Identifiers

2.5.1 17C-Ref: Conventions for Identifiers

2.6 18C-Ref: Reserved Words

2.7 18C-Ref: Constants

2.7.1 19C-Ref: Integer Constants

2.7.2 21C-Ref: Floating-point Constants

2.7.3 23C-Ref: Character Constants

2.7.4 24C-Ref: String Constants

2.7.5 25C-Ref: Escape Characters

2.7.6 25C-Ref: Character Escape Codes

2.7.7 26C-Ref: Numeric Escape Codes

��� ���������������������������

3.1 29C-Ref: Preprocessor Commands

3.2 30C-Ref: Preprocessor Lexical Conventions

3.3 31C-Ref: Definition and Replacement

3.3.1 31C-Ref: Simple Macro Definitions

3.3.2 33C-Ref: Defining Macros with Parameters

3.3.3 35C-Ref: Rescanning of Macro Expressions

3.3.4 36C-Ref: Predefined Macros

3.3.5 37C-Ref: Undefining and Redefining Macros

3.3.6 38C-Ref: Precedence Errors in Macro Expansions

Page iv

3.3.7 39C-Ref: Side Effects in Macro Arguments

3.3.8 39C-Ref: Converting Tokens to Strings

3.3.9 40C-Ref: Token Merging in Macro Expansions

3.3.10 41C-Ref: Other Problems

3.4 41C-Ref: File Inclusion

3.5 42C-Ref: Conditional Compilation

3.5.1 42C-Ref: The #if, #else, and #endif Commands

3.5.2 43C-Ref: The #elif Commands

3.5.3 45C-Ref: The #ifdef and #ifndef Commands

3.5.4 47C-Ref: Constant Expressions in Conditional Commands

3.5.5 47C-Ref: The defined Operator

3.6 48C-Ref: Explicit Line Numbering

��� ���������������������

4.1 50C-Ref: Organization of Declarations

4.2 51C-Ref: Terminology

4.2.1 51C-Ref: Scope

4.2.2 52C-Ref: Visibility

4.2.3 53C-Ref: Forward References

4.2.4 53C-Ref: Overloading of Names

4.2.5 55C-Ref: Duplicate Declarations

4.2.6 56C-Ref: Duplicate Visibility

4.2.7 56C-Ref: Extent

4.2.8 57C-Ref: Initial Values

4.2.9 58C-Ref: External Names

4.2.10 58C-Ref: Compile-time Objects

4.3 59C-Ref: Storage Class Specifiers

4.3.1 60C-Ref: Default Storage Class Specifiers

4.3.2 60C-Ref: Examples of Storage Class Specifiers

4.4 62C-Ref: Type Specifiers

4.4.1 62C-Ref: Default Type Specifiers

4.4.2 63C-Ref: Missing Declarators

4.5 64C-Ref: Declarators

4.5.1 64C-Ref: Simple Declarators

4.5.2 65C-Ref: Pointer Declarators

4.5.3 65C-Ref: Array Declarators

4.5.4 67C-Ref: Function Declarators

4.5.5 68C-Ref: Composition of Declarators

4.6 69C-Ref: Initializers

4.6.1 70C-Ref: Integers

4.6.2 70C-Ref: Floating-point

4.6.3 71C-Ref: Pointers

4.6.4 72C-Ref: Arrays

4.6.5 73C-Ref: Enumerations

4.6.6 74C-Ref: Structures

4.6.7 75C-Ref: Unions

Page v

4.6.8 75C-Ref: Eliding Braces

4.7 76C-Ref: Implicit Declarations

4.8 76C-Ref: External Names

4.8.1 77C-Ref: The Initializer Model

4.8.2 77C-Ref: The Omitted Storage Class Model

4.8.3 77C-Ref: The Common Model

4.8.4 77C-Ref: Mixed Common Model

4.8.5 78C-Ref: Advice

4.8.6 78C-Ref: Unreferenced External Declarations

��� ��������������

5.1 79C-Ref: Type Categories

5.2 80C-Ref: Integer Types

5.2.1 80C-Ref: Signed Integer Types

5.2.2 82C-Ref: Unsigned Integer Types

5.2.3 83C-Ref: Character Type

5.3 86C-Ref: Floating-Point Types

5.4 87C-Ref: Pointer Types

5.4.1 88C-Ref: Pointer Arithmetic

5.4.2 89C-Ref: Some Problems with Pointers

5.5 90C-Ref: Array Types

5.5.1 90C-Ref: Arrays and Pointers

5.5.2 91C-Ref: Multidimensional Arrays

5.5.3 91C-Ref: Array Bounds

5.5.4 92C-Ref: Operations

5.6 92C-Ref: Enumeration Types

5.7 95C-Ref: Structure Types

5.7.1 97C-Ref: Structure Type References

5.7.2 98C-Ref: Operations on Structures

5.7.3 98C-Ref: Components

5.7.4 99C-Ref: Structure Component Layout

5.7.5 100C-Ref: Bit Fields

5.7.6 102C-Ref: Portability Problems

5.7.7 102C-Ref: Sizes of Structures

5.8 103C-Ref: Union Types

5.8.1 104C-Ref: Union Component Layout

5.8.2 104C-Ref: Sizes of Unions

5.8.3 105C-Ref: Using Union Types

5.9 107C-Ref: Function Types

5.10 109C-Ref: Void

5.11 110C-Ref: Typedef Names

5.11.1 111C-Ref: Typedef Names for Function Types

5.11.2 111C-Ref: Redefining Typedef Names

5.11.3 112C-Ref: A Note on Implementation of Typedef Names

5.12 112C-Ref: Type Equivalence

5.12.1 113C-Ref: More About Array Types

Page vi

5.12.2 113C-Ref: Enumeration, Structure, and Union Types

5.12.3 113C-Ref: More About Typedef Names

5.13 114C-Ref: Type Names and Abstract Declarators

��� ���

6.1 117C-Ref: Representational Issues

6.1.1 117C-Ref: Storage Units and Data Sizes

6.1.2 118C-Ref: Addressing Structure and Byte Ordering

6.1.3 119C-Ref: Alignment Restrictions

6.1.4 121C-Ref: Pointer Sizes

6.1.5 121C-Ref: Difficult Addressing Models

6.2 122C-Ref: Conversions

6.2.1 122C-Ref: Representation Changes

6.2.2 123C-Ref: Trivial Conversions

6.2.3 123C-Ref: Conversions to Integer Types

6.2.4 125C-Ref: Conversions to Floating-point Types

6.2.5 125C-Ref: Conversions to Structure and Union Types

6.2.6 126C-Ref: Conversions to Enumeration Types

6.2.7 126C-Ref: Conversions to Pointer Types

6.2.8 126C-Ref: Conversions to Array and Function Types

6.2.9 127C-Ref: Conversions to the Void Type

6.3 127C-Ref: The Usual Conversions

6.3.1 127C-Ref: The Casting Conversions

6.3.2 127C-Ref: The Assignment Conversions

6.3.3 128C-Ref: The Usual Unary Conversions

6.3.4 129C-Ref: The Usual Binary Conversions

6.3.5 130C-Ref: The Function Argument Conversions

6.3.6 130C-Ref: Other Function Conversions

��� ���������������������

7.1 131C-Ref: General Comments

7.1.1 131C-Ref: Objects and LValues

7.2 132C-Ref: Expressions and Precedence

7.2.1 132C-Ref: Precedence and Associativity of Operators

7.2.2 134C-Ref: Overflow and Other Arithmetic Exceptions

7.3 135C-Ref: Primary Expressions

7.3.1 135C-Ref: Names

7.3.2 137C-Ref: Literals

7.3.3 137C-Ref: Paranthesized Expressions

7.4 138C-Ref: Postfix Expressions

7.4.1 138C-Ref: Subscripting Expressions

7.4.2 140C-Ref: Component Selection

7.4.3 141C-Ref: Function Calls

7.4.4 143C-Ref: Postincrement Operator

7.4.5 144C-Ref: Postdecrement Operator

7.5 144C-Ref: Unary Expressions

Page vii

7.5.1 145C-Ref: Casts

7.5.2 145C-Ref: Size of Operator

7.5.3 147C-Ref: Unary Minus

7.5.4 147C-Ref: Logical Negation

7.5.5 147C-Ref: Bitwise Negation

7.5.6 148C-Ref: Address Operator

7.5.7 149C-Ref: Indirection

7.5.8 149C-Ref: Preincrement Operator

7.5.9 150C-Ref: Predecrement Operator

7.6 151C-Ref: Binary Operator Expressions

7.6.1 151C-Ref: Multiplicative Operators

7.6.2 153C-Ref: Additive Operators

7.6.3 155C-Ref: Shift Operators

7.6.4 157C-Ref: Relational Operators

7.6.5 158C-Ref: Equality Operators

7.6.6 159C-Ref: Bitwise AND Operator

7.6.7 160C-Ref: Bitwise XOR Operator

7.6.8 161C-Ref: Bitwise OR Operator

7.7 167C-Ref: Logical Operator Expressions

7.7.1 168C-Ref: Logical AND Operator

7.7.2 168C-Ref: Logical OR Operator

7.8 169C-Ref: Conditional Expressions

7.9 170C-Ref: Assignment Expressions

7.9.1 171C-Ref: Simple Assignment

7.9.2 172C-Ref: Compound Assignment

7.10 173C-Ref: Sequential Expressions

7.11 174C-Ref: Constant Expressions

7.12 176C-Ref: Order of Evaluation

7.13 178C-Ref: Discarded Values

7.14 179C-Ref: Compiler Optimization of Memory Accesses

��� ��������������������

8.1 183C-Ref: General Syntactic Rules for Statements

8.1.1 183C-Ref: Semicolons

8.1.2 184C-Ref: Control Expressions

8.2 184C-Ref: Expression Statements

8.3 185C-Ref: Labeled Statements

8.4 186C-Ref: Compound Statement

8.4.1 186C-Ref: Declarations Within Compound Statements

8.4.2 187C-Ref: Use of Compound Statements

8.5 188C-Ref: Conditional Statement

8.5.1 188C-Ref: Multiway Conditional Statements

8.5.2 189C-Ref: The Dangling Else Problem

8.6 190C-Ref: Iterative Statements

8.6.1 191C-Ref: While Statement

8.6.2 192C-Ref: Do Statement

Page viii

8.6.3 193C-Ref: For Statement

8.6.4 194C-Ref: Using the For Statement

8.6.5 197C-Ref: Multiple Control Variables

8.7 198C-Ref: Switch Statement; Case and Default Labels

8.7.1 200C-Ref: Use of Switch Statements

8.8 202C-Ref: Break and Continue Statements

8.8.1 203C-Ref: Using break and continue

8.9 205C-Ref: Return Statement

8.10 206C-Ref: Goto Statement and Named Labels

8.10.1 206C-Ref: Using the goto statement

8.11 207C-Ref: Null Statement

��� �������������������

9.1 209C-Ref: Function Definitions

9.2 210C-Ref: Types of Functions

9.3 211C-Ref: Formal Parameter Declarations

9.4 212C-Ref: Adjustments to Parameter Types

9.5 214C-Ref: Parameter-Passing Conventions

9.6 215C-Ref: Agreement of Formal and Actual Parameters

9.7 216C-Ref: Function Return Types

9.8 216C-Ref: Agreement of Actual and Declared Return Type

9.9 217C-Ref: Main Programs

���� ���������������������������

10.1 219C-Ref: Modularization

10.2 220C-Ref: Designing the Stack Module

10.3 221C-Ref: Data Structures

10.4 221C-Ref: Robustness

10.4.1 222C-Ref: Stack Example: Conditionally Compiled Debugging

Code

10.5 223C-Ref: Allocating and Deallocating Stacks

10.5.1 224C-Ref: Stack Example: Allocation of Stacks

10.5.2 225C-Ref: Stack Example: Deallocation of Stacks

10.6 225C-Ref: Operations on Stacks

10.6.1 226C-Ref: Stack Example: Push and Pop Operations

10.6.2 227C-Ref: Stack Example: Peek Operation

10.6.3 228C-Ref: Stack Example: Determining Stack Sizes

10.7 228C-Ref: Packaging the Module

10.7.1 229C-Ref: Stack Example: Header File (Part 1, Types)

10.7.2 229C-Ref: Stack Example: Header File (Part 2, Operations)

���� �������������������������������

11.1 233C-Ref: ANSI C Lexical Elements

11.1.1 233C-Ref: ANSI C Character Sets

11.1.2 234C-Ref: ANSI C Identifiers

11.1.3 234C-Ref: ANSI C Reserved Words

Page ix

11.1.4 234C-Ref: ANSI C Integer Constants

11.1.5 235C-Ref: ANSI C Floating Point Constants

11.1.6 236C-Ref: ANSI C String Constants

11.1.7 236C-Ref: ANSI C Character Escape Codes

11.2 237C-Ref: ANSI C Preprocessor

11.2.1 237C-Ref: ANSI C Lexical Structure

11.2.2 237C-Ref: ANSI C Stringization and Merging of Tokens

11.2.3 238C-Ref: ANSI C Predefined Macros

11.2.4 238C-Ref: ANSI C #include
11.2.5 239C-Ref: ANSI C Macro Definition and Expansion

11.2.6 239C-Ref: ANSI C New Commands

11.3 240C-Ref: ANSI C Declarations

11.3.1 240C-Ref: ANSI C Scopes and Name Spaces

11.3.2 241C-Ref: ANSI C Forward References to Structures

11.3.3 241C-Ref: ANSI C Type Specifiers

11.3.4 242C-Ref: ANSI C Declarators

11.3.5 243C-Ref: ANSI C Function Prototypes

11.3.6 246C-Ref: ANSI C Initializers

11.3.7 247C-Ref: ANSI C External Names

11.4 247C-Ref: ANSI C Types

11.4.1 248C-Ref: ANSI C Integer Types

11.4.2 249C-Ref: ANSI C Floating-point Types

11.4.3 249C-Ref: ANSI C const

11.4.4 250C-Ref: ANSI C volatile

11.4.5 253C-Ref: ANSI C Generic Pointers

11.5 254C-Ref: ANSI C Conversions and Representations

11.5.1 254C-Ref: ANSI C Number Representation

11.5.2 255C-Ref: ANSI C Assignment Conversions

11.5.3 255C-Ref: ANSI C The Usual Unary Conversions

11.5.4 256C-Ref: ANSI C The Usual Binary Conversions

11.5.5 257C-Ref: ANSI C The Function Argument Conversions

11.6 257C-Ref: ANSI C Expressions

11.6.1 257C-Ref: ANSI C Component Selection

11.6.2 258C-Ref: ANSI C Function Calls

11.6.3 258C-Ref: ANSI C sizeof Operator

11.6.4 258C-Ref: ANSI C Address Operator

11.6.5 258C-Ref: ANSI C Unary Plus Operator

11.6.6 259C-Ref: ANSI C Addition and Subtraction

11.6.7 259C-Ref: ANSI C Relational Expressions

11.6.8 259C-Ref: ANSI C Constant Expressions

11.7 260C-Ref: ANSI C Statements

11.8 260C-Ref: ANSI C Run-time Library

����� �������������������������

���� ���������������������������������������

Page x

12.1 266C-Ref: Draft Proposed ANSI C Facilities

12.1.1 267C-Ref: Draft Proposed ANSI C Libraries (Part 1)

12.1.2 269C-Ref: Draft Proposed ANSI C Libraries (Part 2)

���� �������������������������������������

13.1 273C-Ref: �������������_�������_�
13.2 274C-Ref: �����������������������

13.3 275C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_

13.4 276C-Ref: ��������������

13.4.1 278C-Ref: Printargs Function in Traditional C

13.4.2 279C-Ref: Printargs Function in Draft Proposed ANSI C

���� ������������������������������

14.1 282C-Ref: ����������������������������������

14.2 283C-Ref: ���������������

14.3 283C-Ref: ���������������������������

14.4 284C-Ref: �������������������������

14.5 284C-Ref: ����������������

14.6 285C-Ref: ����������������

14.7 285C-Ref: �������

14.8 285C-Ref: �����

14.9 285C-Ref: ����������������

���� ���������������������������

15.1 288C-Ref: ���������������

15.2 289C-Ref: ���������������

15.3 289C-Ref: ���������������

15.4 290C-Ref: ������

15.5 290C-Ref: ��������������������������������

15.6 291C-Ref: ����������������������������������

15.7 292C-Ref: ��������������

15.8 293C-Ref: �����������������������

15.9 295C-Ref: ����������������

���� ��������������������������

16.1 297C-Ref: ������

16.2 298C-Ref: ������������

16.3 298C-Ref: ������������������������������

16.4 299C-Ref: �������������

���� ���������������/�����������������

17.1 303C-Ref: EOF

17.2 303C-Ref: ������������������������������

17.3 304C-Ref: ���������������

17.4 306C-Ref: ���������������������

17.5 306C-Ref: ��������������������

Page xi

17.6 307C-Ref: ����������������������������

17.7 308C-Ref: �����������

17.8 309C-Ref: ���������������������

17.9 318C-Ref: ��������������������

17.10 318C-Ref: �����������

17.11 319C-Ref: ������������������������

17.11.1 330C-Ref: Examples of Output Formatting (Part 1)

17.11.2 331C-Ref: Examples of Output Formatting (Part 2)

17.12 332C-Ref: ���������������������������

17.13 333C-Ref: �������������

17.14 334C-Ref: ����������������������

17.15 335C-Ref: ��������������

17.16 336C-Ref: �����������������������

���� ����������������������������

18.1 337C-Ref: ��������������������������������

18.2 338C-Ref: �����������

18.3 339C-Ref: �����������������

���� ��������������������������������

19.1 342C-Ref: ���������������

19.2 343C-Ref: ���������

19.3 343C-Ref: �����������������

19.4 344C-Ref: ���������������

19.5 344C-Ref: ������������������

19.6 345C-Ref: ���������

19.7 346C-Ref: �����������

19.8 346C-Ref: �������������

19.9 347C-Ref: �����������������������

19.10 347C-Ref: ����������������

���� ���������������������������������

20.1 349C-Ref: ������������_������_����������

20.2 351C-Ref: ����������_�
20.3 351C-Ref: ��������������

20.4 352C-Ref: �������������������������

20.5 353C-Ref: ��������

���� ���������������������������

21.1 355C-Ref: ��������������

21.2 356C-Ref: ������������

21.3 357C-Ref: �����������

21.4 358C-Ref: ��������������������_���

21.5 359C-Ref: ��������������_�
21.6 359C-Ref: ��

21.7 361C-Ref: ������������

Page xii

���� ���������������������������������

22.1 363C-Ref: ����

22.2 364C-Ref: ����������������

22.3 365C-Ref: �������������

22.4 366C-Ref: ��������������������������������

22.5 366C-Ref: �������

22.6 367C-Ref: �����

���� ���������������������������������

��� ����������������������������������

PART I.

C-REF: PREFACE

Page 2

This text is a reference manual for the C programming language. Our aim is to

provide a complete discussion of the language, the run-time libraries, and a style

of C programming that emphasizes the correctness, portability, and maintainability

of C programs. We have focused on full implementations of the language on UNIX

systems, although we have refrained from discussing any UNIX-specific features.

Where the C language or its run-time library vary among different C implementa-

tions we have pointed out the major variations. Finally, we have included a discus-

sion of the Draft Proposed ANSI C language and library, and have indicated in the

text where that standard differs from current implementations.

We assume that the reader is, or wants to become, a serious C programmer, one

capable of engineering large and complex systems in C. In our view, serious pro-

grammers are more concerned with correctness and reliability than with program-

ming speed. Their programs are meant to last a generation, not a weekend. Their

programming emphasizes clarity, maintainability, and portability rather than clever

tricks and the fewest number of source program lines.

In keeping with a reference text format, we have presented the language in a "bot-
tom-up" order: the lexical structure, the preprocessor, declarations, types, expres-

sions, statements, functions, programs, and the run-time libraries. Although we ex-

pect that many of our readers will already understand basic programming concepts

and have some experience with C, we have made heavy use of cross-references in

the text so that the book can be read beginning at any point.

This book grew out of our effort to write a family of C compilers for a wide range

of computers, from micros to supermainframes. We wanted the compilers to be

well documented, to provide precise and helpful error diagnostics, and to generate

exceptionally efficient object code. A C program that compiles correctly with one

compiler must compile correctly under all the others, and a program that executes

correctly on one computer must execute correctly on the other computers, insofar

as the hardware differences allow. (This is in keeping with the spirit of C pro-

gramming.)

In spite of C’s popularity, and the increasing number of primers and introductory

texts on C, we found that there was no description of C precise enough to guide

us in designing the new compilers. Similarly, no existing description was precise

enough for our programmer/customers, who would be using compilers that ana-

lyzed C programs more thoroughly than was the custom. In this text we have been

especially sensitive to language features that affect program clarity, object code

efficiency, and the portability of programs among different environments, both

UNIX and non-UNIX.

���������������

We wish to thank our colleagues at Tartan Laboratories and Carnegie-Mellon Uni-

versity, who helped in the writing, editing, and production of this book, especially

Page 3

Sue Broughton and Alex Czajkowski, and also Mady Bauer, Robert Firth, Chris

Hanna, Don Lindsay, Joe Newcomer, Kevin Nolish, David Notkin, and Barbara

Steele. We also wish to thank our fellow members of the ANSI X3J11 committee

on C standardization for their contributions and comments, especially Bill Plauger

of Whitesmith’s and Larry Rosler of Bell Laboratories. Many people provided use-

ful comments on the first edition of the book, including Larry Breed, Dennis

Hamilton, and Ken Harrenstien.

Some of the example programs in this book were inspired by algorithms appearing

in the following works, which we recommend to anyone seriously interested in

programming.

• Beeler, Michael; Gosper, R. William; and Schroeppel, Richard. HAKMEM. AI

Memo 239 (Massachusetts Institute of Technology Artificial Intelligence Labora-

tory, February 1972).

• Bentley, Jon Louis. Writing Efficient Programs. (Prentice-Hall, 1982).

• Bentley, Jon Louis. Programming Pearls, monthly column appearing in Commu-

nications of the ACM. (Association for Computing Machinery, first appearance

August 1983).

• Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language�

(Prentice-Hall, 1978).

• Knuth, Donald E. The Art of Computer Programming (Addison-Wesley). Volume

1: Fundamental Algorithms (1968). Volume 2: Seminumerical Algorithms (1969,

1981). Volume 3: Sorting and Searching (1973).

• Sedgewick, Robert. Algorithms (Addison-Wesley, 1983).�

We are indebted to the authors of these works for their good ideas.

Sam Harbison

Guy Steele

Page 4

Page 5

PART II.

C-REF: THE C LANGUAGE

Page 6

Page 7

1. C-Ref: Introduction

C is a member of the "Algol family" of algebraic programming languages, and thus

is more similar to languages such as PL/I, Pascal, and Ada, and less similar to

BASIC, FORTRAN, or Lisp. A recent collection of papers, Comparing & Assessing

Programming Languages Ada, C, and Pascal edited by Alan R. Feuer and Narain

Gehani (Prentice-Hall, 1984) discusses the similarities and differences found in C,

Pascal, and Ada.

The C language was designed by Dennis Ritchie at Bell Laboratories in about

1972, and its ancestry dates from Algol 60 (1960), through Cambridge’s CPL

(1963), Martin Richards’ BCPL (1967) and Ken Thompson’s B language (1970) at

Bell Labs. Although C is a general-purpose programming language, it has tradi-

tionally been used for systems programming. In particular, the popular UNIX oper-

ating system is written in C. Now widely available on both UNIX and non-UNIX

systems, C is increasingly popular for applications that must be ported to different

computers.

C’s popularity is due to several factors. First, C provides a fairly complete set of

facilities for dealing with a wide variety of applications. It has all the useful data

types, including pointers and strings. There is a rich set of operators and modern

control structures. C also has a standard run-time library that includes useful

functions for input/output, storage allocation, string manipulation, and other pur-

poses.

Second, C programs are efficient. C is a small language, and its data types and op-

erators are closely related to the operations provided directly by most computers.

Said another way, there is only a small "semantic gap" between C and the comput-

er hardware.

Third, C programs are generally quite portable across different computing systems.

Although C allows the programmer to write nonportable code, the uniformity of

most C implementations makes it relatively easy to move applications to different

computers and operating systems.

Finally, there is a growing number of C programs and C programmers. The UNIX

operating system provides a large set of tools that improve C programming produc-

tivity and can serve as starting points for new applications. Because UNIX has

been distributed to universities for several years, many computer science students

have UNIX experience.

Unfortunately, some of the very characteristics of C that account for its popularity

can also pose problems for programmers. For example, C’s smallness is due in

large part to its lack of "confining rules," but the absence of such rules can lead

to error-prone programming habits. To write well-ordered programs, the C pro-

grammer often relies on a set of stylistic conventions that are not enforced by the

compiler. As another example, to allow C compilers to implement operations effi-

ciently on a variety of computers, the precise meaning of some C operators and

types is intentionally unspecified. This can create problems when moving a pro-

gram to another computer.

Page 8

In spite of the inelegancies, the bugs, and the confusion that often accompany C, it

has withstood the test of time. It remains a language in which the experienced

programmer can write quickly and well. Millions of lines of code testify to its use-

fulness.

1.1. C-Ref: Who Defines C?

Although C tutorials abound, there are no detailed descriptions of the current C

language. The information in this book has been compiled from many sources and

from personal experience with several C implementations.

The traditional language reference is the book The C Programming Language, by

Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978). In fact, it is not uncom-

mon to see references to "Kernighan and Ritchie C" by compiler vendors wanting

to emphasize their complete implementations. However, since 1978 the language

has evolved; some features have been added and some have been dropped. Usually,

a consensus has been reached on these features, although this consensus has not

always been documented. Many new implementations of C have added their own

variations to the language. When we use the phrase "the original definition of C"
in this book, we will mean Kernighan and Ritchie’s definition, before the post-1978

changes.

The second source for information on C is the C compilers themselves; you can

write a C program and see if it compiles (and, if it does, what code is generated).

This approach is almost legitimate for C, because many C compilers are based on

the Portable C Compiler (PCC) written at Bell Laboratories. PCC has been retar-

geted to different computers, and all PCC-derived compilers share a common-

language front end. The problem with using PCC as an operational standard is, of

course, that PCC has errors like all other compilers, and these errors are often in

the gray corners of the language, which is just where clarification would be useful.

In 1982 the American National Standards Institute (ANSI) formed a technical sub-

committee on C language standardization, X3J11, to propose a standard for the C

language, its run-time libraries, and its compilation and execution environments.

The standardization effort brought together a large number of commercial C im-

plementors  including ourselves  and their discussions helped to clarify exist-

ing practices as well as to map out the new language. Many parts of this book

have benefited from these discussions.

Except for "C-Ref: Draft Proposed ANSI C", this book describes C as it is currently

implemented by the major compilers on the larger computers. We do not consider

language or implementation subsets found on the smallest microcomputers. Where

compilers tend to differ in their implementations, we describe the common varia-

tions. Where certain C features tend to lead to bad programming practices, we do

not hesitate to suggest a better way to use the language.

Page 9

1.2. C-Ref: An Overview of C Programming

A C program is composed of one or more C source files. Each source file contains

some part of the entire C program, typically some number of external functions.

Source files often have associated with them header files that provide declarations

for the external functions used in other files. One source file must contain an ex-

ternal function named main (see the section "C-Ref: ����"); by convention this

will be the program’s entry point.

Each source file is independently processed by a C compiler, which translates the

C program text into the instructions understood by the computer. It is the compil-

er which "understands" the C program and analyzes it for correctness. If the pro-

grammer has made an error the compiler can detect, the compiler issues an error

message and does not complete the translation. Otherwise, the output of the com-

piler is usually called object code or an object module.

When all source files are compiled, the object modules are given to a program

called the linker, which resolves references between the modules and adds some

precompiled library functions that handle special activities like input/output. Some

programming errors, like the failure to define a needed function, are caught by the

linker and cause error messages to be generated. The linker is typically not specif-

ic to C; each computer system has a standard linker that is used for programs

written in many different languages. The linker produces a single executable pro-

gram, which can then be invoked, or "run."

Although all computer systems go through these steps, they may appear different

to the programmer. For instance, suppose that a program to be named prog con-

sists of the two C source files proga.c and progb.c. (The ".c" in the file names is

a common convention for C source files.) The file proga.c could contain these

lines:

void hello()

{

 printf("Hello!\n");

}�

The header file for proga.c, named proga.h (also by convention), contains:

extern void hello();

File progb.c contains the main program, which simply calls function hello:

#include "proga.h"

main()

{

 hello();

}

On a UNIX system, compiling, linking, and executing the program takes only two

steps:

% cc -o prog proga.c progb.c

% prog�

The first line compiles and links the two source files, adds any standard library

Page 10

functions needed, and writes the executable program to file prog. The second line

then executes the program, which prints:

Hello!�

The same sequence on a DEC VAX-11 computer running the VMS operating system

might be this:

$ cc proga,progb

$ link proga,progb/exe=[prog.exe]

$ run prog

Hello!�

In this book we will largely ignore the details of linking and running C programs;

readers are urged to consult their own computer system and C compiler user doc-

umentation. We will concentrate instead on how to write the C programs.

1.3. C-Ref: Syntax Notation

When specifying the C language syntax, terminal symbols are printed in fixed type

and are to appear in the program exactly as written. Nonterminal symbols are

printed in italic type; they are spelled beginning with a letter and can be followed

by zero or more letters, digits, or hyphens:

expression argument-list declarator2

Syntactic definitions are introduced by the name of the nonterminal being defined

followed by a colon. One or more alternatives then follow on succeeding lines:

character:

printing-character

escape-character

When the words "one of" follow the colon, this signifies that each of the terminal

or nonterminal symbols following on one or more lines is an alternative definition:

digit: one of

0 1 2 3 4 5 6 7 8 9

Optional components of a definition are signified by appending the suffix opt to a

terminal or nonterminal symbol:

enumeration-constant-definition:

enumeration-constant enumeration-initializeropt

initializer:

expression

{ initializer-list, opt }

Page 11

2. C-Ref: Lexical Elements

This chapter describes the lexical structure of the C language; that is, the charac-

ters that may appear in a C source file and how they are collected into lexical

units, or tokens.

2.1. C-Ref: Character Set

A C source file is a sequence of characters selected from a character set. A C com-

piler may use any character set as long as it includes at least the following stan-

dard characters:

1. the fifty-two uppercase and lowercase alphabetic characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

the ten decimal digits:

0 1 2 3 4 5 6 7 8 9

2. the blank or space character

3. the twenty-nine graphic characters:

! exclamation pt. + plus " double quote

number sign = equal { left brace

% percent ~ tilde } right brace

^ circumflex [left bracket , comma

& ampersand] right bracket . period

* asterisk \ backslash < less than

(left parenthesis | vertical bar > greater than

) right paren. ; semicolon / slash

- hyphen or minus : colon ? question mark

_ underscore ’ apostrophe�

There must also be some way of dividing the source program into lines; this can

be done with a character or character sequence or with some mechanism outside

the source character set (for example, an end-of-record indication).

Additional characters are sometimes used in C source programs, including:

1. the five formatting characters corresponding to the ASCII characters

backspace (BS), horizontal tab (HT), vertical tab (VT), form feed (FF), and

carriage return (CR).

2. extra graphic characters not needed in the standard character set, including

the characters $ (dollar sign), @(at-sign), and ‘ (accent grave).�

Page 12

The formatting characters are treated as spaces and do not otherwise affect the

source program. The extra graphic characters may appear only in comments, char-

acter constants, and string constants.

As will be seen from the previous discussion, C has a much larger source charac-

ter set than do most other programming languages. Draft Proposed ANSI C has

defined a set of trigraphs to allow C programs to be written in a restricted charac-

ter set.

2.1.1. C-Ref: Execution Character Set

The character set interpreted during the execution of a C program is not necessar-

ily the same as the one in which the C program is written. Characters in the exe-

cution character set are represented by their equivalents in the source character

set or by special character escape sequences that begin with the backslash \ char-

acter.

In addition to the standard characters mentioned above, the execution character

set must also include:

1. a null character that must be encoded as the value 0

2. a newline character, which is used as the end-of-line marker�

The null character is used to mark the end of strings; the newline character is

used to divide character streams into lines during input/output. (It must appear to

the programmer as if this newline character were actually present in text streams

in the execution environment. However, the run-time library implementation is

free to simulate them. For instance, newlines could be converted to end-of-record

indications on output, and end-of-record indications could be turned into newlines

on input.)

As with the source character set, it is common for the execution character set to

include the formatting characters backspace, horizontal tab, vertical tab, form feed,

and carriage return. Special escape sequences are provided to represent these char-

acters in the source program.

These source and execution character sets are the same when a C program is com-

piled and executed on the same computer. However, occasionally programs are

cross-compiled; that is, compiled on one computer, the host, and executed on anoth-

er computer (the target). When a compiler calculates the compile-time value of a

constant expression involving characters, it must use the target computer’s encod-

ings, not the more natural (to the compiler writer) source encodings.

2.1.2. C-Ref: Whitespace and Line Termination

In C source programs the blank (space), end-of-line, vertical tab, form feed, and

horizontal tab (if present) are known collectively as whitespace characters. (Com-

ments, discussed below, are also whitespace.) These characters are ignored except

insofar as they are used to separate adjacent tokens or when they appear in char-

acter or string constants. Whitespace characters may be used to lay out the C pro-

gram in a way that is pleasing to a human reader.

Page 13

The end-of-line character or character sequence marks the end of source program

lines. In some implementations, the formatting characters carriage return, form

feed, and/or vertical tab additionally terminate source lines and are called line

break characters. Line termination is important for the recognition of preprocessor

control lines. The character following a line break character is considered to be

the first character of the next line. If the first character is itself a line break

character, then another (empty) line is terminated, and so forth.

Finally, there is a convention in C that a backslash which is the last character on

a line has the effect of removing itself and the following end-of-line marker. This

convention must be adhered to in preprocessor command lines and within string

constants, but many implementations (and Draft Proposed ANSI C) generalize it to

apply to any source program line.

When an implementation treats any nonstandard source characters as whitespace

or line breaks, it should handle them exactly as it does blanks and end-of-line

markers, respectively. Draft Proposed ANSI C suggests that an implementation do

this by translating all such characters to some canonical representation as the

first action when reading the source program. However, programmers should prob-

ably beware of testing this by, for example, expecting a backslash followed by a

form feed to be eliminated.

C imposes no limit on the maximum length of lines, although many implementa-

tions have a fixed limit, typically in the 100-500 character range. We find that

keeping line length under 80 characters facilitates reading a program on a display

terminal.

2.1.3. C-Ref: Character Encodings

Each character in a computer’s (execution) character set will have some conven-

tional encoding; that is, some numerical representation on the computer. This en-

coding is important because C converts characters to integers, and the values of

the integers are the conventional encodings of the characters. All of the standard

characters listed earlier must have distinct, nonnegative integer encodings.

A common C programming error is to assume a particular encoding is in use

when, in fact, another one holds. For example, the C expression

’Z’ - ’A’ + 1�

computes one more than the difference between the encodings of Z and A and

might be expected to yield the number of characters in the alphabet. Indeed, under

the ASCII character set encodings the result is 26, but under the EBCDIC encod-

ings, in which the alphabet is not encoded consecutively, the result is 41.

Page 14

2.2. C-Ref: Comments

A comment in a C program begins with the characters /* and ends with the first

subsequent occurrence of the characters */. Comments may contain any number of

characters and are always treated as whitespace. For example, the following pro-

gram contains six legal C comments:

void Squares() /* no arguments */

{

 int i;

 /*

 Loop from 1 to 10,

 printing out the squares

 */

 for (i=1;i<=10;i++)

 printf("%d squared is %d\n",i,i*i);

}

The preprocessor also treats comments as whitespace. That is, the preprocessor

does not look inside comments for commands or for macro invocations, nor do line

breaks inside comments terminate preprocessor commands. For example, the fol-

lowing three #define commands all have essentially the same effect.

#define ten (2*5)

#define ten /* ten:

 one greater than nine

 */ (2*5)

#define ten (2/*/*/*/*/*/5)

A few non-UNIX C implementations, including Microsoft and Lattice, implement

"nestable comments," in which each occurrence of /* must be balanced by a subse-

quent */. This implementation has the advantage of allowing a programmer to

comment out a large piece of program text without being concerned if the text

contains its own comments. However, programs depending on this feature will not

be portable, and the same effect can be better achieved using the preprocessor’s

conditional commands. In particular,

#if 0

 ...

#endif

will effectively "comment out" any section of a program.

Nestable comments are not standard. However, for a program to be acceptable to

both implementations, no comment should contain the character sequence /* inside

it.

Page 15

2.3. C-Ref: Tokens

The characters making up a C program are collected into lexical tokens according

to the rules presented in the rest of this chapter. There are five classes of tokens:

operators, separators, identifiers, reserved words, and constants.

When collecting characters into tokens, the compiler always forms the longest to-

ken possible, so that external is interpreted as a single identifier rather than as

the reserved word extern followed by the identifier al. Other examples:

b>x is the same as b > x

b->x is the same as b -> x

b-->x is the same as b -- > x

b--->x is the same as b -- -> x

Adjacent tokens may be separated by whitespace characters or comments. To pre-

vent confusion, an identifier, reserved word, integer constant, or floating-point con-

stant must always be so separated from a following identifier, reserved word, inte-

ger constant, or floating-point constant. (In a macro body, separating tokens with

comments rather than whitespace characters may cause "token merging.")

2.4. C-Ref: Operators and Separators

The simple (one character) operators in C are:

! % ^ & * - + = ~ | . < > / ?

The compound (multicharacter) operators in C are:

-> ++ -- << >> <= >= == != && ||

+= -= *= /= %= <<= >>= &= ^= |=

The other separator characters are:

() [] { } , ; :

Strictly speaking, each of the compound assignment operators

+= -= *= /= %= <<= >>= &= ^= |=

is considered to be two separate tokens that can be separated by whitespace. For

example, one may write

total + = subtotal;

instead of

total += subtotal;

However, it is much better programming style to write the operators as if they

were single tokens, which is how they are treated in Draft Proposed ANSI C.

Page 16

2.5. C-Ref: Identifiers

An identifier, also called a name in C, is a sequence of letters, digits, and under-

scores. An identifier must not begin with a digit and it must not have the same

spelling as a reserved word.

identifier:

underscore

letter

identifier following-character

following-character:

letter

underscore

digit

letter: one of

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

underscore:

_

digit:

0 1 2 3 4 5 6 7 8 9�

Two identifiers are the same when they are spelled identically, including the case

of all letters. That is, the identifiers abc and aBc are distinct.

The original description of C specified that two identifiers spelled identically up to

the first eight characters would be considered the same even if they differed in

subsequent characters. For example, the identifiers countless and countlessone�

would be considered the same identifier. We consider this to be a misfeature of

early implementations; programmers can take note of it but should not rely on it.

Draft Proposed ANSI C requires implementations to permit a minimum of 31 sig-

nificant characters in identifiers, and this limit is met or exceeded by many C im-

plementations. (External names may be subject to more stringent length and char-

acter set constraints, with six characters and one letter case being the lower lim-

it.) We favor the use of longer names to improve program clarity and thus reduce

errors.

Some compilers permit characters other than those specified above to be used in

identifiers. For example, the dollar sign ($) is often allowed in identifiers as either

the first or subsequent characters. These extra characters are usually necessary to

allow programs to access special non-C library functions provided by some comput-

ing systems. Such functions are likely to be nonportable, and the programmer

should limit the use of special characters to these cases.

Page 17

2.5.1. C-Ref: Conventions for Identifiers

Although not part of the C language, there are some conventions in the choice of

identifiers which are followed by many C programmers and which may result in

programs that are easier to understand and that are more easily ported to differ-

ent computer systems. Of course, it is more important to be consistent than to fol-

low any one set of conventions slavishly.

It is considered bad style to have distinct identifiers that differ only in the case of

their letters, such as count and Count. In UNIX environments, there has been

some tendency to spell preprocessor macro namesespecially those that denote nu-

meric constantswith uppercase letters and all other identifiers in lowercase. The

following is a typical example.

#define TABLESIZE 100

...

int i, squares[TABLESIZE];

for (i=0; i<TABLESIZE; i++)

 squares[i] = i*i;

The trend toward longer identifiers may make mixed-case identifiers and the use

of underscores more popular, since it is significantly harder to read a name like

averylongidentifer than AVeryLongIdentifier or a_very_long_identifier.

An external identifierany one declared with storage class externoften is subject

to additional restrictions on particular computer systems. These identifiers have to

be processed by other software, such as debuggers and linkers, which may have

their own fixed limits on the lengths of identifiers and which may not distinguish

the case of letters. In general, the rule has been to keep external identifiers short

(say, six characters) and to not depend on case sensitivity. In UNIX systems, the

problem for programmers is slightly worse because the C compilers prefix all of

the user’s external identifiers with an underscore, _.

When a C compiler permits long internal identifiers but the target computer re-

quires short external names, the preprocessor may be used to hide these short

names. In the example below, an external error-handling function has the short

and somewhat obscure name eh73, but the function is referred to by the more

readable name error_handler. This is done by making error_handler a preprocessor

macro that expands to the name eh73.

#define error_handler eh73

extern void error_handler();

int *p;

...

if (!p) error_handler("nil pointer error");

A programmer especially concerned with portability might encapsulate all external

names in this way.

Page 18

2.6. C-Ref: Reserved Words

The following identifiers are reserved in the C language and must not be used as

program identifiers.

auto else long typedef

break enum register union

case extern return unsigned

char float short void

continue for sizeof while

default goto static

do if struct

double int switch

The reserved words enum and void are new since the original description of C, re-

flecting additions to the language. The former reserved words entry, asm, and for-

tran are now seldom seen, although asm does appear occasionally.

Draft Proposed ANSI C adds the reserved words const, signed, and volatile.

A reserved word may be used as a preprocessor macro name, although doing so is

usually poor style. As an example of a reasonable use, the following macro defini-

tion could be appropriate when a particular C compiler does not implement the

void type:

#define void int

2.7. C-Ref: Constants

The lexical class of constants includes four different kinds of constants: integers,

floating-point numbers, characters, and strings.

constant:

integer-constant

floating-point-constant

character-constant

string-constant

Such tokens are called literals in other languages, to distinguish them from objects

whose values are constant (that is, not changing) but which do not belong to lexi-

cally distinct classes. An example of these latter objects in C is enumeration con-

stants, which belong to the lexical class of identifiers. In this book, we use the tra-

ditional C terminology of "constant" for both cases.

Every constant is characterized by a value and a type. The formats of the various

kinds of constants are described in the following sections.

Page 19

2.7.1. C-Ref: Integer Constants

Integer constants may be specified in decimal, octal, or hexadecimal notation.

1. A decimal integer constant consists of a nonempty sequence of digits, the

first of which is not 0.

2. An octal integer constant consists of the digit 0, followed by a possibly empty

sequence of the octal digits 0 through 7. Originally, C also allowed the digits

8 and 9 in octal constants, but using them was always considered to be bad

style.

3. A hexadecimal integer constant consists of the digit 0, followed by one of the

letters x or X, followed by a sequence of hexadecimal digits. The hexadecimal

digits are the digits 0 through 9, plus the characters a through f (or A

through F), which have the values 10 through 15, respectively.

There is a question as to whether "0" is decimal or octal, but it doesn’t matter in

practice. Any integer constant may be immediately followed by the one of the let-

ters l or L to indicate a constant of type long.

Page 20

integer-constant:

decimal-constant type-markeropt
octal-constant type-markeropt
hexadecimal-constant type-markeropt

decimal-constant:

nonzero-digit

decimal-constant digit

octal-constant:

0

octal-constant octal-digit

hexadecimal-constant:

hex-marker

hexadecimal-constant hex-digit

digit: one of

0 1 2 3 4 5 6 7 8 9

nonzero-digit: one of

1 2 3 4 5 6 7 8 9

octal-digit: one of

0 1 2 3 4 5 6 7

hex-digit: one of

0 1 2 3 4 5 6 7 8 9

A B C D E F a b c d e f

type-marker: one of

l L

hex-marker: one of

0x 0X

The value of an integer constant is always nonnegative in the absence of overflow.

If there is a preceding minus sign, it is taken to be a unary operator applied to

the constant, not part of the constant itself.

The type of integer constants is normally int. However, the type will instead be

long if

1. the value of a decimal constant exceeds the largest positive integer that can

be represented in type int, or

2. the value of an octal or hexadecimal constant exceeds the largest integer that

can be represented in type unsigned int, or

Page 21

3. the constant is terminated by the letter l or L.

If the value of a decimal constant exceeds the largest integer representable in type

long, or if the value of an octal or hexadecimal constant exceeds the largest inte-

ger representable in type unsigned long, the result is unpredictable. Most C com-

pilers will not warn the programmer of the problem and will silently substitute an-

other value for the constant. The programmer should take pains to parameterize

large constants so that they can be changed when moving to another computer or

compiler. For instance:

#define MAXPOSINT 0077777

#define MAXNEGINT 0100000

#define MAXPOSLONG 0x37777777

#define MAXNEGLONG 0x80000000

To illustrate some of the subtleties in C’s integer constants, assume that for some

implementation type int uses a 16-bit two’s-complement representation, and that

type long uses a 32-bit two’s-complement representation. We list in Table "C-Ref:

Integer Constants Table" some interesting integer constants, their true mathemati-

cal values, and their types and values. (Parentheses are used to indicate that the

value is undefined, but the parenthesized value is likely to be the one used.)

An interesting point to note in this example is that integers greater than 215-1 but

less than 216 will have positive values when written as decimal constants but neg-

ative values when written as octal or hexadecimal constants.

In spite of these anomalies, the programmer will rarely be "surprised" by the val-

ues of integer constants, at least when the target computer uses the two’s-

complement representation for integers. (Most computers do.) For the computers

that use other integer representations, either the rules for interpreting integer

constants or the rules for converting between signed and unsigned integers will

have to be adjusted by the implementation.

Draft Proposed ANSI C has extended the syntax of integer constants and has

changed the type rules slightly. See the section "C-Ref: ANSI C Integer Constants".

2.7.1.1. C-Ref: Integer Constants Table

2.7.2. C-Ref: Floating-point Constants

Floating-point constants may be written with a decimal point, a signed exponent,

or both. A floating-point constant is always interpreted to be in decimal radix.

Page 22

C Constant True Value C Type C Value

 0 0 int 0

 32767 215-1 int 32767

 077777 215-1 int 32767

 32768 215 long 32768

 0100000 215 (int) (-32768)

 65535 216-1 long 65535

 0xFFFF 216-1 (int) (-1)

 65536 216 long 65536

 0x10000 216 long 65536

 2147483647 231-1 long 2147483647

 0x7FFFFFFF 231-1 long 2147483647

 2147483648 231 (long) (-2147483648)

 0x80000000 231 long -2147483648

 4294967295 232-1 (long) (-1)

 0xFFFFFFFF 232-1 long -1

 4294967296 232 (long) (0)

0x100000000 232 (long) (0)

floating-constant:

digit-sequence exponent

dotted-digits exponentopt
exponent:

e sign-partopt digit-sequence
E sign-partopt digit-sequence

dotted-digits:

digit-sequence .

digit-sequence . digit-sequence

. digit-sequence

digit-sequence:

digit

digit digit-sequence

digit: one of

0 1 2 3 4 5 6 7 8 9

Examples of floating-point constants include:

0. 3e1 3.14159

 .0 1.0e-3 1e-3

1.0 .00034 2e+9

The value of a floating-point constant is always nonnegative in the absence of

overflow. If there is a preceding minus sign, it is taken to be a unary operator ap-

plied to the constant, not part of the constant itself.

Page 23

The type of a floating-point constant is always double. Its value will depend on the

precision of the representation of type double. If the magnitude of the floating-

point constant is too great or too small to be represented, the result is unpre-

dictable. Some compilers will warn the programmer of the problem, but most will

silently substitute some other value that can be represented.

Draft Proposed ANSI C has extended the syntax of floating-point constants and the

set of floating-point types. See sections "C-Ref: ANSI C Floating Point Constants"
and "C-Ref: ANSI C Floating-point Types"

2.7.3. C-Ref: Character Constants

A character constant is written by enclosing a character in apostrophes. A special

escape mechanism is provided to write characters that would be inconvenient or

impossible to enter directly in the source program.

character-constant:

’ character ’

character:

printing-character

escape-character�

The printing characters include all the characters in the source character set that

have equivalents in the target character set, except newline, the apostrophe, and

the backslash. These excluded characters may be entered as escape characters, as

described in the section "C-Ref: Escape Characters".

Character constants have type int. Their values are the integer encodings of the

corresponding characters in the target character set. Below are some examples of

character constants along with their (decimal) values under the ASCII encodings:

’a’ (97) ’A’ (65) ’%’ (37)

’ ’ (32) ’?’ (63) ’8’ (56)

’\r’ (13) ’\0’ (0) ’\23’ (19)

’"’ (34) ’\377’ (255) ’\\’ (92)�

It is good programming style to restrict the "printing characters" to those charac-

ters with a graphic representation, including the blank. The formatting characters,

in particular, should always be expressed as escape characters. Some compilers

may enforce this restriction.

When a character constant appearing in the source program contains a character

or escape character for which there is no corresponding character in the execution

character set, the resulting value is implementation-defined. When a numeric es-

cape code (section "C-Ref: Numeric Escape Codes") is used in a character constant,

it is normal to compute the resulting integer value as if it had been converted

from an object of type char. For example, if type char were implemented as an

8-bit signed type, the character constant ’\377’ would undergo sign extension and

thus have the value -1. Draft Proposed ANSI C mandates this interpretation.

Most computers represent integers in a storage area big enough to hold several

characters, and so many C compilers allow "multicharacter" constants, such as

Page 24

’ABC’. The intent is to create an integer value (not a string) from the characters.

The use of this feature, if available, can result in portability problems, not only be-

cause integers have different sizes on different computers but also because com-

puters differ in their "byte ordering," that is, the order in which characters are

packed into words. Given the constant ’ABC’, some computers would put ’A’ in the

low-order bits and others would put ’A’ in the high-order bits. Draft Proposed AN-

SI C permits multicharacter constants but leaves their value up to the implemen-

tation.

2.7.4. C-Ref: String Constants

A string constant is a (possibly empty) sequence of characters enclosed in double

quotes. The same escape mechanism provided for character constants can be used

to express the characters in the string.

string-constant: " character-sequenceopt "

character-sequence:

character

character-sequence character�

In the case of string constants, the printing characters include all the characters

in the source character set that have equivalents in the target character set, ex-

cept newline, the double quote, and the backslash. These excluded characters may

be entered as escape characters, as described in section "C-Ref: Escape

Characters". A string constant must be contained on one source program line ex-

cept if the last character on the line is a backslash \ character, in which case the

backslash and end-of-line character(s) are ignored. This allows string constants to

be written on more than one line. (Some implementations also remove leading

whitespace characters from the continuation line, although it is incorrect to do so.)

A newline character (i.e., the end of line in the execution character set) may be

inserted into a string by putting the escape sequence \n in the string constant;

this should not be confused with line continuation within a string constant. Some

examples of string constants include:

""

"Total expenditures: "

"\""

"Copyright 1982 Tartan Laboratories Incorporated.\

All rights reserved."

"Comments begin with ’/*’.\n"�

For each string constant of n characters there will be at run time a statically allo-

cated block of n+1 characters whose first n characters are initialized with the

characters from the string and whose last character is the null character, \0.

The type of a string constant is "array of char," and its value is the n+1 charac-
ters. For example, the value of sizeof("abcdef") is 7. However, if the string con-

stant appears anywhere except as an argument to sizeof or as an initializer of a

character array, the conversions that are usually applied to arrays come into play,

and these conversions change the string from an array of characters to a pointer

Page 25

to the first character in the string, of type "pointer to char." Thus we can have

char *p = "abcdef";�

Traditionallyat least under UNIXstring constants are placed in read/write stor-

age and no two string constants are ever represented by the same block of storage,

even when they contain the same characters. We consider it a bad programming

style to modify the contents of a string constant or to depend on distinct copies in

storage, and Draft Proposed ANSI C agrees by allowing strings to share storage

and to be in read-only memory. However, it is known that some UNIX library rou-

tines do modify their string arguments, which are often string constants. When a

pointer to a writable string must be used, it is better to initialize an array of

characters than to establish a pointer to a string constant.

char p1[] = "abcdef"; /* p1[i] will be writable */

char *p2 = "ghijkl"; /* p2[i] may not be writable */�

2.7.5. C-Ref: Escape Characters

Escape characters can be used in character and string constants to represent char-

acters that would be awkward or impossible to enter in the source program direct-

ly. The escape characters come in two varieties: "character escapes," which can be

used to represent some particular formatting and special characters, and "numeric

escapes," which allow a character to be specified by its numeric encoding.

escape-character:

\ escape-code

escape-code:

character-escape-code

numeric-escape-code

character-escape-code: one of

n t b r f v \ ’ "

numeric-escape-code:

octal-digit

octal-digit octal-digit

octal-digit octal-digit octal-digit �

The meanings of these escapes are discussed in the following sections.

If the character following the backslash is neither an octal digit nor one of the

character escape codes listed above, the result should be considered unpredictable,

although traditionally the effect is simply that the backslash is ignored.

2.7.6. C-Ref: Character Escape Codes

Character escape codes are used to represent some common special characters in a

fashion that is independent of the target computer character set. The characters

that may follow the backslash, and their meanings, are listed below.

Page 26

b backspace

f form feed

n newline

r carriage return

t horizontal tabulate

v vertical tabulate

\ backslash

’ single quote

" double quote �

To show how the character escapes can be used, here is a small program that

counts the number of lines (actually, the number of newline characters) in the in-

put. The function getchar returns the next input character until the end of the in-

put is reached, at which point getchar returns -1 (the standard name for this con-

ventional value is EOF).

/* Count the number of lines in the input. */

main()

{

 int next_char; /* Next input character */

 int num_lines = 0; /* Number of newlines seen*/

 while ((next_char = getchar()) != EOF)

 /* For each character */

 if (next_char == ’\n’) /* if it’s a newline */

 ++num_lines; /* bump the counter.*/

 /* Now print the total. */

 printf("%d lines read.\n",num_lines);

}�

Draft Proposed ANSI C extends the set of character escapes.

2.7.7. C-Ref: Numeric Escape Codes

Numeric escape codes allow any character to be expressed by writing that charac-

ter as its octal encoding in the target character set. Up to three octal digits may

be used to express the encoding, which is sufficient for characters represented by

up to nine bits on the target computer. For instance, under the ASCII encodings,

the character a may be written as \141 and the character ? as \77. The null char-

acter, used to terminate strings, is always written as \0. The value of a numeric

escape that does not correspond to a character in the execution character set is

implementation-defined. (See the section "C-Ref: Character Constants".)

The following short segment from a communications protocol program illustrates

the use of numeric escape codes.

Page 27

{

 char inchar;

 extern char receive();

 extern void reply();

 for (;;) { /* Repeat "forever" */

 inchar = receive(); /* Receive next character */

 if (inchar == ’\0’)

 continue; /* Ignore null characters */

 if (inchar == ’\004’)

 break; /* Quit when EOT seen. */

 if (inchar == ’\006’)

 reply(’\006’); /* Reply ACK to ACK. */

 else

 reply(’\025’); /* Reply NAK to others. */

 }

}�

The programmer should be cautious when using numeric escapes for two reasons.

First, the syntax for numeric escapes is very delicate; a numeric escape code ter-

minates when three octal digits have been used or when the first character that is

not an octal digit is encountered. Therefore, the string "\0111" consists of two

characters, \011 and 1, and the string "\080" consists of three characters, \0, 8,

and 0.

The second reason is that the use of any numeric escape in a character or string

constantexcept for the null charactermay make the C program nonportable.

Character sets are implementation dependent, and if the specified encoding is not

present in the target character set, the result is unpredictable. There is an implic-

it assumption in some C programs that the target computer will use eight bits to

represent a character, so that codes \0 through \377 will span the target character

set. This assumption is not portable, either. It is always much better to hide such

escape codes in macro definitions. See how much clearer the previous example be-

comes:

Page 28

#define NUL ’\0’

#define EOT ’\004’

#define ACK ’\006’

#define NAK ’\025’

{

 char inchar;

 extern char receive();

 extern void reply();

 for (;;) { /* Repeat "forever" */

 inchar = receive(); /* Receive next character */

 if (inchar == NUL)

 continue; /* Ignore null characters */

 if (inchar == EOT)

 break; /* Quit when EOT seen. */

 if (inchar == ACK)

 reply(ACK); /* Reply ACK to ACK. */

 else

 reply(NAK); /* Reply NAK to others. */

 }

}�

Some implementations (and Draft Proposed ANSI C) permit numeric escapes ex-

pressed in hexadecimal notation, such as \x1A or sometimes \0x1A. This is a fairly

convenient feature, but is not common under UNIX.

Page 29

3. C-Ref: The C Preprocessor

The C preprocessor is a simple macro processor that conceptually processes the

source text of a C program before the compiler proper parses the source program.

In some implementations of C, the preprocessor is actually a separate program

that reads the original source file and writes out a new "preprocessed" source file

that can then be used as input to the C compiler. (In such implementations, pro-

grams containing no preprocessor commands may typically be compiled directly, by-

passing the preprocessing step.) In other implementations, a single program per-

forms the preprocessing and compilation in a single pass over the source file, and

no intermediate file is necessarily produced.

3.1. C-Ref: Preprocessor Commands

The preprocessor is controlled by special preprocessor command lines, which are

lines of the source file beginning with the character #. Note that the character #

has no other use in the C language. Lines that do not contain preprocessor com-

mands are called lines of source program text. The standard preprocessor com-

mands are:

#define Define a preprocessor macro.

#undef Remove a macro definition.

#include Insert text from another file.

#if Conditionally include some text, based on the value of a con-

stant expression.

#ifdef Conditionally include some text, based on whether a macro

name is defined.

#ifndef Conditionally include some text, with the sense of the test op-

posite that of #ifdef.

#else Alternatively include some text, if the previous #if, #ifdef, or

#ifndef test failed.

#endif Terminate conditional text.

#line Supply a line number for compiler messages.�

There are also two recent additions to the preprocessor commands. They are con-

venient, but not found in all C compilers:

#elif Alternatively include text based on the value of another con-

stant expression.

defined Determine if a name is defined as a preprocessor macro. (This

operator can be used in #if commands and removes the need

for #ifdef and #ifndef.)�

The preprocessor effectively removes all preprocessor command lines from the

source file and makes additional transformations on the source file as directed by

Page 30

the commands, such as expanding macro calls that occur within the source pro-

gram text. The resulting preprocessed source text should then be a valid C pro-

gram and must not contain any occurrences of # except as part of the #line com-

mand and in string and character constants.

The syntax of preprocessor commands is completely independent of (though in

some ways similar to) the syntax of the rest of the C language. For example, it is

possible for a macro definition to expand into a syntactically incomplete fragment,

as long as the fragment makes sense (that is, is properly completed) in all con-

texts in which the macro is called.

All the listed commands are supported "C-Ref: Draft Proposed ANSI C", which also

adds #pragma and #error.

3.2. C-Ref: Preprocessor Lexical Conventions

The preprocessor does not parse the source text, but it does break it up into to-

kens for the purpose of locating macro calls. The lexical conventions of the prepro-

cessor are the same as those for the compiler proper: The preprocessor recognizes

identifiers, integer constants, floating-point constants, character constants, string

constants, and comments. Preprocessor commands are not recognized within char-

acter constants, string constants, or comments. (However, in some implementations

names of the formal parameters of macros are recognized within character con-

stants and string constants in macro bodies. See the section "C-Ref: Defining

Macros with Parameters".)

A line beginning with # is treated as a preprocessor command; the name of the

command must follow the # character. Some implementations of C require the #

character to be the first character on the line; others allow whitespace to precede

it. Some implementations allow whitespace (except line breaks) to appear between

the # character and the name of the command, and others do not. The modern

trend is to allow whitespace before and after #.

The remainder of the line may contain arguments for the command if appropriate.

If a preprocessor command takes no arguments, then the remainder of the com-

mand line should be empty except perhaps for whitespace characters or comments.

Unfortunately, it is not uncommon for implementations to ignore all characters fol-

lowing the expected arguments (if any), thus allowing certain kinds of errors to go

unreported. The arguments to preprocessor commands are generally subject to

macro replacement.

At least some UNIX implementationswhether by accident or by design we’re not

sureexpand macros before looking for preprocessor commands. We think this is a

very bad idea and have not heard of any attempts to legitimize it. Even implemen-

tations that do this are inconsistent because they turn off macro expansion when

skipping over text to search for #else or #endif commands.

Within a preprocessor command line, if an end-of-line marker is immediately pre-

ceded by \, then the end-of-line and the \ are deleted and the following line is

treated as if it were part of the line that ended in \. This means that a preproces-

Page 31

sor command line can be continued on the following line by ending it with \. It al-

so means that if a line ends with \, the following line will never be treated as a

preprocessor command line, even if its first non-whitespace character is #. For ex-

ample,

#define err(flag,msg) if (flag) \

 printf(msg)�

is the same as

#define err(flag,msg) if (flag) printf(msg)�

As explained in the section "C-Ref: Comments", the preprocessor treats comments

as whitespace, and line breaks within comments do not terminate preprocessor

commands.

3.3. C-Ref: Definition and Replacement

The #define preprocessor command causes a name (identifier) to become defined

as a macro to the preprocessor. A sequence of tokens, called the body of the

macro, is associated with the name. When the name of the macro is recognized in

the program source text or in the arguments of certain other preprocessor com-

mands, it is treated as a call to that macro; the name is effectively replaced by a

copy of the body. If the macro is defined to accept arguments, then the actual ar-

guments following the macro name are substituted for formal parameters in the

macro body.

The preprocessor does not distinguish reserved words from other identifiers, and

so it is possible, in principle, to use a C reserved word as the name of a preproces-

sor macro, but to do so is usually bad programming practice. Macro names are

never recognized within comments or string constants.

For example, if a macro sum with two arguments is defined by

#define sum(x,y) x+y�

then the preprocessor replaces the source program line

result = sum(5,a*b);�

with

result = 5+a*b;�

3.3.1. C-Ref: Simple Macro Definitions

The #define command has two forms, depending on whether or not a left paren-

thesis ‘(’ immediately follows the name to be defined. The simpler form has no left

parenthesis there:

#define name sequence-of-tokens�

A macro defined in this manner takes no arguments. It is invoked merely by men-

tioning its name. When the name is encountered in the source program text or

other appropriate context, the name is replaced by the body (the associated se-

quence-of-tokens).

Page 32

The simple form of macro is particularly useful for introducing named constants

into a program, so that a "magic number" such as the length of a table may be

written in exactly one place and then referred to elsewhere by name. This makes

it easier to change the number later. For example:

#define BLOCK_SIZE 0x100

 /* Size of one disk block. */

#define TRACK_SIZE (16*BLOCK_SIZE)

 /* Size of one disk track. */

#define HASH_TABLE_SIZE 557

 /* Initial size of hash table. */

#define ERRMSG "*** Error %d: %s.\n"

 /* Format for use with printf. */�

/* File protection bits,

 as used in system file directories. */

#define READ_ACCESS 0100000

 /* May read the file as data. */

#define WRITE_ACCESS 0040000

 /* May alter existing contents. */

#define APPEND_ACCESS 0020000

 /* May add new contents. */

#define EXECUTE_ACCESS 0010000

 /* May execute as code. */

#define DELETE_ACCESS 0004000

 /* May delete the file. */

#define RENAME_ACCESS 0002000

 /* May rename the file. */

#define BACKUP_ACCESS 0001000

 /* May move to backup tape. */

#define ACCESS_ACCESS 0000400

 /* May modify the access bits. */�

The syntax of the #define command does not require an equal sign or any other

special delimiter token after the name being defined. The body starts right after

the name. (If the body begins with an alphabetic character, digit, or left parenthe-

sis, then a space is needed to separate the body from the name, of course.)

A typical programming error is to include an extraneous equal sign:

/* Probably wrong: */

#define NUMBER_OF_TAPE_DRIVES = 5�

This is a legal definition but causes the name NUMBER_OF_TAPE_DRIVES to be defined

as "= 5" rather than as "5". If one were then to write the source program line

count = NUMBER_OF_TAPE_DRIVES;�

it would be expanded to

count = = 5; /* Illegal. */�

which is syntactically illegal. Worse yet, one might accidentally write

result = count + NUMBER_OF_TAPE_DRIVES;�

Page 33

which would be expanded to

result = count + = 5; /* Probably wrong. */�

which is syntactically legal (because += is a valid compound assignment operator

even with embedded whitespace) but almost certainly not what was intended! One

could write

count NUMBER_OF_TAPE_DRIVES; /* Ugh! */�

which would be expanded to

count = 5;�

and therefore assign 5 to count, but the best that can be said for this practice is

that it is confusing. The lesson is clear: Be careful not to include an extraneous

equal sign in a macro definition. For similar reasons, be careful also not to include

an extraneous semicolon:

#define NUMBER_OF_TAPE_DRIVES 5;

/* Probably wrong. */�

An important use of simple macro definitions is to isolate implementation-

dependent restrictions on the names of externally defined functions and variables.

An example of this appears in the section "C-Ref: Identifiers".

3.3.2. C-Ref: Defining Macros with Parameters

The more complex form of macro definition declares the names of formal parame-

ters within parentheses, separated by commas:

#define name(name1, name2, ..., namen) sequence-of-tokens�

The left parenthesis must immediately follow the name of the macro with no inter-

vening whitespace. (If whitespace separates the left parenthesis from the macro

name, the definition is considered to define a macro that takes no arguments and

has a body beginning with a left parenthesis.)

The names of the formal parameters must be identifiers, no two the same. There

is no requirement that any of the parameter names be mentioned in the body

(though normally they all will be mentioned).

A macro defined in this manner takes as many actual arguments as there are for-

mal parameters. The macro is invoked by writing its name, a left parenthesis, then

one actual argument token sequence for each formal parameter, then a right

parenthesis. The actual argument token sequences are separated by commas. For

example:

#define product(x,y) ((x)+(y))

...

 return product(a+3,b);�

Whitespace may appear between the macro name and the left parenthesis or in the

actual arguments.

A macro can be defined to have zero formal parameters:

#define getchar() getc(stdin)�

Page 34

When such a macro is invoked, an empty actual argument list must be provided:

while ((c=getchar()) != EOF) ...�

This kind of macro is useful to simulate a function that takes no arguments.

An actual argument token sequence may contain parentheses if they are properly

nested and balanced and may contain commas if each comma appears within a set

of parentheses (this restriction prevents confusion with the commas that separate

the actual arguments). Parentheses and commas may also appear freely within

character-constant and string-constant tokens and are not counted in the balancing

of parentheses and the delimiting of actual arguments. For example, the argu-

ments to the product macro above could be function calls:

int f(), g();

...

 return product(f(a,b), g(a,b));�

Braces and subscripting brackets may also appear within macro arguments, but

they cannot contain commas and do not have to balance. For example, suppose we

define a macro that takes as its argument an arbitrary statement:

#define insert(stmt) stmt�

The invocation

insert({a=1; b=1;})�

works properly, but if we change the two assignment statements to a single state-

ment containing two assignment expressions:

insert({a=1, b=1;})�

then the preprocessor will complain that we have too many macro arguments for

insert. To fix the problem we would have to write:

insert({(a=1, b=1);})�

Some (deficient) preprocessor implementations do not permit the actual argument

token list to extend across multiple lines unless the lines to be continued end with

a \.

When a complex macro call is encountered, the entire macro call is replaced, after

parameter processing, by a processed copy of the body. Parameter processing pro-

ceeds as follows. Actual argument token strings are associated with the corre-

sponding formal parameter names. A copy of the body is then made in which every

occurrence of a formal parameter name is replaced by a copy of the actual argu-

ment token sequence associated with it. This copy of the body then replaces the

macro call. The entire process of replacing a macro call with the processed copy of

its body is called macro expansion; the processed copy of the body is called the ex-

pansion of the macro call.

As an example, consider this macro definition:

Page 35

/* incr: This macro expands into a for statement

 that causes the variable (any lvalue) to take

 on all values from l to h, inclusive. Note

 that v and h may be evaluated more than once.

*/

#define incr(v,l,h) \

 for ((v) = (l); (v) <= (h); (v)++)�

This provides a convenient way to make a loop that just counts from a given value

up to (and including) some limit. For example, to print a table of the cubes of the

integers from 1 to 20, we could write

main()

{

 int j;

 printf(" N N cubed\n");

 incr(j, 1, 20)

printf("%2d %6d\n", j, j*j*j);

}�

The call to the macro incr is expanded by the preprocessor to produce this pro-

gram to be compiled:

main()

{

 int j;

 printf(" N N cubed\n");

 for ((j) = (1); (j) <= (20); (j)++)

printf("%2d %6d\n", j, j*j*j);

}�

(The liberal use of parentheses ensures that complicated actual arguments will not

confuse the compiler. See the section "C-Ref: Precedence Errors in Macro Expan-

sions".)

3.3.3. C-Ref: Rescanning of Macro Expressions

Once a macro call has been expanded, the scan for macro calls resumes at the be-

ginning of the expansion; this is so that names of macros may be recognized with-

in the expansion for the purpose of further macro replacement. Note that macro

replacement is not performed on any part of a #define command, not even the

body, at the time the command itself is processed and the macro name defined.

Macro names are recognized within the body only after the body has been expand-

ed for some particular macro call. Macro replacement is also not performed within

the actual argument token strings of a complex macro call at the time the macro

call is being scanned. Macro names are recognized within actual argument token

strings only during the rescanning of the expansion, assuming that the correspond-

ing formal parameter in fact occurred one or more times within the body (thereby

causing the actual argument token string to appear one or more times in the ex-

pansion). For example, given the following macro definitions:

Page 36

#define plus(x,y) add(y,x)

#define add(x,y) ((x)+(y))�

The macro invocation

plus(plus(a,b), c)�

is expanded in the following steps:

plus(plus(a,b), c)

add(c, plus(a,b))

((c)+(plus(a,b)))

((c)+(add(b,a)))

((c)+(((b)+(a))))�

If a macro expands into something that looks like a preprocessor command, that

command will not be recognized as a command by the preprocessor. For example,

the result of

/* This example doesn’t work as one might think! */

#define GETMATH #include <math.h>

GETMATH�

is not to include the file math.h in the program being compiled. The call to the

macro GETMATH expands into the token sequence

include < math . h >�

but that token sequence is not recognized as a preprocessor #include command;

the token sequence is merely passed through and compiled as (erroneous) C code.

In general, a line is treated as a preprocessor command line if and only if its first

non-whitespace character is # before any macro replacement has been performed on

the line.

Finally, it is possible to write recursive macros whose expansion does not termi-

nate. For example, the macro

#define repeat(x) x repeat(x)�

will expand to an infinite sequence of its argument. Most C compilers will not de-

tect this recursion, and will attempt to continue the expansion until they are

stopped by some system error.

3.3.4. C-Ref: Predefined Macros

Many implementations of C provide certain special, built-in macros for use by the

programmer. For example, the macro __FILE__ (spelled with four underscore char-

acters) is often predefined to be the string name of the file being preprocessed,

and __LINE__ is often predefined to be the line number in the source file being

compiled. These macros are useful in certain kinds of error messages:

if (n !== m)

 fprintf(stderr,"Internal error: line %d, file %s\n",

__LINE__, __FILE__);�

Built-in macros such as these were considered useful enough to add to Draft Pro-

posed ANSI C. These macros may not be redefined or undefined.

Page 37

Some implementations also routinely define certain macros to communicate infor-

mation about the environment, such as the type of computer for which the pro-

gram is being compiled. For example, a compiler targeted to the DEC VAX-11 com-

puter might predefine a macro named vax so that the programmer could write

#ifdef vax

 Vax-specific-code

#endif�

to cause certain source code to be compiled only when the target computer is a

VAX. Exactly which macros are defined is implementation dependent, although

UNIX implementations usually predefine unix. Unlike the built-in macros, these

macros may be undefined.

3.3.5. C-Ref: Undefining and Redefining Macros

The #undef command can be used to make a name be no longer defined:

#undef name�

This command causes the preprocessor to forget any macro definition of name. It

is not an error to undefine a name that is currently not defined. Once a name has

been undefined, it may then be given a completely new definition (using #define)

without error. Macro replacement is not performed within #undef commands.

Implementations of C differ in how they handle an attempt to define a name that

is already defined as a macro. Some implementations will discard the old defini-

tion, replace it with the new one, and perhaps issue a warning message. A better

alternative is to consider the redefinition an error unless the new definition is the

same (token-for-token) as the old one. (This is sometimes known as a "benign re-
definition.") Programmers can avoid any problem by using #ifndef to be sure there

is no preexisting definition:

#ifndef MAXTABLESIZE

#define MAXTABLESIZE 1000

#endif�

This style is particularly effective under UNIX (and other similar implementations)

because there the programmer may supply his macro definitions when the compiler

is invoked. The syntax usually looks like this:

cc -c -DMAXTABLESIZE=5000 prog.c�

A few non-UNIX preprocessor implementations handle #define and #undef so as to

maintain a stack of definitions. When a name is redefined with #define, its old

definition is pushed onto a stack and then the new definition replaces the old one.

When a name is undefined with #undef, the current definition is discarded and the

most recent previous definition (if any) is popped from the stack to replace it. The

following program can be used to determine whether the stack model of macro def-

initions is in effect. (The redefinition of MSG in the second line may cause a compi-

lation error, in which case the stack model is not in effect.)

Page 38

#define MSG "#define/#undef are stacked"

#define MSG "(This definition should never remain)"

#undef MSG

#ifndef MSG

#define MSG "#define/#undef are not stacked"

#endif

int main()

{

 printf("%s\n",MSG);

 return 0;

}

Draft Proposed ANSI C does not support the stack model.

3.3.6. C-Ref: Precedence Errors in Macro Expansions

Macros operate purely by textual substitution of tokens. Parsing of the body into

declarations, expressions, or statements occurs only after the macro expansion pro-

cess. This can lead to surprising results if care is not taken. Consider this macro

definition:

#define SQUARE(x) x*x

The idea is that SQUARE takes an argument expression and produces a new expres-

sion to compute the square of that argument. For example, SQUARE(5) expands to

5*5. However, the expression

SQUARE(z+1)

expands to

z+1*z+1

When this expression is parsed, it is interpreted as

z+(1*z)+1

which will not produce the same result as (z+1)*(z+1) unless z happens to be

zero. It would be somewhat safer to put parentheses around occurrences of the for-

mal parameter in the definition of SQUARE:

#define SQUARE(x) (x)*(x)

Even this definition does not provide complete protection against precedence prob-

lems. Consider casting the squared value to a new type:

(short) SQUARE(z+1)

This would expand to:

(short) (z+1)*(z+1)

which would then be parsed as

((short) (z+1))*(z+1)

because a cast has higher precedence than multiplication. The definition can be

improved further to avoid this difficulty:

#define SQUARE(x) ((x)*(x))

Page 39

As a rule, it is safest always to parenthesize each parameter appearing in the

macro body. The entire body, if it is syntactically an expression, should also be

parenthesized.

3.3.7. C-Ref: Side Effects in Macro Arguments

Macros can also produce problems with side effects. Consider the macro SQUARE

shown above and also a function square that does (almost) the same thing:

int square(x)

 int x;

{

 return x*x;

}�

The function, unlike the macro, can square only integers, not floating-point num-

bers. Also, calling the function is likely to be somewhat slower at run time than

using the macro. But these differences are less important than the question of side

effects. In the program fragment

a = 3;

b = square(a++);�

the variable b gets the value 9 and the variable a ends up with the value 4. How-

ever, in the superficially similar program fragment

a = 3;

b = SQUARE(a++);�

the variable b may very well get the value 12 and the variable a may end up with

the value 5, because the expansion of the last fragment is

a = 3;

b = ((a++)*(a++));�

(We say that 12 and 5 "may" be the resulting values of b and a because C imple-

mentations are free to evaluate the expression ((a++)*(a++)) in various ways.)

When a function such as square is used, the argument expression is evaluated ex-

actly once, so any side effects of the expression occur exactly once. When a macro,

such as SQUARE, is used, an actual argument may be textually replicated and there-

fore executed more than once, and side effects may occur more than once. Macros

must be used with care to avoid such problems.

3.3.8. C-Ref: Converting Tokens to Strings

In many (but not all) implementations of C, macro formal parameter names, unlike

macro calls, are recognized within string and character constants. Because the ac-

tual argument may have been broken down into tokens, possibly with comments

and extraneous whitespace discarded, the substitution of an actual argument token

sequence into a string may not result in the precise sequence of characters that

appeared in the macro call. In recording the body of a macro, the compiler may

make certain simplifications. It may eliminate extraneous whitespace. It may re-

duce constants to a "canonical form," for example reducing 0000400 to 0400 or to

Page 40

256. Comments may be treated in one of three ways: replaced by whitespace, re-

placed by an empty comment, or maintained verbatim. Consider this definition:

#define MAKESTRING(x) "x"�

The result of the call

MAKESTRING(a += 1 /* Increment counter. */)�

might be any one of the following representative samples:

"a += 1 /* Increment counter. */"

"a += 1 "

"a += 1 /**/"

"a+=1/* Increment counter. */"

"a+=1"�

Programs are more likely to be portable if actual arguments that are substituted

for formal parameters within character constants and string constants are single

tokens. Better yet, inasmuch as some implementations don’t handle such substitu-

tion at all, the programmer can maximize portability simply by avoiding entirely

the use of macro formal parameters within character constants and string con-

stants.

Draft Proposed ANSI C disallows the recognition of macro formal parameters with-

in string constants, but a need to convert tokens to string representations was rec-

ognized and a special mechanism was introduced.

3.3.9. C-Ref: Token Merging in Macro Expansions

Although the original definition of C explicitly described macro bodies as being se-

quences of tokens, not sequences of characters, nevertheless some C compilers ex-

pand and rescan macro bodies as if they were character sequences. This becomes

apparent primarily in the case where the compiler also handles comments by elimi-

nating them entirely (rather than by replacing them with a space), a situation ex-

ploited by some cleverly written programs:

#define INC ++

#define TAB internal_table

#define INCTAB table_of_increments

#define CONC(x,y) x/**/y

CONC(INC,TAB)�

The proper interpretation of the body of CONC is as a sequence of the tokens x and

y, separated by a comment or a space. The comment does, in all implementations,

serve to separate x and y so that they are recognized as formal parameters of the

macro CONC. The call

CONC(INC,TAB)�

ought to expand to the sequence of tokens

INC TAB�

which will in turn expand to

++ internal_table�

Page 41

However, those implementations that simply eliminate comments and that rescan

macro bodies as character sequences rather than token sequences will expand the

call

CONC(INC,TAB)�

into the character sequence

INCTAB�

and then, in rescanning it, interpret it as the single token INCTAB. This will then

expand into

table_of_increments�

which is a very different thing altogether. Because not all implementations treat

this the same way, depending on such implicit concatenation of tokens through

rescanning may render a program nonportable.

Draft Proposed ANSI C removed the kind of token merging described in this sec-

tion from the preprocessor, but thought the effect important enough that a new to-

ken-concatenation operator was introduced.

3.3.10. C-Ref: Other Problems

Some implementations of C do not perform stringent error checking on macro defi-

nitions and calls, including permitting an incomplete token in the macro body to

be completed by text appearing after the macro call. For example, the following

definition and call

#define FIRSTPART "This is a split

...

 printf(FIRSTPART string."); /* Yuk! */�

will, after preprocessing, result in compiling the source text

 printf("This is a split string.");�

The lack of error checking by certain implementations does not make clever ex-

ploitation of that lack legitimate. Draft Proposed ANSI C reaffirms that macro

bodies must be sequences of well-formed tokens.

3.4. C-Ref: File Inclusion

The #include preprocessor command causes the entire contents of a specified

source text file to be processed as if those contents had appeared in place of the

#include command. The #include command has two forms. If the first non-

whitespace character following the command name #include is a double quote ",

then the last non-whitespace character on the command line must also be a double

quote. If the first non-whitespace character following the command name #include

is <, then the last non-whitespace character on the command line must be >. In ei-

ther case, all the characters between the two delimiters constitute a file name

(whose format is implementation dependent).

Page 42

If the first non-whitespace character following the command name is neither " nor

<, then macro replacement is performed on the part of the command line following

#include; this allows a macro call to expand into a file name (including the appro-

priate delimiters).

The two forms differ in how the specified file is to be located if the location is not

completely specified in the command. The form

#include "filename"�

typically searches for the file first in the same "directory" in which the file con-

taining the #include command was found, and then perhaps in other places accord-

ing to implementation-dependent search rules. However, the form

#include <filename>�

typically does not search for the file in the same "directory" in which the file con-

taining the #include command was found, but only in certain "standard" places ac-

cording to implementation-dependent search rules. The general intent is that the

"..." form is used to refer to other files written by the user, whereas the <...>

form is used to refer to standard "library" files.

In principle an included file may itself contain #include commands. The permitted

depth of such #include nesting is implementation dependent, but most implementa-

tions will allow nesting to at least five or six levels.

3.5. C-Ref: Conditional Compilation

The preprocessor conditional commands allow lines of source text to be passed

through or eliminated by the preprocessor on the basis of a computed condition.

3.5.1. C-Ref: The #if, #else, and #endif Commands

The following preprocessor commands are used together to allow lines of source

text to be conditionally included in or excluded from the compilation: #if, #else,

and #endif. They are used in the following way:

#if constant-expression

 group-of-lines-1

#else

 group-of-lines-2

#endif�

The constant-expression is subject to macro replacement and must evaluate to a

constant arithmetic value. A "group of lines" may contain any number of lines of

text of any kind, even other preprocessor command lines, or no lines at all. The

#else command may be omitted, along with the group of lines following it; this is

equivalent to including the #else command with an empty group of lines following

it. Either group of lines may also contain one or more sets of #if-#else-#endif

commands; that is, conditional compilation commands nest properly.

Page 43

A set of commands such as shown above is processed in such a way that one

group of lines will be passed on for compilation and the other group of lines will

be discarded. First the constant-expression in the #if command is evaluated. If its

value is not 0, then group-of-lines-1 is passed through for compilation and group-of-

lines-2 (if present) is discarded. Otherwise, group-of-lines-1 is discarded; and if

there is an #else command, then group-of-lines-2 is passed through; but if there is

no #else command, then no group of lines is passed through. The constant expres-

sions that may be used in a #if command are described in detail in the sections

"C-Ref: Constant Expressions in Conditional Commands" and "C-Ref: Constant Ex-

pressions".

A group of lines that is discarded is not processed by the preprocessor. Macro re-

placement is not performed and preprocessor commands are ignored. The one ex-

ception is that, within a group of discarded lines, the commands #if, #ifdef, #ifn-

def, #elif, #else, and #endif are recognized for the sole purpose of counting them;

this is necessary to maintain the proper nesting of the conditional compilation

commands. (This recognition in turn implies that discarded lines are scanned and

broken into tokens and that string constants and comments are properly recog-

nized, for example.)

If an undefined macro name appears in the constant-expression of #if or #elif it is

replaced by the integer constant 0. This means that the commands "#ifdef name"
and "#if name" will have the same effect as long as the macro name, when de-

fined, has a constant, arithmetic, nonzero value. We think it is much clearer to

use #ifdef or the defined operator in these cases, but even Draft Proposed ANSI

C supports the use of #if.

3.5.2. C-Ref: The #elif Commands

The #elif command is a fairly recent addition to C and is present in a few compil-

ers as well as Draft Proposed ANSI C. It is convenient because it simplifies nested

preprocessor conditionals.

The #elif command is like a combination of #else and #if. It is used between #if

and #endif in the same way as #else but has a constant expression to evaluate in

the same way as #if. It is used in the following way:

#if constant-expression-1

 group-of-lines-1

#elif constant-expression-2

 group-of-lines-2

#elif constant-expression-3

 group-of-lines-3

 ...

#elif constant-expression-n

 group-of-lines-n

#else

 last-group-of-lines

#endif�

A set of commands such as shown above are processed in such a way that at most

Page 44

one group of lines will be passed on for compilation and all other groups of lines

will be discarded. First the constant-expression-1 in the #if command is evaluated.

If its value is not 0, then group-of-lines-1 is passed through for compilation and all

other groups of lines up to the matching #endif are discarded. If the value of the

constant-expression-1 in the #if command is 0, then the constant-expression-2 in the

first #elif command is evaluated; if that value is not 0, then group-of-lines-2 is

passed through for compilation. In the general case, each constant-expression-i is

evaluated until one produces a nonzero value; the preprocessor then passes

through the group of lines following the command containing the nonzero constant

expression, ignores any other constant expressions in the command set, and dis-

cards all other groups of lines. If no constant-expression-i produces a nonzero value,

but there is an #else command, then the group of lines following the #else com-

mand is passed through; but if there is no #else command, then no group of lines

is passed through. The constant expressions that may be used in a #elif command

are the same as those used in a #if command (see the sections "C-Ref: Constant

Expressions in Conditional Commands" and "C-Ref: Constant Expressions").

Within a group of discarded lines, #elif commands are recognized in the same

way as #if, #else, and #endif commands, for the sole purpose of counting them;

this is necessary to maintain the proper nesting of the conditional compilation

commands.

Macro replacement is performed within the part of a command line that follows an

#elif command, so macro calls may be used in the constant-expression.

While the #elif command is very convenient when it is appropriate, it is not nec-

essary, because anything it accomplishes can be done using only #if, #else, and

#endif. For example, this set of commands:

#if constant-expression-1

 group-of-lines-1

#elif constant-expression-2

 group-of-lines-2

#elif constant-expression-3

 group-of-lines-3

#else

 last-group-of-lines

#endif�

can be rewritten in this way:

Page 45

#if constant-expression-1

 group-of-lines-1

#else

#if constant-expression-2

 group-of-lines-2

#else

#if constant-expression-3

 group-of-lines-3

#else

 last-group-of-lines

#endif

#endif

#endif�

3.5.3. C-Ref: The #ifdef and #ifndef Commands

The #ifdef and #ifndef commands can be used to test whether a name is defined

as a preprocessor macro. A command line of the form

#ifdef name�

is equivalent in meaning to

#if 1�

when name has been defined and is equivalent to

#if 0�

when name has not been defined or has been undefined with the #undef command.

The #ifndef command has the opposite sense; it is true when the name is not de-

fined and false when it is.

Note that #ifdef and #ifndef test names only with respect to whether they have

been defined by #define (or undefined by #undef); they take no notice of names ap-

pearing in declarations in the C program text to be compiled.

These commands have come to be used in several stylized ways in C programs.

First, it is a common practice to implement a preprocessor-time enumeration type

by having a set of symbols of which only one is defined. For example, suppose that

we wish to use the set of names VAX, PDP11, IBM360, and CRAY2 to indicate the com-

puter for which the program is being compiled. One might insist that all these

names be defined, with one being defined to be 1 and the rest 0:

#define VAX 0

#define PDP11 0

#define IBM360 0

#define CRAY2 1�

One could then select machine-dependent source code to be compiled in this way:

Page 46

#if VAX

 VAX-dependent code

#endif

#if PDP11

 PDP11-dependent code

#endif

#if IBM360

 IBM360-dependent code

#endif

#if CRAY2

 CRAY2-dependent code

#endif�

However, the customary method defines only one symbol:

#define CRAY2 1

/* All the other symbols are not defined. */�

Then the conditional commands test whether each symbol is defined:

#ifdef VAX

 VAX-dependent code

#endif

#ifdef PDP11

 PDP11-dependent code

#endif

#ifdef IBM360

 IBM360-dependent code

#endif

#ifdef CRAY2

 CRAY2-dependent code

#endif�

Another use for the #ifdef and #ifndef commands is in providing default defini-

tions for macros. For example, a library file might provide a definition for a name

only if no other definition has been provided:

/* Library file <table.h>.

 Maintains an internal table.

 */

#ifndef TABLE_SIZE

#define TABLE_SIZE 100

#endif

...

static int internal_table[TABLE_SIZE];

...�

A program might simply include this file:

#include <table.h>�

in which case the definition of TABLE_SIZE would be 100, both within the library

Page 47

file itself and after the #include; or the program might provide an explicit defini-

tion first:

#define TABLE_SIZE 500

#include <table.h>�

in which case the definition of TABLE_SIZE would be 500 throughout.

3.5.4. C-Ref: Constant Expressions in Conditional Commands

The constant expressions that may be used in #if and #elif commands are de-

scribed in detail in section "C-Ref: Constant Expressions". The value of the con-

stant expression must be determined in exactly the same way as for any other con-

stant expression in the program: The result of evaluating a constant expression

must be identical to the result of evaluating the same expression at run time.

If the entire rest of the command line following #if or #elif is not, after macro

replacement, a syntactically legal constant expression, or if any error occurs while

determining its value (for example, division by 0), then some implementation-

dependent action is taken. Some compilers issue an error message and assume the

entire expression has the value 0; that is, the conditional test fails and the follow-

ing group of lines is discarded. This assumption is made purely for the purpose of

continuing the compilation process in order to search for additional errors.

3.5.5. C-Ref: The defined Operator

There is one operator, defined, that can be used in #if and #elif expressions but

nowhere else in the C language. An expression of the form

defined name�

or

defined(name)�

evaluates to 1 if name is defined in the preprocessor, and 0 if it is not. This allows

one to write

#if defined(VAX)�

instead of

#ifdef VAX�

The defined operator is more convenient to use because it is possible to build up

complex expressions, such as

#if defined(VAX) && !defined(UNIX) && debugging

...�

The defined operator is relatively new to C and is not implemented by all compil-

ers. It has been adopted by Draft Proposed ANSI C.

Page 48

3.6. C-Ref: Explicit Line Numbering

The #line preprocessor command advises the C compiler that the source program

was generated by another tool and indicates the correspondence of places in the

source program to lines of the original user-written file from which the C source

program was produced. The #line commands may have one of two forms. The form

#line integer-constant "filename"�

indicates that the next source line was derived from line n of the original user-

written file named by filename. The form

#line integer-constant�

indicates that the next source line was derived from line n of the original user-

written file last mentioned explicitly in a #line command.

Macro replacement is performed on the part of the command line following the

name #line before the command line is interpreted. This allows a macro call to ex-

pand into the integer-constant, the filename, or both.

The information provided by the #line command is used purely for the sake of giv-

ing more informative error messages. Some tools that generate C source text as

output will use #line so that error messages can be related to the tool’s input file

instead of the actual C source file. Some compilers do not implement #line, ignor-

ing it when present.

Some implementations of C allow the preprocessor to be used independently of the

rest of the compiler. Indeed, sometimes the preprocessor is a separate program

that is executed to produce an intermediate file that is then processed by the

"real" compiler. In such cases the preprocessor may generate new #line commands

in the intermediate file; the compiler proper is then expected to recognize these

even though it does not recognize any other preprocessor commands. Whether the

preprocessor generates #line commands is implementation dependent. Similarly,

whether the preprocessor passes through, modifies, or eliminates #line commands

in the input is also implementation dependent.

Older versions of C allow simply "#" as a synonym for the #line command:

integer-constant filename�

This syntax is considered obsolete, but many implementations of C continue to sup-

port it for the sake of compatibility.

Many implementations allow a # on a line by itself to mean a "do nothing" com-

mand; the preprocessor eliminates the line and takes no other action.

The #line command is not present in some non-UNIX compilers. It is part of Draft

Proposed ANSI C, along with the "empty" # command.

Page 49

4. C-Ref: Declarations

To declare an identifier in the C language is to associate the identifier with some

C object, such as a variable, function, or type. The identifiers that can be declared

in C are

• variables

• functions

• types

• type tags

• structure and union components

• enumeration constants

• statement labels

• preprocessor macros

Except for statement labels and preprocessor macros, all identifiers are declared by

their appearance in C declarations. Variables, functions, and types appear in

declarators within declarations, and type tags, structure and union components, and

enumeration constants are declared in certain kinds of type specifiers in declara-

tions. Statement labels are declared by their appearance in a C function, and pre-

processor macros are declared by the #define preprocessor command.

Declarations in C are difficult to describe for several reasons. First, they involve

some unusual syntax that may be confusing to the novice. For example, the decla-

ration

int (*f)();

does not declare f to be some kind of integer but rather a pointer to a function re-

turning an integer.

Second, many of the abstract properties of declarations, such as scope and extent,

are not clearly evident in C’s realization. Before jumping into the actual declara-

tion syntax, we will discuss these properties in section "C-Ref: Terminology".

Finally, some aspects of C’s declarations are difficult to understand without a

knowledge of C’s type system, which is described in Chapter "C-Ref: Types".

In particular, discussions of type tags, structure and union component names, and

enumeration constants is left to that chapter, although some properties of those

declarations will be discussed here for completeness.

Page 50

4.1. C-Ref: Organization of Declarations

Declarations may appear in several places in a C program, and where they appear

affects the properties of the declarations. To give an overview, a program consists

of a sequence of top-level declarations of functions, variables, and other things.

Each function has parameter declarations and a body; the body in turn may contain

blocks (compound statements). A block may contain a sequence of inner declara-

tions.

The syntax below shows the location of declarations in a C program. (Some of the

syntactic alternatives are not relevant to this discussion and have been elided, as

indicated by "...".)

program:

top-level-declaration-listopt
top-level-declaration-list:

top-level-declaration

top-level-declaration-list top-level-declaration

top-level-declaration:

initialized-declaration

function-definition

function-definition:

declaration-specifiersopt declarator function-body

declaration-specifiers:

storage-class-specifier

type-specifier

declaration-specifiers storage-class-specifier

declaration-specifiers type-specifier

function-body:

parameter-declaration-listopt compound-statement

compound-statement:

{ inner-declaration-listopt statement-listopt }

inner-declaration-list:

initialized-declaration-list

statement-list:

statement

statement-list statement

statement:

compound-statement

 ...

Page 51

parameter-declaration-list:

declaration-list

declaration-list:

declaration

declaration-list declaration

declaration:

declaration-specifiers declarator-list ;

initialized-declaration:

declaration-specifiers initialized-declarator-list ;

initialized-declarator-list:

initialized-declarator

initialized-declarator-list , initialized-declarator

initialized-declarator:

declarator initializer-partopt

declarator:

identifier

 ...

initializer-part:

’=’ initializer

initializer:

expression

 ...

As you can see, all declarations except function definitions share the same syntax.

In fact, semantic rules will prohibit certain syntactically valid declarations, depend-

ing on the location and form of the declaration. These rules will be considered

later.

4.2. C-Ref: Terminology

In order to describe the meaning of declarations in a C program, we must estab-

lish some terminology.

4.2.1. C-Ref: Scope

The scope of a declaration is the region of the C program text over which that

declaration is active. A declaration might have as its scope a single compound

statement, a function body, or a larger section of the source program.

Page 52

In C, identifiers may have one of five scopes:

• An identifier declared in a top-level declaration has a scope that extends from

its declaration point (section "C-Ref: Forward References") to the end of the

source program file.

• An identifier declared in a formal parameter declaration has a scope that ex-

tends from its declaration point to the end of the function body.

• An identifier declared at the beginning of a block has a scope that extends from

its declaration point to the end of the block.

• A statement label has a scope that encompasses the entire function body in

which it appears.

• A preprocessor macro name has a scope that extends from the #define command

that declares it through the end of the source program file, or until the first

#undef command that cancels its definition.

Nonpreprocessor identifiers declared within a function or block are often said to

have local scope. The scope of every identifier is limited to the C source file in

which it occurs. However, some identifiers can be declared to be external, in which

case the declarations of the same identifier in two or more files can be linked in a

fashion described in section "C-Ref: External Names". Draft Proposed ANSI C in-

troduces a new kind of scope associated with function prototype declarations.

4.2.2. C-Ref: Visibility

A declaration of an identifier is visible in some context if a use of the identifier in

that context will be bound to the declaration; that is, the identifier will have an

association made with that declaration. A declaration might be visible throughout

its scope, but it may also be hidden by other declarations whose scope and visibili-

ty overlap that of the first declaration. For example, in the following program, the

declaration of foo as an integer variable is hidden by the inner declaration of foo

as a floating-point variable. The outer foo is hidden only within the body of func-

tion main.

int foo = 10; /* foo defined at the top level */

main

{

 float foo; /* this foo hides the outer foo */

 ... sin(foo) ...

}�

In C, formal parameter declarations can hide top-level declarations, and declara-

tions at the beginning of a block can hide declarations outside the block. For one

declaration to hide another, the declared identifiers must be the same, must belong

to the same overloading class, and must be declared in two distinct scopes, one of

which contains the other.

Page 53

4.2.3. C-Ref: Forward References

Except in a few selected situations, an identifier may not be used before it is de-

clared. To be precise, we define the declaration point of an identifier to be the po-

sition of the identifier’s lexical token in the declaration. Any use of the identifier

after the declaration point is permitted. In the example below, an integer, intsize,

can be initialized to its own size because the use of intsize in the initializer

comes after the declaration point.

static int intsize = sizeof(intsize);�

When an identifier is used before its declaration point, a forward reference to the

declaration is said to occur. C permits forward references in two situations. First,

a statement label may appear in a goto statement before it is defined:

 if (error) goto recover;

 ...

 recover:

 CloseFiles();

 ...�

Second, a structure, union, or enumeration tag may be used before it is declared.

That situation is discussed in section "C-Ref: Structure Type References".

Illegal forward references are illustrated in the following example of an attempt to

define a self-referential structure with a typedef declaration. In this case, the last

occurrence of cell on the line is the declaration point, and therefore the use of

cell within the structure is illegal.

typedef struct { int Value; cell *Next; } cell;�

Closely related to the idea of forward references are implicit declarations and du-

plicate declarations.

4.2.4. C-Ref: Overloading of Names

In C and other programming languages, the same identifier may be associated

with more than one program entity at a time. When this happens, we say that the

name is overloaded, and the context in which the name is used determines the as-

sociation that is in effect. For instance, an identifier might be both the name of a

variable and a structure tag. When used in an expression, the variable association

is used; when used in a type specifier, the tag association is used.

When a name is overloaded with several associations, each association has its own

scope and may be hidden by other declarations independent of other associations.

For instance, if an identifier is being used both as a variable and a structure tag,

an inner block may redefine the variable association without altering the tag asso-

ciation.

There are five overloading classes for names in C. (We sometimes refer to them as

name spaces.)

1. Preprocessor macro names. Because preprocessing logically occurs before com-

pilation, names used by the preprocessor are independent of any other names

in a C program.

Page 54

2. Statement labels. Named statement labels are part of statements. Definitions

of statement labels are always followed by : (and are not part of case labels).

Uses of statement labels always immediately follow the reserved word goto.

3. Structure, union, and enumeration tags. These tags are part of structure,

union, and enumeration type specifiers and, if present, always immediately

follow the reserved words struct, union, or enum.

4. Component names. Component names are allocated in name spaces associated

with each structure and union type. That is, the same identifier can be a

component name in any number of structures or unions at the same time.

Definitions of component names always occur within structure or union type

specifiers. Uses of component names always immediately follow the selection

operators . and ->.

5. Other names. All other names fall into an overloading class that includes

variables, functions, typedef names, and enumeration constants.

These rules differ slightly from those in the original definition of C. First, the

original definition of C put statement labels in the same name space as ordinary

identifiers, and enough compilers still follow this rule that the programmer should

be aware of it. The problem is that using a single name space can be a source of

great confusion, since labels do not obey normal block structure. For instance, in

the following example, does the integer declaration of L hide the label, or is it an

illegal duplicate definition of L?

{ ...

 goto L;

 ...

 { int L;

...

{ ...

 L = 10;

 ...

 L:

 ...

}

 }

}�

Compilers placing labels in the same name space as variables consider it an illegal

duplicate definition.

Second, the original definition of C allocated all structure and union component

names from a single name space instead of separate name spaces for each type.

Thus, if x was a component of one structure type, it couldn’t be the member of an-

other structure type. (Actually, there were complicated rules that allowed identi-

fiers to be in more than one structure if their offsets in the structure were iden-

tical.) Fortunately, this is now rarely seen in C compilers and has been corrected

in the current language definitions.

Page 55

Finally, the inclusion of structure, union, and enumeration type tags in the same

overloading class is according to the current language definition, although the syn-

tax of C is such that they could be in separate name spaces (and some compilers

do define them that way).

4.2.5. C-Ref: Duplicate Declarations

It is illegal to make two declarations of the same name (in the same overloading

class) in the same block or at the top level. Such declarations are said to conflict.

In the following example, the two declarations of howmany are conflicting but the

two declarations of str are not (because they are in different name spaces).

extern int howmany;

extern char str[10];

typedef double howmany;

extern struct str {int a, b;} x;

There are two exceptions to the prohibition against duplicate declarations. First,

any number of external (referencing) declarations for the same name may exist, as

long as the declarations assign the same type to the name in each instance. This

exception reflects the belief that declaring the same external library function twice

should not be illegal.

Second, if an identifier is declared as being external, that declaration may be fol-

lowed with a definition (section "C-Ref: External Names") of the name later in the

program, assuming that the definition assigns the same type to the name as the

external declaration(s). This exception allows the user to generate legal forward

references to variables and functions. For instance, in the following example we

define two functions, f and g, that reference each other. Normally, the use of f

within g would be an illegal forward reference. However, by preceding the defini-

tion of g with an external declaration of f, we give the compiler enough informa-

tion about f to compile g. (Without the initial declaration of f, a one-pass compiler

could not know when compiling g that f returns a value of type double rather than

int.)

extern double f();

double g(x, y)

 double x, y;

{

 ... f(x-y) ...

}

double f(z)

 double z;

{

 ... g(z, z/2.0) ...

}

There is a deficiency in this mechanism. Variables that are the subject of forward

references from within the same file must be declared extern, when they could

Page 56

otherwise have storage class static. Some compilers, when they see an external

declaration followed by a static definition of the same name, will guess (correctly

or not) what is going on and not generate an external reference at link time.

4.2.6. C-Ref: Duplicate Visibility

Because C’s scoping rules specify that a name’s scope begins at its declaration

point rather than at the head of the block in which it is defined, a situation can

arise in which two nonconflicting declarations can be referenced in different parts

of the same block.

In the example below there are two variables named i referenced in the block la-

beled Bthe integer i declared in the outer block is used to initialize the variable

j, and then a floating-point variable i is declared, hiding the first i.

{

 int i = 0;

 ...

 B:{

int j = i;

float i = 10.0;

...

 }

}

The reference to i in the initialization of j is ambiguous. Which i was wanted?

Most compilers will do what was (apparently) intended; the first use of i in block

B is bound to the outer definition and the redefinition of i then hides the outer

definition for the remainder of the block. We consider this usage to be bad pro-

gramming style; it should be avoided.

4.2.7. C-Ref: Extent

Variables and functions, unlike types, have an existence at run time; that is, they

have storage allocated to them. The extent of these objects is the period of time

that the storage is allocated.

static extent when it is allocated storage at or before the beginning of program exe-

cution and the storage remains allocated until program termination. In C, all func-

tions have static extent, as do all variables declared in top-level declarations. Vari-

ables declared at the beginning of blocks may have static extent, depending on the

declaration.

An object is said to have local extent when (in the case of C) it is created upon en-

try to a block or function and is destroyed upon exit from the block or function. If

a variable with local extent has an initializer, the variable is initialized each time

it is created. Formal parameters have local extent, and variables declared at the

beginning of blocks may have local extent, depending on the declaration. A vari-

able with local extent is often called automatic in C.

Finally, it is possible in C to have data objects with dynamic extent; that is, objects

that are created and destroyed explicitly at the programmer’s whim. However, dy-

Page 57

namic objects must be created through the use of special library routines such as

malloc and are not viewed as part of the C language itself.

4.2.8. C-Ref: Initial Values

Allocating storage for a variable does not necessarily establish the initial contents

of that storage. Most variable declarations in C may have initializers, expressions

used to set the initial value of a variable at the time that storage is allocated for

it. If an initializer is not specified for a variable, its value after allocation is un-

predictable.

It is important to remember that a static variable is initialized only once and that

it retains its value even when the program is executing outside its scope. In the

following example, two variables, L and S, are declared at the head of a block and

both are initialized to 0. Both variables have local scope, but S has static extent

while L has local (automatic) extent. Each time the block is entered, both variables

are incremented by one and the new values printed.

 {

 static int S = 0;

 auto int L = 0;

 L = L + 1;

 S = S + 1;

 printf("L = %d, S = %d\n", L, S);

} �

What values will be printed? If the block is executed many times, the output will

be this:

L = 1, S = 1

L = 1, S = 2

L = 1, S = 3

L = 1, S = 4

...�

There is one dangerous feature of C’s initialization of automatic variables declared

at the beginning of blocks. The initialization is guaranteed to occur only if the

block is entered normally; that is, if control flows into the beginning of the block.

Through the use of statement labels and the goto statement, it is possible to jump

into the middle of a block; if this is done, there is no guarantee that automatic

variables will be initialized. The same is true when case or default labels are used

in conjunction with the switch statement to cause control to be transferred into a

block. In the following example, for instance, the initialization of variable sum will

not occur when the goto statement transfers control to label L, causing erroneous

behavior.

Page 58

 goto L;

 ...

 {

static int vector[10] = {1,2,3,4,5,6,7,8,9,10};

int sum = 0;

 L:

/* Add up elements of "vector". */

for (i=1; i<10; i++) sum += vector[i];

printf("sum is %d", sum);

 }�

4.2.9. C-Ref: External Names

A special case of scope and visibility is the external variable or function. An exter-

nal object is treated just like a static object in the file containing its declaration.

However, an identifier declared to be external is exported to the linker, and if the

same identifier is similarly declared in another program file, the linker will ensure

that the two files reference the same object (variable or function).

We have discovered that many C compilers violate normal scope and visibility

rules when processing external declarations. In this program fragment, for in-

stance, the occurrence of E in the second assignment statement should be illegal

(undefined), since the scope of the external declaration should not extend beyond

the inner block:

{

 {

extern E;

E = 0;

 }

 E = 1;

}�

In practice, however, it seems that many C compilers treat the declaration of E as

if it had occurred at the top level, thus extending over the second assignment.

Draft Proposed ANSI C states that external declarations should obey normal scop-

ing rules.

4.2.10. C-Ref: Compile-time Objects

So far the discussion has focused mainly on variables and functions, which have an

existence at run time. However, the scope and visibility rules apply equally to

identifiers associated with objects that do not necessarily exist at run time: typedef

names, type tags, structure and union component names, and enumeration con-

stants. When any of these identifiers are declared, their scope is the same as that

of a variable defined at the same location.

Page 59

4.3. C-Ref: Storage Class Specifiers

We now proceed to examine the pieces of declarations: storage class specifiers,

type specifiers, declarators, and initializers.

The storage class specifier in a declaration mainly determines the extent of the ob-

ject declared. At most one storage class specifier may appear in a declaration. (Al-

though the syntax in section "C-Ref: Organization of Declarations" indicates that

storage class specifiers must precede type specifiers, and we think that is good

style, the original definition of C allows them to occur in any order.)

storage-class-specifier: one of

auto extern register static typedef �

The meanings of the storage classes are given below. Note that not all storage

classes are permitted in every declaration context.

auto This storage class specifier is permitted only in declarations of

variables at the heads of blocks. It indicates that the variable

has local (automatic) extent. (Because this is the default, auto

is rarely seen in C programs.)

extern This storage class specifier may appear in declarations of ex-

ternal functions and variables, either at the top level or at the

heads of blocks. It indicates that the object declared has static

extent and its name is known to the linker. Section "C-Ref: Ex-

ternal Names" discusses how to distinguish defining external

declarations from referencing external declarations.

register This storage class specifier may be used for local variables or

parameter declarations. It has the same meaning as auto, ex-

cept that it also provides a hint to the compiler that the local

variable (or parameter) will be heavily used and should be allo-

cated in a way that minimizes access time. (For instance, it

might be allocated to a machine register.)

static This storage class specifier may appear on declarations of func-

tions or variables. On function definitions, it is used only to

specify that the function name is not to be exported to the

linker. On function declarations, it indicates that the declared

function will be definedwith storage class staticlater in

the file. On data declarations, it always signifies a defining

declaration that is not exported to the linker. Variables de-

clared with this storage class have static extent (as opposed to

local extent, signified by auto).

typedef When this "storage class" appears, it indicates that the declara-

tion is defining a new data type rather than a variable or

function. The name of the new data type appears where a vari-

able name would appear in a variable declaration, and the new

data type is the type that would have been assigned to the

variable name. (See section "C-Ref: Typedef Names".)

Page 60

The register storage class has some additional restrictions. Only variables of cer-

tain types may have this storage class, and the set of permitted types may vary

among different computers and C compilers, with type int always permitted. The

compiler is permitted to limit the number of register variables in a function.

When this limit is reached, further register variables are treated as auto vari-

ables. The programmer is advised to stick to one or two such variables. Finally,

variables declared register may not have the address operator, &, applied to them.

An attempt to do so may elicit an error or may simply cause register to be ig-

nored.

4.3.1. C-Ref: Default Storage Class Specifiers

If no storage class specifier is supplied on a declaration, one will be assumed on

the basis of the declaration context:

1. Top-level declarations (and function definitions) are assumed to have storage

class extern. (However, extern that is assumed and extern that is stated can

mean different things. See section "C-Ref: External Names".)

2. Parameter declarations do not take any storage class except register. Omit-

ting the storage class means only "not register."

3. For declarations at the head of blocks, extern is assumed for functions and

auto is assumed for everything else.

In spite of these rules, it is a good programming practice to supply the storage

class extern explicitly when it applies and not allow it to default. On the other

hand, omitting auto in variable declarations is a common practice and is consid-

ered good style.

4.3.2. C-Ref: Examples of Storage Class Specifiers

The following code implements the heap sort algorithm for sorting the contents of

an array. It is beyond the scope of this book to explain how it works. We remark

only that the algorithm regards the array as a binary tree such that the two subn-

odes of element b[k] are elements b[2*k] and b[2*k+1], and that a heap is a tree

such that every node contains a number that is no smaller than any of the num-

bers contained by that node’s descendants. We exhibit the code here as a practical

example of the use of storage class specifiers.

/* Heap sort. */

#define SWAP(x, y) (temp = (x), (x) = (y), (y) = temp)

Page 61

/* If v[m+1] through v[n] is already in heap form,

 this puts v[m] through v[n] into heap form. */

static void adjust(v, m, n)

 int v[], m;

 register int n;

{

 register int *b, j, k, temp;

 /* Array in C are 0-origin, but heapsort is

 more easily coded and understood in terms

 of 1-origin arrays. The variable "b"

 effectively remaps the array "v" to be

 1-origin: v[j] is the same as b[j-1]. */

 b = v - 1;

 j = m;

 k = m * 2;

 while (k <= n) {

if (k < n && b[k] < b[k+1]) ++k;

if (b[j] < b[k]) SWAP(b[j], b[k]);

j = k;

k *= 2;

 }

}

/* Sort v[0]...v[n-1] into increasing order. */

void heapsort(v, n)

 int v[], n;

{

 int *b, j, temp;

 b = v - 1;

 /* Put the array into the form of a heap. */

 for (j = n/2; j > 0; j--)

 adjust(v, j, n);

 /* Repeatedly extract the largest element and

 put it at the end of the unsorted region. */

 for (j = n-1; j > 0; j--) {

SWAP(b[1], b[j+1]);

adjust(v, 1, j);

 }

}�

The main function is heapsort; it must be visible to users of the sort package, and

so it has the default storage class, namely extern. The auxiliary function adjust

does not need to be externally visible, and so it is declared to be static. The speed

of the adjust function is crucial to the performance of the sort, and so its local

variables have been given storage class register as a hint to the compiler. The

formal parameter n is also referred to repeatedly within adjust, and so it is also

specified with storage class register. The other two formal parameters for adjust

Page 62

are referred to only once and are defaulted to "not register." The local variables

of function heapsort are not so important to performance as those in adjust; they

have been given the default storage class, namely auto.

4.4. C-Ref: Type Specifiers

A type specifier provides some of the information about the data type of the pro-

gram entity being declared. (We say "some" because the declarators in a declara-

tion provide additional type information.) The type specifier may also declare (as a

side effect) type tags, structure and union component names, and enumeration

constants. Although type specifiers and storage class specifiers can appear in any

order in a declaration, it is customary to put the storage class specifiers (if any)

first.

type-specifier:

enumeration-type-specifier

floating-point-type-specifier

integer-type-specifier

structure-type-specifier

typedef-name

union-type-specifier

void-type-specifier

Examples of type specifiers include:

void union { int a; char b; }

int enum {red, blue, green}

unsigned long int char

my_struct_type float�

The type specifiers are described in detail in chapter "C-Ref: Types", and we will

defer further discussion of particular type specifiers until then. However, there are

a few general issues surrounding type specifiers that will be dealt with here.

Draft Proposed ANSI C introduces new type specifiers.

4.4.1. C-Ref: Default Type Specifiers

C allows the type specifier in a variable declaration or function definition to be

omitted, in which case it defaults to int. One often sees this in function defini-

tions:

/* Sort v[0]...v[n-1] into increasing order. */

sort(v, n)

 int v[], n;

{

 ...

}�

This is bad programming style in modern C. Older compilers did not implement

Page 63

the void type, so a rationale behind omitting the type specifier on function defini-

tions was to indicate to human readers that the function didn’t really return a val-

ue (although the compiler had to assume that it did). The modern style is to de-

clare those functions with the void type:

/* Sort v[0]...v[n-1] into increasing order. */

void sort(v, n)

 int v[], n;

{

 ...

}

When using a compiler that doesn’t implement void, it is much nicer to define

void yourself and then use it explicitly than to omit the type specifier entirely.

/* Make "void" be a synonym for "int". */

typedef int void;

At least one compiler we know actually reserves the identifier void but doesn’t im-

plement it. For that compiler, the preprocessor definition

#define void int

is one of the few cases in which using a reserved word as a macro name is justi-

fied.

The C syntax requires declarations to contain either a storage class specifier, a

type specifier, or both. This requirement avoids a syntactic ambiguity in the lan-

guage. If all specifiers were defaulted, the declaration

extern int f();�

would become simply

f();

which is syntactically equivalent to a statement consisting of a function call. We

think that the best style is to always include the type specifier and to allow the

storage class specifier to default, at least when it is auto.

A final note for LALR(1) grammar aficionados: Both the storage class specifier and

the type specifier can be omitted on a function definition, and this is very common

in C programs, as in

main()

{

 ...

}

There is no syntactic ambiguity in this case, because the declarator in a function

declaration must be followed by a comma or semicolon, whereas the declarator in a

function definition must be followed by a left brace.

4.4.2. C-Ref: Missing Declarators

The following discussion deals with a subtle point of declarations and type speci-

fiers. Type specifiers that are structure, union, or enumeration definitions have a

side effect of defining new types. For example, the type specifier

Page 64

struct S { int a, b; }

defines a new structure type S with components a and b. The type can be refer-

enced later by using just the specifier

struct S

When using these specifiers, it makes sense to omit all the declarators from the

declaration, so that the whole declaration consists of just a type definition:

struct S { int a, b; };

The C grammar permits this, and so do all C compilers. However, the grammar al-

so permits some nonsensical variations on this declaration. Most C compilers will

not notice these variations, although they are clearly programming errors.

The first variation is omitting the type tag, as in

struct { int a, b; };

This is clearly nonsensical because without a tag it is impossible to refer to the

type later in the program.

The second variation is including a storage class specifier, which will be ignored:

static struct S { int a, b; };

This may mislead the programmer into thinking that a later declaration of the

form

struct S x,y;

will cause x and y to have the storage class static. It won’t.

The final variation is using a type specifier that has no side effects:

int ;

4.5. C-Ref: Declarators

Declarators introduce the name being declared and also supply additional type in-

formation. No other programming language has anything quite like C’s declarators.

declarator :

simple-declarator

(declarator)

function-declarator

array-declarator

pointer-declarator

The different kinds of declarators are described below.

4.5.1. C-Ref: Simple Declarators

Simple declarators are used to define variables of arithmetic, enumeration, struc-

ture, and union types.

Page 65

simple-declarator :

identifier

Suppose that S is a type specifier and that id is any identifier. Then the declara-

tion

S id ;

indicates that id is of type S. The id is called a simple declarator. For example:

int i; /* i is an integer variable */

float velocity;

 /* velocity is a floating-point variable */

struct S { int a; float b; } a_and_b;

 /* a_and_b is a structure of two components */

Simple declarators may be used in a declaration when the type specifier supplies

all the typing information. This happens for arithmetic, structure, union, enumera-

tion, and void types, and for types represented by typedef names. Pointer, array,

and function types require the use of more complicated declarators. However, every

declarator has in its "middle" an identifier, and we thus say that a declarator "en-
closes" an identifier.

4.5.2. C-Ref: Pointer Declarators

Pointer declarators are used to declare variables of pointer types.

pointer-declarator :

* declarator

Suppose that D is any declarator enclosing the identifier id, and that the declara-

tion "S D;" indicates that id has type "... S." Then the declaration

S *D ;

indicates that id has type "...pointer to S." For example, in the following three dec-

larations of x, id is x, S is int, and "..." is, respectively, "", "array of," and "func-
tion returning."

int *x; /* x is a pointer to an integer */

int *x[]; /* x is an array of pointers

 to integers */

int *x(); /* x is a function returning a

 pointer to an integer */

It’s harder to explain than it is to learn.

Draft Proposed ANSI C extends pointer declarators to allow the specification of

pointers to "constant" or "volatile" data.

4.5.3. C-Ref: Array Declarators

Array declarators are used to declare objects of array types.

array-declarator :

declarator [constant-expression opt]

Page 66

constant-expression :

expression

If D is any declarator enclosing the identifier id, and if the declaration "S D;" in-

dicates that id has type "... S," then the declaration

S (D)[e] ;

indicates that id has type "... array of S." For example, in the following two decla-

rations, id is x, S is int, and "..." is, respectively, "", "pointer to," and "array of."

int (x)[]; /* x is an array of integers */

int (*x)[]; /* x is a pointer to an array of

 integers */

int (x[])[]; /* x is an array of arrays of

 integers */

(The parentheses may often be elided according to the precedence rules in con-

structing declarators; see section "C-Ref: Composition of Declarators".)

The integer constant expression e, if present, specifies the number of elements in

the array. C’s arrays are always "0-origin"; that is, the array

int A[3];

consists of the elements A[0], A[1], and A[2]. The number of elements in an array

must be greater than 0, although some popular C compilers do not check this.

As in the example above, higher-dimensioned arrays are declared as "arrays of ar-

rays." For example:

int judges_scores[10][2];

int checker_board[8][8];�

The length of the array, a constant expression, may be omitted as long as it is not

needed to allocate storage. It is not needed when:

1. The object being declared is a formal parameter of a function.

2. The declarator is accompanied by an initializer from which the length of the

array can be deduced.

3. The declaration is not a defining occurrence; that is, it is an external declara-

tion that refers to an object defined elsewhere.

An exception to these cases is that the declaration of any n-dimensional array

must include the sizes of the last n-1 dimensions so that the accessing algorithm

can be determined. For example:

Page 67

static int vector[5]; /* defining occurrence */

char prompt[]="Yes or No?";

 /* can deduce size */

extern matrix[][10];

 /* external, but last

 dimension must be

 supplied */

For more information, see section "C-Ref: Array Types".

4.5.4. C-Ref: Function Declarators

Function declarators are used to declare objects of function types.

function-declarator :

declarator (parameter-listopt)

parameter-list :

identifier

parameter-list, identifier

If D is any declarator enclosing the identifier id, and if the declaration "S D;" in-

dicates that id has type "... S," then the declaration

S (D) ();

indicates that id has type "... function returning S." For example, in the following

declarations of x, id is x, S is int, and "..." is, respectively, "", "pointer to," and

"array of pointers to."

int (x)(); /* x is a function returning

 an integer */

int (*x)(); /* x is a pointer to a function

 returning an integer */

int (*x[])(); /* x is an array of pointers to

 functions returning integers */

The parentheses around x in the first declaration may be elided according to the

precedence rules in constructing declarators; see section "C-Ref: Composition of

Declarators".

The syntax for a function declarator includes an optional parameter list that may

be supplied between the open and close parentheses of the declarator. This param-

eter list is supplied only when defining a function:

void f(x, y)

 int x, y;

{

 ...

}

The parameter list is omitted in all other cases:

Page 68

extern void f(); /* f is an external function

 reference */

static void (*f)(); /* f is a pointer, not

 a function */

Draft Proposed ANSI C extends function declarators to provide "function proto-
types" in which the argument types are listed explicitly.

4.5.5. C-Ref: Composition of Declarators

Declarators can be composed to form more complicated types, such as "5-element

array of pointers to functions returning int," which is the type of ary in this dec-

laration:

int (*ary[5])();

The only restriction on declarators is that the resulting type must be a legal one

in C. The only types that are not legal in C are:

1. Any type involving void except "...function returning void." (The type specifier

void is discussed in section "C-Ref: Void".)

2. "Array of function of" Arrays may contain pointers to functions, but not

functions themselves.

3. "Function returning array of" Functions may return pointers to arrays, but

not arrays themselves.

4. "Function returning function of" Functions may return pointers to other

functions, but not the functions themselves.

Draft Proposed ANSI C also allows "pointer to void".

When composing declarators, the precedence of the declarator expressions is im-

portant. Function and array declarators have higher precedence than pointer

declarators, so that "*x()" is equivalent to "*(x())" ("function returning pointer ...")
instead of "(*x)()" ("pointer to function returning ..."). Parentheses may be used to

group declarators properly.

Here are some sample declarations with the associated types of the enclosed iden-

tifiers.

int *Sum1(); /* Sum1 is a function returning a

 pointer to an integer. */

int (*Sum2)(); /* Sum2 is a pointer to a function

 returning an integer. */

void (*F)(); /* F is a pointer to a function

 returning no result. */

Page 69

void *F(); /* ILLEGAL! Can’t have a pointer

 to void. */

Although declarators can be arbitrarily complex, it is better programming style to

factor them into several simpler definitions. That is, rather than writing

int *(*(*(*x)())[10])();

write instead

typedef int *(*print_function_ptr)();

typedef print_function_ptr (*digit_routines)[10];

digit_routines (*x)();

(The variable x is a pointer to a function returning a pointer to a 10-element array

of pointers to functions returning pointers to integers, in case you wondered.)

The rationale behind the syntax of declarators is that they mimic the syntax of a

use of the enclosed identifier. For instance, if you see the declaration

int *(*x)[4];

then the type of the expression

*(*x)[i]

is int.

4.6. C-Ref: Initializers

The declaration of a variable may be accompanied by an initializer that specifies

the value the variable should have at the beginning of its lifetime. The full syntax

for initializers is

initializer:

expression

{ initializer-list ,opt }

initializer-list:

initializer

initializer-list , initializer

The optional trailing comma inside the braces does not affect the meaning of the

initializer.

The initializers permitted on a particular declaration depend on the type and stor-

age class of the variable to be initialized and on whether the declaration appears

at the top level or at the head of a block. In general, the initializer for any vari-

able with static extent must be a constant expression; such initialization happens

prior to execution of the C program. This applies to all top-level variable declara-

tions (static and external) and to variable declarations at the heads of blocks that

have storage class static. Any static variable that does not have an explicit initial-

izer will be initialized to zero.

Page 70

Initializers for automatic variables may be arbitrary expressions. These variables

will always be declared at the heads of blocks, and the compiler will emit code to

evaluate the initializer expression and assign the result to the variable upon block

entry.

Declarations of formal parameters may not have initializers. The "shape" of an ini-

tializerthe brace-enclosed lists of initializersshould match the structure of the

variable being initialized. However, there are special rules for abbreviating initial-

izers. The following sections explain the special requirements for each type of

variable.

4.6.1. C-Ref: Integers

The form of an initializer for an integer variable is

declarator = expression

Any constant expression of integral type may be used to initialize an external or

static integer variable. Any expression of arithmetic type (not necessarily constant)

may be used to initialize an integer variable with storage class auto or register.

In all cases the usual assignment conversions are applied. For example,

static int Count = 4*200;

extern int getchar();

main()

{

 int ch = getchar();

 ...

}�

The original definition of C specified that the initializer for an integer variable

may optionally be surrounded by braces, although such braces are logically unnec-

essary. We recommend that braces not be used in this situation, but be reserved to

indicate aggregate initialization.

4.6.2. C-Ref: Floating-point

The form of an initializer for a floating-point variable is

declarator = expression�

All C compilers allow the initialization of static or external floating-point variables;

the type of the initializer should be floating-point, but some compilers will permit

expressions of any arithmetic type. Automatic variables of floating-point types can

be initialized with any expression of arithmetic type. The usual assignment conver-

sions are applied in initializing the variable. For example:

Page 71

static void process_data(K)

 double K;

{

 static double epsilon = 1.0e-6;

 auto float fudge_factor = K*epsilon;

 ...

}

The original definition of C specified that the initializer for a floating-point vari-

able may optionally be surrounded by braces, although such braces are logically

unnecessary. We recommend that braces not be used in this situation, but be re-

served to indicate aggregate initialization.

C compilers generally shy away from performing compile-time floating-point arith-

metic, so initializers for static and external floating-point variables should be re-

stricted to floating-point constants, perhaps with a preceding unary minus opera-

tor.

4.6.3. C-Ref: Pointers

The form of an initialization of a pointer variable is

declarator = expression

Any constant expression of type PT ("pointer to T") may be used to initialize an

external or static variable of type PT. Any expression of type PT may be used to

initialize a local variable of type PT.

Constant expressions used as initializers of pointer type P may be formed from the

following elements.

1. The integer constant 0 yields a null pointer of any type; it is usually referred

to by the name NULL.

#define NULL 0

double *dp = NULL;

2. The name of a static or external function of type "function returning T" is

converted to a constant of type "pointer to function returning T."

extern int f;

static int (*fp)() = f;

3. The name of a static or external array of type "array of T" is converted to a

constant of type "pointer to T."

char ary[100];

char *cp = ary;

4. The & operator applied to the name of a static or external variable of type T

yields a constant of type "pointer to T."

static short s;

auto short *sp = &s;

Page 72

5. The & operator applied to an external or static array of type "array of T,"
subscripted by a constant expression, yields a constant of type "pointer to T."

float PowersOfPi[10];

float *PiSquared = &PowersOfPi[2];

6. An integer constant cast to a pointer type yields a constant of that pointer

type, although this is not portable.

long *PSW = (long *) 0xFFFFFFF0;

Not all compilers accept casts in constant expressions.

7. A string literal yields a constant of type "pointer to char" when it appears as

the initializer of a variable of pointer type.

char *greeting = "Type <cr> to begin ";

8. The sum or difference of any expression shown for cases 3 through 7 above

and an integer constant expression.

static short s;

auto short *sp = &s + 3, *msp = &s - 3;

In general, the initializer for a pointer type must evaluate to an integer or to an

address plus (or minus) an integer constant. This limitation reflects the capabili-

ties of most linkers.

The original definition of C specified that the initializer for a pointer variable may

optionally be surrounded by braces, although such braces are logically unnecessary.

We recommend that braces not be used in this situation, but be reserved to indi-

cate aggregate initialization.

4.6.4. C-Ref: Arrays

If Ij (for j = 0, 1, ... , n-1) are each initializers for type T, then

{ I
�
, I

�
, ..., In�� }�

is an initializer for type "n-element array of T." The initializer Ij is used to initial-

ize element j the array (zero origin). For example:

int ary[4] = { 0, 1, 2, 3 };�

Multidimensional arrays follow the same pattern, with initializers listed by row.

(The last subscript varies most rapidly in C.)

int ary[4][2][3] =

 { { { 0, 1, 2}, { 3, 4, 5} },

 { { 6, 7, 8}, { 9, 10, 11} },

 { {12, 13, 14}, {15, 16, 17} },

 { {18, 19, 20}, {21, 22, 23} } };�

Arrays of structures may be initialized analogously:

Page 73

struct {int a; float b;} a[3] = { {1, 2.5},

 {2, 3.9},

 {0, -4.0} };�

Static and external arrays may always be initialized in this way. The original defi-

nition of C stated that automatic arrays could not be initialized, but some newer

compilers are relaxing this restriction. (The compiler generates a sequence of as-

signments to initialize the elements of the automatic array at run time.) Draft

Proposed ANSI C allows the initialization of automatic arrays, but only with con-

stant expressions.

Array initialization has a number of special rules. First, the number of initializers

may be less than the number of array elements, in which case the remaining ele-

ments are initialized to zero. That is, the initializations

int ary[5] = { 1, 2, 3 };

int mat[3][3] = { {1, 2}, {3} };�

are equivalent to

int ary[5] = { 1, 2, 3, 0, 0 };

int mat[3][3] = { {1, 2, 0},

 {3, 0, 0},

 {0, 0, 0} };�

If the number of initializers is greater than the number of elements, the initializer

is in error.

Second, the bounds of the array need not be specified, in which case the bounds

are derived from the shape of the initializer. For example,

int squares[] = { 0, 1, 4, 9 };�

is the same as

int squares[4] = { 0, 1, 4, 9 };�

Finally, string literals may be also be used to initialize variables of type "array of

char." In this case, the first element of the array is initialized by the first charac-

ter in the string, and so forth. Space must be left for the terminating ’\0’. Thus,

the initializations

static char x[5] = "ABCD";

static char str[] = "ABCDEF";�

are the same as

static char x[5] = { ’A’, ’B’, ’C’, ’D’, ’\0’ };

static char str[7] = { ’A’,’B’,’C’,’D’,’E’,’F’,’\0’ };�

Finally, a list of strings can be used to initialize an array of character pointers:

char *astr[] = { "John", "Bill", "Susan", "Mary" };�

4.6.5. C-Ref: Enumerations

The form of initializers for variables of enumeration type � is

�����������=������������

Page 74

where the expression is of the same enumeration type �. Some compilers will tol-

erate braces around the initialization expression, just as for integer initializers,

but they are not necessary. We recommend that braces not be used in this situa-

tion, but be reserved to indicate aggregate initialization.

An initializer for a static or external variable of type � must be a constant expres-

sion of type �; that is, it must be an enumeration constant of type �. An initializ-

er for an automatic or register variable of type � can be any expression of type �,

which in practice means that it can be either an enumeration constant or an enu-

meration variable of the same type. For example:

static enum E { a, b, c } x = a;

auto enum E y = x;�

Section "C-Ref: Enumeration Types" mentions that some compilers treat enumera-

tion types as integer types. Those compilers will allow initializers for enumeration

variables to be integer expressions as well as expressions of enumeration types.

(More generally, an initializer should be legitimate in a given implementation if an

equivalent assignment statement would be; the same conversions are performed.)

However, we recommend adhering to the stricter rules as a matter of good style,

and using explicit casts where conversions are needed.

4.6.6. C-Ref: Structures

If a structure type � has � components of types �j (for � = 1, ... , �) and if �j is an

initializer for type �j then

{ �1, �2, ..., �n }�

is an initializer for type �.

Static and external variables of structure types can be initialized, and the compo-

nent initializers must be legal initializers for static or external variables of the

component types. A few implementations of C are deficient in not supporting bit

field initialization. Automatic and register variables of structure types cannot be

initialized. (They can in Draft Proposed ANSI C, but brace-enclosed initializers

must contain only constants.)

struct S {int a; char b[5]; double c; };

struct S x = { 1, "abcd", 45.0 };�

As with array initializers, structure initializers have some special rules. In partic-

ular, if there are fewer initializers than there are structure components, the re-

maining components are initialized to zero. Thus, given the structure declaration

struct S1 {int a;

 struct S2 {double b;

 char c; } b;

 int c[4]; };�

the initialization

struct S1 x = { 1, {4.5} };�

is the same as

Page 75

struct S1 x = { 1,

 { 4.5, ’\0’ },

 { 0, 0, 0, 0 }

 };�

If there are too many initializers for the structure, it is an error.

4.6.7. C-Ref: Unions

The C language does not permit initialization of any variables of union type, on

the grounds that there is no obvious way in the language to specify which union

component is being initialized.

Some compilers allow the initialization of union variables, treating them as if they

were variables of the type of the first component. For instance,

enum Greek { alpha, beta, gamma };

union U {

 struct { enum Greek tag; int Size; } I;

 struct { enum Greek tag; float Size; } F;

 };

static union U x = { alpha, 42 };�

The compilers that permit such initializations may restrict them to static and ex-

ternal variables.

Draft Proposed ANSI C permits union initialization as described. Automatic unions

may also be initialized under the same rules as apply to automatic variables of the

type of the first component.

The only other types are function types and void, neither of which can have ini-

tializers.

4.6.8. C-Ref: Eliding Braces

C permits braces to be dropped from initializer lists under certain circumstances,

although it is usually clearer to retain them. The general rules are these:

1. If a variable of array or structure type is being initialized, the outermost pair

of braces may not be dropped.

2. Otherwise, if an initializer list contains the correct number of elements for

the object being initialized, the braces may be dropped.

The most common use of these rules is in dropping inner braces when initializing

a multidimensional array:

int matrix[2][3] = { 1, 2, 3, 4, 5, 6 };

/* same as { {1, 2, 3}, {4, 5, 6} } */

Many C compilers treat initializer lists very casually, permitting too many or too

few braces. We advise keeping initializers simple and using braces to make their

structure explicit.

Page 76

4.7. C-Ref: Implicit Declarations

In C it is permitted to call an external function that has not been declared previ-

ously. If the compiler sees an identifier �� followed by a left parenthesis, and if ��

has not been previously declared, then a declaration is implicitly entered at the top

level. For example, consider this program fragment:

void process()

{

 ... f(i, j) ...

}

If f has not been declared, the compiler implicitly inserts a declaration

extern int f();�

immediately before the process function definition.

Allowing functions to be declared in this way is hazardous to program portability.

In particular, we’ve been bitten by the following sequence of events. A pointer-

returning function, such as malloc (section "C-Ref: ������� ������� �����

������������"), is allowed to be implicitly declared as

extern int malloc();�

rather than the correct

extern char *malloc();�

The program works fine because the compiler and computer being used happen to

allocate the same size storage to the int type as to pointer types, and the compiler

automatically converts between integer and pointer types. (This is normal in older

C compilers.) One day the program is moved to another computer and compiler,

under which pointers occupy four bytes and type int only two bytes. When the

compiler sees

char *p;

...

p = malloc();�

it generates code to zero-extend the (presumably two-byte) value returned by mal-

loc to the four bytes required by the pointer. The compiler issues no warning, and

only the low half of the address returned by malloc is assigned to p. All of a sud-

den the program doesn’t work.

4.8. C-Ref: External Names

An important issue with external names is ensuring consistency among the decla-

rations of the same external name in several files. For instance, what if two decla-

rations of the same external variable specified different initializations? For this

and other reasons, it is useful to distinguish a single �������� ����������� of an ex-

ternal name within a group of files. The other declarations of the same name are

then considered ����������� ������������; that is, they reference the defining decla-

ration.

Page 77

It is a well-known deficiency in C that defining and referencing occurrences of ex-

ternal variable declarations are difficult to distinguish. In general, compilers use

one of four models to determine when a top level declaration is a defining occur-

rence.

4.8.1. C-Ref: The Initializer Model

The presence of an initializer on a top level declaration indicates a defining occur-

rence; all others are referencing occurrences. There must be a single defining oc-

currence among all the files in the C program.

4.8.2. C-Ref: The Omitted Storage Class Model

In this scheme, the storage class extern must be explicitly included on all refer-

encing declarations and the storage class must be omitted from the single defining

declaration for each external variable. The defining declaration can include an ini-

tializer but it is not required to do so. (It is illegal to have both an initializer and

the storage class extern in a declaration.) This solution is probably the most com-

mon one, and the one adopted in Draft Proposed ANSI C.

4.8.3. C-Ref: The Common Model

This scheme is so named because it is related to the way multiple references to a

FORTRAN COMMON block are merged into a single defining occurrence in some

FORTRAN implementations. Both defining and referencing external declarations

have storage class extern, whether explicitly or by default. Among all the declara-

tions for each external name in all the object files linked together to make the

program, only one may have an initializer. At link time, all external declarations

for the same identifier (in all C object files) are combined and a single defining

occurrence is conjured, not necessarily associated with any particular file. If any

declaration specified an initializer, that initializer is used to initialize the data ob-

ject. (If several declarations did, the results are unpredictable.)

This solution is the most painless for the programmer and the most demanding on

system software.

4.8.4. C-Ref: Mixed Common Model

This model is a cross between the "omitted storage class" model and the "common"
model. It is used in many versions of UNIX.

1. If extern is omitted, and an initializer is present, a definition for the symbol

is emitted. Having two or more such definitions among all the files compris-

ing a program results in an error at link time or before.

2. If extern is omitted, and no initializer is present, a "common" definition (a la

FORTRAN) is emitted. Any number of common definitions of the same identi-

fier may coexist.

Page 78

3. If extern is present, the declaration is taken to be a reference to a name de-

fined elsewhere. It is illegal for such a declaration to have an initializer. If

the identifier so declared is never actually used, the compiler will not issue

an external reference to the linker.

If no explicit initializer is provided for the external variable, the variable is initial-

ized as if the initializer had been the integer constant 0.

4.8.5. C-Ref: Advice

To remain compatible with the largest number of compilers, we recommend follow-

ing these rules:

1. Have a single definition point (source file) for each external variable; in the

defining declaration, omit the extern storage class and include an explicit ini-

tializer:

int errcnt = 0;�

2. In each source file referencing an external variable defined in another mod-

ule, use the storage class extern and do not supply an explicit initializer:

extern int errcnt;�

Independent of the defining/referencing distinction, an external name should al-

ways be declared with the same type in all files making up a program. The C com-

piler cannot verify that declarations in different files are consistent in this fashion,

and the punishment for inconsistency is erroneous behavior at run time. The lint

program, usually supplied with the C compiler in UNIX systems, can check multi-

ple files for consistent declarations.

4.8.6. C-Ref: Unreferenced External Declarations

Although not required by the C language, it is customary for implementations to

completely ignore declarations of external variables or functions that are never

referenced. For example, if the declaration

extern double fft;

appears in a program, but the function fft is never called and its address is never

taken, then no external linkage to the name fft is generated. Thus, if the function

fft exists in some link-time library, it will not be loaded with the program, where

it would take up space to no purpose.

Page 79

5. C-Ref: Types

A ���� is a set of ������ and a set of ���������� on those values. For example, the

values of an integer type consist of integers in some specified range, and the oper-

ations on those values consist of addition, subtraction, inequality tests, and so

forth. The values of a floating-point type include numbers represented differently

from integers, and a set of different operations: floating-point addition, subtraction,

inequality tests, and so forth.

We say a variable or expression "has type �" when its values are constrained to

the domain of �. The types of variables are established by the variable’s declara-

tion; the types of expressions are given by the definitions of the expression opera-

tors.

The C language provides a large selection of built-in types, including integers of

several kinds, floating-point numbers, pointers, enumerations, arrays, structures,

unions, and functions. There is also a special "type," void, which has no values; it

is used to specify functions that return nothing.

It is useful to organize C’s types into the categories shown in table "C-Ref: Type

Categories". The ���� type has no values and no operations. The term ��������

����� includes all forms of integers and characters. The term ����������� ����� in-

cludes the integral and floating-point types. The term ������� ����� includes the

arithmetic types, pointer types, and enumeration types. The �������� ����� are the

types "function returning...." ��������������� include arrays, structures, and unions.

All of C’s types are discussed in this chapter. For each type, we indicate how ob-

jects of the type are declared, the range of values of the type, any restrictions on

the size of the type, and what operations are defined on values of the type.

5.1. C-Ref: Type Categories

Void Scalar Function Aggregate

 Types Types Types

 | |

 +------+--------+ +--------+--------+

 | | | | | |

Pointer Arithmetic Enumeration Array Structure Union

 Types Types Types Types Types Types

 |

 +-----+-------+

 | |

 Floating-point Integral

 Types Types�

Draft Proposed ANSI C adds a new floating-point type to the language; otherwise

the types are unchanged.

Page 80

5.2. C-Ref: Integer Types

C provides a larger number of integer types and operators than do most program-

ming languages. The variety reflects the different word lengths and kinds of arith-

metic operators found on most computers, thus allowing a close correspondence be-

tween C programs and the underlying hardware. Integer types in C are used to

represent:

1. signed or unsigned integer values, for which the usual arithmetic and rela-

tional operations are provided

2. bit vectors, with the operations AND, OR, XOR, and left and right shifts

3. boolean values, for which zero is considered "false" and all nonzero values are

considered "true," with the integer 1 being the canonical "true" value

4. characters, which are represented by their integer encodings on the computer�

It is convenient to divide the integer types into three classes: signed types, un-

signed types, and characters. Each of these classes has a set of type specifiers that

can be used to declare objects of the type.

�������������������������

���������������������

�����������������������

������������������������

5.2.1. C-Ref: Signed Integer Types

C provides the programmer with three sizes of signed integer types, denoted by

the type specifiers short, int, and long in nondecreasing order of size.

������������������������

short�intopt�
int�

long�intopt�

The specifier short int is equivalent to short and the specifier long int is equiva-

lent to long. Here are some examples of typical declarations of signed integers.

auto short i, j;

long int l;

static int k;

The type int may not be shorter than short and long may not be shorter than int.

However, it is permitted in principle for short and int to be the same size or for

int and long to be the same size. On a computer that cannot easily address memo-

ry smaller than a word, the implementor might even choose to use a single size

for all three types.

Page 81

Draft Proposed ANSI C allows the programmer to use the new type specifier

signed to indicate explicitly a signed integer type.

The implementor’s selection of representations for signed integer types is deter-

mined by what natural representations are provided by the underlying hardware,

by what signed and unsigned arithmetic operators are provided, and so on. Many

implementations represent characters in 8 bits, short integers in 16 bits, and long

integers in 32 bits, with ordinary integers being either 16 or 32 bits wide,

whichever leads to greater efficiency. These particular widths technically are not

specified by the C language but have become traditional; many programmers ex-

pect characters to be 8 bits wide and all other integers to be at least 16 bits wide.

Certainly there are many existing C programs that depend on this.

The C programmer must constantly make decisions as to which signed integer type

to use for a given purpose. There are three considerations: the range of integer

values required by the program, the amount of storage that may be consumed, and

the speed of the program. The only way to judge these trade-offs is to check your

compiler documentation, but the following general rules seem to apply for the larg-

er computers and for all microprocessors except the small 8-bit ones.

1. The short type is likely to be represented in 16 or more bits. If this size is

sufficient, short may be used for large integer arrays in order to save space.

However, because C converts all short values to int in arithmetic expres-

sions, in most cases it usually doesn’t make much sense to use short for indi-

vidual variables.

2. The long type is likely to be represented in at least 32 bits. It gives the

largest range of signed integer values available. Operations on objects of type

long are sometimes slower than operations on objects of type int, depending

on the implementation.

3. The int type is traditionally the "standard" integer in C, and operations on it

are likely to be efficient. However, it is also the type whose size is least pre-

dictable, being represented with 32 bits or more by some compilers and with

only 16 bits by others. Because of this, the use of int is often a source of

portability problems. A good rule of thumb is that long is the largest ��������

�� integer size, while int is the largest ��������� integer size. If efficiency is

much more important than portability, then the int type may be the better

one to use.�

The precise range of values representable by a signed integer type depends not on-

ly on the number of bits used in the representation but also on the encoding tech-

nique. The expectation is that on a computer using two’s-complement arithmetic, a

signed integer represented with � bits will have a range from -2n-1 through 2n-1-1.
On a computer using one’s-complement or sign-magnitude representations, howev-

er, the lower bound will be -(2n-1-1).

A useful technique for maximizing portability is to define and use your own inte-

ger types based on the range of integers needed by your application. Each of your

types can then be defined in terms of one of the standard integer types depending

Page 82

upon the particular computer being used. For example, suppose you are writing an

inventory control program and have need of integers that will be part numbers, or-

der quantities, and purchase-order numbers. Depending on the sizes of the num-

bers and the sizes of the integer types on the computer, you might want to use

short, int, or long to represent part numbers. The solution is to use a single defi-

nition file, say invdef.h, to define your own integer types.

/* invdef.h

 Inventory definitions for the XXX computer.

*/

typedef short part_number;

typedef int order_quantity;

typedef long purchase_order;�

The source files that define processing functions would use the types defined by

invdef.h:

#include "invdef.h"

purchase_order back_order(part, number)

 part_number part;

 order_quantity number;

/*

 Abstract Make an order for ’number’ units

of ’part’. Return the purchase

order number.

*/

{

 ...

}�

In addition to making the program more readable, this technique makes it possible

to adapt to different computers with different integer sizes by changing the defini-

tions in only one file.

5.2.2. C-Ref: Unsigned Integer Types

Unsigned integer types have values that range from 0 to some maximum that de-

pends on the size of the type. This maximum is always one less than a power of

two; that is, 2n-1 where � is the number of bits used to represent the unsigned

type.

An unsigned type occupies the same amount of storage as the corresponding

signed type, but the bit patterns are interpreted differently. On a two’s-

complement computer, for instance, a 16-bit word with all bits equal to 1 has the

value -1 when treated as a signed integer, and has the value 65,535 when treated

as an unsigned integer. (The largest signed integer in the same word would be

32,767.)

The original definition of C provided a single unsigned integer type, unsigned.

However, some compilers now provide an unsigned type corresponding to each

signed integer type described in section "C-Ref: Signed Integer Types". The un-

Page 83

signed type is specified by preceding the corresponding signed type specifier with

the keyword unsigned.

��������������������������

unsigned�short�intopt

unsigned�intopt

unsigned�long�intopt�

In each case the keyword int is optional and does not affect the meaning of the

type specifier. Choosing among the unsigned types involves the same considera-

tions already discussed with respect to the signed integer types.

No matter what representation is used for signed integers, an unsigned integer

represented with � bits is always considered to be in straight unsigned binary no-

tation, with values ranging from 0 through 2n-1. Therefore, the bit pattern for a

given unsigned value is predictable and portable, whereas the bit pattern for a

given signed value is not predictable and not portable.

Whether an integer is signed or unsigned affects the operations performed on it.

All arithmetic operations on unsigned integers behave according to the rules of

modular (congruence) arithmetic modulo 2n. So, for example, adding 1 to the

largest value of an unsigned type is guaranteed to produce 0.

Expressions that mix signed and unsigned integers are forced to use unsigned op-

erations. The section "C-Ref: The Usual Binary Conversions" discusses the conver-

sions performed, and the chapter "C-Ref: Expressions" discusses the effect of each

operator when its arguments are unsigned. These conversions can be surprising.

For example, because unsigned integers are always nonnegative, you would expect

that the following test would always be "true":

unsigned int u;

...

if (u > -1) ...�

However, it is always "false!" The (signed) -1 is converted to an unsigned integer

before the comparison, yielding the largest unsigned integer, and the value of u

cannot be greater than that integer.

5.2.3. C-Ref: Character Type

The character type in C is an integral type; that is, values of the type are integers

and can be used in integer expressions.

���������������������������

unsignedopt�char�

The character type has some special characteristics that set it apart from the nor-

mal signed and unsigned types. Its representation is implementation dependent and

will depend upon the nature of the character and string processing facilities on

the target computer. An array of characters is C’s notion of a "string." Typical

declarations involving characters are:

Page 84

static char greeting[7] = "Hello\n";

char *prompt = &greeting[0];

char padding_character = ’\0’;�

One thing that is uncertain about the char type is whether it is signed or un-

signed. For reasons of efficiency, C compilers are free to treat type char in one of

three ways:

1. Type char may be a normal, signed integral type.

2. Type char may be a normal, unsigned integral type.

3. Type char may be a "pseudo-unsigned" integral type, that is, it can contain

only nonnegative values but it is treated as if it were a signed type when per-

forming the usual unary conversions.�

In any case, the values of the characters in the standard character set (section

"C-Ref: Character Set") are always guaranteed to have nonnegative values when

represented as values of type char. The following program will determine the han-

dling of the character type, which is assumed to have an 8-bit representation:

int main()

{

 char c = 255;

 if (c/-1 == 1) printf("Type char is signed\n")

 else if (c/-1 == 0)

 printf("Typef char is unsigned\n"):

 else if (c/-1 == -255)

 printf("Type char is pseudo-unsigned\n");

 else printf("?c/-1 == %d\n",c/-1);

 return 0;

}

The signedness of characters is an important issue because the standard I/O li-

brary routines, which normally return characters from files, return -1 (convention-

ally named EOF) when the end of the file is reached. To guard against unsigned

characters, the programmer must always treat these functions as returning values

of type int. For example, the following program is intended to copy characters

from the standard input stream to the standard output stream until an end-of-file

indication is returned from getchar. The first three definitions are usually sup-

plied in the standard header file stdio.h.

extern int getchar();

extern void putchar();

#define EOF -1

void copy_characters()

{

 char ch; /* Incorrect! */

Page 85

 while ((ch = getchar()) != EOF)

 putchar(ch);

}�

However, this function will not work when char is unsigned or pseudo-unsigned.

To see this, assume the char type is represented in 8 bits and the int type in 16

bits, and that two’s-complement arithmetic is used. Then, when getchar returns -1,

the assignment

ch = getchar()�

assigns the value 255 (the low-order 8 bits of -1) to ch. (Strictly speaking, the con-

version is implementation dependent, but this result is usual.) The loop test is

then

255 != -1�

If type char is pseudo-unsigned, the above (signed) comparision will evaluate to

"true." If type char is unsigned the usual conversions will cause -1 to be converted

to an unsigned integer, causing the (unsigned) comparison

255 != 65535�

which still evaluates to "true." Thus, the loop never terminates. Changing the dec-

laration of ch to

int ch;�

makes everything work fine.

A common C programming technique is to define a "pseudocharacter" type to use

in these cases. For example:

typedef int character;

...

void copy_characters()

{

 character ch;

 while ((ch = getchar()) != EOF)

 putchar(ch);

}�

Now the reader of the program realizes that ch is logically a character, although it

is represented with type int.

An implementation that normally treats characters as signed integers may also

provide an "unsigned character" type with the type specifier unsigned char. On the

other hand, in an implementation that normally treats characters as unsigned in-

tegers, there is no way to specify a signed character; the presumption is that if

characters could be conveniently implemented as signed quantities, they would

have been.

If characters are normally unsigned, you may wish to use something like the fol-

lowing macro, which simulates sign-extension of 8-bit, two’s complement numbers.

It maps the integers 128 through 255 to the integers -128 through -1.

#define sign_char(x) (((x)^128)-128)�

Page 86

Draft Proposed ANSI C allows signed characters to be specified explicitly and re-

quires compilers to implement them correctly, even if it is difficult to do so.

A second area of vagueness about characters is their size. In the above example,

we assumed they occupied 8 bits, and this assumption is almost always valid (al-

though you still can’t be sure if they range from 0 to 255 or from -128 to 127).

However, a few computers may use 9 bits or even 7 bits. This is a problem only

when a programmer uses characters (especially arrays of characters) as "very short

integers."

It is safe to use character arrays to implement boolean arrays, as in the following

example that uses a character array to record whether or not some small integers

are prime:

static char prime_vector[] =

{0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1};

int is_prime(n)

 int n;

{

 if (n > 0 && n < sizeof(prime_vector))

if (prime_vector[n])

 printf("Yes.\n");

else

 printf("No.\n");

 else

 printf("Don’t know.\n");

}�

5.3. C-Ref: Floating-Point Types

C’s floating-point numbers (sometimes called "real" numbers) come in two sizes:

single and double precision, or float and double.

��������������������������

float

double�

The type specifier long float is permitted in older implementations as a synonym

for double, but it was never popular and has been eliminated in Draft Proposed

ANSI C.

Here are some typical declarations of objects of floating-point type:

double d;

static double pi;

float coefficients[10];

 /* "coefficients" is an array of

 floating-point numbers. */�

The use of float and double is analogous to the use of short and int. Since in ex-

pressions all values of type float are converted to double before any operations are

Page 87

performed (see section "C-Ref: The Usual Binary Conversions"), the use of type

float is mainly restricted to structures and large arrays, for which the savings in

storage of the shorter float type is important. This may change in the future

since Draft Proposed ANSI C does permit arithmetic using type float.

C does not dictate the sizes to be used for float and double. The representations

used for floating-point numbers are completely machine dependent. On some com-

puters they may have the same implementation. It is reasonable for the program-

mer to assume, however, that the precision and range of type double is at least as

great as for type float, and thus that the set of values representable as type float�

is a subset of possibly the same as the set of values representable as type dou-

ble.

Most of the arithmetic and logical operations may be applied to floating-point

operands. These include arithmetic and logical negation; addition, subtraction,

multiplication, and division; relational and equality tests; logical (as opposed to

bitwise) AND and OR; assignment; and conversions to and from all the arithmetic

types. Chapter "C-Ref: Expressions" discusses the operations in more detail.

There are no requirements about the relative sizes of the floating-point and the in-

teger or pointer types. In the past some C programs have depended on the assump-

tion that the type double can accurately represent all values of type long; that is,

that converting an object of type long to type double and then back to type long

results in exactly the original long value. While this is likely to be true in many

implementations of C, it is not required by the C language definition. For maxi-

mum portability of programs, the programmer should avoid depending on this as-

sumption.

Draft Proposed ANSI C adds a third floating-point type to C, long double, which is

potentially larger than type double. It also removes the synonym long float for

double.

5.4. C-Ref: Pointer Types

For any type � except void, a pointer type "pointer to �" may be formed. A value

of this type is the address of an object of type �. The declaration of pointer types

is discussed in section "C-Ref: Pointer Declarators". For example, to declare ip as

a pointer to an object of type int and cp as a pointer to an object of type char, we

write

int *ip;

char *cp;�

Pointers are used heavily in C programs, partly because of C’s history as a sys-

tems programming language and partly because pointers and arrays are so well in-

tegrated (section "C-Ref: Arrays and Pointers"). The two most important operators

used in conjunction with pointers are the address operator, & (section "C-Ref: Ad-

dress Operator"), and the indirection operator, * (section "C-Ref: Indirection"). In
the following example, ip is assigned the address of variable i (&i). After that as-

signment, the expression *ip refers to the variable i.

Page 88

int i, j, *ip;

ip = &i;

i = 22;

j = *ip;

 /* j now has the value 22 */

*ip = 17;

 /* i now has the value 17 */�

Every pointer type has a special value, "pointer to nothing," which is written as

the integer constant 0. Standard header files usually define the preprocessor macro

name NULL to be 0. Recalling that the integer 0 also represents "false" in boolean

tests, it is no surprise that pointers may be used in logical comparisons. That is,

the statement

if (ip) i = *ip;�

is shorthand for

if (ip != NULL) i = *ip;�

Pointers may also be subscripted as if they were arrays; see section "C-Ref: Arrays

and Pointers".

5.4.1. C-Ref: Pointer Arithmetic

A convenient feature of C is its provision for performing arithmetic on pointers. If

� is an expression of type "pointer to �" and � is an integer value, then the ex-

pression

� + �

is defined to be a pointer to the �th object of type � beyond the one pointed to by

�. Thinking in terms of computer addresses, the integer � must be multiplied by

the size of type ��and then added to ��to arrive at a new address.

As a more concrete example, suppose we are on a computer that is byte address-

able and on which the type int is allocated four bytes. Let a be an array of ten in-

tegers that begins at address 0x100000. Let ip be a pointer to an integer, and as-

sign to it the address of the first element of array a. Finally, let i be an integer

variable currently holding the value 6. We now have the following situation:

int *ip, i, a[10];

ip = &a[0];

i = 6;�

What is the value of ip+i? Because integers are four bytes long, the expression

ip+i becomes

0x100000 + 4*6�

or 0x100018 (24 is 18 in hexadecimal radix).

Other operations on pointer types include assignment; subtraction; relational and

equality tests; logical (as opposed to bitwise) AND and OR; addition and subtraction

of integers; and conversions to and from integers and other pointer types.

Page 89

5.4.2. C-Ref: Some Problems with Pointers

This section will be of interest primarily to compiler writers and advanced pro-

grammers. There is a subtle assumption in C that all pointer types (actually, all

addresses) have a uniform representation. For instance, on byte-addressed comput-

ers it is usual for all pointers to be simple byte addresses occupying, say, one

word. Except for alignment considerations, conversions between pointer typesand

between pointers and integersrequire no change in representation. When execut-

ing C programs on such computers, the C programmer will not usually encounter

problems.

On some word-oriented computers, however, pointers to characters must be repre-

sented by special "field pointers" or "byte pointers," which have a different format

from addresses of larger objects. On the DECSYSTEM-20 computer, for instance, a

character pointer may have some high-order bits set in the addressbits that are

0 in other pointer types. As a consequence:

1. Converting from character pointers to other pointer types involves a change

of representation.

2. Comparisons of pointers of different types cannot be implemented as simple

integer comparisons.

3. Conversions between integers and pointers may produce surprising results.�

This problem can be even worse on computers with a capability-based addressing

structure.

A relatively common problem with some microprocessors is the presence of both

short and long address formats. In order to handle the general case, the C imple-

mentor must use the longer and less efficient address form everywhere or must

extend the language to allow the programmer to specify when the shorter address-

es are being used.

Whatever representations are chosen for pointers, they should satisfy the following

criterion, which many C programs heavily depend on (especially those that use the

library function malloc): If the alignment requirement for type � is no more strin-

gent than that for type �, it should always be possible to cast a "pointer to �" to

a "pointer to �" and back, without losing information. For example, on a computer

that requires every object of type double to have an address that is a multiple of

eight characters and requires every object of type int to have an address that is a

multiple of four characters, it should be possible to cast a "pointer to double" to be

a "pointer to int" and then back to "pointer to double" and get back the original

pointer. The most important consequence is that a pointer of type "pointer to

character" should be capable of holding the equivalent of a pointer to any other

type without loss of information.

The programmer should always use explicit casts when converting between pointer

types, and should be especially careful that pointer arguments given to functions

have the correct type expected by the function.

Page 90

5.5. C-Ref: Array Types

If � is any C type except void or "function returning...," the array type "array of

�" may be declared. Values of this type are sequences of elements of type �. All C

arrays are 0-origin; for example, the array declared

int A[3];�

consists of the elements A[0], A[1], and A[2]. In the following example, an array of

integers (ints) and an array of pointers (ptrs) are declared, and each of the point-

ers in ptrs is set equal to the address of the corresponding integer in ints.

int ints[10], *ptrs[10], i;

for (i = 0; i < 10; i++)

 ptrs[i] = &ints[i];�

The size of an array is always equal to the length of the array in elements multi-

plied by the size of an element.

5.5.1. C-Ref: Arrays and Pointers

In C there is a close correspondence between types "array of �" and "pointer to �."
First, when an array identifier appears in an expression, the type of the identifier

is converted from "array of �" to "pointer to �," and the value of the identifier is

converted to a pointer to the first element of the array. Thus, in

int a[10], *ip;

ip = a;�

the value a is converted to a pointer to the first element of the array. It is exactly

as if we had written

ip = &a[0];�

This rule is one of the usual unary conversions. The only exception to this conver-

sion rule is when the array identifier is used as an operand of the sizeof operator,

in which case sizeof returns the size of the entire array, not the size of a pointer

to the first array element.

Second, array subscripting is defined in terms of pointer arithmetic. That is, the

expression

a[i]�

is defined to be the same as

*((a) + (i))�

which is to say the same as

*(&(a)[0] + (i))�

when a is an array. This equivalence means also that pointers may be subscripted;

it is up to the programmer to ensure that the pointer is pointing into an appropri-

ate array of elements:

double d,*dp;

...

d = dp[4];�

Page 91

5.5.2. C-Ref: Multidimensional Arrays

Multidimensional arrays are declared as "arrays of arrays," such as in the declara-

tion

int matrix[10][10];�

which declares matrix to be a 10-by-10 element array of int. The language places

no limit on the number of dimensions an array may have.

Multidimensional arrays are stored such that the last subscript varies most rapid-

ly. That is, the elements of the array

int t[2][3];�

are stored (in increasing addresses) as

t[0][0], t[0][1], t[0][2], t[1][0], t[1][1], t[1][2]�

The conversions of arrays to pointers happens analogously for multidimensional

arrays. For example, if t is a 2-by-3 array as defined above, then the expression

t[1][2] is expanded to

((t+1)+2)�

which is evaluated as follows:

t a 2-by-3 array, which is converted immediately to a pointer to

(the first) 3-element array

t+1 a pointer to (the second) 3-element array

*(t+1) (the second) 3-element array of integers, which is immediately

converted to a pointer to (the first) integer (in the second 3-el-

ement array)

*(t+1)+2 a pointer to (the third) integer (in the second 3-element array)

((t+1)+2) (the third) integer (in the second 3-element array)�

In general, any expression � of type "�-by-�-by- ... -by-� array of �" is immediately

converted to "pointer to �-by- ... -by-� array of �."

5.5.3. C-Ref: Array Bounds

Any time that storage for an array is allocated, the size of the array must be

known. However, because subscripts are not normally checked to lie within de-

clared array bounds, it is possible to omit the size when declaring an external,

singly dimensioned array defined in another module or when declaring a singly di-

mensioned array that is a formal parameter to a function. (See section "C-Ref: Ar-

ray Declarators".) For instance, the following function, sum, returns the sum of the

first n elements of an external array, a, whose bounds are not specified.

extern int a[];

Page 92

int sum(n)

 int n;

{

 int i, s = 0;

 for (i = 0; i < n; i++)

 s += a[i];

 return s;

}�

It is common when passing arrays to functions to omit the bounds information on

the formal parameter:

int sumarray(array,arraylength)

 int arraylength, array[];

{

 ...

}�

In this example the parameter a could also be declared as "int *a", which would

more accurately reflect the implementation but perhaps less clearly indicate the

intent.

When multidimensional arrays are used, it is necessary to specify the bounds of all

but the first dimension, so that the proper address arithmetic can be calculated.

extern int matrix[][10]; /* ?-by-10 array of int */�

If such bounds are not specified, the declaration is in error.

5.5.4. C-Ref: Operations

The only operation that can be performed directly on an array value is the applica-

tion of the sizeof operator. The array must be bounded. The result of such an op-

eration is the number of storage units occupied by the array. For an �-element ar-

ray of type �, the result of the sizeof operator is always equal to � times the re-

sult of sizeof applied to the type �.

In all other contexts, such as subscripting, the array value is actually treated as a

pointer, and so operations on pointers may be applied to the array value.

5.6. C-Ref: Enumeration Types

Enumeration types are a recent addition to C, and similar concepts occur in other

languages, such as Pascal and Ada. Unfortunately, not all C compilers implement

enumerations, and those that do are not all consistent in their implementations.

An enumeration type in C is a set of integer values represented by identifiers

called ����������� ���������. The enumeration constants are specified when the

type is defined. For example, the declaration

Page 93

enum fish { trout, carp, halibut }

 my_fish, your_fish;�

creates a new enumeration type "enum fish," whose values are trout, carp, and

halibut. It also declares two variables of the enumeration type, my_fish and

your_fish, which can be assigned values with the assignments

my_fish = halibut;

your_fish = trout;�

In addition to assigning values of enumeration types, the programmer can test two

values for equality.

Enumeration types are implemented by associating integer values with the enu-

meration constants, so that the assignment and comparison of values of enumera-

tion types can be implemented as integer assignment and comparison. These inte-

gers are normally chosen automatically, but they can be specified by the program-

mer in the type definition:

enum fish { trout=1, carp=0,

 halibut=10 } my_fish, your_fish;�

The integers chosen determine the equality and ordering relationships among val-

ues of the enumeration type. We will say more about this later.

Here is the general syntax for declaring and using enumeration types:

�����������������������������

���������������������������

��������������������������

������������������������������

enum����������������opt
{�����������������������������}

�����������������������������

enum����������������

������������������

����������

������������������������������

�������������������������������

�����������������������������,���������������������������������

����������������������������������

��������������������

���������������������=�����������

�����������������������

�����������

Variables or other objects of the enumeration type can be declared in the same

Page 94

declaration containing the enumeration type definition or in a subsequent declara-

tion that mentions the enumeration type with an "enumeration type reference." For

example, the single declaration

enum color { red, blue, green, mauve }

 favorite, acceptable, least_favorite;�

is exactly equivalent to the two declarations

enum color { red, blue, green, mauve } favorite;

enum color acceptable, least_favorite;�

and to the four declarations

enum color { red, blue, green, mauve };

enum color favorite;

enum color acceptable;

enum color least_favorite;�

The enumeration tag, color, allows an enumeration type to be referenced after its

definition. Although the declaration

enum { red, blue, green, mauve }

 favorite, acceptable, least_favorite;�

defines the same type and declares the same variables, the lack of an enumeration

tag makes it impossible to introduce more variables of the type in later declara-

tions. Enumeration tags are in the same overloading class as structure and union

tags, and their scope is the same as that of a variable declared at the same loca-

tion in the source program.

Identifiers defined as enumeration constants are members of the same overloading

class as variables, functions, and typedef names. Their scope is the same as that of

a variable defined at the same location in the source program. In the following ex-

ample, the declaration of shepherd as an enumeration constant hides the previous

declaration of the integer variable shepherd. However, the declaration of the float-

ing-point variable collie will cause a compilation error, because collie is already

declared in the same scope as an enumeration constant.

int shepherd = 12;

{

 enum dog_breeds {shepherd, collie};

 /* Hides outer declaration of

 the name "shepherd" */

 float collie; /* Illegal redefinition of

 the name "collie" */

}�

The size of an enumeration type is generally same as the size of type int, al-

though some implementations leave open the possibility of using short or long de-

pending on the size of the enumeration type. Integer values are associated with

enumeration constants in the following way:

1. An explicit integer value may be associated with an enumeration constant by

writing

Page 95

���������������������=�����������

in the type definition. The expression must be a constant expression of inte-

gral type, although some compilers may also allow expressions involving pre-

viously defined enumeration constants, as in

enum boys { Bill = 10, John = Bill+2,

 Fred = John+2 };�

2. The first enumeration constant receives the value 0 if no explicit value is

specified.

3. Subsequent enumeration constants without explicit associations receive an in-

teger value one greater than the value associated with the previous enumera-

tion constant.�

For example, given the declaration

enum sizes { small, medium=10, pretty_big, large=20 };�

the values of small, medium, pretty_big, and large will be 0, 10, 11, and 20, respec-

tively.

Any signed integer value representable as type int may be associated with an enu-

meration constant. Positive and negative integers may be chosen at random, and it

is even possible to associate the same integer with two different enumeration con-

stants. For instance, the following definition is legal

enum people { john=1, mary=19, bill=-4, sheila=1 };�

but then the expression

john == sheila�

is "true," which is not intuitive.

Although the form of an enumeration type definition is suggestive of structure and

union types, with strict type checking, Draft Proposed ANSI C and most current

implementations mandate that all enumeration types be treated as integer types

and that enumerations constants appearing in expressions have type int. Thus

enumeration types function as little more than ways to name integer constants. As

a matter of style, we suggest that programmers treat enumeration types as differ-

ent from integers and not mix them in integer expressions without using casts.

5.7. C-Ref: Structure Types

The structure types in C are similar to the types known as "records" in other pro-

gramming languages. They are collections of named ���������� (also called

"members" or "fields") that can have different types. One way of looking at struc-

tures is that they allow the programmer to create �������� ���� �����. Structures

can be defined to encapsulate related data objectsthe values of the abstract

typeand functions can be written to manipulate the valuesthe operations on

the type.

Page 96

For example, a programmer who wanted to implement complex numbers might de-

fine a structure complex to hold the real and imaginary parts as components real

and imag. The first declaration below defines the new type, and the second declares

two variables, x and y, of that type:

struct complex {

 double real;

 double imag;

};

struct complex x, y;�

A function new_complex can be written to create a new object of the type. Note

that the selection operator . is used to access the components of the structure.

struct complex new_complex(r, i)

 double r, i;

{

 struct complex new;

 new.real = r;

 new.imag = i;

 return new;

}�

Operations on the type, such as complex_multiply, can also be defined:

struct complex complex_multiply(a, b)

 struct complex a,b;

{

 struct complex product;

 product.real=(a.real * b.real - a.imag * b.imag);

 product.imag=(a.real * b.imag + a.imag * b.real);

 return product;

}�

Here is the general syntax for structure declarations:

���������������������������

�������������������������

������������������������

���������������������������

�������������������������opt��{������������}

���������������������������

struct��������������

����������������

����������

�������������

���������������������

��������������������������������

Page 97

������������������������

���;�

����������������������������

��������������������

���������������������������,����������������������

�����������������������

�����������������

���������

�������������������

����������

������������

����������opt�:�������

��������

�����������

Each structure type definition introduces a new structure type, different from all

others. If present in the definition, the structure tag is associated with the new

type and can be used in a subsequent structure type reference. For instance, the

single declaration

struct complex { double real, imag; } x, y;�

is equivalent to the two declarations

struct complex { double real, imag; };

struct complex x, y;�

5.7.1. C-Ref: Structure Type References

A structure type reference appearing without a previous corresponding structure

type definition establishes an "incomplete" type definition whose scope is the inner-

most enclosing block or, if the reference appears at the top level, the remainder of

the program. An incomplete definition may be used only to declare pointers to the

type or to declare typedef names as synonyms for the type. That is, incomplete def-

initions may be used when the size of the structure is not needed.

The most common use for these incomplete definitions is in defining self-

referential structure types. In the following example, the definition of structure P

in the first line also establishes and uses an incomplete definition of structure Q,

which is then defined in the second line.

struct P { struct Q *pq; };

struct Q { struct P *pp; };�

This feature should be used cautiously. If we modify the program surrounding the

two definitions above, they could have a different effect:

Page 98

struct Q { int a, b; };

...

{

 struct P { struct Q *pq; };

 struct Q { struct P *pp; };

 ...

}�

Structure P will now have as its component pq a pointer to the structure Q defined

in the outer block. This is an instance of "duplicate visibility" of tag Q. The prob-

lem can be avoided by the customary practice of declaring structure types only at

the top level of C programs.

Draft Proposed ANSI C is a bit more precise in how incomplete structure defini-

tions are to be handled.

5.7.2. C-Ref: Operations on Structures

The operations provided for structures may vary from compiler to compiler. All C

compilers provide the selection operators . and -> on structures, and newer com-

pilers now allow structures to be assigned, to be passed as parameters to func-

tions, and to be returned from functions. (With older compilers, assignment must

be done component by component, and only pointers to structures may be passed to

and from functions.)

It is not permitted to compare two structures for equality. An object of a structure

type is a sequence of components of other types. Because certain data objects may

be constrained by the target computer to lie on certain addressing boundaries, a

structure object may contain "holes," storage units that do not belong to any com-

ponent of the structure. The holes would make equality tests implemented as a

wholesale bit-by-bit comparison unreliable, and component-by-component equality

tests would be too expensive. (Of course, the programmer may write component-by-

component equality functions.)

In any situation where it is permitted to apply the unary address operator & to a

structure to obtain a pointer to the structure, it is also permitted to apply the op-

erator to a component of the structure to obtain a pointer to the component; that

is, it is possible for a pointer to point into the middle of a structure. An exception

to this rule occurs with components defined to be bit fields. Components defined as

bit fields will in general not lie on machine-addressable boundaries, and therefore

it may not be possible to form a pointer to a bit field. The C language therefore

forbids such pointers.

5.7.3. C-Ref: Components

A component of a structure may have any type except "function returning ..." and

void. Structures may not contain instances of themselves, although they may con-

tain pointers to instances of themselves. That is,

Page 99

struct S {

 int a;

 struct S next; /* illegal! */

};�

is illegal, but

struct S {

 int a;

 struct S *next;

};�

is permitted.

The names of structure components are defined in a special overloading class asso-

ciated with the structure type. That is, component names within a single structure

must be distinct, but they may be the same as component names in other struc-

tures and may be the same as variable, function, and type names. For example,

consider the following sequence of declarations:

int x;

struct A { int x; double y; } y;

struct B { int y; double x; } z;�

The identifier x has three nonconflicting declarations: it is an integer variable, an

integer component of structure A, and a floating-point component of structure B.

These three declarations are used, respectively, in the expressions

x

y.x

z.x�

If a structure tag is defined in one of the components, as T is in

struct S {

 struct T {int a, b; } x;

};�

the scope of T extends to the end of the block in which structure S is defined. (If S

is defined at the top level, so is T.)

A historical note: The original definition of C specified that all components in all

structures were allocated out of the same overloading class, and therefore no two

structures could have components with the same name. (An exception was made

when the components had the same type and the same relative position in the

structures.) This interpretation is now anachronistic, but you might see it men-

tioned in older documentation or actually implemented in some old compilers.

5.7.4. C-Ref: Structure Component Layout

Most programmers will be unconcerned with how components are packed into

structures. However, C does give the programmer some control over the packing. C

compilers are constrained to assign components increasing memory addresses in a

strict order, with the first component starting at the beginning address of the

structure itself. There is no difference in component layout between the structure

Page 100

struct { int a, b, c; };�

and the structure

struct { int a; int b, c; };�

Both put a first, b second, and c last. In general, given two pointers � and � to

components within the same structure, � < � will be true if and only if the decla-

ration of the component that � points to appears earlier within the declaration of

the structure type than the declaration of the component that � points to. For ex-

ample:

{

 struct vector3 { int x, y, z; } s;

 int *p, *q, *r;

 ...

 p = &s.x;

 q = &s.y;

 r = &s.z;

 /* At this point (p < q), (q < r),

 and (p < r) are all true. */

 ...

}�

Holes, or padding, may appear between any two consecutive components in the lay-

out of a structure if necessary to allow proper alignment of components in memo-

ry. The bit patterns appearing in such holes are unpredictable, and may differ

from structure to structure or over time within a single structure.

5.7.5. C-Ref: Bit Fields

C allows the programmer to pack integer components into spaces smaller than the

compiler would ordinarily allow. These integer components are called ��� ������ and

are specified by following the component declarator with a colon and a constant in-

teger expression that indicates the width of the field in bits:

struct S{

 unsigned a:4;

 unsigned b:5, c:7;

};�

The intent is that bit fields should be packed as tightly as possible in a structure,

subject to the rules discussed below.

Bit fields are typically used in machine-dependent programs that must force a data

structure to correspond to a fixed hardware representation. The precise manner in

which components (and especially bit fields) are packed into a structure is imple-

mentation dependent but is predictable for each implementation. The use of bit

fields is therefore likely to be nonportable. The programmer should consult the im-

plementation documentation if it is necessary to lay out a structure in memory in

some particular fashion, and then verify that the C compiler is indeed packing the

components in the way expected.

Page 101

Here is an example of how bit fields can be used to match the format of a 32-bit

virtual address. We assume a right-to-left byte ordering, which is discussed further

in section "C-Ref: Addressing Structure and Byte Ordering".

/* Format of 32-bit virtual address

 for the XBQ-43 computer.

+-+-+---------+-----------+-----------------------+

|S|x| Segment | Page | Offset |

+-+-+---------+-----------+-----------------------+

31 29 23 15 bit 0

*/

/* Note: the XBQ-43 C compiler packs bit fields

 from right to left. */

typedef struct {

 unsigned offset : 16;

 unsigned page : 8;

 unsigned segment : 6;

 unsigned : 1; /* for future use */

 unsigned supervisor : 1;

 } virtual_address;�

C specifies that no compiler has to allow bit fields of any type except unsigned, but

some compilers allow signed integer types (that is, sign extension occurs when ex-

tracting the contents of the field). Usually, the signedness of bit fields follows the

signedness of characters, that is, a bit field of type int may actually be implement-

ed as a signed, unsigned, or pseudo-unsigned type. (See section "C-Ref: Character

Type".) Use of any type other than unsigned for a bit field should therefore be con-

sidered even less portable than using bit fields at all.

Compilers are free to impose constraints on the maximum size of a bit field and to

specify certain addressing boundaries that bit fields cannot cross. These alignment

restrictions are usually related to the natural word size of the target computer.

When a field is too long for the computer, the compiler will issue an appropriate

error message. When a field would cross a word boundary, it may be moved to the

next word.

The grammar indicates that an unnamed bit field may be included in a structure.

The intent is to allow a specific amount of padding space to be inserted into the

structure. For instance, the structure

struct S {

 unsigned a : 4;

 unsigned : 2;

 unsigned b : 6;

};�

indicates that component a is to be allocated the first four bits of the structure,

followed by two bits of padding, followed by the component b in six bits. Unnamed

bit fields cannot be referenced and their contents at run time are not predictable.

The case of an unnamed bit field of length 0 is a special case. It indicates that the

following component should begin on the next boundary appropriate to its type.

Page 102

("Appropriate" is not specified further.) That is, in the structure

struct S {

 unsigned a : 4;

 unsigned : 0;

 unsigned b : 6;

};�

the component b should begin on a natural addressing boundary following compo-

nent a.

The address operator & may not be applied to bit-field components, since many

computers cannot address arbitrary-sized fields directly.

5.7.6. C-Ref: Portability Problems

The use of bit fields is likely to be nonportable and therefore should be restricted

to situations in which memory is a scarce resource or in which a hardware-defined

data structure must be matched exactly. (In the latter case the program will

doubtless be nonportable anyway, so using bit fields doesn’t make matters any

worse.)

There are several ways in which depending on packing strategies is dangerous.

First, computers differ on the alignment constraints on data types. For instance, a

four-byte integer on some computers must begin on a byte boundary that is a mul-

tiple of four, whereas on other computers the integer can (and will) be aligned on

the nearest byte boundary.

Second, the restrictions on bit-field widths will be different. Some computers have

a 16-bit word size, which limits the maximum size of the field and imposes a

boundary that fields cannot cross. Other computers have a 32-bit word size, and so

forth.

Third, computers differ in the way fields are packed into a word, that is, in their

"byte ordering." On IBM 370-style computers, characters are packed left-to-right

into words, from the most significant bit to the least significant bit. On DEC VAX

computers and many microprocessors, characters are packed right-to-left, from the

least significant bit to the most significant bit.

5.7.7. C-Ref: Sizes of Structures

The size of an object of a structure type is the amount of storage necessary to

represent all components of that type, including any unused padding space between

or after the components. The rule is that the structure will be padded out to the

size the type would occupy as an element of an array of such types. (For any type

�, including structures, the size of an �-element array of � is the same as the size

of � times �.) Another way of saying this is that the structure must terminate on

the same alignment boundary on which it started; that is, if the structure must

begin on an even byte boundary, it must also end on an even byte boundary.

For example, on a computer that starts all structures on an address that is a mul-

tiple of 4 bytes, the length of the structure

Page 103

struct S {

 char c1;

 char c2;

};�

will be a multiple of four (probably exactly four), even though only two characters

are actually used.

Note that the alignment requirement for a structure type will be at least as strin-

gent as for the component having the most stringent requirements. For example,

on a computer that requires all objects of type double to have an address that is a

multiple of 8 bytes, the length of the structure

struct S {

 double value;

 char name[10];

};�

will probably be 24, even though the components may be allocated contiguously

and their total length is 18 units; six extra units of padding are needed at the end

to make the size of the structure a multiple of the alignment requirement. (If the

padding were not used, then in an array of such structures not all of the struc-

tures would have the value component aligned properly to a multiple-of-eight ad-

dress.)

Alignment requirements may cause padding to appear in the middle of a structure.

Consider this variation on the previous example in which the two components ap-

pear in the other order:

struct S {

 char name[10];

 double value;

};�

The length of this structure will also be 24. After the ten units of storage allocat-

ed for the name component, six units of padding are required before the value com-

ponent so that the value component may be aligned to an address that is a multi-

ple of eight characters relative to the beginning of the structure. Any object of the

structure type will be required to have an address that is a multiple of eight, and

so the value component of such an object will always be properly aligned.

5.8. C-Ref: Union Types

The syntax for defining union types is almost identical to that for defining struc-

ture types:

�����������������������

���������������������

��������������������

������������������������

Page 104

union����������opt�{������������}�

�����������������������

union�����������

������������

������������

The syntax for defining components is the same as that used for structures, except

that bit fields are not permitted in unions.

As with structures and enumerations, each union type definition introduces a new

union type, different from all others. If present in the definition, the union tag is

associated with the new type and can be used in a subsequent union type refer-

ence. Forward references and incomplete definitions of union types are permitted

with the same rules as structure types.

A component of a union may have any type except "function returning ..." and

void. Also, unions may not contain instances of themselves, although they may con-

tain pointers to instances of themselves.

As in structures, the names of union components are defined in a special overload

class associated with the union type. That is, component names within a single

union must be distinct, but they may be the same as component names in other

unions and may be the same as variable, function, and type names.

5.8.1. C-Ref: Union Component Layout

Each component of a union type is allocated storage starting at the beginning of

the union. An object of a union type will begin on a storage alignment boundary

appropriate for any contained component.

In other words, if we have the following union type and object definitions:

static union U {

 ...

 int C;

 ...

 } object, *P = &object;�

then the following equalities hold:

(union U *) &(P->C) == P

 &(P->C) == (int *) P�

Furthermore, these equalities hold no matter what the type of the component C.

5.8.2. C-Ref: Sizes of Unions

The size of an object of a union type is the amount of storage necessary to repre-

sent the largest component of that type, plus any padding that may be needed at

the end to raise the length up to an appropriate alignment boundary. The rule is

that the union will be padded out to the size the type would occupy as an element

Page 105

of an array of such types. (For any type �, including unions, the size of an �-

element array of � is the same as the size of � times �.) Another way of saying

this is that the structure must terminate on the same alignment boundary on

which it started; that is, if the structure had to begin on an even byte boundary, it

must end on an even byte boundary.

Note that the alignment requirement for a union type will be at least as stringent

as for the component having the most stringent requirements. For example, on a

computer that requires all objects of type double to have an address that is a mul-

tiple of eight characters, the length of the union

union U {

 double value;

 char name[10];

};�

will be 16, even though the size of the longest component is only 10; six extra

units of padding are needed to make the size of the union a multiple of the align-

ment requirement. (If the padding were not used, then in an array of such unions

not all of the unions would have the value component aligned properly to a multi-

ple-of-eight address.)

5.8.3. C-Ref: Using Union Types

C’s union type is somewhat like a "variant record" in other languages. Like struc-

tures, unions are defined to have a number of components. Unlike structures,

however, a union can hold at most one of its components at a time; the compo-

nents are conceptually overlaid in the storage allocated for the union.

For example, suppose we want an object that can be ������ an integer or a float-

ing-point number, depending on the situation. We can define union datum:

union datum {

 int i;

 double d;

};�

and define a variable of the union type:

union datum u;�

Then, to use the datum to hold an integer, we can say:

u.i = 15;�

To use the datum to hold a floating-point number, we assign to the other compo-

nent:

u.d = 88.9e4;�

The programmer is responsible for remembering what kind of data is in the union

at any one time.

Unions may be used in a portable fashion if certain rules are obeyed. In particular,

the only time a component of a union should be referenced is if the last assign-

ment to the union was through the same component. It is ��� portable to assign

one union component and then reference another component:

Page 106

union U { long c; double d; } x;

long l;

x.d = 1.0e10;

l = x.c;�

C provides no way to inquire which component of a union was last assigned. The

programmer can encode explicit ���� ���� in unions; that is, some indication of

which component is stored in the union. The union may be enclosed in a structure

that includes a special tag component that is used by programming convention to

indicate which component of a union is "active." For example, we might replace

the union

union widget {

 long count;

 double value;

 char name[30];

 } x;�

by

enum widget_tag { count_widget,

 value_widget,

 name_widget };

struct WIDGET {

 enum widget_tag tag;

 union { long count;

 double value;

 char name[30]; } data;

 } x;

/* Make "widget" a name for "struct WIDGET". */

typedef struct WIDGET widget;�

To assign to the union, we write either

x.tag = count_widget;

x.data.count = 10000;�

or

x.tag = value_widget;

x.data.value = 3.1415926535897932384;�

or

x.tag = name_widget;

strcpy(x.data.name, "Millard Fillmore");�

Then we can write a portable function that can discriminate among the possibili-

ties for the union, and call the function without regard to which component was

last assigned:

Page 107

/* Print a widget, whatever it contains. */

void print_widget(w)

 widget w;

{

 switch(w.tag) {

 case count_widget:

printf("Count %ld\n", w.data.count);

break;

 case value_widget:

printf("Value %f\n", w.data.value);

break;

 case name_widget:

printf("Name \"%s\"\n", w.data.name);

break;

 }

}�

5.9. C-Ref: Function Types

The type "function returning �" is a function type, where � may be any type ex-

cept "array of..." or "function returning...." Said another way, functions may not re-

turn arrays or other functions, although they can return pointers to arrays and

functions.

Objects of function type may be introduced in only two ways. First, a function �����

������ can create a function object, define its parameters and return value, and

supply the body of the function. For example, square is an object of function type:

int square(x)

 int x;

{

 return x*x;

}�

More information about function definitions is given in section "C-Ref: Function

Definitions".

Second, a function ����������� can introduce an external reference to a function ob-

ject defined elsewhere, such as in this definition of square.

extern int square();�

Most modern implementations allow (forward) declarations of static functions by

using the storage class static in the declaration:

static void printheading();�

The actual definition of function printheading is expected to appear later in the

program. However, most UNIX implementations of C also allow forward declara-

tions of static functions to use the extern storage class; when the compiler sees

the static definition, it avoids issuing any external linkages of the function name:

Page 108

extern void printheading(); /* it isn’t extern! */

...

 printheading("Hello");

...

static void printheading(greet)

 char *greet;

{

 ...

}�

There may be a few deficient implementations for which this programming tech-

nique must be used, but it is misleading and should be avoided.

The only operation that can be applied to an expression of function type (aside

from the implicit usual unary conversion to "pointer to function") is to call the

function. For example, the line

extern int f(), (*fp)(), (*apf[])();�

declares external identifiers f, fp, and apf to have types "function returning int,"
"pointer to function returning int," and "array of pointers to functions returning

int," respectively. These identifiers can be used in function call expressions by

writing:

int i;

i = f(14);

i = (*fp)(j, k);

i = (*apf[j])(k);�

When a function is called, certain standard conversions are applied to the actual

arguments, but no attempt is made to check the type or number of arguments

with the type or number of formal arguments to the function, if known. See sec-

tion "C-Ref: The Function Argument Conversions".

A function identifier can appear by itselfthat is, not in the context of a callbut

the identifier is immediately converted to the type "pointer to function return-

ing...." For example,

extern int f();

int (*fp)();

fp = f;�

The only expressions that can yield a value of type "function returning �" are the

name of such a function and an indirection expression consisting of the unary indi-

rection operator * applied to an expression of type "pointer to function return-

ing...."

There are only three operations that can be applied to the name of a function:

1. Call the function, by appending to the name a parenthesized, comma-

separated list of argument expressions.

2. Use the function name as an actual parameter to another function, in which

case a pointer to the function is passed.

Page 109

3. Assign the function to a variable of the appropriate (pointer) type.�

The sizeof operator may not be applied to functions.

All the information needed to invoke a function is assumed to be encapsulated in

an object of type "pointer to function returning...," which satisfies the normal

pointer requirements. Although a pointer to a function is often assumed to point to

the function’s code in memory, on some computers a function pointer actually

points to a block of information needed to invoke the function. Such representation

issues are normally invisible to the C programmer and need concern only the com-

piler implementor.

The important new concept of the "function prototype," which introduces parame-

ter type information into function declarations, is introduced by Draft Proposed

ANSI C.

5.10. C-Ref: Void

The type void is a recent addition to C. It has no values and no operations and is

used mainly as the return type of a function, signifying that the function returns

no value.

����������������������

void�

For example:

{

 extern void write_line();

 ...

 write_line();

 ...

}�

The void type may also be used in a cast expression when it is desired to explicit-

ly discard a value. For example:

{

 extern int write_line2(); /* returns error

 indication */

 ...

 (void) write_line2(...); /* don’t check for

 error */

 ...

}�

Casting the return value to void indicates clearly that the programmer knows that

write_line2 returns a value but chooses to ignore it.

Draft Proposed ANSI C introduces the type "void *", or pointer to void, to repre-

sent a "universal" data pointer. Traditionally C programmers have used char * for

this purpose.

Page 110

5.11. C-Ref: Typedef Names

When a declaration is written whose "storage class" is typedef, the type definition

facility is invoked.

���������������

�����������

An identifier enclosed in any declarator of the declaration is defined to be a name

for a type (a "typedef name"); the type is that which would have been given the

identifier if the declaration were a normal variable declaration. For example, in

the declaration

typedef int *ptr, (*func)();�

the name ptr is defined to be the type "pointer to int" and the name func is de-

fined to be the type "pointer to function returning int."

Once a name has been declared as a type, it may appear anywhere a type specifier

is permitted. This is useful because it allows you to create mnemonic abbreviations

for complicated types. For example, after writing the above type definitions, we

can write

ptr link, *indirect_link;

func my_routine, my_vector[10];�

in which case

link has type "pointer to int"

indirect_link has type "pointer to pointer to int"

my_routine has type "pointer to function returning int"

my_vector has type "10-element array of pointers to functions returning

int"�

Typedef names should not be mixed with other type specifiers. Some implementa-

tions permit the following; Draft Proposed ANSI C explicitly forbids it:

typedef long int bigint;

unsigned bigint x; /* probably illegal */�

Typedef declarations do not introduce new types; the names are always considered

to be synonyms for types that could be specified in other ways. For instance, after

the declaration

typedef struct S { int a; int b; } s1type, s2type;�

the type specifiers s1type, s2type, and struct S can be used interchangeably to

refer to the same type.

C implementations may wish to preserve the type distinctions internally so that de-

buggers and other associated tools can refer to types by the names used by the

programmer.

Page 111

5.11.1. C-Ref: Typedef Names for Function Types

A function type may be given a typedef name. For example, the DblFunc may be

established as a synonym for "function returning double" with this declaration:

typedef double DblFunc();�

Once declared, DblFunc can be used to declare objects of the function type, pointers

to the function type, arrays of the function type, and so forth, using the normal

rules for composing declarators:

extern DblFunc f, *f_ptr, *f_array[];�

Abiding by the normal rules of type declarations, the programmer should not de-

clare illegal types, such as a function returning another function:

extern DblFunc f_ptr(); /* illegal! */�

The method can be extended to more complex types, such as "function returning
pointer to function returning int":

typedef int (*fatfunc())();

extern fatfunc chubby;�

A fundamental problem arises when trying to use typedef names such as these in

function definitions. For example, the following definition of fabs is rejected be-

cause it seems to define a function returning another function:

typedef double DblFunc();

DblFunc fabs(x)

 double x;

{

 if (x<0.0) return -x; else return x;

}�

Unfortunately, you can’t have the parameter list or omit it! Here is a more compli-

cated example:

typedef int (*fatfunc())();

fatfunc chubby(a,b)

 int a,b;

{

 ...

}�

In Draft Proposed ANSI C the function typedef name can include prototype infor-

mation, including the parameter names. However, you cannot inherit the type of a

function definition from a typedef name. Thus, the definitions of chubby and fabs

are illegal in Draft Proposed ANSI C. We recommend that programmers respect

this limitation even if their current C implementation permits the definitions.

5.11.2. C-Ref: Redefining Typedef Names

The language specifies that typedef names may be redefined in inner blocks in the

same fashion as ordinary identifiers:

Page 112

typedef int T;

T foo;

...

{

 float T;

 T = 1.0;

 ...

}�

(One restriction is that the redeclaration cannot omit the type specifiers thinking

that the type will default to int.) However, some compilers have been known to

have problems with such redeclarations, probably because of the pressure typedef

names put on the C language grammar. We now turn to this problem.

5.11.3. C-Ref: A Note on Implementation of Typedef Names

Allowing ordinary identifiers to be type specifiers makes the C grammar context

sensitive, and hence not LALR(1). To see this, consider the program line

A (*B) ;�

If A has been defined as a typedef name, then the line is a declaration of a vari-

able B to be of type "pointer to A." (The parentheses surrounding "*B" are ignored.)

If A is not a type name, then the line is a call of the function A with the single

parameter *B. This ambiguity cannot be resolved grammatically.

C compilers based on the UNIX parser-generator YACCsuch as the Portable C

Compilerhandle this problem by feeding information acquired during semantic

analysis back to the lexer. C compilers must do some typedef analysis during lexi-

cal analysis.

5.12. C-Ref: Type Equivalence

Several times in the text we say that, for instance, two objects must have the

same type. What do we mean?

First of all, two pointer or function types are the same if their elements are the

same:

1. Two types "pointer to �" and "pointer to �" are the same only if types � and

� are the same.

2. Two types "function returning �" and "function returning �" are the same on-

ly if types � and � are the same.

Rules for the other types are discussed in the following sections.

In Draft Proposed ANSI C, when function prototypes are used, the parameter

names and types become part of the function type. Two function types must agree

as to the presence or absence of prototypes and as to the content of the prototypes.

Page 113

5.12.1. C-Ref: More About Array Types

Two types "�-element array of �" and "�-element array of �" are the same only if

types � and � are the same and �=�. A consequence of this is, for instance, that

the pointer types "pointer to 10-element array of int" and "pointer to 5-element ar-

ray of int" are ��� the same. (Incrementing values of these types will have differ-

ent effects since the pointer element sizes are different.) However, there are two

clarifications to this equivalence rule.

First, in those contexts in which an array’s size may be omitted, the size does not

participate in computing type equivalence. (If the array is multidimensional, and if

the first dimension’s size may be omitted, then ���� the first dimension does not

participate; the other dimensions must match.) Therefore the two external declara-

tions

extern int a[10];

extern int a[];�

effectively declare a to be of the same type.

Second, in many situations a value of type "�-element array of �" is converted to a

value of type "pointer to �." In that case, the rules for pointer type equivalence

apply; that is, the size of the array becomes irrelevant.

5.12.2. C-Ref: Enumeration, Structure, and Union Types

Each occurrence of a type specifier that is a structure type definition, union type

definition, or enumeration type definition introduces a new structure, union, or

enumeration type that is neither the same as nor equivalent to any other type.

A type specifier that is a structure, union, or enumeration type ��������� is the

same type introduced in the corresponding ����������. The type tag is used to asso-

ciate the reference with the definition, and in that sense the tag may be thought

of as the name of the type. Thus, the types of x, y, and u below are all different,

but the types of u and v are the same.

struct { int a; int b; } x;

struct { int a; int b; } y;

struct S { int a; int b; } u;

struct S v;�

Historically, tags predate the typedef facility in C, which largely supplants them.

The only facility provided by tags that cannot be duplicated with type definitions is

recursive references within structures and unions:

struct S { int data; struct S *next; };�

5.12.3. C-Ref: More About Typedef Names

Names declared as types in typedef definitions are synonyms for types, not new

types. Thus, in the following example, the type my_int is the same as type int, and

the type my_function is the same as the type "float *()."

Page 114

typedef int my_int;

typedef float *my_function();�

In the more complicated example

struct S { int a, b; } x;

typedef struct S t1, t2;

struct S w;

t1 y;

t2 z;�

the variables w, x, y, and z all have the same type.

5.13. C-Ref: Type Names and Abstract Declarators

In two situations in C programming, it is necessary to write the name of a type

without declaring an object of that type: when writing cast expressions and when

applying the sizeof operator applied to a type. In these cases, one uses a ����

���� built from an �������� ����������. (Don’t confuse "type name" with "typedef
name" described in section "C-Ref: Typedef Names".)

������������

�����������������������������������

����������������������

�������������������������

����������������������������

���������������������������

�������������������������������

(������������������������������)

��������������������(�)

��������������������[�����������opt�]
*���������������������

An abstract declarator resembles a regular declarator in which the enclosed identi-

fier has been replaced by the empty string. Thus, a type name looks like a declara-

tion from which the enclosed identifier has been omitted.

The precedences of the alternatives of the abstract declarator are the same as in

the case of normal declarators. However, to resolve an ambiguity, the form

(�)�

is permitted only if the abstract declarator � is nonempty.

Examples of type names:

int type int

float * type "pointer to float"

Page 115

char (*)() type "pointer to function returning char"

unsigned *[4] type "array of four pointers to unsigned"

int (*(*)())() type "pointer to function returning pointer to function return-

ing int"�

Type names always appear within the parentheses that form part of the syntax of

the cast or sizeof operator. If the type specifier in the type name is a structure,

union, or enumeration type definition, most implementations will ��� define any in-

cluded type tag. For example, assume that struct S is not defined when the follow-

ing two statements are encountered:

i = sizeof(struct S {int a,b;}); /* OK, but strange */

j = sizeof(struct S); /* Probably illegal because

 struct S is still not defined. */�

We don’t think this is a deficiency, but would like to see the implementation issue

a warning on the first line.

In Draft Proposed ANSI C, function declarators in type names may have prototype

information.

Page 116

Page 117

6. C-Ref: Conversions and Representations

Most programming languages are designed to hide from the programmer the de-

tails of the language’s implementation on a particular computer. For the most

part, the C programmer need not be aware of these details, either, although a ma-

jor attraction of C is that it allows the programmer to go below the abstract lan-

guage level and expose the underlying representation of programs and data. With

this freedom comes a certain amount of risk: some C programmers inadvertently

descend below the abstract programming level and build into their programs non-

portable assumptions about data representations.

This chapter has three purposes. First, it discusses some characteristics of data

and program representations, indicating how the choice of representations can af-

fect a C program. Second, it discusses in some detail the conversion of values of

one type to another, emphasizing the characteristics of C that are portable across

implementations. Finally, it presents the "usual conversion rules" of C, which are

the conversions that happen automatically when expressions are evaluated.

6.1. C-Ref: Representational Issues

This section discusses the representation of programs and data and how the choice

of representations can affect C programs and C implementations.

6.1.1. C-Ref: Storage Units and Data Sizes

All data objects in C are represented at run time in the computer’s memory in an

integral number of abstract ������� �����, or �����. Each storage unit is in turn

made up of some fixed number of ����, each of which can assume either of two

values, typically denoted 0 and 1.

By definition, the ���� of a data object is the number of storage units (bytes) occu-

pied by that data object. A storage unit is taken to be the amount of storage occu-

pied by one character; the size of an object of type char is therefore 1.

Because all data objects of a given type occupy the same amount of storage, we

can also refer to the size of a ���� as the number of storage units occupied by an

object of that type. The sizeof operator may be used to determine the size of a da-

ta object or type. We say that a type is "longer" or "larger" than another type if

its size is greater. Similarly we say that a type is "shorter" or "smaller" than an-

other type if its size is less. Draft Proposed ANSI C requires certain minimum

sizes for the integer and floating-point types and provides implementation-defined

header files limits.h and float.h that define the sizes.

The following program can be used to determine the sizes of the principal C data

types:

Page 118

#include<stdio.h>

int main()

{

 printf("\tType sizes:\n");

 printf("char\tshort\tint\tlong\tfloat\tdouble\n");

 printf("%3d\t%3d\t%3d\t%3d\t%3d\t%3d\n",

 sizeof(char), sizeof(short), sizeof(int),

 sizeof(long), sizeof(float), sizeof(double));

}�

6.1.2. C-Ref: Addressing Structure and Byte Ordering

The addressing structure of a computer determines how storage pieces of various

sizes are named by pointers. The addressing model most natural for C is one in

which each character (byte) in the computer’s memory can be individually ad-

dressed. Computers using this model are called "byte-addressable" computers. The

address of a larger piece of storageone used to hold an integer or a floating-

point number, for exampleis typically the same as the address of the first char-

acter in the larger unit. (The "first" character is the one with the lowest address.)

Even within this simple model, computers differ in their storage "byte order," that

is, they differ in which byte of storage they consider to be the "first" one in a

larger piece. In "right-to-left" or "little endian" architectures, which includes the

PDP-11 and VAX computers and the National Semiconductor 32000 microprocessor,

the address of a 32-bit integer is also the address of the low-order byte of the in-

teger. In "left-to-right" or "big endian" architectures, which includes most IBM ar-

chitectures, the Intel 8086 microprocessor family, and the Motorola 68000 micro-

processor family, the address of a 32-bit integer is the address of the high-order

byte of the integer. These different conventions are pictured in table "C-Ref: Ad-

dressing a 32-Bit Integer At Address A".

6.1.2.1. C-Ref: Addressing a 32-Bit Integer At Address A

"Left-to-right"
high-order low-order

+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+
A A+1 A+2 A+3 Increasing addresses -->

"Right-to-left"
high-order low-order

+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+

<-- Increasing addresses A+3 A+2 A+1 A

Programs that assume a particular byte order will not be portable. For example,

here is a program that determines a computer’s byte ordering by using a union in

Page 119

a nonportable fashion. The union has the same size as an object of type long and

is initialized so that the low-order byte of the union contains a 1 and all other

bytes contain zeros. In right-to-left architectures, the character component, Char, of

the union will be overlaid on the low-order byte of the long component, Long,

whereas in left-to-right architectures Char will be overlaid on the high-order byte

of Long:

#include <stdio.h>

union { long Long; char Char[sizeof(long)]; } u;

int main()

{

 u.Long = 1;

 if (u.Char[0] == 1)

 printf("Addressing is right-to-left\n");

 else if (u.Char[sizeof(long)-1] == 1)

 printf("Addressing is left-to-right\n");

 else printf("Addressing is strange\n");

 return 0;

}�

Components of a structure type are allocated in the order of increasing addresses,

that is, either left-to-right or right-to-left depending on the byte order of the com-

puter. Because bit fields are also packed following the byte order, it is natural to

number the bits in a piece of storage following the same convention. Thus, in a

left-to-right computer the most significant (leftmost) bit of a 32-bit integer would

be bit number 0 and the least significant bit would be bit number 31. In right-to-

left computers the least significant (rightmost) bit would be bit 0, and so forth.

6.1.3. C-Ref: Alignment Restrictions

Some computers allow data objects to reside in storage at any address, regardless

of the data’s type. Others impose ��������� ������������ on certain data types, re-

quiring that objects of those types occupy only certain addresses. It is not unusual

on a byte-addressed computer, for example, to require that 32-bit (4-byte) integers

be located on addresses that are a multiple of four. In this case we say that the

"alignment modulus" of those integers is four. Failing to obey the alignment re-

strictions can result either in a run-time error or in unexpected program behavior.

Even when there are no alignment restrictions per se, there may be a performance

penalty for using data on unaligned addresses, and therefore a C implementation

may align data purely for efficiency.

The C programmer is not normally aware of alignment restrictions because the

compiler takes care to place data on the appropriate address boundaries. However,

C does give the programmer the ability to violate alignment restrictions by casting

pointers to different types.

In general, if the alignment requirement for a type � is at least as stringent as

that for a type � (that is, the alignment modulus for � is no smaller than the

alignment modulus for �) then converting a "pointer to type �" to a "pointer to

type �" is safe. "Safe" here means that the resulting pointer to type � will work

Page 120

as expected if used to fetch or store an object of type �, and that a subsequent

conversion back to the original pointer type will recover the original pointer. A

corollary to this is that any data pointer can be converted to type char * and back

safely. (In Draft Proposed ANSI C, the new type "void *" is used as the universal

data pointer. See the section "C-Ref: ANSI C Generic Pointers". Functions such as

malloc (section "C-Ref: ������� ������� �������� �������") which re-

turn pointers destined to be cast to various types, always return pointers of type

aligned on a boundary suitable for an object of any type.

If the alignment requirement for a type � is less stringent than that for type �,

then the conversion from a "pointer to type �" to a "pointer to type �" could re-

sult in either of two kinds of unexpected behavior. First, an attempt to use the re-

sulting pointer to fetch or store an object of type � may cause an error, halting

the program. Second, the hardware or implementation may "adjust" the destination

pointer to be legal, usually by forcing it back to the nearest previous legal address.

A subsequent conversion back to the original pointer type may not recover the

original pointer.

The following program deliberately provokes alignment problems by casting point-

ers from type char * to type long *. The character pointer is advanced by four

1-byte increments, thus guaranteeing that the long pointer will be misaligned. (We

assume that type long occupies four 8-bit bytes.)

#include <stdio.h>

long array[2] = {0x01020304L, 0x05060708L};

int main()

{

 int i;

 char *char_p = (char *) &array[0];

 for (i=0; i<=4; i++) {

 printf("*(long *)(char_p+%d) = 0x%08x\n",

 i, *(long *)(char_p+i));

 }

 return 0;

}�

The numbers output by this program will differ depending on whether the comput-

er has left-to-right or right-to-left byte ordering and on whether there are align-

ment restrictions on type long:

1. If there are no alignment restrictions then the output will be:

������� ���������������� ����������������

*(long *)(char_p+0) = 0x01020304 0x01020304

*(long *)(char_p+1) = 0x02030405 0x08010203

*(long *)(char_p+2) = 0x03040506 0x07080102

*(long *)(char_p+3) = 0x04050607 0x06070801

*(long *)(char_p+4) = 0x05060708 0x05060708

2. If there are strict alignment requirements and the hardware or software re-

jects misaligned addresses then the output might be:

Page 121

������� ���������������� ����������������

*(long *)(char_p+0) = 0x01020304 0x01020304

<<error>> <<error>> <<error>>�

3. If there are strict alignment requirements and the hardware or software ad-

justs misaligned addresses then the output will be still different. Here’s how

it might be if the misaligned address is forced to the next lower permissible

boundary:

������� ���������������� ����������������

*(long *)(char_p+0) = 0x01020304 0x01020304

*(long *)(char_p+1) = 0x01020304 0x01020304

*(long *)(char_p+2) = 0x01020304 0x01020304

*(long *)(char_p+3) = 0x01020304 0x01020304

*(long *)(char_p+4) = 0x05060708 0x05060708�

6.1.4. C-Ref: Pointer Sizes

There is no requirement in C that any of the integral types be large enough to

represent a pointer, although C programmers often assume that type long is large

enough, which it is on most computers.

In many C implementations it happens that pointers have the same size as type

int. Because int is also the default type specifier, some programmers are careless

with pointer/integer conversions. In particular, they may omit the return type

when declaring or defining functions returning pointers, knowing the type will de-

fault to int, which is "good enough" because of C’s standard conversion rules. This

has proved to be a frequent source of portability problems.

Although function pointers are usually no larger than data pointers (at least than

character pointers), there are a few computers on which this is not true. For maxi-

mum portability, programmers should not use data pointers (such as char * , the

canonical generic data pointer) to hold pointers to functions. Use a function point-

er type that specifies the correct return type, such as double (*)(). In Draft Pro-

posed ANSI C there is no generic function pointer type; function pointers must be

correctly typed or the results can be unpredictable.

6.1.5. C-Ref: Difficult Addressing Models

Some computers represent data and addresses in forms that are very awkward for

C implementations. Major problems can occur when the computer’s natural word

size is not a multiple of its natural byte size. Supposethis is a real exampleour

computer has a 36-bit word and represents characters in 7 bits; each word can

hold five characters with one bit remaining unused. All noncharacter datatypes oc-

cupy one or more full words. This memory structure will be very difficult for a C

implementor, because C programming relies upon the ability to map any data

structure onto an array of characters. That is, to copy an object of type � at ad-

dress � it should be sufficient to copy sizeof(�) characters beginning at �. The

only alternative for the implementor on this computer would be to represent char-

acters using some nonstandard number of bits (for example, 9 or 36) so that they

Page 122

fit tightly into a word. This representation could have a significant performance

penalty.

A second problem occurs on "word-addressed" computers, those whose basic ad-

dressable storage unit is larger than a single character. On these computers, there

may or may not be a special kind of address, a "byte pointer," that can represent

characters within a word. Assuming there is such a byte pointer, it may very well

be larger than a pointer to objects of noncharacter types. A C implementor must

decide whether to pay the increased overhead of representing all pointers as byte

pointers or whether to use the larger format only for objects of type char *. The

latter decision will force C programmers to be more careful about pointer conver-

sions.

6.2. C-Ref: Conversions

The C language provides for values of one type to be converted to values of other

types under several circumstances.

• A cast expression may be used to explicitly convert a value to another type.

• An operand may be implicitly converted to another type in preparation for per-

forming some arithmetic or logical operation.

• An object of one type may be assigned to a location (lvalue) of another type,

causing an implicit type conversion.

• An actual argument to a function may be implicitly converted to another type

prior to the function call.

• A return value from a function may be implicitly converted to another type pri-

or to the function return.�

There are restrictions as to what types a given object may be converted to. Fur-

thermore, the set of conversions that are possible on assignment, for instance, is

not the same as the set of conversions that are possible with type casts.

In the following sections we will discuss the set of possible conversions and then

discuss which of these conversions are actually performed in each of the circum-

stances listed above.

6.2.1. C-Ref: Representation Changes

The representation of a data object is the particular pattern of bits in the storage

area that holds the object; this pattern distinguishes the value of the object from

all other possible values of that type.

A conversion of a value from one type to another may or may not involve a repre-

sentation change. For instance, whenever the two types have different sizes, a rep-

Page 123

resentation change has to be made. When integers are converted to a floating-

point representation, a representation change is made even if the integer and float-

ing-point type have the same sizes. However, when a value of type int is converted

to type unsigned int, a representation change may not be necessary (it isn’t neces-

sary if signed integers are represented in two’s-complement form).

Some representation changes are very simple, involving merely discarding of ex-

cess bits or padding with extra 0 bits. Other changes may be very complicated,

such as conversions between integer and floating-point representations. For each of

the conversions discussed in the following sections, we describe the possible repre-

sentation changes that may be required.

6.2.2. C-Ref: Trivial Conversions

It is always possible to convert a value from a type to another type that is the

same as the first type. See section "C-Ref: Type Equivalence" for a discussion of

when types are the same. No representation change needs to occur in this case.

Most implementations will refuse to convert structure or union types to them-

selves, because no conversions to structure or union types are normally permitted.

6.2.3. C-Ref: Conversions to Integer Types

The types that may be converted to integers are the arithmetic types and the

pointer types.

���� ������� ����� The general rule for converting from one integer type to an-

other is that the mathematical value of the result should equal the original mathe-

matical value if that is possible. For example, if an unsigned integer has the value

15 and this value is to be converted to a signed type, the resulting signed value

should be 15 also.

If it is not possible to represent the original value of an object of the new type,

then there are two cases. If the result type is a signed type, then the conversion is

considered to have overflowed and the result value is technically not defined (but

see the discussion below). If the result type is an unsigned type, then the result

must be that unique value of the result type that is equal (congruent) mod 2n to

the original value, where � is equal to the number of bits used in the representa-

tion of the result type.

These rules have a number of interesting consequences. When a signed integer is

converted to an unsigned integer of the same size, no change of representation is

needed if signed integers are represented using two’s-complement notation; that is,

the resulting unsigned integer will have the same bit pattern as the original

signed integer. On the other hand, if signed integers are represented in some oth-

er way, such as with one’s-complement or sign-magnitude representation, then a

change of representation will be necessary.

When an unsigned integer is converted to a signed integer of the same size, no

change of representation is needed if signed integers are represented using two’s-

complement notation. Technically, this conversion is considered to overflow if the

Page 124

original value is too large to represent exactly in the signed representation (that

is, if the high-order bit of the unsigned number is 1). However, we do not doubt

that many programmers and many programs depend on the conversion being per-

formed quietly and with no change of representation to produce a negative num-

ber. If signed integers are represented in some other way, such as with one’s-

complement or sign-magnitude representation, then a change of representation will

be necessary. Moreover, the transformation may not be mathematically straightfor-

ward. For example, when converting the value 0 there may be a choice of "+0" or

"-0" in the result representation, and when converting the unsigned value 2n-1 it

may not be clear what the result value should be. The best the implementor can

do in such cases is to make some rational decision and then document it carefully.

If the destination type is longer than the source type, then the only case in which

the source value will not be representable in the result type is when a negative

signed value is converted to a longer, unsigned type. In that case, the conversion

must necessarily behave as if the source value were first converted to a longer

signed type of the same size as the destination type, and then converted to the

destination type. For example, since the constant expression -1 has type int,

((unsigned long) -1) == ((unsigned long) ((long) -1)))�

If the destination type is shorter than the source type, and both the original type

and the destination type are unsigned, the conversion can be effected simply by

discarding excess high-order bits from the original value; the bit pattern of the re-

sult representation will be equal to the � low-order bits of the original representa-

tion. This same rule of discarding works for converting signed integers in two’s-

complement form to a shorter unsigned type. The discarding rule is also one of

several acceptable methods for converting signed or unsigned integers to a shorter

signed type when signed integers are in two’s-complement form. Note that this

rule will not preserve the sign of the value in case of overflow, but the action on

overflow is not officially defined anyway. When signed integers are not represented

in two’s-complement form, the conversions are necessarily more complicated. While

the C language does not require the two’s-complement representation for signed

integers, it certainly favors that representation, and implementations should use it

whenever feasible.

���� �������������� ����� The conversion of a floating-point value to an integral

value should produce a result that is (if possible) equal in value to the value of

the old object. If the floating-point value has a nonzero fractional part, that frac-

tion should be discarded, that is, conversion normally involves truncation of the

floating-point value.

The behavior of the conversion is undefined if the floating-point value cannot be

represented even approximately in the new type (for example, if its magnitude is

much too large, or if a negative floating-point value is converted to an unsigned

integer type). The handling of overflow and underflow is left to the discretion of

the implementor.

���� ������� ����� When the source value is a pointer, the pointer is treated as

if it were an unsigned integer of a size equal to the size of the pointer. Then the

unsigned integer is converted to the destination type using the rules listed above.

Page 125

There is one special case: If a null pointer of any type is created through assign-

ment or initialization by the integer constant 0, then the conversion of that null

pointer to an integer type must yield the value 0. This requirement may cause a

change in representation in some implementations.

C programmers have traditionally assumed that pointers could be converted to type

long and back without loss of information. Although this is almost always true, it

is not required by the language definition. (It is definitely wrong to assume that

type int is large enough to hold a pointer.) Some computers may have pointer rep-

resentations (especially for character or function pointers) that are longer than the

largest integer type. Programmers needing a "generic" data pointer type should

use char * instead of long. In Draft Proposed ANSI C the pointer type void * was

invented as a generic data pointer type.

6.2.4. C-Ref: Conversions to Floating-point Types

Only arithmetic types may be converted to floating-point types.

���� �������������� ����� When converting from float to double, the result

should have the same value as the original value. (This may be viewed as a re-

striction on the choice of representations for the floating-point types.)

When converting from double to float, such that the original value is within the

range of values representable as type float, the result should be one of the two

float values closest to the original value. (Whether the original value is rounded

up or down is implementation dependent.)

If the original value is outside the range of values representable as type floatas

when the magnitude is too large or too small for the representation of floatthe

resulting value is undefined, as is the overflow or underflow behavior of the pro-

gram.

���� ������� ����� If the integer value is exactly representable in the floating-

point type, then the result is the equivalent floating-point value. If the integer val-

ue is not exactly representable but is within the range of values representable in

the floating-point type, then one of the two closest floating-point values should be

chosen as the result. If the integer value is outside the range of values repre-

sentable in the floating-point type, the result is undefined.

6.2.5. C-Ref: Conversions to Structure and Union Types

An object of a structure or union type � may be converted only to a type that is

the same as � (the trivial conversion). There is no change of representation, ex-

cept that the bit patterns in any unused "holes" in the structure or union are not

necessarily preserved.

In fact, most implementations will refuse to convert structure or union types to

themselves, because no conversions to structure or union types are normally per-

mitted.

Page 126

6.2.6. C-Ref: Conversions to Enumeration Types

The rules are the same as for conversions to integral types. Some permissible con-

versions, such as between enumeration and floating-point types, may be symptoms

of a poor programming style.

6.2.7. C-Ref: Conversions to Pointer Types

In general, pointers and integers may be converted to pointer types. There are spe-

cial circumstances under which an array or a function will be converted to a

pointer.

���� ������� ����� A null pointer of any type may be converted to any other

pointer type and it will still be recognized as a null pointer. There may be a repre-

sentation change in the conversion.

A value of type "pointer to �" may be converted to type "pointer to �" for any

types � and �. However, the behavior of the resulting pointer may be affected by

any alignment restrictions in the implementation.

���� ������� ����� The integer constant 0 may always be converted to a pointer

type. The conversion may or may not involve a representation change, regardless

of the relative sizes of int and the pointer type. The result of such a conversion is

a "null pointer" that is different from any legal pointer to a data object. Null

pointers of different pointer types may have different internal representations in

some implementations.

Integers other than the constant 0 may be converted to pointer type, but the result

is nonportable. The intent is that the pointer be considered an unsigned integer

(of the same size as the pointer) and the standard integer conversions then be ap-

plied to take the source type to the destination type.

���� ����� ����� An expression of type "array of �" for some type � is convert-

ed to a value of type "pointer to �" by substituting a pointer to the first element

of the array for the array itself. This occurs in all contexts except when the array

is an argument to sizeof.

���� �������� ����� An expression of type "function returning �" for some type

� is converted to a value of type "pointer to function returning �" by substituting

a pointer to the function for the function itself. The conversion occurs implicitly in

all contexts except the function expression in a function call.

6.2.8. C-Ref: Conversions to Array and Function Types

No conversions to array or function types are possible. In particular, it is ��� per-

missible to convert between array types or between function types:

Page 127

extern int f();

double d;

d = ((double ())f) (); /* illegal */

d = (double) f(); /* OK */

d = (*(double (*)()) f)();

/* legal, but will have unexpected results */�

In the last example, the address of f is converted to a pointer to a function re-

turning type double; that pointer is then dereferenced and the function called. This

is legal, but the resulting value stored in d will probably be garbage unless f was

really defined (contrary to the external declaration above) to have type double ().

6.2.9. C-Ref: Conversions to the Void Type

Any value may be converted to type void. Of course, the result of such a conver-

sion cannot be used for anything. Such a conversion may occur only in a context

where an expression value will be discarded, such as in an expression statement.

6.3. C-Ref: The Usual Conversions

6.3.1. C-Ref: The Casting Conversions

Any of the conversions discussed earlier in this chapter may be explicitly per-

formed with a type cast without error. Here are some examples of legal cast ex-

pressions:

int i, *ip;

char c, *cp;

float f;

double d;

enum E { red=1, blue=2, green=3 } color;

...

ip = (int *) cp;

ip = (int *) ip; /* Trivial conversion. */

cp = (char *) ip;

i = (int) color;

color = (enum E) ((int) d);�

6.3.2. C-Ref: The Assignment Conversions

In a simple assignment expression, the types of the expressions on the left and

right sides of the assignment operator should be the same. If they are not, an at-

tempt will be made to convert the value on the right side of the assignment to the

type on the left side. The conversions that are legala subset of the possible con-

versionsare listed below.

�������������� ���������������

any arithmetic type any arithmetic type

Page 128

any pointer type the integer constant 0

pointer to � array of �

pointer to function function

Attempting any other conversion may elicit a warning or error, but some compilers

permit any casting conversion. Draft Proposed ANSI C permits the above conver-

sions but adds some additional restrictions.

6.3.3. C-Ref: The Usual Unary Conversions

The usual unary conversions determine whether and how a single operand is con-

verted before an operation is performed. The conversions are applied automatically

to operands of the unary !, -, ~, and * operators. They are also applied to each of

the operands of the binary << and >> operators. (Despite the fact that << and >>�

are binary operators, they do not perform the usual binary conversions. They mere-

ly perform the usual unary conversions on each operand separately.) Finally, the

usual unary conversions are applied to actual arguments in a function call before

the call is performed.

The purpose of these conversions is to reduce the large number of arithmetic and

pointer types to a smaller number that must be handled by the operators. The con-

versions are of two kinds. First, arithmetic values of narrow type are widened to a

larger type with the same value. For example, short integers are widened to type

int and floating-point numbers of type float are widened to type double. Second,

pointer-like references to arrays and functions are converted into actual pointers.

��������������������� ��������������

char, short int

unsigned char unsigned

unsigned short unsigned

float double

"array of �" "pointer to �"
"function returning �" "pointer to function returning �"�

An operand of any other type is unchanged.

The integral conversions listed above are, we believe, the most common in C im-

plementations. Draft Proposed ANSI C has a slightly different set of conversions,

which could be used as an alternative even in current C implementations.

Some implementations of C provide an optional compilation mode in which the im-

plicit conversion of type float to type double is suppressed. This is not compatible

with the original C language, but can be very useful if high-quality, efficient nu-

merical software is to be written. (This compilation mode would be compatible

with Draft Proposed ANSI C.)

Page 129

6.3.4. C-Ref: The Usual Binary Conversions

The usual binary conversions determine whether and how operands are converted

before a binary or ternary operation is performed. They are applied to the

operands of most binary operators and to the second and third operands in a condi-

tional expression. The purpose of these conversions is to reduce the large number

of arithmetic and pointer types to a smaller number that must be handled by the

operators. When two values must be operated upon in combination, they are first

converted to a single common type (and typically the result is also of that same

common type).

An operator that performs "the usual binary conversions" on its two operands first

performs the usual unary conversions on each of the operands independently (to

widen short values and to convert arrays and functions to pointers) and then effec-

tively performs one of the following conversions on the results of the unary con-

versions, all this being done before the operation itself is executed:

1. If either operand is not of arithmetic type, or if the two operands have the

same type, then no additional conversion is performed.

2. Otherwise, if one operand is of type double, then the other operand is con-

verted to type double.

3. Otherwise, if one operand is of type unsigned long int, then the other

operand is converted to type unsigned long int.

4. Otherwise, if one operand is of type long int and the other operand is of type

unsigned int, then each of the two operands is converted to type unsigned

long int.

5. Otherwise, if one operand is of type long int, then the other operand (which

now must be of type int) is converted to type long int.

6. Otherwise, if one operand is of type unsigned int, then the other operand is

converted to type unsigned int.

7. Otherwise, both operands must be of type int, and so no additional conversion

is performed.�

Rule number 4 is omitted in some implementations, including Draft Proposed AN-

SI C. When it is omitted, the combination of types long int and unsigned int re-

sult in type long int instead of unsigned long int. Here is a small program that

determines which conversion is in effect:

Page 130

unsigned int UI = -1;

long int LI = 0;

int main()

{

 if (UI < LI) printf("long+unsigned==long\n");

 else printf("long+unsigned==unsigned\n");

 return 0;

}�

Some implementations of C provide an optional compilation mode in which the im-

plicit conversion of type float to type double is suppressed. This is not compatible

with the original C language, but can be very useful if high-quality, efficient nu-

merical software is to be written. This conversion rule is present in Draft Pro-

posed ANSI C, which also has other subtle changes.

6.3.5. C-Ref: The Function Argument Conversions

When an expression appears as an argument in a function call, the result of the

expression is adjusted using the usual unary conversions before being passed as an

actual argument.

As described in the previous section, some implementations of C provide an option-

al compilation mode in which the implicit conversion of type float to type double�

is suppressed during the usual unary and binary conversions. When this mode is in

effect, the conversion of function arguments of type float to type double may still

be performed. None of the standard C library routines are prepared to accept argu-

ments of type float, because they all expect the automatic conversion to double to

occur.

In Draft Proposed ANSI C, arguments to functions specified with prototypes are

converted to the specified parameter types; the "usual" argument conversions are

not relevant. When a prototype is not present, the usual conversions are applied,

including the promotion of float to double.

6.3.6. C-Ref: Other Function Conversions

The declared types of the formal parameters of a function, and the type of its re-

turn value, are subject to certain adjustments that parallel the function argument

conversions. They are discussed in section "C-Ref: Adjustments to Parameter

Types".

Page 131

7. C-Ref: Expressions

C has an unusually rich set of operators that provide access to most of the opera-

tions provided by the underlying hardware. This chapter presents the syntax of ex-

pressions and describes the function of each of the operators.

7.1. C-Ref: General Comments

7.1.1. C-Ref: Objects and LValues

An ������ is a region of memory that can be examined and stored into. An ������

(pronounced "ell-value") is an expression that refers to an object in such a way

that the object may be altered as well as examined. Sometimes we also speak of

the result computed by such an expression as being an lvalue. (An expression or

result is called an lvalue because it may be used on the left-hand side of an as-

signment. Similarly, an expression that permits examination but not alteration of a

value is sometimes called an ������, because it can be used on the right-hand side

of an assignment.)

Some names are lvalues: names of variables declared to be of arithmetic, pointer,

enumeration, structure, or union type. Names of functions, names of arrays, and

enumeration constants, on the other hand, are not lvalues. Some operations on

non-lvalues can produce lvalues. For example, the name of an array is not an lval-

ue but references to elements of the array using subscripting expressions are lval-

ues. (In other words, one cannot modify an entire array variable using assignment,

but one can modify individual elements.) Besides names, the following forms of ex-

pressions may produce lvalues:

1. Every subscript expression �[�] is an lvalue, regardless of whether or not the

expressions � and � are lvalues.

2. A parenthesized expression is an lvalue if and only if the contained expression

is an lvalue.

3. A direct component selection expression �.���� is an lvalue if and only if the

expression � is an lvalue.

4. An indirect component selection expression �->���� is always an lvalue, re-

gardless of whether � is an lvalue.

5. An indirection expression *� is always an lvalue, regardless of whether � is an

lvalue.

No other form of expression can produce an lvalue. In particular, the result of an

assignment expression is never an lvalue, and a function call cannot produce an

lvalue.

Page 132

Some operators require certain of their operands to be lvalues:

1. The operand of a unary address operator & must be an lvalue.

2. The operand of a unary ++ or -- operator, whether prefix or postfix, must be

an lvalue.

3. The left operand of any assignment operator must be an lvalue.

No other operator requires an lvalue as an operand.

7.2. C-Ref: Expressions and Precedence

7.2.1. C-Ref: Precedence and Associativity of Operators

The grammar for expressions presented in this chapter completely specifies the

precedence of operators in C. However, it may be convenient to summarize the

rules here.

Each expression operator in C has a precedence level and a rule of associativity.

Where parentheses do not explicitly indicate the grouping of operands with opera-

tors, it may appear that an operand could be grouped with either of two operators.

In such cases the grouping is determined by the rules of precedence and associa-

tivity: The operand is grouped with the operator having higher precedence, but if

the two operators have the same precedence, the operand is grouped with the left

or right operator according to whether the operators are left-associative or right-

associative. (All operators having the same precedence level always have the same

associativity.) For example, in the expression

a * b + c�

the operand b is grouped with the multiplication operator *, because * has higher

precedence than +, and so the expression is treated as if it had been written

(a * b) + c�

Similarly, in the expression

a += b != c�

the operand b is grouped with the operator !=, because != has higher precedence

than +=, and so the expression is treated as if it had been written

a += (b != c)�

In the case of the expression

a - b + c�

the two operators - and + have the same precedence and are left-associative, so

the operand b is grouped with the operator to its left, resulting in the interpreta-

tion

(a - b) + c�

rather than

Page 133

a - (b + c)�

On the other hand, in the case of the expression

a = b += c�

the two operators = and += have the same precedence and are right-associative, so

the operand b is grouped with the operator to its right, resulting in the interpreta-

tion

a = (b += c)�

The table "C-Ref: C Operators in Order of Precedence" contains a concise list of

the C operators in order from the highest to the lowest precedence. The operators

are presented in this chapter in decreasing order of precedence.

All of the binary and ternary operators are left-associative except for the condition-

al and assignment operators, which are right-associative. The unary and postfix op-

erators are sometimes described as being right-associative, but this is needed only

to express the idea that an expression such as *x++ is interpreted as *(x++) rather

than as (*x)++. We prefer simply to state that the postfix operators have higher

precedence than the (prefix) unary operators.

In Draft Proposed ANSI C there is also a unary plus operator and a string con-

catenation expression (with no explicit operator).

7.2.1.1. C-Ref: C Operators in Order of Precedence

primary and postfix expressions

16 ����� �������� simple tokens

16 �[�] subscripting

16 �(...) function call

16 . direct selection

16 -> indirect selection

15 ++ --

postfix increment/decrement

unary operators

14 ++ --

prefix increment/decrement

14 sizeof size

14 (���������) casts (type conversion)

14 ~ bitwise not

14 ! logical not

14 - arithmetic negation

14 & address of

14 * indirection

binary and ternary operators

13L * / % multiplicative

12L + - additive

11L << >> left and right shift

10L < > <= >= relational

9L == != equality/inequality

8L & bitwise and

Page 134

7L ^ bitwise xor

6L | bitwise or

5L && logical and

4L || logical or

3R ? : conditional (ternary)

2R = += -= *= /= %= assignment

2R <<= >>= &= ^= |=

1L , sequential evaluation

The numbers on the left indicate relative precedence; larger numbers indicate

higher precedence. "L" indicates left-associative operators and "R" indicates right-

associative operators.

7.2.2. C-Ref: Overflow and Other Arithmetic Exceptions

For certain operations in C such as addition and multiplication, it may be that the

true mathematical result of the operation cannot be represented as a value of the

expected result type (as determined by the usual conversion rules). This condition

is called overflow (or, in some cases, underflow).

In general, the C language does not specify the consequences of overflow. One pos-

sibility is that an incorrect value (of the correct type) is produced. Another possi-

bility is that program execution is terminated. A third possibility is that some sort

of machine-dependent trap or exception occurs that may be detected by the pro-

gram in some implementation-dependent manner.

For certain other operations, the C language explicitly specifies that the effects

are unpredictable for certain operand values or (more stringently) that a value is

always produced but the value is unpredictable for certain operand values. If the

right-hand operand of the division operator / or the remainder operator, %, is zero,

then the effects are unpredictable, as for overflow. If the right-hand operand of a

shift operator << or >> is too large or negative, then an unpredictable value is

produced.

Traditionally, all implementations of C have ignored the question of signed integer

overflow, in the sense that the result is whatever value is produced by the ma-

chine instruction used to implement the operation. (Many computers that use a

two’s-complement representation for signed integers handle overflow of addition

and subtraction simply by producing the low-order bits of the true two’s-

complement result. No doubt many existing C programs depend on this fact, but

such code is technically not portable.) Floating-point overflow and underflow is

usually handled in whatever convenient way is supported by the machine; if the

machine architecture provides more than one way to handle exceptional floating-

point conditions, a library function may be provided to give the C programmer ac-

cess to such options.

For unsigned integers the C language is quite specific on the question of overflow:

Every operation on unsigned integers always produces a result value that is con-

gruent mod 2n to the true mathematical result of the operation (where � is the

number of bits used to represent the unsigned result). This amounts to computing

Page 135

the correct � low-order bits of the true result (of the true two’s-complement result

if the true result is negative, as when subtracting a big unsigned integer from a

small one).

As an example, suppose that objects of type unsigned are represented using 16 bits;

then subtracting the unsigned value 7 from the unsigned value 4 would produce

the unsigned value 65533; that is, 216-3, because this value is congruent mod 216

to the true mathematical result -3.

An important consequence of this rule is that operations on unsigned integers are

guaranteed to be completely portable between two implementations that use repre-

sentations having the same number of bits; moreover, any implementation can eas-

ily simulate the unsigned arithmetic of another implementation using some smaller

number of bits.

Despite the explicit rule for the handling of overflow, the operations of division

and remainder on unsigned integers nevertheless have unpredictable effects, as for

signed integers, when the the right-hand operand is 0.

7.3. C-Ref: Primary Expressions

There are three kinds of primary expressions: names (identifiers), literal constants,

and parenthesized expressions.

���������������������

����

�������

�������������������������

Function calls, subscript expressions, and component selection expressions were

traditionally listed as primary expressions in C, but we have included them in the

next section with the postfix expressions.

7.3.1. C-Ref: Names

The value of a name depends on its type. The type of a name is determined by the

declaration of that name (if any), as discussed in the chapter "C-Ref: Declarations".

The name of a variable declared to be of arithmetic, pointer, enumeration, struc-

ture, or union type evaluates to an object of that type; the name, considered as an

expression, is an lvalue.

An enumeration constant evaluates to the integer value associated with that enu-

meration constant; it is not an lvalue. In the example below, the six color names

are enumeration constants. The switch statement (described in section "C-Ref:

Switch Statement; Case and Default Labels") selects one of six statements to exe-

cute based on the value of the variable color.

Page 136

typedef enum { red, blue, green, cyan,

 yellow, magenta } colortype;

static colortype complementary(color)

 colortype color;

{

 switch (color) {

 case red: return cyan;

 case blue: return yellow;

 case green: return magenta;

 case cyan: return red;

 case yellow: return blue;

 case magenta: return green;

 }

}�

The name of an array evaluates to that array; it is not an lvalue. In contexts

where the result is subject to the usual conversions, the array value is immediate-

ly converted to a pointer to the first object in the array. This occurs in all con-

texts except as the argument to the sizeof operator, in which case the size of the

array is returned, rather than the size of a pointer.

{

 extern void PrintMatrix();

 int Matrix[10][10], total_length, row_length;

 total_length = sizeof Matrix;

 row_length = sizeof Matrix[0];

 PrintMatrix(Matrix); /* pointer to first

 element is passed */

}�

The name of a function evaluates to that function; it is not an lvalue. In contexts

where the result is subject to the usual conversions, the function value is immedi-

ately converted to a pointer to the function. This occurs in all contexts but two: as

the argument to the sizeof operator, where a function is illegal, and as the func-

tion in a function call expression, in which case the function itself is desired, and

not a pointer to it.

#include <math.h>

 /* Declares sin and cos functions. */

void PlotFunction(f, x0, x1)

 double (*f)(), x0, x1;

{

 ...

}

Page 137

double fn(x) /* Function to be plotted. */

 double x;

{

 return (sin(x) - 2.0 * cos(x));

}

void main()

{

 PlotFunction(fn, 0.01, 100.0);

 /* fn becomes a pointer */

}�

It is not possible for a name, as an expression, to refer to a label, typedef name,

structure component name, union component name, structure tag, union tag, or

enumeration tag. Names used for those purposes reside in name spaces separate

from the names that can be referred to by a name in an expression. Some of these

names may be referred to within expressions by means of special constructs. For

example, structure and union component names may be referred to using the . or

-> operators, and typedef names may be used in casts and as an argument to the

sizeof operator.

7.3.2. C-Ref: Literals

A literal (lexical constant) is a numeric constant, and when evaluated as an ex-

pression yields that constant as its value. A literal expression is never an lvalue.

See section "C-Ref: Constants" for a discussion of literals and their types and val-

ues.

7.3.3. C-Ref: Paranthesized Expressions

A parenthesized expression consists of a left parenthesis, any expression, and then

a right parenthesis.

���������������������������

(�������������)�

The type of a parenthesized expression is identical to the type of the enclosed ex-

pression; no conversions are performed. The value of a parenthesized expression is

the value of the enclosed expression, and will be an lvalue if and only if the en-

closed expression is an lvalue.

The purpose of the parenthesized expression is simply to delimit the enclosed ex-

pression for grouping purposes, either to defeat the default precedence of operators

or to make code more readable. For example:

x1 = (-b + discriminant)/(2.0 * a)�

Parentheses do not necessarily force a particular evaluation order. See section

"C-Ref: Order of Evaluation".

Page 138

7.4. C-Ref: Postfix Expressions

There are seven kinds of postfix expressions: subscripting expressions, two forms

of component selection (direct and indirect), function calls, postincrement expres-

sions and postdecrement expressions.

��������������������

������������������

��������������������

������������������������������

�������������

������������������������

�������������������������

Function calls, subscript expressions, and component-selection expressions were

traditionally listed as primary expressions, but their syntax is more related to the

postfix expressions.

7.4.1. C-Ref: Subscripting Expressions

A subscripting expression consists of a postfix expression, a left bracket, an arbi-

trary expression, and a right bracket. This construction is used for array sub-

scripting, where the postfix expression (commonly an array name) evaluates to a

pointer to the beginning of the array and the other expression to an integer offset.

�����������������������

�������������������[������������]�

In C, the expression �1[�2] is by definition precisely equivalent to the expression

*((�1)+(�2)). The usual binary conversions are applied to the two operands, and

the result is always an lvalue. Note that the operand for the * operator must be a

pointer, and the only way that the result of the + operator can be a pointer is for

one operand to be a pointer and the other an integer, and therefore it follows that

for �1[�2] one operand must be a pointer and the other an integer. It is conven-

tional for the first operand to be the pointer.

char buffer[100], *bptr = buffer;

int i = 99;

buffer[0] = ’\0’;

bptr[i] = bptr[0];�

A consequence of the definition of subscripting is that arrays use 0-origin index-

ing. In the example above, the first element allocated for the 100-element array

buffer is referred to as buffer[0], and the last element as buffer[99]. The names

buffer and bptr both point to the same place, namely buffer[0], the first element

of the buffer array, and they can be used in identical ways within subscripting

expressions. However, bptr is a variable (an lvalue), and thus can be made to point

to some other place:

bptr = &buffer[6];�

Page 139

after which the expression bptr[-4] refers to the same place as the expression

buffer[2]. (This illustrates the fact that negative subscripts make sense in certain

circumstances.) An assignment can also make bptr point to no place at all:

bptr = NULL; /* Store a null pointer into bptr. */�

On the other hand, the array name buffer is not an lvalue and cannot be modified;

considered as a pointer, it always points to the same fixed place.

Multidimensional array references are formed by composing subscripting operators,

not by putting multiple expressions within the brackets.

{

#define SIZE 10

 double matrix[SIZE][SIZE];

 int i, j;

 /* Set up an identity matrix. Note: this

 method is clear, but is not the fastest

 way to set up such a matrix. */

 for (i = 0; i < SIZE; i++)

 for (j = 0; j < SIZE; j++)

 matrix[i][j] = ((i == j) ? 1.0 : 0.0);

 ...

}�

It is bad programming style to use a comma expression within the subscripting

brackets, because it might mislead a reader familiar with other programming lan-

guages to think that it means subscripting of a multidimensional array. For exam-

ple, the expression

commands[k=n+1, 2*k]�

might appear to be a reference to an element of a two-dimensional array named

commands with subscript expressions k=n+1 and 2*k, whereas its actual interpreta-

tion in C is as a reference to a one-dimensional array named commands with sub-

script 2*k after k has been assigned n+1. If a comma expression is really needed

(and it is hard for us to think of a plausible example), enclose it in parentheses to

indicate that it is something unusual:

commands[(k=n+1, 2*k)]�

It is possible to use pointers and casts to refer to a multidimensional array as if it

were a one-dimensional array. This may be desirable for reasons of efficiency. It

must be kept in mind that arrays in C are stored in row-major order. Here is an

example of such trickery:

Page 140

{

#define SIZE 10

 double matrix[SIZE][SIZE];

 int i;

 /* Set up an identity matrix. Tricky but fast.

 First clear the matrix, treating it as a

 one-dimensional array of length SIZE*SIZE.

 */

 for (i = 0; i < SIZE*SIZE; i++)

 ((double *) matrix)[i] = 0.0;

 /* Now install the 1.0 elements. */

 for (i = 0; i < SIZE*SIZE; i += (SIZE + 1))

 ((double *) matrix)[i] = 1.0;

 ...

}�

7.4.2. C-Ref: Component Selection

Component selection operators are used to access fields (components) of structure

and union types.

���������������������������������

��������������������������

����������������������������

�����������������������������

�������������������.�����

�������������������������������

�������������������->������

A direct component selection expression consists of a postfix expression, a period .,

and a name. The postfix expression must be of a structure or union type, and the

name must be the name of a component of that type. The value of the selection

operation is the named member of the union or structure and is an lvalue if:

1. the expression before the period is an lvalue, and

2. the selected component is not an array type�

The first condition is true for all structure and union values except those returned

by a function.

Some C implementations, including some UNIX ones, permit structure-returning

functions but do not allow the return values of such functions to have components

selected from them. We regard this as a deficiency.

An indirect component selection expression consists of a postfix expression, the op-

erator ->, and a name. The value of the postfix expression must be a pointer to a

structure or union type, and the name must be the name of a component of that

Page 141

structure or union type. The value is the named member of the union or structure

and is an lvalue unless the member is an array. The expression �->���� is by def-

inition precisely equivalent to the expression (*�).����.

{

 static struct {float x, y; } Point, *Point_()Ptr;

 /* Set both components of Point to 0.0 in a

 roundabout fashion to demonstrate "->". */

 Point.x = 0.0; /* Sets x to 0.0 */

 Point_()Ptr = &Point;

 Point_()Ptr->y = 0.0; /* Sets y to 0.0 */

}�

7.4.3. C-Ref: Function Calls

A function call consists of a postfix expression (the ��������� ����������), a left

parenthesis, a possibly empty sequence of expressions (the �������� �����������)

separated by commas, and then a right parenthesis.

����������������

�������������������(����������������opt��)

�����������������

���������������������

����������������,�����������������������

The type of the function expression must be "function returning �" for some type

�, in which case the result of the function call is of type �. The result is not an

lvalue. If � is void, however, then the function call produces no result and may

not be used in a context that requires the call to yield a result.

Some implementations of C permit function pointers to be used in function call

expressions:

int (*f)();

...

f(x,y); /* call function through pointer */�

The advantage of this generalization is that it avoids overuse of the clumsy nota-

tion (*f)(x,y), and many implementations allow this at least when f is the formal

parameter of a function. Draft Proposed ANSI C permits function pointers to be

used in function calls generally.

The arguments are each converted according to the usual argument conversions,

but no other conversions or checks are required of the compiler. In particular, the

compiler is not required to issue any warning message or take any other special

action if the number of actual arguments does not match the number of formal pa-

rameters of the function being called, or if the (converted) type of an actual argu-

ment does not match the (promoted) type of the corresponding formal parameter.

The reason is that in the general case information about the formal parameters is

not available to the compiler, because declarations of external functions do not

Page 142

necessarily contain any information about the formal parameters. On the other

hand, the compiler is not forbidden to issue warnings when the information needed

to make such checks happens to be available.

After the actual arguments have been evaluated and converted, they are copied for

transmission to the called function; thus, all arguments are passed by value. With-

in the called function the names of formal parameters are lvalues, but assigning to

a formal parameter changes only the value of the formal parameter and has no ef-

fect on any actual argument that may happen to be an lvalue. For example, consid-

er this code:

/* Computes y to the fourth power. */

double power4(y)

 double y;

{

 y *= y; /* Square the value of y. */

 return (y * y); /* Square again. */

}

void main()

{

 double x, z;

 ...

 x = 3.0;

 z = power4(x);

 ...

}�

The function power4 uses its formal parameter to hold an intermediate result (the

square of the original argument). The motivation for this method is that it re-

quires only two multiplications, whereas computing y*y*y*y would require three.

When the function power4 is called from routine main, the assignment to y in the

function power4 changes the value of y but does not change the value of the vari-

able x within main. After the assignment to z, z has the value 81.0 and x has the

value 3.0 (not 9.0).

It should be noted, however, that when a pointer is passed as an argument, the

pointer itself is copied but the object pointed to is not copied. By using pointers, a

function and its caller can cooperate in allowing the called function to modify an

object supplied by the caller.

If a function whose return type is not void is called in a context where the value

of the function would be discarded, the compiler may issue a warning to that ef-

fect. The intent to discard the result of the function call may be made explicit by

using a cast:

{

 ...

 (void) strcat(word, suffix);

 /* Discard result of strcat. */

}�

Page 143

Comma expressions may be arguments to functions if they are enclosed in paren-

theses so that their parts are not interpreted as separate arguments. We can’t

think of a plausible reason for doing this, but here is an implausible example:

int main()

{

 int i, j;

 f((i=1, i), (j=1, j)); /* legal, but strange */

 ...

}�

7.4.4. C-Ref: Postincrement Operator

The postfix operator ++ performs "postincrementation," a side effect-producing op-

eration.

���������������������������

�������������������++

The operand must be an lvalue and may be of any scalar type. The constant 1 is

added to the operand, modifying the operand. The result is the ��� value of the

operand, before it was incremented. The result is not an lvalue. The usual binary

conversions are performed on the operand and the constant 1 before the addition is

performed, and the usual assignment conversions are performed when storing the

sum back into the operand. The type of the result is that of the lvalue operand be-

fore conversion.

This operation may produce unpredictable effects if overflow occurs and the

operand is a signed integer or floating-point number. The result of incrementing

the largest representable value of an unsigned type is 0.

If the operand is a pointer, say of type "pointer to �" for some type �, the effect

is to move the pointer forward beyond the object pointed to, as if to move the

pointer to the next element within an array of objects of type �. (On a byte-

addressed computer, this means advancing the pointer by sizeof(T) bytes.) Howev-

er, the value of the expression is the pointer before modification. It is very com-

mon to use the postincrement operator when scanning the elements of an array or

string; here is an example of counting the number of characters in a string.

int strlen(cp)

 char *cp;

{

 int count = 0;

 while (*cp++) count++;

 return count;

}�

Page 144

7.4.5. C-Ref: Postdecrement Operator

The postfix operator -- performs "postdecrementation," a side effect-producing op-

eration.

���������������������������

�������������������--�

The operand must be an lvalue and may be of any scalar type. The constant 1 is

subtracted from the operand and the result stored back into the lvalue. The result

is the ��� value of the operand, before it was decremented, which is not an lvalue.

The usual binary conversions are performed on the operand and the constant 1 be-

fore the subtraction is performed, and the usual assignment conversions are per-

formed when storing the difference back into the operand. The type of the result

is that of the lvalue operand before conversion.

This operation may produce unpredictable effects if overflow occurs and the

operand is a signed integer or floating-point number. The result of decrementing

the value 0 of an unsigned integer type is the largest representable value of that

type.

If the operand is a pointer, say of type "pointer to �" for some type �, the effect

is to move the pointer back over an object of type � preceding the one originally

pointed to, as if to move the pointer to the previous element within an array of ob-

jects of type �. (On a byte-addressed computer, this means backing up the pointer

by sizeof(T) bytes.) However, the value of the expression is the pointer before

modification.

7.5. C-Ref: Unary Expressions

There are several kinds of unary expressions.

�������������������

������������������

���������������

�����������������

����������������������

���������������������������

���������������������������

������������������

����������������������

�����������������������

������������������������

The unary operators have precedence lower than the postfix expressions but higher

than all binary and ternary operators. For example, the expression *x++ is inter-

preted as *(x++), not as (*x)++.

Draft Proposed ANSI C also has a unary plus expression.

Page 145

7.5.1. C-Ref: Casts

A cast expression consists of a left parenthesis, a type name, a right parenthesis,

and an operand expression.

�������������������

(�����������)������������������

The cast causes the operand value to be converted to the type named within the

parentheses. Any permissible conversion may be invoked by a cast expression. The

result is not an lvalue.

extern char *alloc();

struct S *p;

p = (struct S *) alloc(sizeof(struct S));�

Some implementations of C incorrectly ignore certain casts whose only effect is to

make a value "narrower" than normal. For example, suppose that type unsigned

short is represented in 16 bits and type unsigned is represented in 32 bits. Then

the value of the expression

(unsigned)(unsigned short)0xFFFFFF�

ought to be 0xFFFF, because the cast (unsigned short) should cause truncation of

the value 0xFFFFFF to 16 bits, and then the cast (unsigned) should widen that val-

ue back to 32 bits. Deficient compilers fail to implement this truncation effect and

generate code that passes the value 0xFFFFFF through unchanged. Similarly, for the

expression

(double)(float)3.1415926535897932384�

deficient compilers do not produce code to reduce the precision of the approxima-

tion to pi to that of a float, but pass through the double-precision value un-

changed. For maximum portability, we advise programmers to truncate values by

storing them into variables or performing explicit masking operations (such as

with the binary bitwise AND operator &) rather than relying on narrowing casts.

7.5.2. C-Ref: Size of Operator

The sizeof operator is used to obtain the size of a type or data object.

��������������������

sizeof�(�����������)

sizeof������������������

The sizeof expression has two forms: the operator sizeof followed by a parenthe-

sized type name, or the operator sizeof followed by an operand expression.

Applying the sizeof operator to a parenthesized type name yields the size of an

object of the specified type; that is, the amount of memory (measured in storage

units) that would be occupied by an object of that type. The type name may not

name an array type with no explicit length, or a function type, or the type void. If

the type name is a structure, union, or enumeration type definition (certainly a

poor programming style) the effect of the sizeof expression should ��� be to create

a new type, but only to compute its length.

Page 146

Applying the sizeof operator to an expression yields the same result as if it had

been applied to the name of the type of the expression. The sizeof operator does

not of itself cause any of the usual conversions to be applied to the expression in

determining its type, but if the expression contains operators that do perform usu-

al conversions, then those conversions are considered when determining the type.

For example, applying sizeof to the name of an array produces the total size of

the array; this is possible because the sizeof operator does not cause the array to

be converted to a pointer first. Likewise, if the variable v is of type short, then

sizeof(v) is the same as sizeof(short). However, sizeof(v+0) is the same as

sizeof(int), which might not be the same as sizeof(short). This is because the

operator + performs the usual conversions, causing the sum of v and 0 to have

type int.

The result of applying sizeof to an expression can always be deduced at compile

time by examining the types of the objects in the operand expression. The result of

sizeof never depends on the particular values of the objects at run time (except

insofar as the value of an integer literal may determine whether or not it is con-

sidered to be a long constant, but then again the value of a literal is determinable

at compile time).

When sizeof is applied to an expression, the expression is analyzed at compile

time to determine its type, but the expression itself is not compiled into executable

code. This means that any side effects that might be produced by execution of the

expression will not take place. For example, execution of the expression

k = sizeof(j++)�

will assign some value to k ��� �������� ��������� j.

Applying the sizeof operator to a structure member that is a bit field produces

the size of the declared type of the member; the size of the field in bits does not

affect the result. This usage is probably misleading and should be avoided.

The original definition of C did not specify the type of the result of the sizeof op-

erator. We recommend that the result of the sizeof operator be either of type un-

signed int or of type unsigned long at the discretion of the implementor. Normally

it will be unsigned int unless unsigned int is too small to represent a pointer in

the particular implementation, in which case unsigned long must be used. Some

implementations of C use int or long int as the type of the result of sizeof, but

this is an inferior choice because it may be impossible to represent the size of a

very large array, say one that spans more than half the total address space.

There is, on the face of it, a syntactic ambiguity in an expression such as

sizeof(long)-2�

It could be interpreted as three unary operators (unary negation -, the cast (long),

and sizeof) to be applied successively to the value 2:

sizeof((long)(-2))�

Alternatively, it could be interpreted as a binary subtraction operator - whose

operands are sizeof(long) and 2:

(sizeof(long))-2�

Page 147

This ambiguous case is resolved quite arbitrarily by declaring that the latter inter-

pretation shall be used.

7.5.3. C-Ref: Unary Minus

The unary operator - computes the arithmetic negation of its operand. The

operand may be of any arithmetic type. The usual unary conversions are performed

on the operand. The result is not an lvalue.

�������������������������

-������������������

A unary minus expression "-�" may be considered to be a shorthand notation for

"0-(�)"; the two expressions in effect always perform the same computation. This

computation may produce unpredictable effects if the operand is a signed integer

or floating-point number and overflow occurs.

For an unsigned integer operand �, the result is always unsigned and equal to

2n-�, where n is the number of bits used to represent the result. Because the re-

sult is unsigned, it can never be negative. This may seem strange, but note, how-

ever, that (-�)+� is equal to 0 for any unsigned integer �. (This identity also holds

for any signed integer ��for which -� is well defined.)

7.5.4. C-Ref: Logical Negation

The unary operator ! computes the logical negation of its operand. The operand

may be of any scalar type.

������������������������������

!������������������

The usual unary conversions are performed on the operand. The result of the ! op-

erator is of type int; the result is 1 if the operand is zero (null in the case of

pointers, 0.0 in the case of floating-point values) and 0 if the operand is not zero

(nonnull, not 0.0). The result is not an lvalue. The expression !(�) is identical in

meaning to (�)==0.

/* Assume that assertion_failure accepts a string

 and reports it as a message to the user. */

#define assert(x,s) if (!(x)) assertion_failure(s)

...

assert(num_cases > 0, "No test cases.");

average = total_points/num_cases;

...�

7.5.5. C-Ref: Bitwise Negation

The unary operator ~ computes the bitwise negation of its operand.

������������������������������

~������������������

Page 148

The operand may be of any integral type. The usual unary conversions are per-

formed on the operand. Every bit in the binary representation of the result is the

inverse of what it was in the (converted) operand. The result is not an lvalue.

#define LOW_ADDRESS_BITS 3L

long address;

...

/* Clear the low-order address bits. For a 32-bit

 address this performs a bitwise AND of the

 address with 037777777774. However, the use of

 ~ allows the code to work properly

 no matter what the size of the address is.

*/

address &= ~LOW_ADDRESS_BITS ;�

Because different implementations may use different representations for signed in-

tegers, the result of applying the bitwise NOT operator ~ to signed operands may

not be portable. We recommend using ~ only on unsigned operands for portable

code.

7.5.6. C-Ref: Address Operator

The unary operator & returns a pointer to its operand, which must be an lvalue.

���������������������

&������������������

If the type of the operand for & is "�," then the type of the result is "pointer to

�." None of the usual conversions are relevant to the & operator, and its result is

never an lvalue.

The original description of C specified that it was illegal to apply the unary ad-

dress operator & to a register variable, and some compilers still enforce this re-

striction. However, since register is treated only as a hint to the compiler and not

a mandatory requirement, it seems appropriate to allow such usage, inasmuch as

on some computers the registers really are addressable as if they were memory lo-

cations. On the other hand, when the target computer does not have addressable

registers, applying & to a register variable may simply defeat the declaration of

the variable as register, forcing it to be of class auto instead. We recommend that

new compilers take this latter approach and perhaps also issue a warning message.

In any case, such usage should be regarded as nonportable.

It is incorrect for the operand expression to be the name of a function or the

name of an array, because such a name is not an lvalue. Recall that in most con-

texts a function value is implicitly converted to a pointer to that function anyway,

in exactly the same manner as if & had been used, and an array value is implicitly

converted to a pointer to the first element.

extern int i, f();

int *ip, (*fp)();

ip = &i; /* ’&’ needed */

fp = f; /* ’&’ not needed or permitted */�

Page 149

Some compilers permit the & operator to be applied to a function or array and con-

sider it to have no effect, but this is confusing at best. Furthermore, Draft Pro-

posed ANSI C assigns a different meaning to the application of & applied to an ar-

ray, causing older programs that use & in this way to break.

7.5.7. C-Ref: Indirection

The unary operator * performs indirection through a pointer. Thus the & and * op-

erators are each the inverse of the other.

�������������������������

*������������������

The usual unary conversions are performed on the operand, but the only relevant

conversions are from arrays and functions to pointers. The (converted) operand

must be a pointer, and the result is an lvalue referring to the object to which the

operand points. If the type of the operand is "pointer to �," then the type of the

result is simply "�."

int i,*p;

p = &i; /* p now points to variable i */

p = 10; / sets value of i to 10 /*�

The run-time effects of applying the indirection operator to a null pointer are un-

defined. It may return an unpredictable value, cause a trap, or perform some com-

pletely unpredictable action.

7.5.8. C-Ref: Preincrement Operator

The unary operator ++ performs "preincrementation," a side-effect producing oper-

ation. (There is also a postfix form of this operator.)

��������������������������

++������������������

The operand must be an lvalue and may be of any scalar type. The constant 1 is

added to the operand and the result stored back in the lvalue. The result is the

new (incremented) value of the operand but is not an lvalue. The expression ++(�)

is identical in meaning to (�)+=1. (The operator +=, a compound assignment opera-

tor, is described in section "C-Ref: Compound Assignment".) The usual binary con-

versions are performed on the operand and the constant 1 before the addition is

performed, and the usual assignment conversions are performed when storing the

sum back into the operand. The type of the result is that of the lvalue operand be-

fore conversion.

static int uniqueint()

/* uniqueint: Successive calls to this routine

 return the integers 1, 2, ... without check for

 overflow. */

{

 static int count = 0;

 return ++count;

}�

Page 150

This operation may produce unpredictable effects if overflow occurs and the

operand is a signed integer or floating-point number. The result of incrementing

the largest representable value of an unsigned type is 0.

If the operand is a pointer, say of type "pointer to �" for some type �, the effect

is to move the pointer forward beyond the object pointed to, as if to move the

pointer to the next object within an array of objects of type �. (On a byte-

addressed computer, this means advancing the pointer by sizeof(T) bytes.)

The expression statements x++; and ++x; are equivalent, with x++; seeming to be

more popular.

7.5.9. C-Ref: Predecrement Operator

The unary operator -- performs "predecrementation," a side-effect producing oper-

ation. (There is also a postfix form of this operator.)

��������������������������

--������������������

The operand must be an lvalue and may be of any scalar type. The constant 1 is

subtracted from the operand and the result stored back in the lvalue. The result is

the new (decremented) value of the operand but is not an lvalue. The expression -

-(�) is identical in meaning to (�)-=1. (The operator -=, a compound assignment

operator, is described in section "C-Ref: Compound Assignment".) The usual binary

conversions are performed on the operand and the constant 1 before the subtrac-

tion is performed, and the usual assignment conversions are performed when stor-

ing the difference back into the operand. The type of the result is that of the lval-

ue operand before conversion.

This operation may produce unpredictable effects if overflow occurs and the

operand is a signed integer or floating-point number. The result of decrementing

the value 0 of an unsigned integer type is the largest representable value of that

type.

If the operand is a pointer, say of type "pointer to �" for some type �, the effect

is to move the pointer back over an object of type � preceding the one originally

pointed to, as if to move the pointer to the previous element within an array of ob-

jects of type �. (On a byte-addressed computer, this means backing up the pointer

by sizeof(T) bytes.)

Page 151

int strrev(s1, s2)

/* strrev: copy string s2 in reversed form into

 string s1. s2 should be a pointer to

 the first character of a null-terminated

 string. s1 should point to an area that

 will receive a null-terminated string

 of the same length but with reversed

 contents. */

 char *s1, *s2;

{

 char *p = s1;

 while (*p++); /* Locate end of first string. */

 --p; /* Overshot: back up to the null. */

 /* Now copy the characters in reverse order. */

 while (p > s1)

*s2++ = *--p;

 s2 = ’\0’; / Terminate the result string. */

}�

The expression statements x--; and --x; are equivalent, with x--; seeming to be

more popular.

7.6. C-Ref: Binary Operator Expressions

A binary operator expression consists of two expressions separated by a binary op-

erator. In order of decreasing precedence, the kinds of binary expressions are:

�������������������������

�������������������

����������������

���������������������

�������������������

����������������������

����������������������

����������������������

All of the binary operators described in this section are left-associative. For exam-

ple, the operators * and % have the same level of precedence, and therefore the ex-

pression x*y%z is treated as (x*y)%z, not as x*(y%z); similarly, the expression x%y*z

is treated as (x%y)*z, not as x%(y*z).

For each of the binary operators described in this section, both operands are fully

evaluated (but in no particular order) before the operation is performed.

7.6.1. C-Ref: Multiplicative Operators

The three multiplicative operators, * (multiplication), / (division), and % (remain-

der), have the same precedence and are left-associative.

Page 152

����������������������������

����������������

���

��������

*��/��%�

�������������� The binary operator * indicates multiplication. Each operand may

be of any arithmetic type. The usual binary conversions are performed on the

operands, and the type of the result is that of the converted operands. The result

is not an lvalue. For integral operands, integer multiplication is performed; for

floating-point operands, floating-point multiplication is performed.

The multiplication operator may produce unpredictable effects if overflow occurs

and the operands (after conversion) are signed integers or floating-point numbers.

If the operands are unsigned integers, the result is congruent mod 2n to the true

mathematical result of the operation (where � is the number of bits used to repre-

sent the unsigned result).

The * operator is assumed to be commutative and associative, and the compiler is

permitted to rearrange an expression with several multiplications, even in the

presence of parentheses and without regard to avoiding overflow. For example, the

compiler may freely interpret the expression a*(b*c)*d as if it were (c*a)*(b*d),

subject to the restrictions discussed in section

�������� The binary operator / indicates division. Each operand may be of any

arithmetic type. The usual binary conversions are performed on the operands, and

the type of the result is that of the converted operands. The result is not an lval-

ue.

For floating-point operands, floating-point division is performed.

For integral operands, if the mathematical quotient of the operands is not an exact

integer, then the result will be one of the two integers closest to the mathematical

quotient of the operands. Of those two integers, the one closer to 0 must be cho-

sen if both operands are positive (that is, division of positive integers is truncating

division). Note that this completely specifies the behavior of division for unsigned

operands. If either operand is negative, then the choice is left to the discretion of

the implementor. For maximum portability, programs should therefore avoid de-

pending on the behavior of the division operator when applied to negative integral

operands.

The division operator may produce unpredictable effects if overflow occurs and the

operands (after conversion) are signed integers or floating-point numbers. Note

that overflow can occur for signed integers represented in two’s-complement form

if the most negative representable integer is divided by -1; the mathematical result

is a positive integer that cannot be represented. Overflow cannot occur if the

operands are unsigned integers.

The consequences of division by zero, whether integer or floating-point, are ma-

chine dependent.

Page 153

��������� The binary operator % computes the remainder when the first operand

is divided by the second. Each operand may be of any integral type. The usual bi-

nary conversions are performed on the operands, and the type of the result is that

of the converted operands. The result is not an lvalue. The library functions div,

ldiv, and fmod also compute remainders of integers and floating-point values.

It is always true that (a/b)*b + a%b is equal to a if b is not 0, so the behavior of

the remainder operation is coupled to that of integer division. When both operands

are positive, the remainder operation will always be equivalent to the mathematical

"mod" operation. Note that this completely specifies the behavior of the remainder

operation for unsigned operands. If either operand is negative, the behavior will be

machine dependent in a manner corresponding to the machine dependence of inte-

ger division. For maximum portability, programs should therefore avoid depending

on the behavior of the remainder operator when applied to negative integral

operands.

The remainder operator may produce unpredictable effects if performing division

on the two operands would produce overflow. Note that overflow can occur for

signed integers represented in two’s-complement form if the most negative repre-

sentable integer is divided by -1; the mathematical result of the division is a posi-

tive integer that cannot be represented, and therefore the results are unpre-

dictable, even though the remainder itself (zero) is representable. Overflow cannot

occur if the operands are unsigned integers.

The consequences of taking a remainder with a second operand of zero are ma-

chine dependent.

/* Compute the greatest common divisor by Euclid’s

 algorithm. The result is the largest integer

 that evenly divides x and y.

 */

unsigned gcd(x, y)

 unsigned x, y;

{

 while (y != 0) {

 unsigned temp = y;

y = x % y;

x = temp;

 }

 return x;

}�

7.6.2. C-Ref: Additive Operators

The two additive operators, + (addition) and - (subtraction), have the same prece-

dence and are left-associative.

Page 154

����������������������

�������������������������

��

�������

+��-�

�������� The binary operator + indicates addition. The usual binary conversions

are performed on the operands. The operands may both be arithmetic or one may

be a pointer and the other an integer. No other operand types are allowed. The re-

sult is not an lvalue.

When the operands are arithmetic, the type of the result is that of the converted

operands. For integral operands, integer addition is performed; for floating-point

operands, floating-point addition is performed.

When adding a pointer � and an integer �, it is assumed that the object that �

points to lies within an array of such objects, and the result is a pointer to that

object within the presumed array that lies � objects away from the one � points to.

For example, �+1 (or 1+�) points to the object just after the one � points to, and

�+(-1) (or (-1)+�) points to the object just before. It is illegal for � to be of type

"pointer to function." (Functions cannot be elements of arrays.)

The addition operator may produce unpredictable effects if overflow occurs and the

operands (after conversion) are signed integers or floating-point numbers, or if ei-

ther operand is a pointer. If the operands are both unsigned integers, the result is

congruent mod 2n to the true mathematical result of the operation (where � is the

number of bits used to represent the unsigned result).

The + operator is assumed to be commutative and associative, and the compiler is

permitted to rearrange an expression with several additions, even in the presence

of parentheses and without regard to avoiding overflow. For example, the compiler

may freely interpret the expression a+(b+c)+d as if it were (c+a)+(b+d), subject to

the restrictions discussed in section "C-Ref: Order of Evaluation".

����������� The binary operator - indicates subtraction. The usual binary conver-

sions are performed on the operands. The operands may both be arithmetic or may

both be of the same pointer type, or the left operand may a pointer and the other

an integer. No other operand types are permitted. The result is not an lvalue.

If the operands are both arithmetic, the type of the result is that of the converted

operands. For integral operands, integer subtraction is performed; for floating-point

operands, floating-point subtraction is performed. Note that the result of subtract-

ing one unsigned integer from another is always unsigned and therefore cannot be

negative. However, unsigned numbers always obey such identities as (a+(b-a))==b

and (a-(a-b))==b.

Subtraction of an integer from a pointer is analogous to addition of an integer to a

pointer. When subtracting an integer � from a pointer �, it is assumed that the

object that � points to lies within an array of such objects, and the result is a

pointer to that object within the presumed array that lies -� objects away from the

one � points to. For example, �-1 points to the object just before the one � points

Page 155

to, and �-(-1) points to the object just after. It is illegal for � to be of type "point-
er to function." (Functions cannot be elements of arrays.)

Given two pointers � and � of the same type, the difference �-� is an integer �

such that adding � to � yields �. The type of the difference may be either int or

long, depending on the implementation. The result is well defined and portable on-

ly if the two pointers point to objects in the same array, or at least are aligned as

if they did. If either of the pointers is null, the result is undefined. It is illegal for

either pointer to be of type "pointer to function."

The subtraction operator may produce unpredictable effects if overflow occurs and

the operands (after conversion) are signed integers or floating-point numbers, or if

either operand is a pointer. If the operands are both unsigned integers, the result

is congruent mod 2n to the true mathematical result of the operation (where � is

the number of bits used to represent the unsigned result).

7.6.3. C-Ref: Shift Operators

The binary operator << indicates shifting to the left and the binary operator >> in-

dicates shifting to the right. Both have the same precedence and are left-

associative.

�������������������

�������������������

���

����������������

<<��>>�

Each operand must be of integral type. The usual unary conversions are performed

���������� on each operand (the usual binary conversions are ��� used for the shift

operators), and the type of the result is that of the converted left operand. The re-

sult is not an lvalue.

The first operand is a quantity to be shifted, and the second operand specifies the

number of bit positions by which the first operand is to be shifted. The direction

of the shift operation is controlled by which operator (<< or >>) is used. The opera-

tor << shifts the value of the left operand to the left; excess bits shifted off to the

left are discarded, and 0-bits are shifted in from the right. The operator >> shifts

the value of the left operand to the right; excess bits shifted off to the right are

discarded. The bits shifted in from the left for >> depend on the type of the con-

verted left operand: If it is unsigned, then 0-bits are shifted in from the left; but

if it is signed, then at the implementor’s option either 0-bits or copies of the left-

most bit of the left operand are shifted in from the left.

Table "C-Ref: Computing the Greatest Common Divisor" shows how unsigned shift

operations may be used to compute the greatest common divisor of two integers by

the binary algorithm. Although this method is a bit more complicated than the Eu-

clidean algorithm, it may also be faster, because in some implementations of C the

remainder operation is rather slow, especially for unsigned operands.

Page 156

The result value is undefined if the value of the right operand is negative, so

specifying a negative shift distance does ��� (necessarily) cause << to shift to the

right or >> to shift to the left. The result value is also undefined if the value of

the right operand is greater than or equal to the width (in bit positions) of the

value of the converted left operand. Note, however, that the right operand may be

0, in which case no shift occurs and the result value is identical to the value of

the converted left operand.

The two shift operators have the same precedence and are left-associative. One can

exploit this fact to write expressions that are visually pleasing but semantically

confusing:

b << 4 >> 8�

If b is a 16-bit quantity, this expression extracts the middle 8 bits. As always, it is

better to use parentheses when there is any possibility of confusion:

(b << 4) >> 8�

The original description of C specified that the >> operator with a signed left

operand might shift in ������ 0-bits or copies of the leftmost bit of the left

operand, at the discretion of the implementor. The intent was to permit the imple-

mentor the freedom to implement a right shift efficiently, but the effect has been

to discourage any use of >> on a signed left operand. If a new compiler is to use a

two’s-complement or one’s-complement representation for signed integers, we

strongly recommend that right shifts on signed integers be performed by replicat-

ing the sign bit. This is the most consistent with the definition and use of signed

integer types. The programmer can always cast the left operand to an unsigned

type to force the shifting in of 0-bits.

Because different implementations may use different representations for signed in-

tegers, and because implementations using the same representation may neverthe-

less differ in their handling of right shifts on signed integers, the result of apply-

ing the shift operators << and >> to signed operands may not be portable. We rec-

ommend using << and >> only on unsigned operands for portable code.

7.6.3.1. C-Ref: Computing the Greatest Common Divisor
/* Compute the greatest common divisor by the so-called

 binary algorithm. The result is the largest integer

 that evenly divides x and y. Only subtraction,

 shifts, and bitwise operations are used; the remain-

 der operation (which may be expensive) is not used.

 */

unsigned binary_gcd(x, y)

 unsigned x, y;

{

 unsigned temp;

 unsigned common_power_of_two = 0;

Page 157

 /* Special cases: if either argument is zero,

 then return the other one. */

 if (x == 0) return y;

 if (y == 0) return x;

 /* Determine the largest power of two that

 divides both x and y. */

 while (((x | y) & 1) == 0) {

 x = x >> 1; /* One could write "x >>= 1;" */

 y = y >> 1;

 ++common_power_of_two;

 }

 while ((x & 1) == 0) x = x >> 1;

 while (y) {

 /* At this point x is guaranteed odd,

 and y is nonzero. */

 while ((y & 1) == 0) y = y >> 1;

 /* At this point both x and y are odd. */

 temp = y;

 if (x > y) y = x - y;

 else y = y - x;

 x = temp;

 /* Now x has the old value of y; y was odd, so

 now x is odd. Now y is even, because it

 was computed as the difference of two odd

 numbers; therefore it will be right-shifted

 at least once on the next iteration. */

 }

 return (x << common_power_of_two);

}

7.6.4. C-Ref: Relational Operators

The binary operators <, <=, >, and >= indicate comparison.

������������������������

����������������

���

���������������

<���<=���>���>=�

The usual binary conversions are performed on the operands. The operands may

both be of arithmetic types or may both be of the same pointer type. The result is

always of type int and has the value 0 or 1. The result is not an lvalue.

For integral operands, integer comparison is performed (signed or unsigned as

appropriate). For floating-point operands, floating-point comparison is performed.

For pointer operands, the result depends on the relative locations within the ad-

dress space of the two objects pointed to; the result is portable only if the objects

Page 158

pointed to lie within the same array, or at least are aligned as if they did, in

which case "greater than" means "having a higher index in the array."

The operator < tests for the relationship "is less than"; <= tests "is less than or

equal to"; > tests "is greater than"; and >= tests "is greater than or equal to." The

result is 1 if the stated relationship holds for the particular operand values and 0

if the stated relationship does not hold.

The binary relational operators all have the same precedence and are left-

associative. It is therefore permitted to write an expression such as 3<x<7. This

does not have the meaning it has in usual mathematical notation, however; by left-

associativity it is interpreted as (3<x)<7. Because the result of (3<x) is 0 or 1, ei-

ther of which is less than 7, the result of 3<x<7 is always 1. One must express the

meaning of the usual mathematical notation by using a bitwise AND operator, as

in 3<x & x<7, or a logical AND operator, as in 3<x && x<7.

The programmer should exercise care when using relational operators on mixed

types. A particularly confusing case is this expression:

-1 < (unsigned) 0�

One might think that this expression would always produce 1 (true), because -1 is

less than 0. However, the usual binary conversions cause the value -1 to be con-

verted to a (large) unsigned value before the comparison, and such an unsigned

value cannot be less than 0. Therefore, the expression always produces 0 (false).

Some implementations permit relational comparisons between pointers and inte-

gers, which is disallowed by the language. The implementations may treat the

comparisons as signed or unsigned.

7.6.5. C-Ref: Equality Operators

The binary operators == and != indicate comparison.

����������������������

���������������������

���

�������������

==���!=�

In this they are similar to the binary relational operators discussed in section

"C-Ref: Relational Operators"; they differ in testing different relationships and in

having a different level of precedence. The usual binary conversions are performed

on the operands. The result is always of type int and has the value 0 or 1. The re-

sult is not an lvalue.

The operands may both be of arithmetic types or may both be of the same pointer

type, or one of the operands may be a pointer and the other a constant integer ex-

pression with value 0.

For integral operands, integer comparison is performed. For floating-point

operands, floating-point comparison is performed. Pointer operands are considered

equal if they point to the same object or if they are both null. A pointer is equal

to the integer constant 0 if and only if it is a null pointer.

Page 159

The operator == tests for the relationship "is equal to"; != tests "is not equal to."
The result is 1 if the stated relationship holds for the particular operand values

and 0 if the stated relationship does not hold.

The programmer should be very careful not to confuse the == operator with the =

operator. The == operator performs equality comparison; the = operator performs

simple assignment. Several other programming languages use = for equality com-

parison. As a matter of style, if it is necessary to use an assignment expression in

a context that will test the value of the expression against zero, it is best to write

"!= 0" explicitly to make the intent clear. For example, consider this code:

while (x = next_item()) {

 ...

}�

It is unclear whether this is correct or whether it contains a typographical error

that should be corrected to

while (x == next_item()) {

 ...

}�

The intent can be made explicitly clear in this manner:

while ((x = next_item()) != 0) {

 ...

}�

The binary equality operators both have the same precedence (but lower prece-

dence than <, <=, >, and >=) and are left-associative. It is therefore permitted to

write an expression such as x==y==7. This does not have the meaning it has in

usual mathematical notation, however; by left-associativity it is interpreted as

(x==y)==7. Because the result of (x==y) is 0 or 1, neither of which is equal to 7,

the result of x==y==7 is always 0. One must express the meaning of the usual

mathematical notation by using a bitwise AND operator, as in x==y & y==7, or a

logical AND operator, as in x==y && y==7.

There is a bitwise XOR operator as well as bitwise AND and OR operators, but

there is no logical XOR operator to go along with the logical AND and OR opera-

tors. The != operator serves the purpose of a logical XOR operator: One may write

a<b != c<d for an expression that yields 1 if exactly one of a<b and c<d yields 1,

and 0 otherwise. If either of the operands might have a value other than 0 or 1,

then the unary ! operator can be applied to both operands: !x != !y yields 1 if ex-

actly one of x and y is nonzero, and yields 0 otherwise. In a similar manner, ==

serves as a logical equivalence (EQV) operator.

7.6.6. C-Ref: Bitwise AND Operator

The binary operator & indicates the bitwise AND function; it is left-associative.

�������������������������

�������������������

������������������������&����������������������

The operands must both be integral and the usual binary conversions are per-

Page 160

formed on the operands. The type of the result is that of the converted operands.

The result is not an lvalue.

Each bit of the result is equal to the AND function of the two corresponding bits

of the two (converted) operands. The AND function yields a 1-bit if both argu-

ments are 1-bits, and otherwise yields a 0-bit:

a b a&b

01100 01010 01000�

The & operator is commutative and associative, and the compiler is permitted to

rearrange an expression with several bitwise AND operators, even in the presence

of parentheses. For example, the compiler may freely interpret the expression

a&(b&c)&d as if it were (c&a)&(b&d), subject to the restrictions discussed in section

"C-Ref: Order of Evaluation".

The bitwise AND operator & may be used to combine logical (integer 0 or 1) val-

ues, yielding the integer value 1 if both operands are the integer value 1, and

yielding the integer value 0 if either operand is the integer value 0:

if (a<b & b<c) ...�

However, using the logical AND operator && in these cases is both more efficient

and safer when the operands are not known to be restricted to the values 0 and 1.

For example, if a is 2 and b is 4, then a&b is 0 (false) whereas a&&b is 1 (true). Of

course, the operators & and && also differ in that the result of && is ������ 0 or 1,

no matter what the values of the operands, while this is not so for &.

Because different implementations may use different representations for signed in-

tegers, the result of applying the bitwise AND operator & to signed operands may

not be portable. For portable code we recommend using & only on unsigned

operands.

7.6.7. C-Ref: Bitwise XOR Operator

The binary operator ^ indicates the bitwise XOR function.

�������������������������

����������������������

������������������������^�������������������������

The operands must both be integral and the usual binary conversions are per-

formed on the operands. The type of the result is that of the converted operands.

The result is not an lvalue.

Each bit of the result is equal to the XOR function of the two corresponding bits

of the two (converted) operands. The XOR function yields a 1-bit if one argument

is a 1-bit and the other is a 0-bit, and yields a 0-bit if both arguments are 1-bits or

if both arguments are 0-bits:

a b a^b

01100 01010 00110�

The ^ operator is commutative and associative, and the compiler is permitted to

rearrange an expression with several bitwise XOR operators, even in the presence

Page 161

of parentheses. For example, the compiler may freely interpret the expression

a^(b^c)^d as if it were (c^a)^(b^d), subject to the restrictions discussed in section

"C-Ref: Order of Evaluation".

Because different implementations may use different representations for signed in-

tegers, the result of applying the bitwise XOR operator ^ to signed operands may

not be portable. For portable code we recommend using ^ only on unsigned

operands or on signed 0/1 values such as result from relational operators.

7.6.8. C-Ref: Bitwise OR Operator

The binary operator | indicates the bitwise OR function; it is left-associative.

�������������������������

����������������������

����������������������|������������������������

The operands must both be integral and the usual binary conversions are per-

formed on the operands. The type of the result is that of the converted operands.

The result is not an lvalue.

Each bit of the result is equal to the OR function of the two corresponding bits of

the two (converted) operands. The OR function yields a 1-bit if either argument is

a 1-bit, and otherwise yields a 0-bit:

a b a|b

01100 01010 00110�

The bitwise OR operator | may be used to combine logical (integer 0 or 1) values,

yielding the integer value 1 if either operand is the integer value 1 and the other

operand is the integer value 0 or 1, and yielding the integer value 0 if both

operands are the integer value 0. For this purpose it differs from the logical OR

operator || in that both operands for | are always fully evaluated, whereas the

right operand of || is not evaluated if the left operand is nonzero.

Of course, the operators | and || also differ in that the result of || is ������ 0 or

1, no matter what the values of the operands, while this is not so for |.

The | operator is commutative and associative, and the compiler is permitted to

rearrange an expression with several bitwise OR operators, even in the presence of

parentheses. For example, the compiler may freely interpret the expression

a|(b|c)|d as if it were (c|a)|(b|d), subject to the restrictions discussed in section

"C-Ref: Order of Evaluation".

Because different implementations may use different representations for signed in-

tegers, the result of applying the bitwise OR operator | to signed operands may

not be portable. For portable code we recommend using | only on unsigned

operands or on signed 0/1 values such as result from relational operators.

Tables "C-Ref: A Package for Manipulating Sets of Integers (1)", "C-Ref: A Package

for Manipulating Sets of Integers (2)", "C-Ref: A Package for Manipulating Sets of

Integers (3)", and "C-Ref: A Package for Manipulating Sets of Integers (4)" show a

library that defines a "set" package. It uses the bitwise operators to implement

sets as bit vectors. Table "C-Ref: A Program for Enumerating Subsets of a Given

Page 162

Set"shows a program that uses certain facilities in the set package to enumerate

and print certain sets. Table "C-Ref: Sample Output From Enumerating

Subsets"shows the output produced by that program.

7.6.8.1. C-Ref: A Package for Manipulating Sets of Integers (1)
/* A set package, suitable for sets of small integers

 in the range 0 (inclusive) to the number of bits in

 an ’unsigned int’ type (exclusive). Each integer is

 represented by a bit position; if the bit is 1, the

 integer is in the set; if the bit is 0, the integer

 is not in the set. The low-order bit represents

 the element 0.

*/

/* Maximum bits per set (implementation dependent). */

#define SET_BITS 32

typedef unsigned SET; /* A type to represent sets. */

/* check: true if i can be a set element. */

#define check(i) (((unsigned) (i)) < SET_BITS)

/* emptyset: a set with no elements. */

#define emptyset ((SET) 0)

/* add: add a single integer to a set. */

#define add(set,i) ((set) | singleset(i))

/* singleset: return a set with one element in it. */

#define singleset(i) (((SET) 1) << (i))

/* intersect: return intersection of two sets. */

#define intersect(set1,set2) ((set1) & (set2))

/* union: return the union of two sets. */

#define union(set1,set2) ((set1) | (set2))

/* setdiff: symmetric set difference; return a set of

 those elements that appear in either argument set

 but not both. */

#define setdiff(set1,set2) ((set1) ^ (set2))

/* element: true if integer i is in the set. */

#define element(i,set) (singleset((i)) & (set))

Page 163

7.6.8.2. C-Ref: A Package for Manipulating Sets of Integers (2)
/* forallelements: perform the following statement

 once for every element of the set s, with the

 variable j set to that element. For example, to

 print all the elements in a set z, just write

{

 int k;

 forallelements(k, z)

 printf("%d ", k);

 }

 */

#define forallelements(j,s) \

 for ((j)=0; (j)<SET_BITS; ++(j)) if (element((j),(s)))

/* cardinality: return the number of elements in x. */

int cardinality(x)

 SET x;

{

 int count = 0;

 /* At this point one could simply write

int j;

forallelements(j, x) ++count;

 which would obviously count all the elements of

the set. However, the following loop is faster

 (but trickier).

 */

 while (x != emptyset) {

/* The body of this loop is executed once for

 every 1-bit in the set x. Each time through,

 the smallest remaining element is removed

 from x (and counted). The trick is that the

 expression (x & -x) yields a set that

 contains the smallest element in x and no

 others. This trick exploits properties of

 binary representation and unsigned negation.

 */

x ^= (x & -x);

++count;

 }

 return count;

}�

Page 164

7.6.8.3. C-Ref: A Package for Manipulating Sets of Integers (3)
/* Produce a set of size n whose elements are the

 integers from 0 to n-1 (inclusive). This is a bit

 tricky, and exploits the properties of unsigned

 subtraction. */

#define first_set_of_n_elements(n) (SET)((1<<(n))-1)

/* Given a set of n elements, produce a new set of n

 elements. If you start with the result of

 first_set_of_n_elements(k), and then at each step

 apply next_set_of_n_elements to the previous result,

 and keep going until a set is obtained containing

 m as a member, you will have obtained sets

 representing all possible ways of choosing k things

 from m things.

 */

SET next_set_of_n_elements(x)

 SET x;

{

 /* This code exploits many unusual properties of

 unsigned arithmetic. As an illustration,

 suppose that the bit pattern 001011001111000

 is given as the argument x. */

 SET smallest = (x & -x);

 /* The value of "smallest" is 000000000001000 */

 SET ripple = x + smallest;

 /* The value of "ripple" is 001011010000000 */

 SET new_smallest = (ripple & -ripple);

 /* Now "new_smallest" is 000000010000000 */

 SET ones = ((new_smallest / smallest) >> 1) - 1;

 /* Now "ones" is 000000000000111 */

 return (ripple | ones);

 /* The returned value is 001011010000111 */

 /* The overall idea is that you find the rightmost

 contiguous group of 1-bits. Of that group, you

 slide the leftmost 1-bit to the left one place,

 and slide all the others back to the extreme

 right. (This code was adapted from HAKMEM.) */

}

Page 165

7.6.8.4. C-Ref: A Package for Manipulating Sets of Integers (4)
/* Print a set in the form "{1, 2, 3, 4}". */

void printset(z)

 SET z;

{

 int first = 1;

 int e;

 /* Print the elements, with leading punctuation. */

 forallelements(e, z) {

if (first) printf("{");

else printf(", ");

printf("%d", e);

first = 0;

 }

 /* Take care of the empty set. */

 if (first) printf("{");

 /* Print trailing punctuation. */

 printf("}");

}

7.6.8.5. C-Ref: A Program for Enumerating Subsets of a Given Set
#define LINE_WIDTH 54

Page 166

/* Print all the sets of size k having elements less

 than n. Try to print as many as will fit on each

 line of the output. Also print the total number of

 such sets; it should equal n!/(k!*(n-k)!) where "!"

 is the factorial symbol (5! = 1*2*3*4*5 = 120). */

void print_k_of_n(k, n)

 int k, n;

{

 int count = 0;

 /* Estimate how wide each printed set will be. */

 int printed_set_width = k * ((n > 10) ? 4 : 3) + 3;

 int sets_per_line = LINE_WIDTH / printed_set_width;

 SET z = first_set_of_n_elements(k);

 printf("\nAll the size-%d subsets of ", k);

 printset(first_set_of_n_elements(n));

 printf(":\n");

 do { /* Enumerate all the sets. */

printset(z);

if ((++count) % sets_per_line) printf (" ");

else printf("\n");

z = next_set_of_n_elements(z);

 } while ((z != emptyset) && !element(n, z));

 if ((count) % sets_per_line) printf ("\n");

 printf("The total number of such subsets is %d.\n",

 count);

}

/* The main program merely tries some examples. */

void main()

{

 print_k_of_n(0, 4);

 print_k_of_n(1, 4);

 print_k_of_n(2, 4);

 print_k_of_n(3, 4);

 print_k_of_n(4, 4);

 print_k_of_n(3, 5);

 print_k_of_n(3, 6);

}

7.6.8.6. C-Ref: Sample Output From Enumerating Subsets

All the size-0 subsets of {0, 1, 2, 3}:

{}

The total number of such sets is 1.

Page 167

All the size-1 subsets of {0, 1, 2, 3}:

{0} {1} {2} {3}

The total number of such sets is 4.

All the size-2 subsets of {0, 1, 2, 3}:

{0, 1} {0, 2} {1, 2} {0, 3} {1, 3} {2, 3}

The total number of such sets is 6.

All the size-3 subsets of {0, 1, 2, 3}:

{0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}

The total number of such sets is 4.

All the size-4 subsets of {0, 1, 2, 3}:

{0, 1, 2, 3}

The total number of such sets is 1.

All the size-3 subsets of {0, 1, 2, 3, 4}:

{0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}

{0, 1, 4} {0, 2, 4} {1, 2, 4} {0, 3, 4}

{1, 3, 4} {2, 3, 4}

The total number of such sets is 10.

All the size-3 subsets of {0, 1, 2, 3, 4, 5}:

{0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}

{0, 1, 4} {0, 2, 4} {1, 2, 4} {0, 3, 4}

{1, 3, 4} {2, 3, 4} {0, 1, 5} {0, 2, 5}

{1, 2, 5} {0, 3, 5} {1, 3, 5} {2, 3, 5}

{0, 4, 5} {1, 4, 5} {2, 4, 5} {3, 4, 5}

The total number of such sets is 20.�

7.7. C-Ref: Logical Operator Expressions

A logical operator expression consists of two expressions separated by one of the

logical operators && and ||. The two operators have different levels of precedence;

&& has higher precedence than ||.

Both of the logical operators described in this section are described as being syn-

tactically left-associative, though this doesn’t matter much to the programmer be-

cause the operators happen to be fully associative semantically and no two opera-

tors have the same level of precedence. (Implementors find the fact of syntactic

left-associativity useful because it tends to make it easier for relatively simple

compilers to produce good code for these operators than right-associativity would.)

For each of the logical operators described in this section, the second operand is

��� ��������� �� ��� if the value of the first operand provides sufficient information

to determine the result of the logical operator expression.

Page 168

7.7.1. C-Ref: Logical AND Operator

The logical AND operator && is called "conditional and" in other programming lan-

guages.

�������������������������

���������������������

������������������������&&������������������������

The logical operator && accepts operands of any scalar type. There is no constraint

between the types of the two operands. The type of the result is always int and

has the value 0 or 1. The result is not an lvalue.

The left operand of && is fully evaluated first. If the left operand is equal to zero

(in the sense of the == operator), then the right operand is not evaluated and the

result value is 0. If the left operand is not equal to zero, then the right operand is

evaluated; if the right operand is equal to zero, then the result value is 0 and oth-

erwise is 1. For example:

a b a&&b

1 0 0

0 -1 0

1 1

34.5 ’\0’ 0

&x &y 1�

Unlike the binary bitwise AND operator &, the logical operator && guarantees left-

to-right conditional evaluation.

7.7.2. C-Ref: Logical OR Operator

The logical OR operator || is called "conditional or" in other programming lan-

guages.

������������������������

����������������������

�����������������������||�������������������������

The logical operator || accepts operands of any scalar type. There is no constraint

between the types of the two operands. The type of the result is always int and

has the value 0 or 1. The result is not an lvalue.

The left operand of || is fully evaluated first. If the value of the left operand is

not equal to zero (in the sense of the == operator), then the right operand is not

evaluated and the result value is 1. If the left operand is equal to zero, then the

right operand is evaluated; if the right operand is not equal to zero, then the re-

sult value is 1 and otherwise is 0. For example:

Page 169

a b a&&b

0 0 0

1 0 1

0 -1 1

0.0 ’\0’ 0

34.5 ’\0’ 1

&x 0 1�

Unlike the binary bitwise OR operator |, the logical operator || guarantees left-to-

right conditional evaluation.

7.8. C-Ref: Conditional Expressions

The ? and : operators introduce a conditional expression, which has lower prece-

dence than the binary expressions and differs from them in being right-associative.

�������������������������

���������������������

�����������������������?��������������:������������������������

A conditional expression consists of three expressions, with the first and second

expressions separated by ? and the second and third expressions separated by :.

The first operand is used to determine which of the other two operands should be

evaluated. The first operand is fully evaluated. If the first operand is not equal to

zero (in the sense of the == operator), then the second operand is evaluated and

the third operand is not evaluated; the result value is the value of the (possibly

converted) second operand. If first operand is equal to zero, then the second

operand is not evaluated and the third operand is evaluated; the result value is the

value of the (possibly converted) third operand. In either case, the result is not an

lvalue.

Conditional expressions are right-associative with respect to their first and third

operands, so that

a ? b : c ? d : e ? f : g�

is interpreted as

a ? b : (c ? d : (e ? f : g))�

Here is one example where this might be useful:

/* Return 1, -1, or 0 if x is positive,

 negative, or zero, respectively. */

int signum(x)

 int x;

{

 return (x > 0) ? 1 : (x < 0) ? -1 : 0;

}�

Anything more complicated than this is probably better done with one or more if

statements.

Page 170

The second operand of a conditional expression may be any expression whatsoever

and may use operators that have lower precedence. There is no possibility of con-

fusion, because the tokens ? and : effectively bracket the second operand like

parentheses. However, the third operand cannot involve operators of lower prece-

dence without the use of parentheses. As an example, the expression

a ? b = c : c = b�

is not legal. The first assignment is all right, but the second assignment causes a

problem. Because the assignment operator has lower precedence than the condi-

tional operator, the expression must be interpreted as

(a ? b = c : c) = b�

However, a conditional expression cannot produce an lvalue, and so the assignment

is illegal. When there is any doubt, it is better to use too many parentheses than

too few:

a ? (b = c) : (c = b)�

The first operand of a conditional expression may be of any scalar type. There are

four possibilities for the second and third operands:

1. They may both be arithmetic. The usual binary conversions are performed on

the second and third operands, and the type of the result is the common type

to which the operands are converted.

2. They may be pointers of the same type, after application of the usual unary

conversions, if necessary, to convert functions and arrays to pointers. The re-

sult is a pointer of this same type.

3. They may have identical types (structure, union, or void). The result has this

same type.

4. One may be a pointer (after the usual unary conversions) and the other a

constant integer expression with value 0. The result is of the same type as

the pointer operand.�

As a matter of style, it is a good idea to enclose the first operand of a conditional

expression in parentheses, but this is not required.

Not all existing implementations of C permit the result of a conditional expression

to have structure, union, or void types. New implementations should permit them.

7.9. C-Ref: Assignment Expressions

Assignment expressions consist of two expressions separated by an assignment op-

erator; they are right-associative.

Page 171

������������������������

����������������������

��

���������������

=�����+=����-=���*=���/=���%=

<<=���>>=���&=���^=��� =�

The operator = is called the ������ assignment operator; all the others are ����

������assignment operators.

Assignment operators are all of the same level of precedence and are right-

associative (all other operators in C that take two operands are left-associative).

For example, the expression x*=y=z is treated as x*=(y=z), not as (x*=y)=z; simi-

larly, the expression x=y*=z is treated as x=(y*=z), not as (x=y)*=z. The right-

associativity of assignment operators allows "multiple assignment expressions" to

have the "obvious" interpretation; the expression

a = b = c = d + 7�

is interpreted as

a = (b = (c = d + 7))�

and therefore assigns the value of d+7 to c then to b then to a.

Every assignment operator requires an lvalue as its left operand and modifies that

lvalue by storing a new value into it; the operators are distinguished by how they

compute the new value to be stored. The result of an assignment expression is

never an lvalue.

7.9.1. C-Ref: Simple Assignment

The simple assignment operator = indicates simple assignment. The value of the

right operand is stored into the left operand. The two operands may each be of

any arithmetic type, in which case the usual assignment conversions are used to

convert the right operand to the type of the left operand before assignment. The

two operands may also be of the same pointer, structure, or union type. Finally, it

is permitted for the left operand to be of any pointer type and the right operand to

be the integer constant 0; this has the effect of assigning a null pointer to the

pointer lvalue, guaranteed not to point at any object.

The type of the result is equal to the (unconverted) type of the left operand. The

result is the value stored into the left operand. The result is not an lvalue.

The simple assignment operator = cannot be used to copy the entire contents of

one array into another, for two reasons. First, the name of an array is not an lval-

ue and so cannot appear on the left-hand side of an assignment. Second, the name

of an array appearing on the right-hand side of an assignment would be converted

(by the usual conversions) to be a pointer to the first element, and so the assign-

ment would copy the pointer, not the contents of the array. The = operator can,

therefore, be used to copy the address of an array into a pointer variable:

Page 172

{

 int a[20], *p;

 p = a;

 ...

}�

In this example, a is an array of integers and p is of type "pointer to integer." The

assignment causes p to point to (the first element of) the array a.

It is possible to get the effect of copying an entire array by embedding the array

within a structure or union, because simple assignment can copy an entire struc-

ture or union:

struct matrix {double contents[10][10]; };

struct matrix a, b;

...

{

 /* Copy structure containing a 10x10 array. */

 a = b;

 /* Clear the diagonal elements. */

 for (j = 0; j < 10; j++)

 a.contents[j][j] = 0;

}�

In the original description of C, assignment of structure and union objects was not

permitted. Nearly all C compilers now permit structure and union assignment.

7.9.2. C-Ref: Compound Assignment

The compound assignment operators may be informally understood by taking the

expression "� ��= �" to be equivalent to "� = � �� �," with the proviso that the ex-

pression � is evaluated only once. More precisely, the left and right operands of

��= are evaluated, and the left operand must be an lvalue. The operation indicated

by the operator �� is then applied to the two operand values; this includes any

"usual conversions" performed by the operator. The resulting value is then stored

into the left operand lvalue, after performing the usual assignment conversions.

For the operators += and -=, the two operands may each be of any arithmetic type.

It is also permitted for the left operand to be of pointer type and the right

operand to be of integral type.

For the operators *= and /=, the two operands may each be of any arithmetic type.

For the operator %=, the two operands may each be of any integral type.

For the operators <<=, >>=, the two operands may each be of any integral type. For

portable code we recommend that only unsigned operands be used as the left

operand for each of these operators.

For the operators &=, ^=, and |=, the two operands may each be of any integral

type. For portable code we recommend that only unsigned operands be used with

these operators.

Page 173

For the compound assignment operators, as for the simple assignment operator,

the type of the result is equal to the (unconverted) type of the left operand. The

result is the value stored into the left operand. The result is not an lvalue.

Historical note: In the earliest versions of C, the compound assignment operators

were written in the reverse form:

=+ =- =* =/ =% =<< =>> =& =^ =|�

This led to syntactic ambiguities. For example, the expression

x=-1�

might,on the face of it, be interpreted either as

x = (-1)�

or as

x =- (1)�

While the ambiguity was arbitrarily resolved by requiring the latter interpretation,

this was found to be quite prone to subtle programming errors in practice. The

newer form (+= instead of =+) eliminates these difficulties. A few compilers contin-

ue to support the older forms for the sake of compatibility.

7.10. C-Ref: Sequential Expressions

A comma expression consists of two expressions separated by a comma. The com-

ma operator is described here as being syntactically left-associative, though this

doesn’t matter much to the programmer because the operator happens to be fully

associative semantically.

�������������������

���������������������

�����������������,����������������������

������������

�����������������

Note that the ���������������� is at the top of the expression syntax tree.

The left operand of the comma operator is fully evaluated first. It need not pro-

duce any value; if it does produce a value, that value is discarded. The right

operand is then evaluated. The type and value of the result of the comma expres-

sion are equal to the type and value of the right operand. The result is not an

lvalue.

The comma operator is associative, and so one may write a single expression con-

sisting of any number of expressions separated by commas; the subexpressions will

be evaluated in order, and the value of the last one will become the value of the

entire expression.

In certain contexts the comma character is used for another syntactic purpose. Ex-

pressions written within these contexts may not use the comma operator lest ambi-

guity arise. This restriction can always be circumvented by using parentheses to

Page 174

enclose the comma operator expression. For example, the expression

f(a, b = 5, 2*b, c)�

is always treated as a call to the function f with four arguments. If it is desired

to treat the second comma as the comma operator, and to call f with three argu-

ments, additional parentheses should be inserted, thus:

f(a, (b = 5, 2*b), c)�

The contexts where the comma operator may not be used because of potential am-

biguity include argument expressions in function calls; field-length expressions in

structure and union declarator lists; enumeration value expressions in enumeration

declarator lists; and initialization expressions in declarations and initializers. Note

that the comma character is also used as a separator in preprocessor macro calls.

The comma operator guarantees that its operands will be evaluated in left-to-right

order, but other uses of the comma character do not make this guarantee. For ex-

ample, the argument expressions in a function invocation need not be evaluated in

left-to-right order.

The most important application of the comma operator is in for statements; it al-

lows several assignment expressions to be combined into a single expression for

the purpose of initializing or stepping several variables in a single loop.

7.11. C-Ref: Constant Expressions

In several contexts the C language permits an expression to be written that must

evaluate to a constant at compile time (or, in some situations, at link time, but in

any case before execution of the program proper). These contexts are:

1. the tested value in the #if preprocessor control statement

2. array bounds

3. case labels in switch statements

4. bit-field lengths in structure declarators

5. explicit enumerator values

6. initializers for static and external variables�

Each context imposes slightly different restrictions on what forms of expression

are permitted.

In all cases the result of evaluating a constant expression is identical to the result

of evaluating the same expression at run time. For the compiler implementor, this

consistency requirement is particularly important in the case of cross-compilation,

where the computer being used to execute the compiler does not necessarily have

the same architecture as the computer used to execute the compiled program. Al-

Page 175

though most kinds of integer arithmetic can be simulated well enough, floating-

point arithmeticeven simply converting a floating-point constant from character

form to internal formmay be difficult enough that the implementor may choose

to do the evaluation of constant floating-point expressions at run time. (C requires

no compile-time floating-point arithmetic capability.)

All constant expressions may contain integer constants and character constants.

The binary operators

* / % + - << >> == !=

< <= > >= & ^ | && ||�

may be used, as may the unary operators

- ~ !�

The conditional operator

? :�

may be used. Parentheses may be freely used for grouping.

Other constants and operations may be permitted in constant expressions according

to context.

1. Preprocessor #if statements permit the use of the operator defined.

2. Array bounds, case labels, field lengths, and explicit enumerator values per-

mit the use of enumeration constants, the sizeof operator, and casts to inte-

gral types. The argument to sizeof need not be a constant expression, since

only the type of the expression is needed and that type can be determined at

compile time.

3. Initializers for static and external variables additionally permit the use of

floating-point constants and arbitrary casts. The unary & operator is permitted

when applied to the name of a static or external object or to the result of

subscripting a static or external array by a constant expression. It is also per-

mitted to use the name of a function to refer to its address, or to the name

of a static or external array to refer to its address. Semantically, an initializ-

er for a static or external variable must evaluate either to a constant or to

the address of a previously declared static or external object plus or minus an

integer constant.�

The original description of C did not mention that the operator ! is allowed in

constant expressions, but this obviously was an oversight or typographical error.

All C implementations should support this operator in constant expressions.

Some compilers do not permit casts of any kind in constant expressions. Others al-

low casts other than casts to integral types. When writing portable code, it is best

for the programmer to avoid casts in constant expressions.

Some compilers permit the comma operator in constant expressions. We don’t see

the use of it, inasmuch as the left operand of the comma operator is useful only

for its side effects, and constant expressions may not have side effects. The syntax

for ������������������� given in this text in fact permits any form of ����������, in-

Page 176

cluding ���������������� and ���������������������. The restrictions on constant

expressions come from the semantic rules of C, not the syntactic rules.

7.12. C-Ref: Order of Evaluation

In general, the compiler is free to rearrange the order in which an expression is

evaluated with the following restrictions.

The rearrangement may consist only of evaluating the arguments of a function

call, or the two operands of a binary operator, in some particular order other than

the obvious left-to-right order. (The compiler is under no compulsion ever to use

left-to-right order for such operators.) There is one additional rule: The binary op-

erators +, *, &, ^, and | are assumed to be completely associative and commutative,

and a compiler is permitted to exploit this assumption. For instance, addition is as-

sumed to be commutative and associative, so the compiler is free, for example, to

evaluate "(a+b)+(c+d)" as if it were written "(a+d)+(b+c)" (assuming all variables

have the same arithmetic type).

The assumption of commutativity and associativity is indeed always true for &, ^,

and | on unsigned operands. It may not be true for &, ^, and | on signed operands

because of potential problems with certain signed representations. It may not be

true for * and + because of the possibility that the order indicated by the expres-

sion as written might avoid overflow but another order might not. Nevertheless,

the compiler is allowed to exploit the assumption. In such situations the program-

mer must use assignments to temporary variables to force a particular evaluation

order:

{

 int temp1, temp2;

 ...

 /* Compute q=(a+b)+(c+d), exactly that way. */

 temp1 = a+b;

 temp2 = c+d;

 q = temp1 + temp2;

}�

The original description of C placed no restrictions on the exploitation of the as-

sumption of the associativity and commutativity of *, +, &, ^, and |. However, the

following restriction seems to be very important and should be observed by every

compiler: Any rearrangement of expressions involving these operators must not al-

ter the implicit type conversions of the operands. In the example below, the two

assignment statements are not equivalent and the compiler is not free to substi-

tute one for the other, despite the fact that one is obtained from the other "merely

by reassociating the additions."

x = (1.0 + -3) + (unsigned) 1; /* Result is -1.0 */

x = 1.0 + (-3 + (unsigned) 1); /* Result is large */�

The first assignment is straightforward and produces the expected result. The sec-

ond produces a large result, because the usual binary conversions cause the signed

Page 177

value -3 to be converted to a large unsigned value 2n-3, where � is the number of

bits used to represent an unsigned integer. This is then added to the unsigned val-

ue 1, the result converted to floating-point representation and added to 1.0, result-

ing in the value 2n-3 in a floating-point representation. Now, this result may or

may not be what the programmer intended, but the compiler must not confuse the

issue further by capriciously rearranging the additions.

When evaluating the actual arguments in a function call, the order in which the

arguments are evaluated is not specified; but the program must behave as if it

chose one argument, evaluated it fully, then chose another argument, evaluated it

fully, and so on, until all arguments were evaluated. That is, the arguments may

be evaluated in any order, but their computations may not appear to be inter-

leaved. Consider this example:

#define SIZE 100

{

 char *x[10], **p=x;

 ...

 if (strcmp(*p++, *p++) == 0) printf("Same.");

 ...

}

The variable x is an array of pointers to characters and is to be regarded as an

array of strings. The variable p is a pointer to a pointer to a character and is to

be regarded as a pointer to a string. The purpose of the if statement is to deter-

mine whether the string pointed to by p (call it ��) and the next string after that

(call it ��) one are equal (and, in passing, to step the pointer p beyond those two

strings in the array). It is, of course, bad programming style to have two side ef-

fects on the same variable in the same expression, because the order of the side

effects is not defined; but the all-too-clever programmer here has reasoned that

the order of the side effects doesn’t matter, because the two strings in question

may be given to strcmp in either order.

If it were permitted for the compiler to evaluate the two expressions in an inter-

leaved manner, it might generate code something like this:

1. Fetch what p points to for first argument.

2. Fetch what p points to for second argument.

3. Increment p for first argument.

4. Increment p for second argument.�

The net result would be that �� would be passed as both arguments to strcmp and

�� would not be passed at all. The restriction against interleaving prohibits such

behavior. Our too-clever programmer is therefore justified in believing the program

will behave as intended. (However, we would not want to have to maintain that

code!)

Page 178

A similar restriction holds for binary operators: The two operands may be evaluat-

ed in either order, but the program must behave as if one of the two operands

were evaluated completely before commencement of the evaluation of the other

operand.

The original description of C specified that subexpressions may be evaluated in

any order and that the arguments to a function may be evaluated in any order.

The matter of interleaving was not discussed, nor the question of whether rear-

ranging may alter the implicit type conversions. We advise implementors to adhere

rigidly to the restrictions outlined here (which actually are quite sensible and not

terribly restrictive). We also advise programmers not to exploit these restrictions

too cleverly (as in the example above using strcmp). The entire purpose of the re-

strictions is to make the behavior of a program more understandable.

7.13. C-Ref: Discarded Values

There are three contexts in which an expression can appear but its value is not

used:

1. an expression statement

2. the first operand of a comma expression

3. the initialization and incrementation expressions in a for statement�

In these contexts we say that the expression’s value is ���������.

When the value of an expression without side effects is discarded, the compiler

may presume that an error has been made and issue a warning. Side-effect produc-

ing operations include assignment and function calls. For example:

{

 extern void f();

 f(x); /* These expressions do not */

 i++; /* justify any warning about */

 a = b; /* discarded values. */

}�

The compiler may issue a warning message if the main operator of a discarded ex-

pression has no side effect. For example, these statements, though legal, may elicit

warning messages:

Page 179

{

 extern int g();

 g(x); /* The call to g may have side effects

 but it also returns a value that is

 discarded. */

 x + 7; /* Addition has no defined

 side effects. */

 x + (a *= 2);

 /* The expression has a side effect,

but the last operation to be

 performed, "+", does not, and its

 value is discarded. */

}�

The programmer may avoid warnings about discarded values by using a cast to

type void to indicate that the value is purposely being discarded:

{

 extern int g();

 (void) g(x); /* The returned value is

 purposely discarded. */

 (void)(x + 7); /* This is pretty silly, but

 presumably the programmer

 has a purpose. */

}�

A compiler that does not implement the void type should not issue warnings when

the value of a function call is discarded, because it is likely that the function be-

ing called is conceptually of type "function returning void," even though the pro-

grammer has no way to say this to the compiler.

If a compiler determines that the main operator of a discarded expression has no

side effect, it may choose not to generate code for that operator (whereupon its

operands become discarded values and may be recursively subjected to the same

treatment).

7.14. C-Ref: Compiler Optimization of Memory Accesses

As a general rule, a compiler is free to generate any code equivalent in computa-

tional behavior to the program as written. The compiler is explicitly granted cer-

tain freedoms to rearrange code, as described in section "C-Ref: Order of Evalua-

tion". It may also generate no code for an expression when the expression has no

side effects and its value is discarded, as described in section "C-Ref: Discarded

Values".

Some compilers may also reorganize the code in such a way that it does not al-

ways refer to memory as many times, or in the same order, as specified in the

program. For example, if a certain array element is referred to more than once,

Page 180

the compiler may cleverly arrange to fetch it only once to gain speed; in effect, it

might rewrite this code:

{

 int x;

 x = a[j] * a[j] * a[j];

 /* Cube the table entry. */

}�

causing it to be executed as if it had been written like this:

{

 int x;

 register temp;

 temp = a[j];

 x = temp * temp * temp;

 /* Cube the table entry. */

}�

For most applications, including nearly all portable applications, such optimization

techniques are a very good thing, because the speed of a program may be im-

proved by a factor of two or better without altering its effective computational be-

havior.

However, this may be a problem when writing certain machine-dependent pro-

grams in C, such as operating systems. On some computers the status registers of

I/O devices may be accessed as if they were memory locations, and accessing such

a register may have side effects. The way to read a character from a terminal

might be to access a specific "memory location"; every time the location is read, a

new character is obtained.

Consider this code to read characters in such a manner:

/* Address of the keyboard input register. */

#define KEYBOARD ((char *) 0177614)

...

c1 = *KEYBOARD; /* Get first character. */

...

c2 = *KEYBOARD; /* Get next character. */�

It would be disastrous if this code were to be compiled as if it had been written

this way:

/* Address of the keyboard input register. */

#define KEYBOARD ((char *) 0177614)

...

temp = *KEYBOARD;

c1 = temp;

...

c2 = temp;�

A similar difficulty might arise when doing output by writing successive characters

to a special "memory location": The compiler might notice that the location is writ-

ten into and then written into again without being accessed, and therefore cleverly

Page 181

eliminate the first write operation. This is a good optimization for ordinary memo-

ry locations, but disastrous when an I/O register is involved.

We emphasize that this kind of problem does not arise in most applications, and it

need not concern most programmers. The programmer who is writing low-level

machine-dependent programs, such as operating systems, should carefully study the

documentation for the specific C compiler to be used to determine whether prob-

lems like this may arise. In Draft Proposed ANSI C, the new declaration modifier

volatile was introduced to deal with these situations.

Page 182

Page 183

8. C-Ref: Statements

The C language provides the usual assortment of statement forms found in most

algebraic programming languages, including conditional statements, loops, and the

ubiquitous "goto."

������������

��������������������

�����������������

������������������

���������������������

�������������������

����������������

���������������

������������������

����������������

��������������

��������������

������������������������

������������

�����������������

����������������������

������������

���������������

��������������

We describe each of the statements in turn after some general comments about

the syntax of statements.

8.1. C-Ref: General Syntactic Rules for Statements

Although C statements will be familiar to programmers used to Algol-like lan-

guages, there are a few syntactic differences that are often the cause of confusion

and errors.

8.1.1. C-Ref: Semicolons

As in Pascal or Ada, semicolons typically appear between consecutive statements in

C. However, in C the semicolon is not a statement separator, but rather simply a

part of the syntax of certain statements. The only C statement that does not re-

quire a terminating semicolon is the compound statement (or block), which is de-

limited by braces ({ and }) instead of the more usual begin and end keywords. For

example, the Pascal (or Ada or Algol) statements

Page 184

t := b;

begin b := a end;

a := t;�

are written in C as

t = b;

{ b = a; }

a = t;�

Note that in C a semicolon follows "b = a" but not }, whereas the situation is re-

versed in the other languages.

8.1.2. C-Ref: Control Expressions

Another rule for C statements is that "control" expressions, appearing in condition-

al or iterative statements, must be enclosed in parentheses. These parentheses ob-

viate the need for a keyword following the expression, such as "then" or "do." For

example, the Pascal statement

if x = y then

 while x = z do

 process(x);�

is rendered in C as

if (x == y)

 while (x == z)

 process(x);�

In all cases, if the control expression is 0, it is taken to be "false"; if it is nonzero,

it is taken to be "true." More precisely, the type of a control expression � must be

such that the expression

(�) != 0�

may be legally evaluated. If the result of this last expression is 1, � is said to be

nonzero; otherwise, � is said to be zero. In practice, this means that � may have

integral, pointer, or floating-point type. Values of enumeration types may also be

permitted depending on the semantics chosen for enumerations.

8.2. C-Ref: Expression Statements

Any expression can be treated as a statement by writing the expression followed

by a semicolon.

�����������������������

�����������;�

The statement is executed by evaluating the expression and then discarding the

value, if any.

An expression statement is useful only if evaluation of the expression involves a

side effect, such as assigning a value to a variable or performing input or output.

Page 185

Usually the expression is an assignment, an incrementation or decrementation op-

eration, or a function call. Here are some examples of expression statements:

speed = distance / time; /* Assign quotient to speed. */

++event_count; /* Add 1 to event_count. */

printf("Another game?"); /* Call the function printf. */

pattern &= mask; /* Mask out some bits of

 the pattern. */

(x < y) ? ++x : ++y; /* Increment the smaller of

 x and y. */�

The last example, though legal, might be written more clearly with an if state-

ment:

if (x < y) ++x; else ++y;�

The compiler is not obliged to evaluate an expression, or a portion of an expres-

sion, that has no side effects and whose result is discarded. This is discussed in

more detail in section "C-Ref: Discarded Values".

8.3. C-Ref: Labeled Statements

A label can be used to mark any statement so that control may be transferred to

the statement by a goto or switch statement. There are three kinds of labels. A

named label may appear on any statement and is used in conjunction with the goto

statement. A case label or default label may appear only on a statement within

the body of a switch statement.

��������������������

������:����������

��������

������������

����������

��������������

A label cannot appear by itself but must always be attached to a statement. If it is

desired to place a label by itself, for example at the end of a compound statement,

it may be attached to a null statement.

Named labels are discussed further in the description of the goto statement. The

labels case and default are discussed further in the description of the switch

statement.

Page 186

8.4. C-Ref: Compound Statement

A compound statementalso called a blockconsists of a (possibly empty) se-

quence of declarations followed by a (possibly empty) sequence of statements, all

enclosed in braces.

���������������������

{�����������������������opt����������������opt�}

����������������

���������

��������������������������

A compound statement may appear anywhere a statement does. When the com-

pound statement has no declarations, it just represents a group of statements.

When the compound statement has declarations, it brings into existence a new

scope.

A compound statement is normally executed by first processing all the declarations

one at a time, in sequence, and then executing all the statements one at a time, in

sequence. Execution ceases when the last statement has been executed or when

control is transferred out of the compound statement through execution of a goto,

return, continue, or break statement.

It is also possible to jump to a labeled statement within a compound statement by

using a goto or switch statement outside the compound statement. When that hap-

pens, storage is allocated for any auto or register variables declared in the com-

pound statement, but any initialization expressions for those variables are not eval-

uated and no initialization occurs. Execution then begins at the statement to which

control was transferred and continues in sequence until the last statement has

been executed or until control is transferred out of the compound statement

through execution of a goto, return, continue, or break statement.

An unlabeled compound statement used as the body of a switch statement cannot

be executed normally but only through transfer of control to labeled statements

within it. Therefore, initializations of auto and register variables in such a com-

pound statement never occur and their presence is a priori an error.

8.4.1. C-Ref: Declarations Within Compound Statements

Each identifier declared at the beginning of a compound statement has a scope

that extends from its declaration point to the end of the block. It is visible

throughout that scope except when hidden by a declaration of the same identifier

in an inner block.

An identifier declared at the beginning of a compound statement without a storage

class specifier is assumed to have storage class extern if the type of the identifier

is "function returning...," and is assumed to have storage class auto in all other

cases. It is illegal for an identifier of function type to have any storage class ex-

cept extern when it is declared at the beginning of a block.

Page 187

If a variable or function is declared in a compound statement with storage class

extern, then no storage is allocated and no initialization expression is permitted.

The declaration refers to an external variable or function defined elsewhere, either

in the same source file or a different source file.

If a variable is declared in a compound statement with storage class auto or reg-

ister, then it is effectively reallocated every time the compound statement is en-

tered and deallocated when the compound statement is exited. If there is an ini-

tialization expression for the variable, then the expression is reevaluated and the

variable reinitialized every time the compound statement is entered normally. (The

initialization expression is not evaluated and the variable not initialized when con-

trol is passed to a statement within the compound statement via a goto or switch

statement from outside.) If there is no initialization expression for the variable,

then the value of the variable is initially undefined every time the compound state-

ment is executed; the value of the variable does not carry over from one execution

of the compound statement to the next.

If a variable is declared in a compound statement with storage class static, then

it is effectively allocated once, prior to program execution, just like any other stat-

ic variable. If there is an initialization expression for the variable, then the expres-

sion is evaluated only once, prior to program execution, and the variable retains

its value from one execution of the compound statement to the next.

8.4.2. C-Ref: Use of Compound Statements

Compound statements without declarations are particularly useful as parts of other

control statements, so that more than one statement can be executed conditionally

or in a loop:

if (error_seen) {

 ++error_count;

 print_error_message();

} �

With declarations, compound statements can also introduce additional variables

with reduced visibility. This often helps to make a program clearer by restricting

the area over which a variable is accessible:

if (first_time) {

 /* Clear the array. */

 int i;

 for (i = 0; i < 10; i++)

 a[i] = 0;

 /* Reset first-time flag. */

 first_time = 0;

}�

C permits unrestricted jumps into compound statements, but we feel this is bad

programming style. In fact, none of the languages Ada, Algol 60, Modula-2, Pascal,

or PL/I permit jumps into blocks. The particular danger in C is not having initial-

izations occur. For example, the following code fragment is unlikely to work if the

statement labeled L: is jumped to from outside the compound statement, because

Page 188

the variable sum will not be initialized. Furthermore, it is not possible to tell if any

such jump does occur without examining at least the entire body of the enclosing

function.

{

 extern int a[100];

 int i, sum = 0;

 L:

 for (i = 0; i < 100; i++)

sum += a[i];

 ...

}�

8.5. C-Ref: Conditional Statement

There are two forms of conditional statement: with or without an else clause.

Each begins with the keyword if, followed by a control expression in parentheses,

followed by a statement; there may be appended to this the keyword else and then

another statement. Note that C, unlike other programming languages such as Pas-

cal, does not use the keyword then as part of the syntax of its if statement.

������������������������

������������

�����������������

���������������

if�(������������)����������

��������������������

if�(������������)�����������else�����������

For each form of if statement the expression within parentheses is first evaluated.

If this value is nonzero (section "C-Ref: Control Expressions"), then the statement

immediately following the parentheses is executed. If the value of the control ex-

pression is zero and there is an else clause, then the statement following the key-

word else is executed instead; but if the value of the control expression is zero

and there is no else clause, then execution continues immediately with the state-

ment following the conditional statement.

8.5.1. C-Ref: Multiway Conditional Statements

A multiway decision can be expressed as a cascaded series of if-else statements,

where each if statement but the last has another if statement in its else clause.

Such a series looks like this:

Page 189

if (�����������)

 ����������

else if (�����������)

 ����������

else if (�����������)

 ����������

...

else

 �����������

Here is an example of a three-way decision: The function signum returns one of

three results depending on its argument.

/* Return 1, -1, or 0 if x is positive,

 negative, or zero, respectively. */

int signum(x)

 int x;

{

 if (x > 0) return 1;

 else if (x < 0) return -1;

 else return 0;

}�

Compare this with the version of signum that uses conditional expressions shown in

section "C-Ref: Conditional Expressions".

The switch statement handles the specific kind of multiway decision where the val-

ue of an expression is to be compared against a fixed set of constants.

8.5.2. C-Ref: The Dangling Else Problem

An ambiguity arises because a conditional statement may contain another condi-

tional statement: In some situations it may not be apparent to which of several

conditional statements an else might belong. Consider this example:

/* Warning: this example is indented

 in a misleading fashion. */

if ((k >= 0) & (k < TABLE_SIZE))

 if (table[k] >= 0)

 printf("Entry %d is %d\n", k, table[k]);

 else printf("Error: index %d out of range.\n",k);�

Inspection of the code might lead one to assume that whoever wrote this code in-

tended the else part to be an alternative to the outer if statement: The error

message should be printed when the test

(k >= 0) & (k < TABLE_SIZE)�

is false. However, if we change the wording of the last error message to

else printf("Error: entry %d is negative.\n", k);�

then one might assume that the programmer intended the else part to be executed

when the test

Page 190

table[k] >= 0�

is false.

The C language does not require the compiler to interpret the meanings of error

messages and make assumptions about the programmer’s intentions. Instead, the

ambiguity is resolved in an arbitrary but customary way: An else part is always

assumed to belong to the ��������� if statement possible. From this rule we see

that the second interpretation of the code fragment above will work as intended,

while the first will not. The first fragment can be made to work as intended by in-

troducing a compound statement:

if (k >= 0 & k < TABLE_SIZE) {

 if (table[k] >= 0)

 printf("Entry %d is %d\n", k, table[k]);

}

else printf("Error: index %d out of range.\n", k);�

To reduce confusion, the second interpretation could also use a compound state-

ment:

if (k >= 0 & k < TABLE_SIZE) {

 if (table[k] >= 0)

 printf("Entry %d is %d\n", k, table[k]);

 else printf("Error: entry %d is negative.\n",k);

}�

Confusion can be eliminated entirely if braces are always used to surround state-

ments controlled by an if statement. However, this conservative rule can clutter a

program with unnecessary braces. It seems to us that a good stylistic compromise

between confusion and clutter is to use braces with an if statement whenever the

statement controlled by the if is anything but an expression statement.

8.6. C-Ref: Iterative Statements

Three kinds of iteration statements are provided in C.

����������������������

���������������

������������

��������������

The while statement tests an exit condition ������ each execution of a statement.

The do statement tests an exit condition ����� each execution of a statement. The

for statement provides a special syntax that is convenient for initializing and up-

dating one or more control variables as well as testing an exit condition. The

statement embedded within an iteration statement is sometimes called the ���� of

the statement.

Page 191

8.6.1. C-Ref: While Statement

A while statement consists of the keyword while, followed by a control expression

in parentheses, followed by a statement.

������������������

while�(������������)�����������

Note that C, unlike other programming languages such as Pascal, does not use the

keyword "do" as part of the syntax of its while statement.

The while statement is executed by first evaluating the control expression. If the

result is not zero, then the statement is executed. The entire process is then re-

peated, alternately evaluating the expression and then, if the value is not zero, ex-

ecuting the statement. The value of the expression can change from time to time

because of side effects in the statement or in the expression itself.

The execution of the while statement is complete when the control expression eval-

uates to zero, or when control is transferred out of the body of the while state-

ment by a return, goto, or break statement. Also, the continue statement can modi-

fy the execution of a while statement.

As an example, the following code fragment uses a while loop to raise an integer x�

to the power specified by the nonnegative integer y (with no checking for over-

flow):

/* Compute x to the power y by repeated squaring. */

{

 int base = x;

 int exponent = y;

 int z = 1;

 while (exponent > 0) {

 if (exponent % 2) /* If exponent is odd, */

 z *= base; /* multiply z by base. */

 base *= base; /* Square the base. */

 exponent /= 2; /* Divide exponent by 2. */

 }

 /* Now z is equal to x raised to the power y. */

}�

The method used is that of repeated squaring of the base and decoding of the ex-

ponent in binary notation to determine when to multiply the base into the result.

(To see why this works, note that the while loop maintains the invariant condition

that z times base raised to the exponent power is equal to x raised to the y power.

When eventually the exponent is 0, this condition degenerates to simply z equals x

raised to the y power, which is the desired result.)

A while loop may usefully have a null statement for its body:

while (*char_pointer++);�

The character pointer is advanced along by the ++ operator until a null character

is found, and it is left pointing to the character after the null. This is a compact

idiom for locating the end of a string. (Notice that the test expression depends on

Page 192

the fact that the postfix operator ++ has higher precedence than the indirection op-

erator *. The test expression is interpreted as *(char_pointer++), not as

(*char_pointer)++, which would increment the character pointed to by

char_pointer.)

A variation on this idea uses two pointers to copy a character string from one

place to another:

while (*dest_pointer++ = *source_pointer++);�

Characters are copied until the terminating null character is found (and also

copied). Of course, in writing this the programmer should have reason to believe

that the destination area will be large enough to contain all the characters to be

copied.

8.6.2. C-Ref: Do Statement

A do statement consists of the keyword do, followed by a statement, followed by

the keyword while, followed by a control expression in parentheses, followed by a

semicolon.

���������������

do�����������while�(������������)�;�

The do statement is executed by first executing the embedded statement. Then the

control expression is evaluated; if the value is not zero, then the entire process is

then repeated, alternately executing the statement, evaluating the control expres-

sion, and then, if the value is not zero, repeating the process. Note that the value

of the expression can change from time to time because of side effects in the

statement or in the expression itself.

The execution of the do statement is complete when the control expression evalu-

ates to zero or when control is transferred out of the body of the while statement

by a return, goto, or break statement. Also, the continue statement can modify the

execution of a do statement.

The do statement differs from the while statement in that the do statement always

executes the body at least once, whereas the while statement may never execute

its body at all.

The C do statement is similar in function to what is often called a "repeat-until"
statement in other programming languages such as Pascal. The C do statement is

unusual in that it terminates execution when the control expression is false,

whereas a Pascal repeat-until statement terminates if its control expression is

true. C is more consistent in this regard: all iteration constructs in C (while, do,

and for) terminate when the control expression is false.

As an example of the use of the do statement, consider this program fragment that

reads and processes characters, halting after a newline character has been pro-

cessed.

Page 193

int ch;

do {

 ch = getchar();

 process(ch);

} while (ch != ’\n’);�

The same effect could have been obtained by moving the computations into the

control expression of a while statement, but the intent would be less clear:

int ch;

while(ch = getchar(ch),

 process(ch),

 ch != ’\n’);�

It is possible to write a do statement whose body is a null statement:

do ; while (����������);�

It is silly to do so, however, because such a do statement is identical in meaning

to a while statement whose body is a null statement:

while (����������);�

8.6.3. C-Ref: For Statement

C’s for statement is considerably more general than the "increment and test"
statements found in most other languages. After explaining the execution of the

for statement, we give several examples of how it can be used.

����������������

for��������������������������

������������������

(�����������opt�;�����������opt�;�����������opt�)�

A for statement consists of the keyword for, followed by three expressions separat-

ed by semicolons and enclosed in parentheses, followed by a statement. Each of the

three expressions within the parentheses is optional and may be independently

omitted, but the two semicolons separating them and the parentheses surrounding

them are mandatory.

Typically, the first expression is used to initialize a loop variable, the second tests

whether the loop should continue or terminate, and the third updates the loop

variable (for example, by incrementing it). However, in principle the expressions

may be used to perform any computation that is useful within the framework of

the for control structure.

The for statement is executed as follows:

1. If present, the first expression is evaluated and the value is discarded.

2. If present, the second expression is evaluated like a control expression. If the

result is zero, then execution of the for statement is complete. Otherwise (if

the value is not zero or if the second expression was omitted), proceed to step

3.

Page 194

3. The body of the for statement is executed.

4. If present, the third expression is evaluated and the value is discarded.

5. Return to step 2.�

The execution of a for statement is terminated when the second (control) expres-

sion evaluates to zero or when control is transferred outside the for statement by

a return, goto, or break statement. The execution of a continue statement within

the body of the for statement has the effect of causing a jump to step 4 above.

Stated another way, a for loop of the form

for (�����������; �����������; �����������) ����������

is similar (except for the action of the continue statement) to

{

 �����������;

 while (�����������) {

���������

�����������;

 }

}�

where if ����������� or ����������� is not present in the for statement, then it is

simply omitted in the expansion also, and if ����������� is not present in the for

statement, then the constant 1 is used for it in the expansion (and so the while

loop never terminates due to the control expression becoming zero).

8.6.4. C-Ref: Using the For Statement

The standard way in C to write a loop that "never terminates" (sometimes known

as a "do forever" loop) is as a for loop with no expressions:

for (;;) ����������

Of course, the loop can still be terminated by a break, goto, or return statement

within the body. One can write a "do forever" loop in other ways, such as

while (1) ����������

but the idiom using for with no expressions is customary.

Typically, the first expression in a for statement is used to initialize a variable,

the second expression to test the variable in some way, and the third to modify the

variable toward some goal. For example, to print the integers from 0 to 9 and

their squares, one might write

for (j = 0; j < 10; j++)

 printf("%d %d\n", j, j*j);�

Here the first expression initializes j; the second expression tests whether it has

reached 10 yet (if it has, the loop is terminated); and the third expression incre-

ments j by 1.

Page 195

The example of raising an integer to an integer power given above to illustrate

the while statement can be rewritten using a for statement:

/* Compute x to the power y by repeated squaring. */

{

 int base = x;

 int exponent;

 int z = 1;

 for (exponent = y; exponent > 0; exponent /= 2) {

if (exponent % 2) /* If exponent is odd, */

 z *= base; /* multiply z by base. */

base *= base; /* Square the base. */

 }

 /* Now z is equal to x raised to the power y. */

}�

This form stresses the fact that the loop is controlled by the variable exponent as

it begins at the value y and progresses toward 0 by repeated divisions by 2. Note

that the loop variable exponent still had to be declared outside the for statement.

The for statement itself does not include the declaration of any variables. A com-

mon programming error is to forget to declare a variable such as i or j used in a

for statement, only to discover that some other variable named i or j elsewhere in

the program is inadvertently modified by the loop.

The for statement need not be used only for counting over integer values. Here is

an example of scanning down a linked chain of structures, where the loop variable

is a pointer:

struct intlist {

 struct intlist *link;

 int data;

};

void print_duplicates(p)

struct intlist *p;

{

 for (; p; p = p->link) {

 struct intlist *q;

 for (q = p->link; q; q = q->link)

 if (q->data == p->data) {

printf("Duplicate data %d", p->data);

break;

 }

 }

}�

The structure intlist is used to implement a linked list of records, each record

containing some data. Given such a linked list, the function print_duplicates

prints the data for every redundant record in the list. A record is considered to be

redundant if some other record after it in the list contains the same data. (If sev-

eral records in the list have the same data, all but the last one are considered

Page 196

redundant.) The first for statement cleverly (perhaps too cleverly) uses the formal

parameter p as its loop variable; it scans down the given list. The loop terminates

when a null pointer is encountered. For every record, all the records following it

are examined by the inner for statement, which scans a pointer q along the list in

the same fashion. If the record pointed to by p is discovered to be redundant, the

break statement is used to terminate the inner loop, to prevent the data for p from

being printed more than once.

As another example of nested for loops, here is a simple sorting routine that uses

the insertion sort algorithm.

/* Sort v[0]...v[n-1] into increasing order. */

void insertsort(v, n)

 register int v[], n;

{

 register int i, j, temp;

 for (i = 1; i < n; i++) {

temp = v[i];

for (j = i-1; j >= 0 && v[j] > temp; j--)

 v[j+1] = v[j]; v[j+1] = temp;

 }

}�

The outer for loop counts i up from 1 (inclusive) to n (exclusive). At each step, el-

ements v[0] through v[i-1] have already been sorted, and elements v[i] through

v[n-1] remain to be sorted. The inner loop counts j down from i-1, moving ele-

ments of the array up one at a time, until the right place to insert v[i] has been

found. (That is why this is called "insertion sort.") Notice that the termination test

for the inner loop uses the && operator. This prevents the array reference v[j]�

from being executed when j is less than 0.

Insertion sort is a simple and efficient sorting method for small arrays (for n less

than, say, 20) or for arrays that are already almost sorted. It is not a good method

for very large unordered arrays, because in the worst case the time to perform the

sort is proportional to the square of the number of items to be sorted.

A simple modification to insertion sort can make it astonishingly more efficient by

wrapping a third loop around the first two! The following sort routine, using the

shell sort algorithm, is similar to one called shell that appeared as an example in

the original description of C. The original shell routine was a good example of the

use of three different nested for loops in a practical setting. However, we have

modified it here in four ways, two of them suggested by Knuth and Sedgewick, to

make it faster.

/* Sort v[0]...v[n-1] into increasing order. */

void shellsort(v, n)

 register int v[], n;

{

 register int gap, i, j, temp;

Page 197

 gap = 1;

 do (gap = 3*gap + 1); while (gap <= n);

 for (gap /= 3; gap > 0; gap /= 3)

for (i = gap; i < n; i++) {

 temp = v[i];

 for (j=i-gap; (j>=0)&&(v[j]>temp); j-=gap)

v[j+gap] = v[j];

 v[j+gap] = temp;

}

}�

In the older version, shell, the value of gap started with n/2, and gap was divided

by two each time through the outer loop; in this version, shellsort, gap is initial-

ized by finding the smallest number in the series 1, 4, 13, 40, 121, ... that is not

greater than n, and gap is divided by three each time through the outer loop. This

is the first improvement. It makes the sort run about 20% to 30% faster on the

average. (This is an empirical result; it is not yet completely understood theoreti-

cally why this should be so. Experiments also show that one should ��� initialize

gap to n and then divide by three each time; such a strategy produces a very poor

sorting routine. It is important to start with an element from the series 1, 4, 13,

40, 121,)

The second improvement is that the number of assignments is reduced because the

inner loop of shellsort contains only one assignment, compared with three assign-

ments in the inner loop of shell.

The third improvement is the introduction of register declarations into shellsort;

these make no difference in some implementations of C, but in other implementa-

tions these declarations provide a dramatic performance improvement (40% in one

case).

The fourth improvement is the use of the void type specifier to indicate explicitly

that shellsort returns no value.

Notice that the two inner loops of shellsort are almost identical to the two loops

of insertsort; the only change is that the variable gap has replaced the constant 1

in a few places. Despite the fact that shellsort has three nested loops instead of

two, experiments show that it executes in time roughly proportional to �1.25 in-

stead of �2.

8.6.5. C-Ref: Multiple Control Variables

Sometimes it is convenient to have more than one variable controlling a for loop.

In this connection the comma operator is especially useful, because it can be used

to group several assignment expressions into a single expression:

Page 198

/* Returns 1 if the two string arguments

 are equal, 0 otherwise. */

int string_equal(s1, s2)

 char s1[], s2[];

{

 char *p1, *p2;

 for (p1=s1, p2=s2; *p1 && *p2; p1++, p2++)

 if (*p1 != *p2) return 0;

 return *p1 == *p2;

}�

The example function string_equal accepts two strings and returns 1 if they are

equal and 0 otherwise. The for statement is used to scan two pointer variables in

parallel down the two strings. The expression p1++, p2++ causes each of the two

pointers to be advanced to the next character. If the strings are found to differ at

some position, the return statement is used to terminate execution of the entire

function and return 0. (This is probably a little faster than using break to termi-

nate the loop and letting the following return redo the comparison.) If a null char-

acter is found in either string, as determined by the expression *p1 && *p2, then

the loop is terminated normally, whereupon the second return statement deter-

mines whether or not both strings ended with a null character in the same place.

(The function would still work correctly if the expression *p1 were used instead of

*p1 && *p2. It would also be a bit faster, though not as pleasantly symmetrical.)

8.7. C-Ref: Switch Statement; Case and Default Labels

The switch statement is a multiway branch based on the value of a control ex-

pression. In use, it is similar to the "case" statement in Pascal or Ada, but it is

implemented more like the FORTRAN "computed goto" statement.

�������������������

switch�(������������)����������

��������������

case��������������������

����������������

default�

A switch statement consists of the keyword switch, followed by a control expres-

sion enclosed in parentheses, followed by a statement. The parentheses surround-

ing the expression are mandatory. The statement embedded within a switch state-

ment is sometimes called the ���� of the switch statement. The body is usually a

compound statement but need not be.

A case label consists of the keyword case followed by a constant expression. A de-

fault label consists of the keyword default. A case label or default label is said to

������ to the innermost switch statement that contains it. Any statement within

the body of a switch statementor the body itselfmay be labeled with a case la-

Page 199

bel or a default label. In fact, the same statement may be labeled with several

case labels and a default label.

The case and default labels that belong to a switch statement must satisfy the fol-

lowing rules:

1. All of the case labels (if any) must have constant expressions thatafter the

usual unary conversionsare of the same type as the expression in the switch

statement.

2. No two case labels belonging to the same switch statement may have expres-

sions that produce the same value.

3. At most one default label may belong to any one switch statement.�

A case label or default label is not permitted to appear other than within the body

of a switch statement.

The control expression of a switch statement is subject to the usual unary conver-

sions, but there is some uncertainty in the types permitted for that expression.

The original definition of C specified that the type had to be int, and this type is

always permitted. Compilers that implement enumeration types will generally allow

expressions of enumeration types in switch statements and enumeration constants

in case labels. Type long may also be permitted in some implementations. Howev-

er, the use of pointer or floating-point types is not permitted.

A switch statement is executed as follows:

1. The control expression is evaluated.

2. If the value of the expression is equal to that of the constant expression in

some case label belonging to the switch statement, then program control is

transferred to the point indicated by that case label as if by a goto state-

ment; the statement labeled by that case label is executed next.

3. If the value of the control expression is not equal to any case label, but there

is a default label that belongs to the switch statement, then program control

is transferred to the point indicated by that default label; the statement la-

beled by the default label is executed next.

4. If the value of the control expression is not equal to any case label and there

is no default label, no statement of the body of the switch statement is exe-

cuted; program control is transferred to whatever follows the switch state-

ment.�

After control is transferred to a case or default label, execution continues through

successive statements, ignoring any additional case or default labels that are en-

countered, until the end of the switch statement is reached or until control is

transferred out of the switch statement by a goto, return, break, or continue

statement.

Page 200

8.7.1. C-Ref: Use of Switch Statements

The usual style in which the switch statement is used calls for the body to be a

compound statement, statements within which are labeled by case and default la-

bels. It should be noted that case and default labels do not themselves alter the

flow of program control; execution proceeds unimpeded by such labels. The break

statement can be used within the body of a switch statement to terminate its exe-

cution.

As an example, consider this program fragment:

switch (x) {

 case 1: printf("*");

 case 2: printf("**");

 case 3: printf("***");

 case 4: printf("****");

}�

If the value of x is 2, then nine asterisks will be printed. The reason for this is

that the switch statement transfers control to the case label with the expression 2.

The call to printf with argument "**" is executed; next the call to printf with ar-

gument "***" is executed; and finally the call to printf with argument "****" is

executed. If it is desired to terminate execution of the switch body after a single

call to printf in each case, then the break statement should be used:

switch (x) {

 case 1: printf("*");

 break;

 case 2: printf("**");

 break;

 case 3: printf("***");

 break;

 case 4: printf("****");

 break;

}�

While the last break statement in this example is logically unnecessary, it is a

good thing to put in as a matter of style. It will help to prevent program errors in

the event that a fifth case is later added to the switch statement.

While it is considered good style to use the switch statement in the manner exem-

plified above, the language definition itself does not require that the body be a

compound statement, or that case and default labels appear only at the "top level"
of the compound statement, or that case and default labels appear in any particu-

lar order or on different statements. Since a switch statement is effectively a mul-

tiway computed goto statement, the same stylistic guidelines apply as for goto

statements. (See section "C-Ref: Goto Statement and Named Labels".)

Here is an example of how the best intentions can lead to chaos. The intent was

to implement this simple program fragment as efficiently as possible:

if (prime(x)) process_prime(x);

else process_composite(x);�

Page 201

The function prime was assumed to return 1 if its argument is a prime number

and 0 if the argument is a composite number. Program measurements indicated

that most of the calls to prime were being made with small integers, so to avoid

the overhead of calls to prime the code was changed to this:

switch(x) {

 case 2: case 3: case 5: case 7:

process_prime(x);

break;

 case 4: case 6: case 8: case 9: case 10:

process_composite(x);

break;

 default:

if (prime(x)) process_prime(x);

else process_composite(x);

break;

}�

The final step was to realize that C provided a way to compress this even further:

switch (x)

 default:

 if (prime(x))

 case 2: case 3: case 5: case 7:

 process_prime(x);

 else

 case 4: case 6: case 8: case 9: case 10:

 process_composite(x);�

This is, frankly, the most bizarre switch statement we have ever seen that still

has pretenses to being purposeful. Not only is it unstructured and difficult to un-

derstand, but good compilers can generate the same code from the well-structured

switch statement above.

We strongly recommend sticking to this simple rule of style for switch statements:

The body should always be a compound statement, and all labels belonging to the

switch statement should appear on "top level" statements within that compound

statement. Furthermore, every case (or default) label but the first should be pre-

ceded by one of two things: either a break statement that terminates the code for

the previous case or a comment explicitly noting that the previous code is intended

to drop in:

Page 202

enum error_type {info, warn, error, fatal} errflag;

 ...

 /* Print the appropriate prefix for issuing the */

 /* next error message, and also increment the */

 /* appropriate counter. */

 switch (errflag) {

case info:

 printf("Info");

 ++info_count;

 break;

case warn:

 printf("Warning");

 ++warn_count;

 break;

case fatal:

 disaster_flag = 1;

 printf("Fatal ");

 /* Drops through. */

case error:

 printf("Error");

 ++error_count;

 break;

 }

 print_error_message();�

8.8. C-Ref: Break and Continue Statements

The break and continue statements are used to alter the flow of control inside

loops andin the case of breakin switch statements. It is better to use these

statements than to use the goto statement to accomplish the same purpose.

������������������

break�;

���������������������

continue ;

The break statement consists of just the word break followed by a semicolon. Exe-

cution of a break statement causes execution of the smallest enclosing while, do,

for, or switch statement to be terminated. Program control is immediately trans-

ferred to the point just beyond the terminated statement. It is an error for a break

statement to appear where there is no enclosing iterative or switch statement.

The continue statement consists of just the word continue followed by a semicolon.

Execution of a continue statement causes execution of the body of the smallest en-

closing while, do, or for statement to be terminated. Program control is immedi-

ately transferred to the end of the body, and the execution of the affected iterative

statement continues from that point with a reevaluation of the loop test (and the

Page 203

increment expression, in the case of the for statement). It is an error for a con-

tinue statement to appear where there is no enclosing iterative statement.

The continue statement, unlike the break statement, has no interaction whatever

with switch statements. A continue statement may appear within a switch state-

ment, but it will affect only the smallest enclosing iteration statement, not the

switch statement.

The break and continue statements can be explained in terms of the goto state-

ment. Consider the statements affected by a break or continue statement:

while (����������) ���������

do ��������� while (����������);

for (�����������; �����������; �����������) ���������

switch (����������) ����������

Imagine that all such statements were to be rewritten in this manner:

{ while (����������) {��������� �:;} �:;}

{ do {��������� �:;} while (����������); �:;}

{ for (�����������; �����������; �����������) {��������� �:;} �:;}

{ switch (����������) ��������� �:; }�

where in each case � and � are labels that appear nowhere else in the enclosing

function. Then any occurrence of a break statement within the body of any of

these statements is equivalent to

goto �;�

and any occurrence of a continue statement within the body of any of these state-

ments (except switch) is equivalent to

goto �;�

(This assumes that the loop bodies do not contain yet another loop containing the

break or continue.)

8.8.1. C-Ref: Using break and continue

The break statement is frequently used in two very important contexts: to termi-

nate the processing of a particular case within a switch statement, and to termi-

nate a loop prematurely. The first use is illustrated in conjunction with switch in

section "C-Ref: Switch Statement; Case and Default Labels". The second use is il-

lustrated by this example of filling an array with input characters:

Page 204

/* Fill "array" with input characters, stopping

 when the array is full or when the input is

 exhausted.

 */

{

 static char array[100] = {0};

 int i, c;

 for (i = 0; i < 100; i++) {

c = getchar();

if (c == EOF)

 break; /* Quit if end-of-file. */

array[i] = c;

 }

 /* Now "i" has the actual number of

 characters read. */

}�

Note how break is used to handle the abnormal case. It is generally better style to

handle the normal case in the loop test itself.

Most uses of continue can be avoided by using a more carefully constructed if

statement; this usually results in clearer code. Here is an example of poor use of

the continue statement:

extern char command_buffer[];

 ...

 for (;;) {

/* Process all nonempty lines that do

 not start with "#". */

gets(command_buffer));

if (!command_buffer[0]) continue;

if (command_buffer[0] = ’#’) continue;

process_command();

 }�

This can be rewritten to make it much more clear that the call to process_command

is conditional:

extern command_buffer[];

 ...

 for (;;) {

/* Process all nonempty lines that do

 not start with "#". */

gets(command_buffer));

if (command_buffer[0] &&

 (command_buffer[0] != ’#’))

 process_command();

 }�

While continue statements are usually not as confusing as goto statements, a simi-

lar amount of thought should go into the decision to use one. Indiscriminate use of

continue (or break, for that matter) can make programs much more difficult to un-

derstand and maintain.

Page 205

Here is an example of the use of a break statement within a "do forever" loop. The

idea is to find the largest element in the array a (whose length is n) as efficiently

as possible. It is assumed that the array may be modified temporarily.

{

 int temp = a[0];

 register int smallest = a[0];

 register int *ptr = &a[n];

 for (;;) {

 while (*--ptr > smallest);

if (ptr == &a[0]) break;

a[0] = smallest = *ptr;

 }

 a[0] = temp;

}�

The point is that most of the work is done by a very tight while loop. The while

loop scans the pointer ptr backwards through the array, skipping elements that

are larger than the smallest one found so far. (If the elements are in a random

order, then once a reasonably small element has been found, most elements will be

larger than that and so will be skipped.) The while loop cannot fall off the front of

the array because the smallest element so far is also stored in the first array ele-

ment. When the while loop is done, if the scan has reached the front of the array,

then the break statement terminates the outer loop. Otherwise smallest and a[0]�

are updated and the while loop is entered again. At the end of the computation, el-

ement a[0] is restored to its original value.

Compare the code above with a simpler, more obvious approach:

{

 register int smallest = a[0];

 register int j;

 for (j = 1; j < n; ++j)

if (a[j] < smallest)

 smallest = a[j];

}�

This version is certainly easier to understand. However, on every iteration of the

loop an explicit check (j < n) must be made for falling off the end of the array, as

opposed to the implicit check made by the more clever code. Under certain circum-

stances where efficiency is paramount, the more complicated code may be justified;

otherwise, the simpler, clearer loop should be used.

8.9. C-Ref: Return Statement

A return statement is used to terminate the current function, perhaps returning a

value.

�������������������

return�����������opt�;�

Page 206

A return statement consists of the keyword return, optionally followed by an ex-

pression, followed by a semicolon. Execution of a return statement causes execu-

tion of the current function to be terminated; program control is transferred to the

caller of the function at the point immediately following the call.

If program control should "drop off the end" of a function, then the effect is as if

a return statement with no expression were executed.

If no expression appears in the return statement, then no value is returned from

the function; if the function was called from a context requiring a value, then the

value returned is undefined. If an expression appears in the return statement,

then it is converted, if necessary, as if by simple assignment, to the type of the re-

turn value of the function in which the statement appears.

The rules governing the agreement of the actual value returned with the declared

return value in the function definition are discussed in section "C-Ref: Agreement

of Actual and Declared Return Type".

8.10. C-Ref: Goto Statement and Named Labels

A goto statement may be used to transfer control from any statement in a func-

tion to any other statement.

�����������������

goto������������;

��������������

�����������

A goto statement consists of the keyword goto, followed by an identifier, followed

by a semicolon. The identifier must be the same as a named label on some state-

ment within the current function. Execution of the goto statement causes an im-

mediate transfer of program control to the point in the function indicated by the

label; the statement labeled by the indicated name is executed next.

8.10.1. C-Ref: Using the goto statement

C permits a goto statement to transfer control to any other statement within a

function, but certain kinds of branching can result in confusing programs, and the

branching may hinder compiler optimizations.

The following rules should result in a more clear use of the goto:

1. Do not branch into the "then" or "else" arm of an if or if-else statement from

outside the if or if-else statement.

2. Do not branch from the "then" arm to the "else" arm or back.

3. Do not branch into the body of a switch or iteration statement from outside

the statement.

Page 207

4. Do not branch into a compound statement from outside the statement.�

Such branches should be avoided not only when using the goto statement, but also

when placing case and default labels in a switch statement (which, in effect, exe-

cutes a goto statement to get to the appropriate case label). Branching into the

middle of a compound statement from outside it can be especially confusing, be-

cause such a branch bypasses the initialization of any variables declared at the top

of the compound statement.

It is good programming style to use the break, continue, and return statements in

preference to goto whenever possible, and better still to avoid them all by appro-

priate use of conditional and iteration statements.

Finally, the programmer wanting to produce a C program that executes as rapidly

as possible should remember that the presence of ��� labelwhether explicit,

named labels or implicit labels required by break and continuemay inhibit com-

piler optimizations and therefore may slow down the C program.

8.11. C-Ref: Null Statement

The null statement consists of just a semicolon:

�����������������

;�

It is useful primarily in two situations. First, a null body is often desired for an it-

erative statement (while, do, or for), as in

char *p;

...

while (*p++); /* find the end of the string */�

The second case is where a label is desired just before the right brace that termi-

nates a compound statement. (A label cannot simply precede the right brace, but

must always be attached to a statement.) For example:

if (e) {

 ...

 goto L; /* terminate this arm of the ’if’ */

 ...

L:;}

else ...�

Page 208

Page 209

9. C-Ref: Functions

This chapter discusses the definition of functions in C and the rules for the agree-

ment of parameters and return values. Function types and declarations are dis-

cussed in section "C-Ref: Function Types". This is an area of the language that

has been significantly extended in Draft Proposed ANSI C.

9.1. C-Ref: Function Definitions

A function definition introduces a new function and provides the following infor-

mation:

1. the type of the value returned by the function, if any

2. the type and number of the formal parameters

3. the visibility of the function outside the file in which it is defined

4. the code that is to be executed when the function is called

Do not confuse function ����������� with function ������������. A function declara-

tion provides access to a function that is defined elsewhere.

The syntax for a function definition is

����������������������

����������������������opt���������������������������

���������������

��������������������������opt��������������������

�����������������������������

����������������

������������������

�����������

������������������������������

Note that both the storage class specifier and the type specifier may be omitted

from the function definition without ambiguity.

The only storage class specifiers that may appear in a function definition are ex-

tern and static. extern signifies that the function can be referenced from other

files; that is, the function name is exported to the linker. The specifier static sig-

nifies that the function cannot be referenced from other files; that is, the name is

not exported to the linker. If no storage class appears in a function definition, ex-

tern is assumed.

Page 210

The storage class does not affect the visibility of the function within the file con-

taining the definition. The function is always visible from the definition point to

the end of the file. In particular, it is visible within the body of the function itself.

(C allows any function to call itself recursively.)

9.2. C-Ref: Types of Functions

In a function definition, as in a declaration, the type specifier and the declarator

together determine the "type" of a function. We will call them the �������� ��������

��. If no type specifier is present, int is assumed.

In a function definition, the declarator and type specifier must together specify a

type for the enclosed identifier of "function returning �," where � is any type (in-

cluding void) except "array of ..." or "function returning" In other words, func-

tions may not return arrays or other functions. (However, they may return point-

ers to arrays or functions.) For example, the following syntactically legal function

definition is nonsensical because the type of f is "pointer to function returning

int":

int (*f)()

{

 ...

}�

However, the following definition is legal, because the type of g is "function re-

turning �" (where � is "pointer to array of int").

int (*g())[]

{

 ...

}�

Another way of stating the restriction is that the definition must contain a func-

tion declarator, "�(...)," where � is the identifier that is the name of the func-

tion. If the function has parameters, they must be listed in the function declarator.

Consider the following examples of function specifiers:

void f() f is a function with no parameters returning no result.

int g(x, y) g is a function taking two parameters named x and y and re-

turning a value of type int.

int (*h(z))[] h is a function taking one parameter named z and returning a

pointer to an array of integers.

int (*(*d(w))[])() d is a function taking one parameter named w and returning a

pointer to an array of pointers to functions returning integers.

(Note that only the parameters of d are specified, not those of

other functions mentioned in the declarator.)�

Page 211

Draft Proposed ANSI C introduces the concept of "function prototypes," which car-

ry more information than function types.

9.3. C-Ref: Formal Parameter Declarations

In function definitions, formal parameters are declared in two parts. As we have

just seen, the names of the parameters are listed in the function declarator. In or-

der to supply types for the parameters, the programmer declares each of the pa-

rameters (in any order) in the parameter declaration section. For example, to de-

fine a function that has three parametersan integer, a double-precision floating-

point number, and a pointer to an integerthe programmer can write:

void f(x, y, z)

 int x, *z;

 double y;

{

 ...

}�

The parameter declaration section may contain declarations of the parameters, and

perhaps declarations of types used in the parameter declarations.

The only storage class specifier that may be present in a parameter declaration is

register, which is a hint to the compiler that the parameter will be used heavily

and might better be stored in a register after the function has begun executing.

The normal restrictions as to what types of parameters may be marked register

apply (see section "C-Ref: Storage Class Specifiers".

A parameter may be declared to be of any type except void or "function returning
...." Parameters of type "array of �" and (sometimes) "function returning �" may

be declared, but these types are adjusted to be "pointer to �" and "pointer to func-

tion returning �," respectively. The mechanism is discussed in more detail in sec-

tion "C-Ref: Adjustments to Parameter Types".

It is permissible to include structure, union, or enumeration type definitions in the

parameter declaration section, and to include typedef definitions. The scope of

these definitions extends to the end of the function body. However, the usefulness

of these definitions is marginal, and probably bad programming style. To illustrate

this, consider the following function definition:

int process_record(r);

 struct { int a; int b; } *r;

{

 ...

}�

The inclusion of the struct definition as a side effect of the declaration for r is

permissible but confusing, because no actual parameter could be declared to have

that type. (The scope of the structure definition does not extend outside the func-

tion.) When we see in another file the code

Page 212

extern struct { int first;

 int second; } *two_integers;

process_record(two_integers);�

we can guess that the programmer is depending on:

1. the compiler’s not checking that the types of the formal and actual parame-

ters match (they don’t match)

2. the programmer’s being consistent about defining the same structured type in

different places so that the the actual parameter’s structure matches the for-

mal parameter’s structure (this consistency is not guaranteed because the

compiler does not necessarily perform this type check)�

Programmers who do things like this are living dangerously and invite ridicule

from people who have to decipher their programs.

9.4. C-Ref: Adjustments to Parameter Types

C specifies that certain adjustments in the types of function arguments be made to

simplify and regularize function arguments. The adjustments are made in two

places: on the actual argument types at the point of the function call and on the

formal argument types in function definitions.

The adjustments to the actual arguments are listed in section "C-Ref: The Func-

tion Argument Conversions". Corresponding to these adjustments, adjustments are

made to the types of a function’s formal parameters as they appear in the parame-

ter declaration section. In particular, if a formal parameter is declared to be of

type char, short, or float, the compiler will expect an actual argument of type int,

int, or double (respectively) to be passed to the function. For this reason, formal

parameters declared to be of type char, short, or float are implicitly �������� to

be of type int, int, and double, respectively. This permits many program libraries

to be smaller than they would have to be if, for instance, multiple definitions of

"square root" had to be provided for each of the argument types short, int, float,

double, etc.

However, the compiler will ensure that the values of the parameters are appropri-

ate to the declared type. That is, the function

void f(c)

 char c;

{

 int i;

 i = c;

 ...

}�

is implemented as if it were written

Page 213

void f(c)

 int c;

 {

 int i;

 i = (int) (char) c;

 ...

 }�

(Not all compilers actually implement such explicit narrowing operations on pa-

rameters, just as some deficient compilers fail to implement narrowing casts in all

cases. For maximum portability, programs should not depend critically on the trun-

cation effects of such narrowing.)

A formal parameter declared to be of type "array of �" is treated as if it were de-

clared to be of type "pointer to �." Because of the equivalence of pointers and ar-

rays, this change is invisible to the programmer. For example, in the function

int sumarray(a, n)

 int a[], n;

{

 int sum=0, i;

 for (i = 0; i < n; i++)

 sum = sum + a[i];

 return sum;

}�

the parameters a and n could have been declared as

int *a, n;�

with no other change to the program. Although array names are not usually lval-

ues, a formal parameter declared to be an array is treated as an lvalue by many

compilers.

Formal parameters of type "function returning ..." are not permitted by the lan-

guage. However, some compilers accept such parameters and implicitly convert

them to type "pointer to function returning ..." (sometimes also issuing a warning

message). These compilers will also automatically dereference such a parameter

when used in a function call. In fact, they do this automatic dereferencing on any

expression of type "pointer to function returning" For example:

extern (*h)();

void f(g) /* Not a legal C program! */

 void g();

{

 g(); /* This works in some compilers. */

 (*g)(); /* So does this. */

 h(); /* So does this! */

 (*h)(); /* ...and, of course, this. */

}�

We recommend adhering to the language specification and always declaring param-

eters to be pointers to functions. Draft Proposed ANSI C does provide automatic

dereferencing of "pointer to function returning"

Page 214

9.5. C-Ref: Parameter-Passing Conventions

C provides only call-by-value parameter passing. This means that the values of the

actual parameters are conceptually copied into a storage area local to the called

function. It is possible to use a formal parameter name as the left side of an as-

signment, for instance, but in that case only the local copy of the parameter is al-

tered.

If the programmer wants the called function to alter its actual parameters, the ad-

dresses of the parameters must be passed explicitly. For example, function swap be-

low will not work correctly, because x and y are passed by value.

void swap(x, y)

/* swap: exchange the values of x and y */

/* Incorrect version! */

 int x, y;

{

 int temp;

 temp = x; x = y; y = temp;

}

...

 swap(a, b); /* Fails to swap a and b. */�

A correct implementation of the function requires that addresses of the arguments

be passed:

void swap(x, y)

/* swap - exchange the values of *x and *y */

/* correct version */

 int *x, *y;

{

 int temp;

 temp = *x; *x = *y; *y = temp;

}

...

 swap(&a, &b); /* Swaps contents of a and b. */�

The local storage area for parameters is usually implemented on a pushdown

stack. However, the order of pushing parameters on the stack is not specified by

the language, nor does the language prevent the compiler from passing parameters

in registers. It is legal to apply the address operator & to a formal parameter name

(unless it was declared with storage class register), thereby implying that the pa-

rameter in question would have to be in addressable storage when the address was

taken. (Note that the address of a formal parameter is the address of the copy of

the actual parameter, not the address of the actual parameter itself.)

When writing functions that take a variable number of arguments, programmers

should use the varargs facility in the standard library for maximum portability.

Page 215

9.6. C-Ref: Agreement of Formal and Actual Parameters

Most modern programming languages such as Pascal and Ada check the agreement

of formal and actual parameters to functions; that is, both the number of argu-

ments and the types of the individual arguments must agree. As in FORTRAN,

this checking is not performed in C:

1. The syntax of declarations does not provide for a declaration of argument

types to functions, and therefore no checking is possible when a function is

supplied in another source file.

2. The lack of checking gives programmers some freedom in violating conven-

tions on certain rare occasions, especially in implementing functions that take

a variable number of arguments.�

For example, in the function hypotenuse below, the call on sqrt does not generate

a warning message, even though the actual parameter is of type long whereas the

formal parameter is declared to have type double. The function will simply return

a (probably) incorrect value.

double sqrt(x)

 double x;

{

 ...

}

long hypotenuse(x,y)

 long x,y;

{

 return (sqrt(x*x + y*y));

}�

There is no portable way in C to write a function that accepts a variable number

of arguments. Such functions can be written in Cfprintf and its variants are ex-

amplesbut they are not portable. They depend on very specific knowledge of how

parameters are passed on the stack, and they still need some way to determine the

type and number of arguments. (For example, fprintf depends on the format

string to indicate the number and types of the arguments.)

Draft Proposed ANSI C corrects many of the deficiencies just noted for functions.

In particular, it introduces a mechanismthe function prototypethat permits the

declaration of functions with their parameter types, and also formalizes the idea of

a function taking a variable number of arguments.

Page 216

9.7. C-Ref: Function Return Types

A function may be defined to return a value of any type except "array of �" or

"function returning �." These two cases must be handled by returning pointers to

the array or function. The actual value, if any, returned by the function is speci-

fied by an expression in the return statement that causes the function to termi-

nate. If control "falls out the bottom" of a function, it is as if

return;�

had been executed.

The value returned by a function is not an lvalue (the return is "by value"), and

therefore a function call cannot appear on the left side of an assignment operator.

The language does not specify how the return value is to be transmitted to the

calling program.

9.8. C-Ref: Agreement of Actual and Declared Return Type

A return statement with no expression,

return;�

is always permitted, regardless of whether the function has a void or nonvoid re-

turn type. This rule is to provide backwards compatibility with compilers that do

not implement void. When a function has a nonvoid return type, and a return�

statement with no arguments is executed, the value actually returned is unpre-

dictable and it is therefore unwise to invoke the function in a context that re-

quires a value. We recommend that this form of return be used ���� when the

function is declared to have return type void.

If a function has a declared return type of void, it is an error to supply an expres-

sion in any return statement in the function. Although supplying a void return

value, as in

void f()

{

 extern void g();

 ...

 return g();

}�

would seem to be no more than confusing, many compilers will treat this as an

error. It is also an error to call the function in a context that requires a value.

If the function has a declared return type � that is not void, then the type of any

expression appearing in a return statement must be convertible to type � by as-

signment, and that conversion in fact happens on return. For instance, in a func-

tion with declared return type int, the statement

return 23.1;�

is equivalent to

Page 217

return (int) 23.1;�

which is the same as

return 23;�

With older compilers that do not implement void, it is the custom to omit the type

specifier on those functions that return no useful value:

main()

{

 ...

}�

9.9. C-Ref: Main Programs

By convention all C programs must define a single external function named main.

That function will become the entry point of the program, that is, the first func-

tion executed when the program is started. Information about parameters usually

supplied to main is given in the library chapters.

Page 218

Page 219

10. C-Ref: Program Structure

In this chapter we will attempt to pull together a number of aspects of software

engineering in C. We will do so by developing a complete implementation of a last-

in first-out queue, or stack.

10.1. C-Ref: Modularization

We prefer to modularize programs by data types. That is, we think of a program

as consisting of a number of �������, each of which implements a new, abstract

data type by providing objects of the type and operations on the objects. These

modules are sometimes called ���� ��������, to emphasize that they have control

over the internal representation of the types and the implementation of the opera-

tions on the types.

A stack can be viewed as such an abstract data type. An object of "stack type" can

be imagined (under one implementation) as an array of values and a pointer into

that array to mark the "top" of the stack. Operations on the stack include "create
a new stack," "push a value onto the stack," "pop a value off the stack," and so

forth.

When designing a new abstract data type, the programmer must answer many

questions:

1. What functionality is required? What operations will be needed?

2. How often will the operations be invoked? What other performance criteria

exist?

3. What implementations might be appropriate? Will the data structures have to

be dynamically allocated, or will local or static allocation suffice? Is there an

existing module that can be modified to meet the specifications of the new

module?

4. How will the data type be used? What information must be exported to users?

5. How can the type be implemented securely and robustly? That is, how can

users be prevented from corrupting the internal data structures of the type,

and how can the type manager detect improper use of its operations?

6. What functional changes might be required in the future? Who will maintain

the module? How does this affect the implementation?

7. What documentation will be needed?�

This list could be extended further to include provisions for version control, inter-

Page 220

nal development reviews, and so forth. However, this should be sufficient to indi-

cate that a well-crafted module can involve much more than a few lines of code.

10.2. C-Ref: Designing the Stack Module

The first thing to do is to sketch out the functional properties of a stack. First,

the operations:

• Allocate a new stack.

• Deallocate an old stack.

• Push a value onto the stack.

• Pop a value off the stack.�

Experience with stacks has told us that two more operations are often useful:

• Return the top value from the stack without removing it.

• Find out how big the stack currently is and how far it can grow.�

Given the operations, we must also ask about the values of the new type:

• What type of elements is the stack to hold?

• How big should the stack be?�

Finally, we must worry about handling errors, such as overflow or underflow.

After talking to the potential users of our stacks, we decide the following:

• The stacks will hold values of type int (although we suspect that the users will

want a different element type later on).

• The stacks will be large and therefore should be dynamically allocated.

• Pushing and popping elements should be fast operations, and users can live with

a fixed maximum size for each stack, although different stacks may have differ-

ent maximums. Therefore, we decide that we can use an array implementation

of stacks.

• The stacks will be used in a large product that is likely to have bugs while be-

ing completed. Therefore we will include some extra consistency checking that

can be removed (for better performance) before the product is shipped.

Page 221

10.3. C-Ref: Data Structures

We’ll begin by making some standard declarations and defining the data struc-

tures.

#include <stdio.h>

extern char *malloc();

typedef int stack_element_type;

typedef struct stack_struct {

 stack_element_type *base_of_stack;

 stack_element_type *end_of_stack;

 stack_element_type *next_free_element;

} *stack_type;�

Stacks will be represented by type stack_type. No user of stacks needs to know

how it is implemented, but in fact stack_type is a pointer to a structure contain-

ing three pointer components: base_of_stack, a pointer to the base of an array of

elements; end_of_stack, a pointer to the first element beyond the end of the array;

and next_free_element, a pointer to the array element that will receive the next

pushed value (that is, the first array element following the top element of the

stack). Note that we have also introduced the type stack_element_type; by chang-

ing the definition of this type we can have stacks that hold other kinds of ele-

ments.

The type stack_type is the "stack header"; the actual data will be held in an array

that will also be dynamically allocated.

10.4. C-Ref: Robustness

When the stack module is being developed, or when it is being used in a program

that potentially has bugs, we’d like to perform some additional consistency check-

ing on the stack data structure. Our strategy will be to use the preprocessor

macro stack_debugging to control whether special consistency checks are compiled

into the stack module. In particular, when stack_debugging is 1, a special function,

stack_check, is defined. At run time, stack_check examines the contents of the

stack data structure and verifies that the data structure is consistent. When

stack_debugging is 0, stack_check is defined as a macro with no body, effectively

eliminating the checks from the code. The definitions for the debugging informa-

tion are shown in table "C-Ref: Stack Example: Conditionally Compiled Debugging

Code".

Of course, we could have used other strategies for providing the consistency

checks. A reasonable alternative to the above scheme would be to provide a run-

time test to see if the data structures are to be checked. That is, we would always

define the function stack_check, but would replace

#define stack_debugging 1�

Page 222

with

int stack_debugging = 1;�

and then replace all the calls on stack_check with

if (stack_debugging) stack_check(stack);�

This scheme has the advantage of not requiring recompilation to turn checks on

and off. Its disadvantage is that it involves the test of the variable stack_debugging

on every operation. (This is probably not a significant overhead compared with the

overhead of a function call.)

10.4.1. C-Ref: Stack Example: Conditionally Compiled Debugging Code

#define stack_debugging 1

#if stack_debugging

/* interactive debugger (not included here) */

extern void debugger();

Page 223

static void stack_check(stack)

 stack_type stack;

/*

 Check the internal consistency of the ’stack’ data

 structure. If inconsistent, print a message and

 invoke a debugger. If consistent, just return.

*/

{

 if (stack == NULL) {

printf("?Stack is NULL\n");

debugger();

return;

 }

 if (stack->base_of_stack == NULL) {

printf("?Stack array is NULL\n");

debugger();

return;

 }

 if ((stack->next_free_element <

stack->base_of_stack) ||

 (stack->next_free_element >

stack->end_of_stack)

) {

printf("?Stack pointers are invalid.\n");

debugger();

return;

 }

 /* Stack is OK */

 return;

}

#else

/* If not debugging, then calls to stack_check

 will be quietly eliminated by the preprocessor.

 */

#define stack_check(stack)

#endif

10.5. C-Ref: Allocating and Deallocating Stacks

We now consider the creation and deletion of new stack objects. The creation code

is shown in table "C-Ref: Stack Example: Allocation of Stacks". Note how we check

each call to malloc to be sure the requested storage was allocated.

Page 224

10.5.1. C-Ref: Stack Example: Allocation of Stacks

stack_type stack_alloc(size)

 unsigned int size;

/* Create a new stack object with a maximum of "size"

 elements. Return NULL if insufficient storage is

 available, or if "size" is not greater than zero.

*/

{

 stack_type stack;

 unsigned header_size =

 sizeof(struct stack_struct);

 unsigned array_size =

 size * sizeof(stack_element_type);

 if (size <= 0) return NULL;

 stack = (stack_type) malloc(header_size);

 if (stack == NULL) return NULL;

 stack->base_of_stack =

 (stack_element_type *) malloc(array_size);

 if (stack->base_of_stack == NULL) {

 /* Can’t get the array, so free the header. */

free(stack);

return NULL;

 }

 stack->end_of_stack = stack->base_of_stack + size;

 stack->next_free_element = stack->base_of_stack;

 return stack;

}

The deallocation code (table "C-Ref: Stack Example: Deallocation of Stacks") is very

simple, but it is an opportunity to make the type manager a bit more robust. It is

always possible for the caller of stack_free to accidentally use the (deallocated)

stack in a subsequent call on the type manager. So that this error may be caught

quickly, stack_free zeros all the internal pointers before freeing the storage. If

stack_debugging is 1, this helps to ensure that stack_check will fail if given a

pointer to the old stack. However, even if stack_debugging is 0, the null pointers

should cause the program to halt more quickly than it would if the pointers were

just left dangling. Furthermore, the overhead of zeroing the pointers is small com-

pared with the expected overhead of the storage allocator, so we don’t worry about

the extra code.

Page 225

10.5.2. C-Ref: Stack Example: Deallocation of Stacks

void stack_free(stack)

 stack_type stack;

/* Deallocate the given stack and return its

 storage to the heap.

 */

{

 stack_check(stack);

 /* Free the data array first. */

 free((char *) stack->base_of_stack);

 /* Clear the pointers so that "stack_check"

 is more likely to fail on a freed stack. */

 stack->base_of_stack = NULL;

 stack->next_free_element = NULL;

 stack->end_of_stack = NULL;

 /* Free the header. */

 free((char *) stack);

 return;

}

10.6. C-Ref: Operations on Stacks

The operations on stacks are pretty simple (see tables "C-Ref: Stack Example:

Push and Pop Operations"and "C-Ref: Stack Example: Peek Operation". We have

decided to handle overflow and underflow errors by having the type manager set

an error flag through a pointer provided by the caller. An alternative would be for

the type manager to export a variable that was used as a status indicator after

each operation, or use the standard variable errno that is used by the standard C

library routines. We think our scheme results in more readable programs, even

though it involves a bit of overhead on calls. Notice also that we have used a type

boolean for the error flags to make clear our intended use:

typedef int boolean;

#define TRUE 1

#define FALSE 0�

Page 226

10.6.1. C-Ref: Stack Example: Push and Pop Operations

void stack_push(stack, data, overflow_ptr)

 stack_type stack;

 stack_element_type data;

 boolean *overflow_ptr;

/*

 Push "data" onto the stack. If the stack is full,

 set "*overflow_ptr" to TRUE and don’t do the push.

 Otherwise, set "*overflow_ptr" to FALSE.

*/

{

 stack_check(stack);

 if (stack->next_free_element

 >= stack->end_of_stack) {

*overflow_ptr = TRUE;

 }

 else {

 *overflow_ptr = FALSE;

 *(stack->next_free_element++) = data;

 }

}�

/* Dummy value of type "stack_element_type". */

static stack_element_type stack_element_novalue;�

stack_element_type stack_pop(stack, underflow_ptr)

 stack_type stack;

 boolean *underflow_ptr;

/*

 If "stack" is empty, set "*underflow_ptr" to TRUE and

 return. Otherwise, set "*underflow_ptr" to FALSE and

 remove and return the top stack element.

*/

{

 stack_check(stack);

 if (stack->next_free_element

 <= stack->base_of_stack) {

*underflow_ptr = TRUE;

return stack_element_novalue;

 }

 else {

 *underflow_ptr = FALSE;

 return *(--stack->next_free_element);

 }

}

Page 227

10.6.2. C-Ref: Stack Example: Peek Operation

stack_element_type stack_peek(stack, underflow_ptr)

 stack_type stack;

 boolean *underflow_ptr;

/*

 If "stack" is empty, set "*underflow_ptr" to TRUE

 and return. Otherwise set "*underflow_ptr" to FALSE,

 and return the top stack element. (Do not remove

 it from the stack.)

*/

{

 stack_check(stack);

 if (stack->next_free_element

 <= stack->base_of_stack) {

*underflow_ptr = TRUE;

return stack_element_novalue;

 }

 else {

 *underflow_ptr = FALSE;

 return *(stack->next_free_element - 1);

 }

}

Notice in stack_pop and stack_peek the use of the static variable

stack_element_novalue as a return value. We really don’t want to return anything,

because the stack has underflowed. However, we think just writing

return;�

would be confusing, since the return value doesn’t match the declared return type

of the function. Writing

return 0;�

would be better but depends on the fact that stack_element_type has a 0 value. By

defining a variable containing "no return value," we maintain generality with any

type stack_element_type.

Finally, table "C-Ref: Stack Example: Determining Stack Sizes" shows a routine

that returns the current and maximum sizes of a stack, and some boolean predi-

cates to test whether the stack is empty or full. These predicates are macros for

efficiency.

Page 228

10.6.3. C-Ref: Stack Example: Determining Stack Sizes

void stack_sizes(stack,

 current_size_ptr,

 allocated_size_ptr)

 stack_type stack;

 unsigned int *current_size_ptr, *allocated_size_ptr;

/*

 Set "*current_size_ptr" to the number of elements

 on the stack, and set "*allocated_size_ptr" to the

 number of elements the stack can hold.

*/

{

 stack_check(stack);

 *current_size_ptr =

 stack->next_free_element - stack->base_of_stack;

 *allocated_size_ptr =

 stack->end_of_stack - stack->base_of_stack;

 return;

}

#define stack_isempty(stack) \

 ((stack)->next_free_element == \

 (stack)->base_of_stack))

#define stack_isfull(stack) \

 ((stack)->next_free_element == \

 (stack)->end_of_stack))

10.7. C-Ref: Packaging the Module

Now that the data structures and algorithms for the stack module are finished, we

can give some thought to the best way to export the module’s facilities to the

user. We will have to provide declarations of the functions and macros implement-

ing the operations, and we’ll have to provide the type stack_type.

The custom in C is to collect these definitions in a ������ ���� that can be import-

ed (with #include) by users of the module. The header file is also a good place to

put some short documentation. Tables "C-Ref: Stack Example: Header File (Part 1,

Types)" and "C-Ref: Stack Example: Header File (Part 2, Operations)" show the

header file for the stack module, which we have named stack.h following normal

conventions.

Page 229

10.7.1. C-Ref: Stack Example: Header File (Part 1, Types)

/* stack.h Definitions for stack-of-integers.�

 Typical use:�

#include <stack.h>�

stack_type stack;

stack_element_type data;

unsigned int current_size, maximum_size;

boolean overflow, underflow;�

stack = stack_alloc(100);

if (stack==NULL) ...;

stack_push(stack, data, &overflow);

if (overflow) ...;

data = stack_pop(stack, &underflow);

if (underflow) ...;�

stack_sizes(stack,¤t_size,&maximum_size);�

stack_free(stack);

*/�

/* Short external names for operations. */�

#define stack_alloc stkall

#define stack_free stkfre

#define stack_push stkpsh

#define stack_pop stkpop

#define stack_peek stkpek

#define stack_sizes stksiz�

/* Type of elements in stack. */

typedef int stack_element_type;�

/* Boolean error flags. */

typedef int boolean;�

/* The stack type itself. */

typedef struct stack_struct {

 stack_element_type *base_of_stack;

 stack_element_type *end_of_stack;

 stack_element_type *next_free_element;

} *stack_type;

10.7.2. C-Ref: Stack Example: Header File (Part 2, Operations)

extern stack_type stack_alloc();

/* Create a new stack for up to "size" elements.

 extern stack_type stack_alloc(size);

 stack_size_type size; */

Page 230

extern void stack_free();

/* Deallocate a stack.

 extern void stack_free(stack);

 stack_type stack; */

extern void stack_push();

/* Push "data" onto "stack"; set "*overflow_ptr"

 to TRUE if full and otherwise to FALSE.

 extern void stack_push(stack, data, overflow_ptr)

 stack_element_type data;

 stack_type stack; boolean *overflow_ptr; */

extern stack_element_type stack_pop();

/* Pop top element from "stack"; set "*underflow_ptr"

 to TRUE if empty and otherwise to FALSE.

 stack_element_type stack_pop(stack, underflow_ptr)

 stack_type stack; boolean *underflow_ptr; */

extern stack_element_type stack_peek();

/* Return, but don’t pop, top element from "stack";

 set "*underflow_ptr" as in stack_pop().

 stack_element_type stack_peek(stack, underflow_ptr)

 stack_type stack; boolean *underflow_ptr; */

extern void stack_sizes();

/* Return current and maximum sizes of stack.

 void stack_sizes(stack, current_size_ptr,

 allocated_size_ptr)

 stack_type stack;

 unsigned int *current_size_ptr,

 *allocated_size_ptr; */

/* Predicate: is stack empty? */

#define stack_isempty(stack) \

 ((stack)->next_free_element==(stack)->base_of_stack))

/* Predicate: is stack full? */

#define stack_isfull(stack) \

 ((stack)->next_free_element==(stack)->end_of_stack))

A couple of points should be mentioned here. First, because of the restrictions on

external names, we have defined macros that convert our names (and the names

that should be used by clients) to shorter names less likely to conflict in the

linker. (We have also been careful with the internal names, such as stack_push;

they all begin with the prefix stack_ to minimize conflicts.) Second, although our

principal exported type is stack_type, we must also export stack_element_type and

boolean, since we use those types in the definition of stack_type. Third, although

Page 231

we consider the implementation of stack_type to be "private" to our type manager,

there is no way to actually hide the implementation from the user of the module.

A caller could alter the components of the structure in arbitrary ways, thus cor-

rupting the data. Finally, it is very helpful to include as much documentation in

the header file as possible.

All the other code goes into the stack implementation module, stack.c, which

should begin with the line

#include <stack.h>�

since it will need the same type and macro definitions. To avoid duplication, the

declarations for stack_element_type, stack_type, boolean, stack_isempty, and

stack_isfull may be removed from stack.c, since they are now supplied in

stack.h.

Page 232

Page 233

11. C-Ref: Draft Proposed ANSI C

In 1982 the American National Standards Institute (ANSI) formed a technical sub-

committee on C language standardization, X3J11, to propose a standard for the C

language, its run-time libraries, and its compilation and execution environments. In

1986 the subcommittee released a Proposed American National Standard for Infor-

mation SystemsProgramming Language C, referred to as "Draft Proposed ANSI

C" in this book.

In large part, Draft Proposed ANSI C codifies existing practice by C programmers

and makes an attempt not to invalidate the large body of C programs. In a few

areas the language is extended to overcome specific shortcomings, but in large

part the "spirit of C" is preserved. An attempt is made to allow the programmer to

write portable programs, but the programmer is not obligated to do so. In many

places, the description of C is made more precise.

This chapter summarizes Draft Proposed ANSI C by specifying how it differs from

the C language presented in this book. The sections are organized in the same or-

der as the preceding chapters.

11.1. C-Ref: ANSI C Lexical Elements

Specific changes to the lexical structure of C include the introduction of trigraphs

so that C programs may be written in a subset of ASCII; the introduction of new

reserved words volatile, const, and signed; and extensions to the syntax for liter-

als. Also, the compound assignment operators are now treated as single tokens.

11.1.1. C-Ref: ANSI C Character Sets

A set of trigraphs is included so that C programs may be written using only the

ISO 646-1083 Invariant Code Set, a subset of the seven-bit ASCII code set. The

trigraphs, introduced by two consecutive question mark characters, are listed be-

low:

Trigraph is equivalent to Trigraph is equivalent to

??([??)]

??< { ??> }

??/ \ ??! |

??’ ^ ??- ~

??= # �

The translation of trigraphs in the source program occurs before lexical analysis

(tokenization) and even before the recognition of character escapes introduced with

a backslash, \. Only these exact nine trigraphs are recognized; all other character

sequences (including relatives such as ??&) should be left untranslated. A new

character escape, \?, is available to prevent the interpretation of trigraph-like

character sequences. For example:

Page 234

String constant Trigraph Form

"What??!" "What?\?!"

"The backslash is \\" "The backslash is ??/??/"�

A source program line ending in a backslash (\) is understood to be continued on

the next line. This "splicing" conceptually occurs before the lexical analysis of the

C program; hence even tokens may be split across lines. Formerly line continuation

was permitted in preprocessor command lines and in string constants, although

some implementations allowed it elsewhere. In Draft Proposed ANSI C it is a gen-

eral mechanism, but it is probably useful only in preprocessor lines since string

constants may now be concatenated.

11.1.2. C-Ref: ANSI C Identifiers

The Draft Proposed ANSI C standard imposes no limitations on the length of

identifiers, and requires that implementations support identifiers with at least 31

significant characters. Implementations must distinguish alphabetic case in identi-

fiers.

Implementations may reduce the significance of external names (down to the first

six characters and one alphabetical case) in order to reflect limitations in existing

system software.

11.1.3. C-Ref: ANSI C Reserved Words

The enum and void reserved words, already common in C implementations, are in-

cluded in Draft Proposed ANSI C. However, entry, fortran, and asm are not includ-

ed as reserved words.

New type specifiers const, volatile, and signed are added to the reserved word

list.

11.1.4. C-Ref: ANSI C Integer Constants

The syntax of constants is extended so that the type of the constants can be better

controlled. In addition to the existing L suffix to denote type long, the suffix U is

now allowed to denote a constant of unsigned type. The two suffixes may be used

together in either order. The new syntax is:

�������������� �(see "C-Ref: Integer Constants")
����������������������������opt
����������������������������opt

��������������������

l���L

������������������������

u���U�

This permits the following new examples of integer constants:

Page 235

100u 34LU 32767ul�

The type of an integer constant is given by the following rules:

1. An integer constant written with both the ����������� and the ���������

������ has type unsigned long int.

2. An integer constant written with just the ����������� has type long int if

that type can represent the constant; otherwise it has type unsigned long int.

3. An integer constant written with just the ��������������� has type unsigned

int if that type can represent the constant; otherwise it has type unsigned

long int.

4. An octal or hexadecimal integer constant has the first type in the following

list that can represent its value: int, unsigned int, long int, unsigned long

int.

5. A decimal integer constant has the first type in the following list that can

represent its value: int, long int, unsigned long int.�

The Draft Proposed ANSI C rules differ subtly from those found in most current

implementations: under the new rules constants without suffixes may have an un-

signed type and therefore force expressions to use unsigned arithmetic. Formerly,

the type was always int or long int. If type long int has a 32-bit, two’s comple-

ment representation, the following program will determine the rules in effect:

#define K 0xFFFFFFFF /* -1 in 32-bit, 2’s compl. */

int main()

{

 if (0<K) printf("K is unsigned (ANSI C)\n");

 else printf("K is signed (traditional C)\n");

 return 0;

}�

11.1.5. C-Ref: ANSI C Floating Point Constants

To accommodate the new type long double and the new legitimacy of type float,

floating-point constants can now have suffixes also: F to denote type float and L to

denote type long double. (The specifier long float has been eliminated.)

�������������������� (see "C-Ref: Floating-point Constants")
��������������������������������������opt
�����������������������opt��������������opt

���������������������

f��F��l��L�

The suffix f or F makes the constant of type float; the suffix L or l makes the

constant of type long double.

Page 236

11.1.6. C-Ref: ANSI C String Constants

In Draft Proposed ANSI C adjacent string constants are automatically concatenat-

ed, with a single null character appended at the end:

static char helptext[]= "Type:\n"

" h for help\n"

" q to quit\n";�

This makes it unnecessary to resort to the line continuation convention for writing

very long string constants.

Two other changes to strings have more impact on existing programs. First, string

constants need not be represented distinctly, i.e., two identical string constants

may share the same storage. Second, strings need not be modifiable and it is unde-

fined what will happen if the programmer attempts to modify them.

Here is a simple program that discriminates the implementations.

char *string1, *string2;

int main() {

 string1 = "abcd";

 string2 = "abcd";

 if (string1==string2) printf("Strings are shared\n");

 else printf("Strings not shared\n");

 string1[0] = ’1’; /* May cause runtime error */

 if (*string1==’1’) printf("Strings writable\n");

 else printf("Strings not writable[n");

 return 0;

}�

It is a good practice for Draft Proposed ANSI C implementations to make strings

nonwritable when they can share storage.

In Draft Proposed ANSI C the programmer can specify strings that are not to be

writable by storing them in arrays of type "const char []":

const char die_message[] = "?Internal Error\n";�

11.1.7. C-Ref: ANSI C Character Escape Codes

New character escape codes, \a ("alert") and \? ("question mark"), are added. The

code \a is typically mapped to a "bell" or other audible signal on the output device

(ASCII control-G). The \? escape is used to obtain a question mark character in

the rare case in which it might be mistaken as part of a trigraph. The new syntax

is:

������������������������������

(see "C-Ref: Character Escape Codes")
a���n���t���b���r���f���

v���\���’���"���?�

As is traditional in C, the quotation mark " may appear un-escaped in character

constants and the apostrophe ’ may appear un-escaped in string constants.

Page 237

Numeric escape codes may be written in hexadecimal notation by following \ with

the letter x (lower case only) and from one to three hexadecimal digits. The new

syntax is:

���������������������� (see "C-Ref: Character Escape Codes")
�������������

��������������������������

���������������������������������������

x����������

x��������������������

x�������������������������������

11.2. C-Ref: ANSI C Preprocessor

The Draft Proposed ANSI C standard clarifies many of the properties of the pre-

processor, especially macro expansion. Because we have tried to do the same in our

earlier exposition, we won’t repeat it here. However, Draft Proposed ANSI C does

extend the preprocessor in several ways: it provides new operators for merging to-

kens and converting them to strings; it adds several predefined macros; and it

adds several new preprocessor commands.

11.2.1. C-Ref: ANSI C Lexical Structure

Whitespace may precede or follow the # that starts a preprocessor command. Lines

containing no tokens except # are ignored.

11.2.2. C-Ref: ANSI C Stringization and Merging of Tokens

Section "C-Ref: Token Merging in Macro Expansions" mentioned that some C pre-

processors, perhaps by accident, can merge tokens and insert tokens into strings.

There are new mechanisms in Draft Proposed ANSI C to provide the programmer

some control over merging tokens and converting macro parameters to strings.

Within a macro definition, the # character is recognized as a unary "stringization"
operator that must be followed by the name of a macro formal parameter. During

macro expansion, the # and the formal name are replaced by the corresponding ac-

tual argument enclosed in string quotations. For example, after preprocessing and

string concatenation the source text

#define TEST(a,b) printf(#a "<" #b "=%d\n", (a)<(b))

TEST(0,0xFFFFFFFF);�

becomes

printf("0<0xFFFFFFFF=%d\n", (0)<(0xFFFFFFFF));�

What happens with whitespace during the stringization process is implementation

dependent.

Merging of tokens to form new tokens is controlled by the presence of a "merging"
operator, ##, in macro definitions. After all macro replacements have been done,

Page 238

the two tokens surrounding any ## operator are combined into a single token. (If

they do not form a legal token, the result is undefined.) For example, after prepro-

cessing the source text

#define TEMP(i) temp ## i

TEMP(1) = TEMP(2);�

becomes

temp1 = temp2;�

11.2.3. C-Ref: ANSI C Predefined Macros

Preprocessors for Draft Proposed ANSI C are required to define five special

macros that take no arguments. (Each is spelled beginning and ending with two

underscore characters.)

__LINE__ The value of the macro is the line number of the current

source program line, expressed as a decimal integer constant.

__FILE__ The value of the macro is the name of the current source file,

expressed as a string constant.

__DATE__ The value of the macro is the calendar date of the translation,

expressed as a string constant of the form "Mmm dd yyyy".

__TIME__ The value of the macro is the calendar time of the translation,

expressed as a string constant of the form "hh:mm:ss".

__STDC__ In a conforming implementation of Draft Proposed ANSI C this

macro will be defined and have a nonzero value.�

None of these predefined macros may be redefined or undefined by the program-

mer.

11.2.4. C-Ref: ANSI C #include

The #include command syntax is:

������������������ (see "C-Ref: File Inclusion")
#�include�<�����������������>

#�include�"�����������������"

#�include����������

�����������������

������

�����������������������

���������������

"any character legal in the source program
except the end-of-line character(s)"�

To avoid ambiguity, an ��������������� following a < character may not include a >

Page 239

character. Similarly, an ��������������� following a " character may not include an-

other " character.

This syntax acknowledges that the characters making up the file name argument

to #include do not have to be recognizable as legal C tokens. Even in the second

form of #include, where the argument looks like a string constant, the �������

�������� should not undergo the usual backslash escape conventions. (Trigraph

substitution presumably does take place; either way it will affect what file names

may be represented.)

The argument to #include may be an identifier only if the identifier is a macro

that evaluates to one of the other permitted forms for #include. Since macros must

expand to a sequence of legal C tokens, this restricts somewhat the file names

that may be specified. The tokens resulting from the macro expansion presumably

undergo some implementation-defined merging to yield a file name. No search

rules are given for files.

11.2.5. C-Ref: ANSI C Macro Definition and Expansion

The new features for stringization and merging of tokens have already been dis-

cussed in section "C-Ref: ANSI C Stringization and Merging of Tokens". There are

a few other changes to the way macros are handled.

A significant implementation change is that macros appearing in their own expan-

sion must not be reexpanded. This permits a programmer to redefine a function in

terms of its old definition:

#define sqrt(x) ((x)<0 ? sqrt(-x) : sqrt(x))�

Benign redefinition of macros is allowed. That is, a macro may be redefined if the

new definition is, token for token, identical to the existing definition.

Lines are not inspected for preprocessing commands after macro expansion, so

macro expansion may not introduce new preprocessor commands.

11.2.6. C-Ref: ANSI C New Commands

There are four additional preprocessor commands defined in Draft Proposal ANSI

C: #elif, defined, #error, and #pragma.

The commands #elif and defined are described in section "C-Ref: The #elif Com-

mands" as common extensions to C.

The new directive #error produces a compile-time error message that will include

the string constant that is an argument to #error. It is most useful in detecting

programmer inconsistencies and violations of constraints during preprocessing:

#if defined(A_THING) && defined(NOT_A_THING)

#error "Inconsistent things!"

#endif

Page 240

#if SIZE % 256 != 0

#error "SIZE must be a multiple of 256!"

#endif�

The new directive #pragma allows the programmer to supply implementation-

defined information to the compiler. No restrictions are placed on the information

that follows the #pragma command, and implementations should ignore information

they do not understand. There is obviously the possibility that two implementations

will place inconsistent interpretations on the same information, so it is wise to use

#pragma conditionally:

#if defined(TCC) && defined(__STDC__) && defined(vax)

#pragma builtin(abs),inline(myfunc)

#endif�

11.3. C-Ref: ANSI C Declarations

11.3.1. C-Ref: ANSI C Scopes and Name Spaces

Statement labels have their own name space, which is an improvement.

Structure, enumeration, and union type tags share their own name space. The

component names for each distinct structure or union type have their own name

space, as is the modern convention.

Declarations of external names must obey normal scoping rules. That is, the fol-

lowing two declarations of X do not conflict in the source file, although their be-

havior at run time is undefined because they assign different types to the same ex-

ternal variable. (A good compiler would issue a warning message.)

if (test) {

 extern int X;

 return X;

} else {

 extern double X;

 return X;

}�

Function prototypes introduce a new kind of scope discussed in section "C-Ref: AN-

SI C Function Prototypes".

Parameter names appearing in function definitions are treated as if they were de-

clared at the top of the function body. The motivation for this is to disallow the

accidental hiding of a parameter by a local declaration, which is almost always the

result of misplacing the parameter declarations:

int f(x,y)

{

 int x,y; /* An error in Draft Proposed ANSI C */

 ...

}�

Page 241

11.3.2. C-Ref: ANSI C Forward References to Structures

The use of a type specifier of the syntactic classes ������������������������� (section

"C-Ref: Structure Types") or ��������������������� (section "C-Ref: Union Types") in-

troduces the definition of a new type. The scope of the definition (and the type

tag, if any) is from the declaration point to the end of the innermost block con-

taining the specifier. The new definition explicitly overrides (hides) any definition

of the type tag in an enclosing block.

The use of a type specifier of the syntactic classes ������������������������ (section

"C-Ref: Structure Types") or �������������������� (section "C-Ref: Union Types")
without a preceding definition in the same or enclosing scope is allowed when the

size of the structure is not required, including when declaring:

1. pointers to the structure

2. a typedef name as a synonym for the structure

The use of the specifier introduces an "incomplete" definition of the type and type

tag in the innermost block containing the use. For this definition to be completed,

a ������������������������� or ��������������������� must appear later in the same

scope.

As a special case, the occurrence of a ������������������������ or ��������������������

in a declaration with no declarators hides any definition of the type tag in any en-

closing scope.

As an example, consider the following correct definition of two self-referential

structures in an inner block.

{

 struct cell ;

 struct header { struct cell *first; /* ... */ };

 struct cell { struct header *head; /* ... */ };

 ...

}�

The incomplete definition "struct cell ;" in the first line is necessary to hide any

definitions of struct cell in an enclosing scope. The definition of struct header in

the second line automatically hides any enclosing definitions, and its use of struct

cell to define a pointer is legal. The definition of struct cell on the third line

completes the information about cell.

11.3.3. C-Ref: ANSI C Type Specifiers

There are several new type specifiers, including additions to the signed integer

types (signed), the floating-point types (long double), and two type modifiers, const

and volatile. These are all discussed in the following section on types. The rele-

vant change to the type specifier syntax is:

Page 242

����������������� ��(section�"C-Ref: Type Specifiers")
��������������������

��������������������������

�����������������������������

����������������������

������������������������

������������

��������������������

�������������������

������������������������

11.3.4. C-Ref: ANSI C Declarators

There are several changes to declarators discussed in this section:

1. Pointer declarators may now contain embedded type specifiers.

2. Function declarators may now include parameter specifications, including a

"variable number of arguments" specification.�

������� ����������� Type specifiers (particularly the new const and volatile type

specifiers) may be supplied in pointer declarators:

��������������������� ��(section "C-Ref: Pointer Declarators")
*��������������������opt������������

���������������������� ��(new)

��������������

������������������������������������

The reason for this change to pointer declarators is to give the programmer the

ability to declare a "constant pointer" and also a "pointer to constant data."

�������� ����������� Parameter type information may now be included in all

function declarators. The new syntax is:

���������������������� (section "C-Ref: Function Declarators")
�����������(�������������������������opt��)
�����������(���������������opt�)

���������������������

���������������������

��������������������,����������������������

�����������������������

����������������������������������

��

To avoid an ambiguity between a �������������� and a �������������������, it is ille-

gal to have a parameter name that is the same as a visible typedef name. (It

would probably be poor style to do so anyway.)

Page 243

The only storage-class-specifier allowed in a parameter declaration is register,

which is ignored unless the declaration appears in a function definition. This

means that register cannot be used in a prototype to alter the calling convention

of the function; it can only be used as a hint within the function body.

A function declarator that includes the ������������������� is said to include a func-

tion ���������, and that prototype specifies the number and type of the arguments

accepted by functions of that type. A function declarator without the ����������

���������, that is, with either a �������������� of identifiers or nothing at all, de-

clares a function type without a prototype, and such function types may be called

with arbitrary parameters as is traditional in C. The prototype syntax may be used

in declarators for function declarations, function definitions, or function types used

within other types. Here are some examples of prototypes:

extern double sqrt(double x);

int abs(int i) { return i<0 ? -i : i ; }

void (*func_array[3])(int order,double epsilon) =

{ &f1, &f2, &f3 };�

The following section discusses prototypes in more detail.

11.3.5. C-Ref: ANSI C Function Prototypes

Function prototypes are one of the significant additions in Draft Proposal ANSI C.

They add to the C language the ability to check function arguments for consisten-

cy, and in fact to coerce those arguments to the declared types of the formal pa-

rameters. The use of function prototypes should increase program readability and

decrease errors. The nonprototype form is kept only to accommodate existing pro-

grams.

The syntax for function prototypes is given in section "C-Ref: ANSI C Declarators".
Prototypes can be distinguished from the traditional function declarators syntacti-

cally, and programmers must not mix the two in a single function or the resulting

behavior is undefined. It will be clearer if we discuss the two "styles" separately,

beginning with a review of the status quo.

In the traditional style, not using prototypes:

• Functions may be declared implicitly by their appearance in a call.

• Arguments to functions undergo the usual argument conversions before the call.

• No checking of the type or number of arguments occurs. All functions potential-

ly take an arbitrary number of arguments with arbitrary types.�

In contrast to this, when prototypes are used:

• Functions must be declared explicitlywith a prototypebefore any call on

them. If there are multiple declarations, they must agree exactly.

Page 244

• Arguments to functions are converted, as if by assignment, to the declared types

of the formal parameters.

• The number and types of arguments must agree with (or be convertible to) the

declared types, or else the program is in error. Functions taking a variable num-

ber of arguments are designated explicitly.�

The rest of this discussion will concern the use of prototypes.

There are three basic kinds of prototypes depending on whether a function takes

no arguments, a fixed number of arguments, or a variable number of arguments:

1. A function that takes no arguments must have a ������������������� consisting

of the single type specifier void, e.g.,

extern int random_generator(void);

static void print_header(void);�

2. A function that takes a fixed number of arguments indicates the types of

those arguments in the �������������������. If the prototype appears in a func-

tion declaration, parameter names may be included or not, as desired; they do

not affect the prototype. (We think they help in documenting the function.)

For example,

extern double atan2(double, double);

extern char *strncpy(char *dest,

 char *src, int count);�

3. A function that takes a variable number of arguments or arguments of vary-

ing types indicates the types of any fixed arguments in the normal way and

follows them by the notation ",..." (which is composed of four tokens: a comma

and three periods):

extern int fprintf(FILE file, char *format,...);�

There must be at least one fixed parameter, or else the parameter list cannot

be referenced using the standard library facilities from stdarg.h (section

"C-Ref: ��������������").�

Prototypes may be used in any function declarator, including those used to form

more complicated types. For example, the Draft Proposal ANSI C declaration of

signal (section "C-Ref: ��") is:

void (*signal(int sig,void (*func)(int sig)))(int sig);�

This declares signal to be a function that takes two arguments: sig, an integer,

and func, a pointer to a void function of a single integer argument, sig. signal re-

turns a pointer of the same type as its second parameter, i.e., a pointer to a void

function taking a single integer argument. A clearer way to write the declaration

of signal is:

typedef void (*sig_handler)(int sig);

sig_handler signal(int sig, sig_handler func);�

Page 245

It is possible to use prototypes for some declarators and not for others (as long as

they do not refer to the same function or function type). If we were to declare

signal2 as

typedef void (*sig_handler2)();

sig_handler2 signal2(int sig, sig_handler2 func);�

then we would lose the prototype on the sig_handler2 function pointer, although

signal2 still has the prototype.

Now we consider function definitions. A function definition necessarily includes a

function declarator, and that declarator may be in prototype form or traditional

form. For example, the following two definitions of f would be approximately

equivalent:

int f(int i, int j) { /*...*/ } /* prototype form */

int f(i,j) int i,j; { /*...*/ } /* traditional form */�

We say they are "approximately" equivalent because there may be a difference in

whether a prototype exists or not. These are the rules:

1. A function defined in prototype form simultaneously establishes a prototype

for that function. That prototype must agree with any preceding or following

declarations of the same function (which also must be in prototype form).

2. A function defined in traditional form does not introduce a prototype, but if a

prototype exists because of a previous declaration, the widened parameter dec-

larations in the definition must agree exactly with the prototype and that pro-

totype remains in effect.�

The second rule makes it easier to convert existing programs to use prototypes. It

is only necessary to introduce a declaration in prototype form or replace existing

traditional declarations. The function definition need not be altered.

Agreement of formal parameter types in duplicate prototype declarations must be

exact, including array bounds (except the first) and function return types (includ-

ing prototype information, if present). The parameter names (if present) must also

agree. For example, below are listed several pairs of formal parameter types. In no

case are the elements of the pair equivalent in the sense required:

int short

int * short *

int () int (double x)

int (*)[20,20] int (*)[10,40]�

������� ��������� ���� ���������� When a function with a prototype is called, the

actual arguments of the call must agree in number and type with the prototype

formals, or must be assignment compatible with them. The actuals are converted

as by assignment to the formal types before the call. Those arguments in the vari-

able part of the prototype formal list (corresponding to the ",..." portion of the

formal list) undergo the usual argument conversions before being passed.

The presence of a prototype does not restrict in any way the implementation of

function calls. Some implementations may wish to take advantage of the additional

Page 246

information provided by prototypes and optimize certain function linkages, but this

is not required. One additional freedom is granted implementors: unless a function

is defined in prototype form and that prototype specifies a variable number of ar-

guments, the implementation need not use a function linkage that supports a vari-

able number of arguments. In effect this means that any existing functions that

take a variable number of arguments must be rewritten to have a prototype before

they are compiled by an ANSI C implementation.

������� ���������� Finally, Draft Proposed ANSI C specifies that calls on a func-

tion without a prototype should have a certain relationship to calls on a function

with a prototype. In particular, a function call not within the scope of a prototype

should behave exactly as if it was within the scope of prototype whose fixed num-

ber of parameter types were exactly the types of the actual arguments after the

usual argument conversions are applied. (The term "Miranda prototypes" was

coined because the rule effectively states that all function calls have a right to a

prototype; if they cannot afford a prototype one will be appointed for them.)

For example, if a compiler for Draft Proposed ANSI C sees the function call

process(a, b, c, d);�

where the types of the actual arguments are

short a; struct {int a,b;} b; float *c; float d;�

then the function call should be implemented the same as if this prototype were in

effect:

int process(int, struct {int a,b;}, float *, double);�

(If an explicit return type had been declared traditionally, that return type would

be used in the prototype.) Note that this rule does not actually establish a proto-

type which might affect later calls. Should a second call on process appear later in

the program:

process(x, y, z)�

where x, y, and z all have type float, then that second call must be implemented

as if the prototype were

int process(double, double, double);�

Because the linkages may be different in the two calls, run-time confusion can cer-

tainly result. However, Draft Proposed ANSI C does not require that functions tak-

ing a variable number (or type) of arguments work correctly unless a prototype is

used.

11.3.6. C-Ref: ANSI C Initializers

Unions may be initialized. The initializer must be an expression that would be ac-

ceptable as an initializer for the first component of the union, e.g.,

union U {double d; long q;} x = 0.0;

union V {struct {int a; union U *b;} s;

 struct {union U *b; int a;} t; } y = {0, &x};�

Page 247

Automatic array, structure, and union variables may be initialized, but the initial-

izers must be constant expressions that would be acceptable as initializers of static

variables. This somewhat arbitrary restriction is believed to make implementation

a bit easier and to avoid some pathological initializers.

In the case of automatic structure and union variables, the rule is relaxed to per-

mit general initializer expressions whose type is the same as the variable being

initialized. For example, the following initializer is permitted:

extern struct S f(), a;

auto struct S x = (i<0 ? f() : a);�

Aggregate initializers using brace-enclosed lists of expressions must either fully

specify all the levels of braces or must omit all but the single outermost set of

braces. This restriction removes some ambiguities in interpreting partially-

structured initializers.

When a list of initializer expressions is too short for the aggregate being initial-

ized, the remaining elements are initialized to 0, cast to the appropriate types.

That is, the initializations of the two variables below are the same:

struct S {int a; float b; char *c; };

struct S x = { 0 };

struct S y = { 0, 0.0F, (char *)0 };�

Static and global variables that do not have explicit initializers are initialized to

zeros, cast to the appropriate type.

The old form of initializers, in which the = operator was omitted, is no longer ac-

ceptable.

11.3.7. C-Ref: ANSI C External Names

Names declared extern have file or block scope according to their position. Later

re-declarations of an external name may supply more information.

Draft Proposed ANSI C adopts the "omitted storage class" model (also known as

the "strict ref/def" model) for resolving external data definitions. The "mixed com-

mon model" (also known as "relaxed ref/def") is recognized as a common extension.

11.4. C-Ref: ANSI C Types

Types have been extended in several ways:

1. Unsigned integer types now officially come in all sizes, as generally assumed

in this book.

2. Signed integer types may now be designated with the type specifier signed,

useful with char and bit fields.

Page 248

3. A new floating-point type, long double, has been added. The specifier long

float is no longer allowed as a synonym for double.

4. Two new type specifiers, const and volatile, have been added. They act as

type modifiers rather than as new types.

5. Enumeration types and the void type are officially added.�

11.4.1. C-Ref: ANSI C Integer Types

The new type specifier signed may be used to explicitly request a signed integer

type. The corresponding syntax changes are:

������������������������ ��(section "C-Ref: Signed Integer Types")
signed

signedopt�int�
signedopt�short�intopt�
signedopt�long�intopt

��������������������������� ��(section "C-Ref: Character Type")
char

signed�char

unsigned�char�

Aside from adding some symmetry to the language, the major use for the new

signed specifier is in conjunction with character types and bit fields. When the

char type is implemented as an unsigned typeas is allowedthe signed specifier

forces a signed implementation. This is analogous to using unsigned to force an

unsigned representation on characters normally implemented as signed. Bit fields,

whose signedness usually follows that of type char, operate the same way. (As ex-

pected, when signed is used without other type specifiers, it is equivalent to signed

int.)

For example, if type char uses an 8-bit, two’s complement representation, given the

declarations

unsigned char uc = -1;

signed char sc = -1;

char c = -1;

int i=uc, j=sc, k=c;�

then i must have the value 255 and j must have the value -1 in all implementa-

tions. However, k may have the value 255 or -1, depending on the implementation.

Similarly, after the declarations

struct S { unsigned ubf:3;

 signed sbf:3;

 int bf:3; } x = { -1, -1, -1 };

...

{ int i=x.ubf, j=x.sbf, k=x.bf; ...�

Then i must have the value 7, j must have the value -1, and k may be either 7 or

-1.

Page 249

Finally, Draft Proposed ANSI C mandates that integer types use binary encodings

to permit portable bitwise operations on positive integers.

11.4.2. C-Ref: ANSI C Floating-point Types

A new floating-point type, long double, has been added. To avoid confusion, the no-

tation long float is no longer allowed as a synonym for double. The new syntax is:

�������������������������� ��(section "C-Ref: Floating-Point Types")
float

double

long�double�

Modern computers are increasingly providing floating-point numbers in "single,"
"double," and "extended" precisions (often represented in 32, 64, and 128 bits, re-

spectively). The long double type gives C programs access to the extended preci-

sion numbers. Implementors are free to use the same implementation for double

and long double, as they are free to make double and float the same. The usual

conversion rules have been augmented to handle the new floating-point type in an

expected manner.

11.4.3. C-Ref: ANSI C const

The new type specifier const may be used with other type specifiersincluding

structure, union, and enumeration type specifiers and volatileor may be used

alone, in which case the additional specifier int is assumed. The corresponding

syntax changes are:

����������������������� ��(new)

������

The const type attribute prevents objects from having their value changed. That

is, any object (strictly speaking, any lvalue expression) whose type includes the

const type specifier may not be assigned to or have its value modified by the ++ or

-- operators:

const int ic = 37;

ic = 5; /* Illegal */

ic++; /* Illegal */�

The new syntax for pointer declarators allows the declaration of both "constant
pointers" and "pointers to constant data":

int * const const_pointer;

const int *pointer_to_const;�

The syntax may be confusing: constant pointers and constant integers, say, have

the type specifier const in different locations. The appearance also changes when

typedef names are used; the constant pointer const_pointer may also be declared

typedef int *int_pointer;

const int_pointer const_pointer;�

or equivalently

int_pointer const const_pointer;�

Page 250

A pointer to constant data may be assigned to, but the object to which it points

cannot be. Expressions with this type can also be generated by applying the ad-

dress operator & to values whose type includes const.

const int * pc; /* pointer to a constant integer */

int *p, i;

const int ic;

pc = p = &i; /* OK */

pc = ⁣ /* OK */

p = 5; / OK */

pc = 5; / Illegal */�

Assigning a value of type "pointer to const �" to an object of type "pointer to �"
is allowed only by using an explicit cast. Continuing the previous example:

pc = &i; /* OK */

pc = p; /* OK */

p = ⁣ /* Illegal */

p = pc; /* Illegal */

p = (int *)⁣ /* OK */

p = (int *)pc; /* OK */�

The language rules for const are not foolproof, that is, they may be bypassed or

overridden if the programmer tries hard enough. (For instance, the address of a

constant object can be passed to an external function.) However, implementations

are permitted to allocate objects whose type includes const in read-only storage, so

that attempts to alter constant objects may cause run-time errors, as shown in this

program fragment:

const int * pc, * p;

const int ic = 0;

pc = ⁣ /* OK */

p = (int *)pc; /* Legal, but dangerous */

p = 5; / Legal, but may cause

 run-time error */�

11.4.4. C-Ref: ANSI C volatile

The new type specifier volatile may be used with other type specifiersincluding

structure, union, and enumeration type specifiers and constor may be used alone,

in which case the additional specifier int is assumed. The corresponding syntax

changes are:

�������������������������� ��(new)

���������

The volatile type attribute informs the Draft Proposed ANSI C implementation

that certain objects can have their values altered in ways not under control of the

implementation. That is, any object (strictly speaking, any lvalue expression) whose

type includes the volatile type specifier should not participate in optimizations

that would increase, decrease, or delay any references to, or modifications of, the

object.

Page 251

To be more precise, Draft Proposed ANSI C introduces the notion of ��������

������ in C programs. A sequence point exists at the completion of all expressions

which are not part of a larger expression, that is, at the end of expression state-

ments, statement control expressions, return expressions, and initializers. Addition-

al sequence points are present in function calls immediately after all the argu-

ments are evaluated, in the logical AND and OR expressions, and before the condi-

tional operator (?) and the comma operator (,).

References to and modifications of volatile objects must not be optimized across se-

quence points, although optimizations between sequence points are permitted. Ex-

tra references or modifications can be generated at any time. For example, consid-

er the following program fragment:

extern int f();

auto int i,j;

...

i = f(0);

while (i) {

 if (f(j*j)) break;

}�

If the variable i were not used again during its lifetime, then traditional C imple-

mentations would be permitted to rewrite this program fragment as:

 if (f(0)) {

 i = j*j;

 while(!f(i)) ;

 }�

The first assignment to i was eliminated, and i was reused as a temporary vari-

able to hold j*j, which is evaluated once outside the loop.

If we change the declaration of i and j to

auto volatile int i,j;�

then these optimizations would not be permitted. However, it would be permitted

to write the loop as shown below, eliminating one reference to j before the se-

quence point at the end of the if statement control expression:

i = f(0);

while (i) {

 register int temp = j;

 if (f(temp*temp)) break;

}�

The new syntax for pointer declarators allows the declaration of type "pointer to

volatile" References to this kind of pointer may be optimized, but references to

the object to which it points cannot be. Assigning a value of type "pointer to

volatile �" to an object of type "pointer to �" is allowed only when an explicit

cast is used. For example:

Page 252

extern volatile int * pv, *p;

pv = p; /* OK */

p = pv; /* Illegal */

p = (int *)pv; /* OK */�

The most common use of volatile is to provide reliable access to special memory

locations used by the computer hardware or by asynchronous processes. Consider

the following typical example. A computer has three special hardware locations:

Address Use

0xFFFFFF20 Input data buffer

0xFFFFFF24 Output data buffer

0xFFFFFF28 Control register�

The control register and input data buffer can be read by a program but not writ-

ten; the output buffer can be written but not (usefully) read. The third least sig-

nificant bit of the control register is called "input available"; it is set to 1 when

data has arrived from an external source, and it is set to 0 automatically when

that data is read out of the input buffer by the program (after which time the con-

tents of the buffer are undefined until "input available" becomes 1 again). The sec-

ond least significant bit of the control register is called "output available"; when

the external device is ready to accept data, the bit is set to 1. When data are

placed in the output buffer by the program the bit is automatically set to 0 and

the data are written out. Placing data in the output buffer when the control bit is

0 causes unpredictable results.

The function copy_data below copies data from the input to the output until an in-

put value of 0 is seen. The number of characters copied is returned. There is no

provision for overflow or other error conditions.

typedef unsigned long datatype, control type, counttype;

#define CONTROLLER/

 ((const volatile controltype * const) 0xFFFFFF28)

#define INPUT_BUF/

 ((const volatile datatype * const) 0xFFFFFF20)

#define OUTPUT_BUF ((volatile datatype * const) 0xFFFFFF24)

#define INPUT_READY_BIT 0x4

#define OUTPUT_READY_BIT 0x2

#define input_ready ((*CONTROLLER) & INPUT_READY_BIT)

#define output_ready ((*CONTROLLER) & OUTPUT_READY_BIT)

Page 253

counttype copy_data()

{

 counttype count = 0;

 datatype temp;

 for(;;) {

 while (!input_ready) ; /* Wait for input */

 temp = *INPUT_BUF;

 if (temp == 0) return count;

 while (!output_ready) ; /* Wait to do output */

 *OUTPUT_BUF = temp;

 count++;

 }

}

11.4.5. C-Ref: ANSI C Generic Pointers

Type void * is added as a "generic pointer." It was introduced to accommodate the

need for a uniform pointer representation while allowing an implementation to

choose efficient (possibly different) representations for pointers to different base

types. Generic pointers cannot be dereferenced with the * or subscripting opera-

tors. All other pointer types (except perhaps function pointers) can be converted to

type void * and back without change; explicit casts should be used for clarity but

need not be:

void *generic_ptr;

int *int_ptr;

char *char_ptr;

generic_ptr = int_ptr; /* OK */

int_ptr = generic_ptr; /* OK */

int_ptr = char_ptr; /* Illegal */

int_ptr = (int *) char_ptr; /* OK */�

Generic pointers provide additional flexibility in using function prototypes. When a

function has a formal parameter that can accept a pointer of any type, the formal

should be declared to be of type void *. If the formal is declared with any other

pointer type, the actual argument must be of the same type since pointer types are

no longer assign compatible (section "C-Ref: ANSI C Assignment Conversions").
For example, the strcpy facility copies character strings and therefore requires ar-

guments of type char *:

char *strcpy(char *s1, const char *s2);�

On the other hand, memcpy can take a pointer to any type and so uses void *:

void *memcpy(void *s1, const void *s2, size_t n);�

Page 254

11.5. C-Ref: ANSI C Conversions and Representations

11.5.1. C-Ref: ANSI C Number Representation

Draft Proposed ANSI C mandates that implementations provide a standard header

file, limits.h, that defines certain characteristics of the integer data types. Table

"C-Ref: ANSI C Minimum Integer Sizes" lists the standard names that must be de-

fined in limits.h and gives for each the minimum (absolute) value that conforming

implementations must support. A second header file, float.h, defines the charac-

teristics of the types float, double, and long double. Excerpts from that file are

listed in table "C-Ref: ANSI C Floating-point Characteristics".

11.5.1.1. C-Ref: ANSI C Minimum Integer Sizes
Name Minimum Meaning

CHAR_BIT 8 width of char type, in bits

SCHAR_MIN -127 minimum value of signed char

SCHAR_MAX 127 maximum value of signed char

UCHAR_MAX 255 maximum value of unsigned char

SHRT_MIN -32767 minimum value of short int

SHRT_MAX 32767 maximum value of short int

USHRT_MAX 65535 maximum value of unsigned short

INT_MIN -32767 minimum value of int

INT_MAX 32767 maximum value of int

UINT_MAX 65535 maximum value of unsigned int

LONG_MIN -2147483647 minimum value of long int

LONG_MAX 2147483647 maximum value of long int

ULONG_MAX 4294967295 maximum value of unsigned long

If type char is signed by default:

CHAR_MIN SCHAR_MIN or 0 minimum value of char

CHAR_MAX SCHAR_MAX or UCHAR_MAX maximum value of char

If type char is unsigned by default:

CHAR_MIN 0 minimum value of char

CHAR_MAX UCHAR_MAX maximum value of char�

11.5.1.2. C-Ref: ANSI C Floating-point Characteristics
Name Minimum Meaning

FLT_RADIX 2 radix of exponent in floating-point representation

(all floating-point types)

FLT_ROUNDS >0 if addition rounds, 0 if chops, else unknown

(all floating-point types)

FLT_EPSILON 1E-5 minimum �>0.0 such that 1.0+� != �
DBL_EPSILON 1E-5

LDBL_EPSILON 1E-5

Page 255

FLT_DIGITS 6 number of decimal digits of precision

DBL_DIGITS 6

LDBL_DIGITS 6

FLT_MIN 1E-37 minimum normalized positive number

DBL_MIN 1E-37

LDBL_MIN 1E-37

FLT_MAX 1E+37 maximum representable finite number

DBL_MAX 1E+37
LDBL_MAX 1E+37

FLT_MIN_10_EXP -37 minimum � such that 1E� approximates FLT_MIN

DBL_MIN_10_EXP -37

LDBL_MIN_10_EXP -37

FLT_MAX_10_EXP 37 maximum � such that 1E� approximates FLT_MAX

DBL_MAX_10_EXP 37

LDBL_MAX_10_EXP 37

11.5.2. C-Ref: ANSI C Assignment Conversions

The rules given in section "C-Ref: The Assignment Conversions" still apply. Con-

versions between pointer types during assignmenta common extension in many

implementationsis not permitted in Draft Proposal ANSI C except when one of

the types is void * or when (in assignments) the right-hand side is the constant

integer 0. In all other cases an explicit cast must be used. A corollary of this rule

is that pointer arguments to functions specified with prototypes must match exact-

ly. For example, it is illegal to pass a pointer of type char * to a function expect-

ing an argument of type int *.

Assignment of types that include const and/or volatile type specifiers are subject

to additional restrictions discussed with those type specifiers.

Draft Proposed ANSI C does not address the conversion of function pointers in any

detail. Conversions between function pointers is allowed with explicit casting, but

there is an admission that function pointers might have a representation on some

computers that does not map to type void *. The programmer should avoid conver-

sions between function and data pointers.

11.5.3. C-Ref: ANSI C The Usual Unary Conversions

The usual unary conversions no longer automatically promote type float to type

double, permitting (but not requiring) arithmetic operations directly on values of

type float. (Implementations are always free to do arithmetic operations using

more precision than required.)

The usual unary conversion rules for the integral types are different from those

given for traditional implementations:

Page 256

1. All the integral types shorter than int, including their unsigned varieties, are

widened to int. (Many C implementations traditionally widened shorter un-

signed types to unsigned; this is a change for them.) Note that types char and

short, although usually shorter than int, may not be in some implementa-

tions.

2. Those signed integral types that are the same size as int are converted to

type int. Those unsigned integral types that are the same size as int are con-

verted to type unsigned int.

3. In implementations that treat characters and bit fields as signed types, the

characters and bit fields are widened according to their base type. In imple-

mentations that treat characters and bit fields as unsigned values, the charac-

ters and bit fields are widened as if their base type was unsigned. (These

rules apply if neither signed nor unsigned is specified explicitly in the decla-

ration.)�

For example, assume that type char occupies 8 bits, type short occupies 16 bits,

and type int occupies 32 bits. Then the usual unary conversions for integers is

given in table "C-Ref: ANSI C Usual Conversions in an Example Signed Implemen-

tation" for implementations that treat type char and bit fields as signed and un-

signed, respectively. Notice that in this example the only difference is in the

widening of bit fields of type int. For implementations under which

sizeof(short)==sizeof(int), the conversion rules for type short would be the same

as those given for type int in the tables.

11.5.3.1. C-Ref: ANSI C Usual Conversions in an Example Signed Implementation

������ ��������

��������������������� �������������� ��������������

char int int

short int int

int int int

unsigned char int int

unsigned short int int

unsigned int unsigned unsigned

char bit field int int

short bit field int int

int bit field int unsigned

unsigned char bit field int int

unsigned short bit field int int

unsigned int bit field unsigned unsigned

11.5.4. C-Ref: ANSI C The Usual Binary Conversions

The usual binary conversions under Draft Proposed ANSI C are listed below. As

customary, the usual unary conversions are first performed on each operand sepa-

rately before these rules are applied.

Page 257

1. If either operand is not of arithmetic type, or if the two operands have the

same type, then no additional conversion is performed.

2. Otherwise, if one operand is of type long double, then the other operand is

converted to type long double.

3. Otherwise, if one operand is of type double, then the other operand is con-

verted to type double.

4. Otherwise, if one operand is of type float, then the other operand is convert-

ed to type float.

5. Otherwise, if one operand is of type unsigned long int, then the other

operand is converted to type unsigned long int.

6. Otherwise, if one operand is of type long int, then the other operand is con-

verted to type long int.

7. Otherwise, if one operand is of type unsigned int, then the other operand is

converted to type unsigned int.

8. Otherwise, both operands must be of type int, so no additional conversion is

performed.�

11.5.5. C-Ref: ANSI C The Function Argument Conversions

The usual unary conversions are applied to function arguments whose types are

not specified in a function prototype. In addition, arguments of type float are con-

verted to type double, for compatibility with existing code.

11.6. C-Ref: ANSI C Expressions

Most of the changes to expressions in Draft Proposed ANSI C concern the permit-

ted types of the operands. In general, the rules have been tightened to promote

more readable and portable programs.

11.6.1. C-Ref: ANSI C Component Selection

The left operands of . and -> must be of the proper structure, union, or pointer

type, except that the null pointer constant 0 may be used in the following stylized

way to determine the offset in bytes of a structure component within the struc-

ture:

#define OFFSET(type,field) \

((size_t)(char *)&((type *)0)->field)�

Page 258

11.6.2. C-Ref: ANSI C Function Calls

In the function invocation f(...), the expression f may have the type "pointer to

function...," in which case an automatic dereference of the function pointer is made

in order to perform the call.

11.6.3. C-Ref: ANSI C sizeof Operator

The result of the sizeof operator may be of type unsigned int or unsigned long.

The type chosen by an implementation is defined as size_t in the standard header

file stddef.h.

11.6.4. C-Ref: ANSI C Address Operator

The address operator & applied to a function results in a value of type "pointer to

function...." The address operator & applied to an array yields "pointer to array of

T" or "pointer to pointer to T". (This is a change from most current implementa-

tions, which simply ignore the & operator.)

11.6.5. C-Ref: ANSI C Unary Plus Operator

Unary plus is added with special semantics. The new syntax is:

������������������� (see "C-Ref: Unary Expressions")
������������������

���������������

�����������������

����������������������

���������������������

���������������������������

���������������������������

������������������

����������������������

�����������������������

�����������������������

������������������������ (new)

+������������������

A unary plus expression "+�" may be considered to be a shorthand notation for

"0+(�)"; the two expressions in effect always perform the same computation.

The unary plus expression has the additional effect of prohibiting any optimiza-

tions that would regroup subexpressions of � with subexpressions outside �. It is to

give the programmer the ability to force some evaluation order on expressions that

this new operator was introduced into the langauge. (The unary minus operator

does not force an evaluation order.) For example, it is well known that normalized

floating-point addition does not obey the associative law. That is, the expression

((X+Y)-X)-Y, evaluated as written, does not necessarily yield the same value as

(X+Y)-(X+Y), or zero. In order to prohibit compilers from rearranging the first ex-

Page 259

pression the C programmer must write

+((+(X+Y))-X)-Y�

11.6.6. C-Ref: ANSI C Addition and Subtraction

When two pointers of the same type are subtracted the result has type ptrdiff_t,

defined in the standard header file stddef.h.

Two pointers of type void * cannot be subtracted, nor can an integer be added to

or subtracted from a pointer of type void *.

Draft Proposed ANSI C requires that a pointer to the first element beyond the end

of an array be represented well enough to permit subtraction and relational com-

parisons with a pointer located within the array. (We’re not sure this will be possi-

ble on some computers with segmented address spaces, when an array spans an

entire segment.)

11.6.7. C-Ref: ANSI C Relational Expressions

Relational expressions between pointers of type void * are not allowed. However,

equality comparisions are permitted in these cases:

1. between values of arithmetic types

2. between pointers of the same type

3. between a pointer of type void * and any other pointer

4. between any pointer and the integer constant 0�

11.6.8. C-Ref: ANSI C Constant Expressions

The definition of constant expressions has been clarified. Comma operators are not

allowed in constant expressions. The difference of the addresses of two members of

the same aggregate is a constant expression and may be used as a constant ini-

tializer.

The preprocessor is permitted to perform its constant arithmetic using the natural

long integer arithmetic of the host computer. Therefore preprocessor commands

can’t be reliably used to determine the characteristics of the target computer’s

arithmetic. For example, here is a program fragment that incorrectly attempts to

see if type int on the target computer is larger than 16 bits:

#if 1<<16

 /* Target computer integer has

more than 16 bits */

...

#endif�

In fact, the program may only be testing the representation of type long on the

host computer.

Page 260

Static initializers may involve arbitrary expressions involving floating-point con-

stants. Draft Proposed ANSI C states that an implementation is free to perform

the actual initialization at run time, and so is not required to simulate the target

computer’s floating-point arithmetic. However, doing this initialization at run

timebefore any code that accesses the initialized variable could be

executedwould be very difficult in general.

C implementations may use the natural floating-point arithmetic on the host com-

puter for constant expressions as long as its precision is at least as great as on

the target computer.

11.7. C-Ref: ANSI C Statements

The control expression of a switch statement may be of any integer type; it is sub-

ject to the usual unary conversions. Constant expressions appearing in case labels

are cast to the type of the switch expression (after its conversion), and are then

checked only for a duplication of values among case labels.

In a return statement, the expression (if any) is converted as if by assignment to

the declared return type of the enclosing function. The statement is illegal if such

a conversion is not possible.

11.8. C-Ref: ANSI C Run-time Library

The C run-time library, always one of C’s major assets, has been standardized

along with the language in Draft Proposed ANSI C. The facilities included in the

library avoid those functions particular to UNIX. All the library facilities are clas-

sified into several groups, each with its own header file. The library facilities are

listed by group in tables "C-Ref: Draft Proposed ANSI C Libraries (Part 1)" and
"C-Ref: Draft Proposed ANSI C Libraries (Part 2)" in section "C-Ref: Draft Pro-

posed ANSI C Facilities" and are discussed in subsequent chapters.

Library facilities and header files are special in many ways, mostly to protect the

integrity of implementations:

1. Library names are in principle reserved, that is, programmers may not define

external objects whose names duplicate the names of the standard library.

(All names beginning with an underscore are also reserved to implementa-

tions.)

2. Library header files or file names may be "built in" to the implementation, al-

though they still must be included for their names to become visible.

3. Programmers may include library header files in any order, any number of

times.�

The last requirement may force an implementation to use some careful mecha-

Page 261

nisms to avoid duplicate declarations:

/* Header stddef.h */

#ifndef _STDDEF

#define _STDDEF 1

 typedef int ptrdiff_t; /* Don’t try to redeclare */

 ...

#endif�

Draft Proposed ANSI C requires that most "function-like" library facilities really

be implemented as functions, so that the programmer can pass their address, say,

to another function. However, to allow for more efficiency, the header files may

hide the function name with an equivalent macro. Here is a hypothetical declara-

tion of a function nonzero that returns 1 if its argument is nonzero and otherwise

returns 0. (Note that the cast to int is necessary in the macro to simulate the ac-

tion of a function call in the scope of a prototype.)

extern int nonzero(int x); /* Functional form */

#define nonzero(x) ((int)(x)?1:0) /* Macro form */�

A programmer requiring the functional form would have to include an explicit #un-

def command to hide any macros:

#ifdef nonzero

#undef nonzero

#endif�

The library functions are mostly written to take arguments whose types are un-

changed under the usual argument conversions. This allows them to be called

without the help of a prototype, for compatibility with existing implementations.

Compatibility cannot be reliably preserved for functions like fprintf and fscanf

that take a variable number of arguments, because Draft Proposed ANSI C re-

quires such functions to be called in the scope of a prototype.

Page 262

Page 263

PART III.

C-REF: THE C LIBRARIES

Page 264

Page 265

12. C-Ref: Introduction to the Libraries

Many facilities that are used in C programs are not part of the C language as

such but are part of "standard libraries" that are written in C itself for use by

other C programs. These facilities include:

• signals (exceptions) and other nonlocal control functions

• operations on characters and strings

• computing and printing the time of day

• operations on arbitrary blocks of memory

• mathematical functions

• storage allocation functions

• input and output operations

• communication with the host operating system�

Each of these facilities belongs to a particular library. The correct way to use a

facility is to have, at the beginning of the user program, a preprocessor #include

command to include the relevant library declarations; the facility may then be re-

ferred to by name within the user program. For example, in order to use the

trigonometric function cos in a program, the C programmer should put the com-

mand

#include <math.h>�

at the start of the program, thus declaring cos for subsequent use. Unfortunately,

in many implementations, not all facilities are declared in standard header files;

some must be declared explicitly by the programmer. In the descriptions that fol-

low, the header file is shown if there commonly is one. (In Draft Proposed ANSI

C, the standard header files may be built into the implementation, that is, they

may not be files at all. This permits implementations to conform to Draft Proposal

ANSI C even if, say, their file systems do not permit periods in file names.)

The word �������� has been used in order to evade the question of whether an oper-

ation is implemented as a function or a preprocessor macro. Most of the facilities

are described as if they were functions, but the implementor is usually free to pro-

vide an equivalentbut presumably more efficientmacro. With this understand-

ing, we will often continue to use the more natural term "function." To prevent

confusion and subtle bugs, however, a facility implemented as a macro should eval-

uate every argument expression exactly once, just as it would if it were imple-

mented as a function. (In some cases the programmer does care: if an operation is

defined as a macro, it can be removed with #undef; if it is a function, the func-

tion’s address can be passed to another function.)

Page 266

When a library function is invoked and cannot complete an operation successfully,

then it may do either or both of two things: return a special value indicating fail-

ure or store a nonzero error code into the external variable errno (section "C-Ref:

������ ��������� ������"). The actions taken by various facilities are de-

scribed explicitly below for each individual facility. Error codes and the external

variable errno are described in section "C-Ref: �����������������������".

Draft Proposed ANSI C is the first description of C to explicitly include a large

standard library that is independent of the host operating system. Older implemen-

tations of C provide different sets of facilities, although the libraries provided with

UNIX have been a model for many implementations. We have chosen to describe

the facilities that fall into any of three groups:

1. the facilities included in Draft Proposed ANSI C

2. the facilities in common use that duplicate facilities in Draft Proposed ANSI

C

3. other facilities in common use that are not heavily dependent on the underly-

ing system (e.g., UNIX)�

The facilities are divided into groups according to their general purpose. Each fa-

cility is described by giving the appropriate header file (if there is one), followed

by a typical function or macro declaration of the facility and a longer prose de-

scription.

12.1. C-Ref: Draft Proposed ANSI C Facilities

Draft Proposed ANSI C is the first version of C to include a careful description of

a set of standard libraries. In the chapters that follow, the library facilities listed

should be assumed to be present in both Draft Proposed ANSI C and traditional

implementations of C unless comments to the contrary appear. For example, con-

sider this synopsis:

#include <header.h> /* ANSI */

int f();

int g(a) /* Non-ANSI form */

void g(a) /* ANSI */

 int a;�

The description should be understood to mean:

1. The header file header.h is provided only in Draft Proposed ANSI C.

2. The function f is provided in both Draft Proposed ANSI C and in many tradi-

tional implementations.

Page 267

3. The function g is provided in both implementations, but under Draft Proposal

ANSI C it has a void return value whereas in traditional implementations it

returns an integer.�

The accompanying prose descriptions should also help to clarify the situation.

The grouping of facilities in Draft Proposed ANSI C do not always follow the divi-

sions used in this book. The tables "C-Ref: Draft Proposed ANSI C Libraries (Part

1)" and "C-Ref: Draft Proposed ANSI C Libraries (Part 2)" list the standard facili-

ties as organized in Draft Proposed ANSI C along with references to the descrip-

tions in this book.

12.1.1. C-Ref: Draft Proposed ANSI C Libraries (Part 1)

Built-in Facilities

�������� ���������������

__LINE__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

__FILE__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

__DATE__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

__TIME__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

__STDC__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

errno "C-Ref: �����������������������"

ptrdiff_t "C-Ref: �������������_�������_�"

size_t "C-Ref: �������������_�������_�"�

Diagnostics assert.h

�������� ���������������

assert "C-Ref: ��������������"

Character Handling ctype.h

�������� ���������������

isalnum "C-Ref: ����������������������������������"

isalpha "C-Ref: ����������������������������������"

iscntrl "C-Ref: ����������������������������������"

isdigit "C-Ref: ���������������������������"

isgraph "C-Ref: �������������������������"

islower "C-Ref: ����������������"

isprint "C-Ref: �������������������������"

ispunct "C-Ref: �������������������������"

Page 268

isspace "C-Ref: ����������������"

isupper "C-Ref: ����������������"

isxdigit "C-Ref: ���������������������������"

tolower "C-Ref: ����������������"

toupper "C-Ref: ����������������"

Mathematics math.h

�������� ���������������

acos "C-Ref: �����������������������"

asin "C-Ref: �����������������������"

atan "C-Ref: �����������������������"

atan2 "C-Ref: �����������������������"

ceil "C-Ref: �����������������"

cos "C-Ref: �������������"

cosh "C-Ref: ����������������"

exp "C-Ref: ���������������"

fabs "C-Ref: ���������������"

floor "C-Ref: �����������������"

fmod "C-Ref: �����������������"

frexp "C-Ref: ������������������"

ldexp "C-Ref: ������������������"

log "C-Ref: ���������������"

log10 "C-Ref: ���������������"

modf "C-Ref: ������������������"

pow "C-Ref: ���������"

EDOM "C-Ref: �����������������������"

sin "C-Ref: �������������"

sinh "C-Ref: ����������������"

sqrt "C-Ref: ���������"

tan "C-Ref: �������������"

tanh "C-Ref: ����������������"

ERANGE "C-Ref: �����������������������"

Nonlocal Jumps setjmp.h

Page 269

�������� ���������������

longjmp "C-Ref: ��������������������_���"

setjmp "C-Ref: ��������������������_���"

Signal Handling signal.h

�������� ���������������

raise "C-Ref: ��"

signal "C-Ref: ��"

Variable Arguments stdarg.h

�������� ���������������

va_arg "C-Ref: ��������������"

va_end "C-Ref: ��������������"

va_start "C-Ref: ��������������"

12.1.2. C-Ref: Draft Proposed ANSI C Libraries (Part 2)

Input/Output stdio.h

�������� ���������������

clearerr "C-Ref: ����������������������"

fclose "C-Ref: ������������������������������"

feof "C-Ref: ����������������������"

ferror "C-Ref: ����������������������"

fflush "C-Ref: ������������������������������"

fgetc "C-Ref: ����������������������������"

fgets "C-Ref: �����������"

fopen "C-Ref: ������������������������������"

fprintf "C-Ref: ������������������������"

fputc "C-Ref: ��������������������"

fputs "C-Ref: �����������"

fread "C-Ref: �������������"

freopen "C-Ref: ������������������������������"

fscanf "C-Ref: ���������������������"

fseek "C-Ref: ��������������������"

ftell "C-Ref: ��������������������"

Page 270

fwrite "C-Ref: �������������"

getc "C-Ref: ����������������������������"

getchar "C-Ref: ����������������������������"

gets "C-Ref: �����������"

perror "C-Ref: �����������������������"

printf "C-Ref: ������������������������"

putc "C-Ref: ��������������������"

putchar "C-Ref: ��������������������"

puts "C-Ref: �����������"

remove "C-Ref: ��������������"

rename "C-Ref: ��������������"

rewind "C-Ref: ��������������������"

scanf "C-Ref: ���������������������"

setbuf "C-Ref: ���������������"

setvbuf "C-Ref: ���������������"

sprintf "C-Ref: ������������������������"

sscanf "C-Ref: ���������������������"

tmpfile "C-Ref: �����������������������"

tmpnam "C-Ref: �����������������������"

ungetc "C-Ref: ����������������������������"

vfprintf "C-Ref: ���������������������������"

vprintf "C-Ref: ���������������������������"

vsprintf "C-Ref: ���������������������������"

General Utilities stdlib.h

�������� ���������������

abort "C-Ref: �����������"

abs "C-Ref: ���������������"

atof "C-Ref: ����������������"

atoi "C-Ref: ����������������"

atol "C-Ref: ����������������"

bsearch "C-Ref: �������"

calloc "C-Ref: ��������������������������������"

Page 271

div "C-Ref: ���������"

exit "C-Ref: �����������"

free "C-Ref: �����������"

getenv "C-Ref: ��������������������������������"

labs "C-Ref: ���������������"

ldiv "C-Ref: ���������"

rand "C-Ref: �����������"

srand "C-Ref: �����������"

strtod "C-Ref: �����������������������"

strtol "C-Ref: �����������������������"

strtoul "C-Ref: �����������������������"

malloc "C-Ref: ��������������������������������"

onexit "C-Ref: ��������������_�"

qsort "C-Ref: �����"

realloc "C-Ref: �����������������"

system "C-Ref: ������������"

String Handling string.h

�������� ���������������

memchr "C-Ref: ������"

memcmp "C-Ref: ������������"

memcpy "C-Ref: ������������������������������"

memmove "C-Ref: ������������������������������"

memset "C-Ref: �������������"

strcat "C-Ref: ���������������"

strchr "C-Ref: ��������������������������������"

strcmp "C-Ref: ���������������"

strcpy "C-Ref: ���������������"

strcspn "C-Ref: ����������������������������������"

strerror "C-Ref: �����������������������"

strlen "C-Ref: ������"

strncat "C-Ref: ���������������"

strncmp "C-Ref: ���������������"

Page 272

strncpy "C-Ref: ���������������"

strpbrk "C-Ref: ����������������������������������"

strrchr "C-Ref: ��������������������������������"

strspn "C-Ref: ����������������������������������"

strstr "C-Ref: ��������������"

strtok "C-Ref: ��������������"

Date and Time time.h

�������� ���������������

asctime "C-Ref: ��������������"

clock "C-Ref: ������������_������_����������"

ctime "C-Ref: ��������������"

difftime "C-Ref: ��������"

gmtime "C-Ref: �������������������������"

localtime "C-Ref: �������������������������"

mktime "C-Ref: �������������������������"

time "C-Ref: ����������_�"

Page 273

13. C-Ref: Standard Language Additions

Name Section

__DATE__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

errno "C-Ref: �����������������������"

__FILE__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

NULL "C-Ref: �������������_�������_�"

__LINE__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

perror "C-Ref: �����������������������"

ptrdiff_t "C-Ref: �������������_�������_�"

size_t "C-Ref: �������������_�������_�"

__TIME__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

stdarg.h "C-Ref: ��������������"

__STDC__ "C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_"

varargs.h "C-Ref: ��������������"�

The facilities of this section are closely tied to the C language. They provide some

standard definitions and parameterizations that help make C programs more

portable.

13.1. C-Ref: NULL, PTRDIFF_T, SIZE_T

#include <stddef.h> /* ANSI */

#define NULL 0

typedef ... ptrdiff_t; /* ANSI */

typedef ... size_t; /* ANSI */�

The value of the macro NULL is the traditional null pointer constant.

Many implementations define it to be simply the integer constant 0. In Draft Pro-

posed ANSI C the macro is defined in the header file stddef.h; other systems de-

fine it in other library header files, such as stdio.h.

Two type definitions are supplied here in Draft Proposed ANSI C. The type

ptrdiff_t is an implementation-defined signed integral type that is the type of re-

sult of subtracting two pointers; existing implementations use int or long for this

type. The type size_t is the unsigned integral type of the result of the sizeof op-

erator; existing implementations often used the (signed) type int for this type.

Page 274

13.2. C-Ref: ERRNO, STRERROR, PERROR

#include <stddef.h> /* ANSI */

extern int errno;

#include <string.h> /* ANSI */

char *strerror(errnum); /* ANSI */

 int errnum;

#include <stdio.h> /* ANSI */

void perror(s);

 char *s;

extern int sys_nerr; /* Non-ANSI form */

extern char *sys_errlist[]; /* Non-ANSI form */

#include <math.h> /* ANSI */

#include <errno.h> /* Non-ANSI form */

#define EDOM ...

#define ERANGE ...�

The external variable errno is used to hold implementation-defined error codes

from library routines, traditionally defined in the header file errno.h. All error

codes are positive integers, and library routines never clear errno. Therefore the

typical way of using errno is to clear it before calling a library function and check

it afterward:

errno = 0;

x = sqrt(y);

if (errno) {

 printf("?sqrt failed, code %d\n", errno);

 x = 0;

}�

In Draft Proposed ANSI C errno need not be a variable; it can be a macro that ex-

pands to any modifiable lvalue, such as a dereferenced pointer returned by a func-

tion:

extern int *_errno();

#define errno (*_errno())�

The function strerror returns a pointer to an error message string whose contents

are undefined; the string is not modifiable and may be overwritten by a subse-

quent call to the strerror function.

The function perror prints on the standard error output:

• the argument string s,

Page 275

• a colon, followed by a space,

• a short message concerning the error whose error code is currently in errno,

and

• a newline.�

The error messages corresponding to values of errno may also be stored in a vec-

tor of string pointers, sys_errlist, which can be indexed by the value in errno.

The variable sys_nerr contains the maximum integer that can be used to index

sys_nerr; this should be checked to ensure that errno does not contain a nonstan-

dard error number.

C implementations generally define a standard list of error codes that can be

stored in errno. Traditional implementations define them in a central place, such

as the header file errno.h; others may define them in the individual library header

files. Some common ones are:

EDOM An argument was not in the domain accepted by a mathemati-

cal function. An example of this is giving a negative argument

to the log function.

ERANGE The result of a mathematical function is out of range; the

function has a well-defined mathematical result but cannot be

represented because of the limitations of the implementation’s

floating-point format. An example of this is trying to use the

pow function to raise a large number to a very large power.�

13.3. C-Ref: _DATE_, _FILE_, _LINE_, _TIME_, _STDC_

#define __DATE__ ...

#define __FILE__ ...

#define __LINE__ ...

#define __TIME__ ...

#define __STDC__ ...�

These identifiers are special macros built into implementations of Draft Proposal

ANSI C; some existing existing implementations also define them, especially

__FILE__ and __LINE__. These macros cannot be redefined or undefined, and no

header file is needed to define them.

__DATE__ has as its value a string constant representing the date of translation of

the source file, e.g., "Oct 23 1986".

__FILE__ has as its value a string constant representing the name of the source

file.

__LINE__ has as its value a decimal integer constant representing the current line

number in the source file, i.e., the one containing the use of the macro __LINE__.

Page 276

__TIME__ has as its value a string constant representing the time of day at which

translation occured, e.g., "14:22:00".

__STDC__ should be defined (with a nonzero value) only by implementations of

Draft Proposed ANSI C.

13.4. C-Ref: VARARG, STDARG

#include <varargs.h> /* Non-ANSI form */

#include <stdarg.h> /* ANSI */

#define va_alist ... /* Non-ANSI form */

#define va_dcl ... /* Non-ANSI form */

typedef ... va_list;

void va_start(ap) /* Non-ANSI form */

void va_start(ap, LastFixedParm) /* ANSI */

 va_list ap;

 ���� LastFixedParm;

���� va_arg(ap, ����);

 va_list ap;

void va_end(ap);

 va_list ap;�

The varargs (or stdargs) facility gives programmers a portable way to access vari-

able argument lists, as is needed to implement functions such as fprintf (implic-

itly) and vfprintf (explictly).

C traditionally placed no restrictions on the way arguments were passed to func-

tions, and programmers consequently made nonportable assumptions based on the

behavior of one computer system. Eventually the varargs facility arose under

UNIX to promote portability, and Draft Proposal ANSI C has adopted a similar fa-

cility under the name stdarg. The usage of stdarg is slightly different from vararg

because Draft Proposal ANSI C allows a fixed number of parameters to precede

the variable part of an argument list, whereas what we will call traditional imple-

mentations force the entire argument list to be treated as variable.

The meanings of the defined macros, functions, and types are listed below. This fa-

cility is very stylized so as to make the fewest possible assumptions about the un-

derlying implementation.

va_alist In traditional C, this macro replaces the parameter list in the

definition of a function taking a variable number of arguments.

It is not used in Draft Proposed ANSI C.

va_dcl In traditional C, this macro replaces the parameter declara-

tions in the function definition. It should ��� be followed by a

Page 277

semicolon, to allow for it to be empty. The macro va_dcl is not

used in Draft Proposed ANSI C.

va_list This type is used to declare a local state variable, uniformly

called ap in this exposition, which is used to traverse the pa-

rameters.

va_start This function (it is described as a function but it must be im-

plemented as a macro) initializes the state variable ap, and

must be called before any calls to va_arg or va_end. In tradi-

tional C, va_start sets the internal pointer in ap to point to

the first argument passed to the function; in Draft Proposed

ANSI C, va_start takes an additional parameterthe last fixed

parameter nameand sets the internal pointer in ap to point

to the first variable argument passed to the function.

va_arg This macro returns the value of the next parameter in the ar-

gument list and advances the internal argument pointer (in ap)

to the next argument (if any). The type of the next argument

(after the usual argument conversions) must be specified (as

����) so that va_arg can compute its size on the stack. The

first call to va_arg after calling va_start will return the value

of the first variable parameter.

va_end This function or macro should be called after all the argu-

ments have been read with va_arg. It performs any necessary

cleanup operations on ap and va_alist.�

As an example, the following "traditional C" function, printargs, takes a variable

number of arguments of different types and prints their values on the standard

output. The first argument to printargs is an array of integers that indicates the

number and types of the following arguments. The array is terminated by a zero

element. The meanings of the integers are given in file printargs.h:

#define INTARG 1

#define DBLARG 2

/* ... */

The printargs function itself, including a small test program, is shown in table

"C-Ref: Printargs Function in Traditional C". The corresponding example for Draft

Proposed ANSI C is shown in table "C-Ref: Printargs Function in Draft Proposed

ANSI C". The only differences are in the function argument list and in the call to

va_start.

Page 278

13.4.1. C-Ref: Printargs Function in Traditional C

#include <stdio.h>

#include <varargs.h>

#include "printargs.h"

void printargs(va_alist)

 va_dcl

{

 va_list ap;

 int argtype, *argtypep;

 va_start(ap);

 argtypep = va_arg(ap, int *);

 while ((argtype = *argtypep++) != 0) {

 switch (argtype) {

 case INTARG:

 printf("int: %d\n", va_arg(ap, int));

 break;

 case DBLARG:

 printf("double: %f\n", va_arg(ap, double));

 break;

 /* ... */

 }

 }

 va_end(ap);

 return;

}

#ifdef TEST

int at[] = { INTARG, DBLARG, INTARG, DBLARG, 0 };

int main()

{

 printargs(&at[0], 1, 2.0, 3, 4.0);

 return 0;

}

#endif�

Page 279

13.4.2. C-Ref: Printargs Function in Draft Proposed ANSI C

#include <stdio.h>

#include <stdarg.h>

#include "printargs.h"

void printargs(int *argtypep, ...)

{

 va_list ap;

 int argtype;

 va_start(ap, argtypep);

 while ((argtype = *argtypep++) != 0) {

 switch (argtype) {

 case INTARG:

 printf("int: %d\n", va_arg(ap, int));

 break;

 case DBLARG:

 printf("double: %f\n", va_arg(ap, double));

 break;

 /* ... */

 }

 }

 va_end(ap);

 return;

}

Page 280

Page 281

14. C-Ref: Character Processing

Name Section

isalnum "C-Ref: ����������������������������������"

isalpha "C-Ref: ����������������������������������"

isascii "C-Ref: ����������������������������������"

iscntrl "C-Ref: ����������������������������������"

iscsym "C-Ref: ���������������"

iscsymf "C-Ref: ���������������"

isdigit "C-Ref: ���������������������������"

isgraph "C-Ref: �������������������������"

islower "C-Ref: ����������������"

isodigit "C-Ref: ���������������������������"

isprint "C-Ref: �������������������������"

ispunct "C-Ref: �������������������������"

isspace "C-Ref: ����������������"

isupper "C-Ref: ����������������"

iswhite "C-Ref: ����������������"

isxdigit "C-Ref: ���������������������������"

toascii "C-Ref: �������"

toint "C-Ref: �����"

tolower "C-Ref: ����������������"

_tolower "C-Ref: ����������������"

toupper "C-Ref: ����������������"

_toupper "C-Ref: ����������������"�

The facilities for handling characters are of two kinds: classification and conver-

sion. Every character classification facility has a name beginning with "is" and re-

turns a value of type int that is nonzero if the argument is in the specified class

and zero if not. Every character conversion facility has a name beginning with "to"
and returns a value of type int representing a character or EOF.

The value EOF (-1) is conventionally used as a value that is "not a real character."
For example, fgetc (section "C-Ref: ������ ����� �������� ������") re-

turns EOF when at end-of-file, because there is no "real character" to be read. It

must be remembered, however, that the type char may be signed in some imple-

mentations, and so EOF is not necessarily distinguishable from a "real character" if

Page 282

nonstandard character values appear. (Standard character values are always non-

negative, even if the type char is signed.) All of the facilities described here oper-

ate properly on all values representable as type char or type unsigned char, and al-

so on the value EOF, but are undefined for all other integer values, unless the indi-

vidual description states otherwise.

The facilities isascii and toascii assume that the standard 128-character ASCII

set is used as the implementation’s run-time character set, but the rest do not re-

quire this assumption and indeed serve to insulate code from the implementation’s

run-time character set.

A warning: Some implementations of C let the type char be signed and also sup-

port a type unsigned char, yet the character-handling facilities fail to operate prop-

erly on all values representable by type unsigned char. In some cases the facilities

even fail to operate properly on all values representable by type char, but handle

only "standard" character values and EOF.

All of the facilities described here are declared by the library header file ctype.h.

14.1. C-Ref: ISALNUM, ISALPHA, ISASCII, ISCNTRL

#include <ctype.h>

int isalnum(c)

 char c;

int isalpha(c)

 char c;

int isascii(c)

 int c;

int iscntrl(c)

 char c;�

The isalnum function returns a nonzero value if c is the code for an alphanumeric

character; that is, one of the following:

0 1 2 3 4 5 6 7 8 9

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z�

Otherwise the returned value is zero.

The isalpha function returns a nonzero value if c is the code for an alphabetic

character; that is, one of the following:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z�

Otherwise the returned value is zero.

Page 283

The function isascii returns a nonzero value if the value of c is between 0 and

0177 (the range of the standard 128-character ASCII character set). Otherwise

isascii returns zero. Unlike most of of the character classification functions, isas-

cii operates properly on any value of type int.

The function iscntrl returns a nonzero value if c is the code for a "control char-

acter"; that is, any character that is not a printing character. If the standard 128-

character ASCII set is in use, the control characters are those with codes 000

through 037, and also code 0177. The isprint function is the complementary func-

tion, at least for standard ASCII implementations.

14.2. C-Ref: ISCSYM, ISCSYMF

#include <ctype.h>

int iscsym(c) /* Berkeley UNIX only */

 char c;

int iscsymf(c) /* Berkeley UNIX only */

 char c;�

The iscsym function returns a nonzero value if c is the code for a character that

may appear in a C identifier. iscsymf returns a nonzero value if c is the code for a

character that may additionally appear as the first character of an identifier.

The iscsymf function will accept at least the 52 upper- and lower-case letters, and

the underscore character. iscsym will additionally accept at least the ten decimal

digits. Other characters may be accepted by these functions as well, depending on

the implementation.

14.3. C-Ref: ISDIGIT, ISODIGIT, ISXDIGIT

#include <ctype.h>

int isdigit(c)

 char c;

int isodigit(c) /* Berkeley UNIX */

 char c;

int isxdigit(c)

 char c;�

The isdigit function returns a nonzero value if c is the code for one of the ten

decimal digits. The isodigit function returns a nonzero value if c is the code for

one of the eight octal digits. The isxdigit function returns a nonzero value if c is

the code for one of the 22 hexadecimal digits; that is, one of the following:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f�

Page 284

14.4. C-Ref: ISGRAPH, ISPRINT, ISPUNCT

#include <ctype.h>

int isgraph(c)

 char c;

int isprint(c)

 char c;

int ispunct(c)

 char c;�

The isprint function returns a nonzero value if c is the code for a "printing
character"; that is, any character that is not a control character. The isgraph func-

tion returns a nonzero value if c is the code for a "graphic character"; that is, any

printing character other than space. The isprint and isgraph functions differ only

in how they handle the space character; isprint is the opposite of iscntrl.

If the standard 128-character ASCII set is in use, the printing characters are those

with codes 040 through 0176; that is, space plus the following:

 ! " # $ % & ’ () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _()

‘ a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~�

The graphic characters are the same but space is omitted.

The function ispunct returns a nonzero value if c is the code for a "punctuation
character"; that is, neither a control character nor an alphanumeric character. If

the standard 128-character ASCII character set is in use, the punctuation charac-

ters are space plus the following:

! " # $ % & ’ () * + , - . / : ; < = > ?

 [\] ^ _ ‘ { | } ~�

14.5. C-Ref: ISLOWER, ISUPPER

#include <ctype.h>

int islower(c)

 char c;

int isupper(c)

 char c;�

The islower function returns a nonzero value if c is the code for one of the 26

lower-case letters. The isupper function returns a nonzero value if c is the code

for one of the 26 upper-case letters. Otherwise the returned values are zero.

Page 285

14.6. C-Ref: ISSPACE, ISWHITE

#include <ctype.h>

int isspace(c)

 char c;

int iswhite(c) /* rare */

 char c;�

The isspace function returns a nonzero value if c is the code for a whitespace

character; that is, a space, tab, carriage return, newline, vertical tab, or form feed.

If the standard 128-character ASCII set is in use, the whitespace characters are

those with codes 011 through 015 and 040. Some implementations of C provide not

this exact function but a variant called iswhite.

14.7. C-Ref: TOASCII

#include <ctype.h>

int toascii(c)

 int c;�

The toascii function accepts any integer value and reduces it to the range of

valid ASCII characters (codes 0 through 0177) by discarding all but the low-order

seven bits of the value. If the argument is already a valid ASCII code, then the re-

sult is equal to the argument.

14.8. C-Ref: TOINT

#include <ctype.h>

int toint(c) /* rare */

 char c;�

The toint function returns the "weight" of a hexadecimal digit: 0 through 9 for

the characters ’0’ through ’9’, respectively, and 10 through 15 for the letters ’a’

through ’f’ (or ’A’ through ’F’), respectively.

14.9. C-Ref: TOLOWER, TOUPPER

#include <ctype.h>

int tolower(c)

 char c;

int toupper(c)

 char c;

Page 286

If c is an upper-case letter, then tolower returns the corresponding lower-case let-

ter. If c is a lower-case letter, then toupper returns the corresponding upper-case

letter.

You should be wary of the value returned by tolower when its argument is not an

upper-case letter, nor on the value returned by toupper when its argument is not a

lower-case letter. Draft Proposed ANSI C specifies that other arguments should be

returned unchanged, but many current implementations work correctly only when

the argument is a letter of the proper case.

Implementations that allow more general arguments to tolower and toupper may

provide faster versions of these_tolower and _toupperwhich require the more

restrictive arguments and which are correspondingly faster.

Page 287

15. C-Ref: String Processing

Name Section

atof "C-Ref: ����������������"

atoi "C-Ref: ����������������"

atol "C-Ref: ����������������"

strcat "C-Ref: ���������������"

strchr "C-Ref: ��������������������������������"

strcmp "C-Ref: ���������������"

strcpy "C-Ref: ���������������"

strcspn "C-Ref: ����������������������������������"

strlen "C-Ref: ������"

strncat "C-Ref: ���������������"

strncmp "C-Ref: ���������������"

strncpy "C-Ref: ���������������"

strpbrk "C-Ref: ����������������������������������"

strpos "C-Ref: ��������������������������������"

strrchr "C-Ref: ��������������������������������"

strrpbrk "C-Ref: ����������������������������������"

strrpos "C-Ref: ��������������������������������"

strspn "C-Ref: ����������������������������������"

strtod "C-Ref: �����������������������"

strtol "C-Ref: �����������������������"

strtoul "C-Ref: �����������������������"�

By convention, strings in C are of variable length and are terminated by a null

character (that is, ’\0’). The compiler automatically supplies an extra null charac-

ter after all string constants, but it is up to the programmer to make sure that

strings created in string variables (that is, character arrays) end with a null char-

acter.

All the characters in a string, not counting the terminating null character, are to-

gether called the �������� of the string. An empty string contains no characters

and is represented by a pointer to a null character. Note that this is ��� the same

as a null character pointer (NULL), which is a pointer that points to no character at

all. When we speak of a "pointer to the first character of a string," we mean a

pointer to the terminating null character if the string is empty and to the first

character of the contents if the string is not empty.

Page 288

All of the string-handling facilities described here assume that strings are termi-

nated by a null character. When characters are transferred to a destination string,

no test is made for overflow of the destination. It is up to the programmer to

make sure that the destination area in memory is large enough to contain the re-

sult string, including the terminating null character.

All of the facilities described here are declared by the library header file string.h.

In Draft Proposed ANSI C, string parameters that are not modified are generally

declared to have type const char * instead of char *; integer arguments or return

values that represent the length of a string have type size_t instead of int. For

brevity, we do not shown both forms of the functions.

See also the facilities provided by the memory functions (chapter "C-Ref: Memory

Functions"), sprintf (section "C-Ref: �������� ������� �������"), and sscanf

(section "C-Ref: ���������������������").

15.1. C-Ref: STRCAT, STRNCAT

#include <string.h>

char *strcat(s1, s2)

 char *s1, *s2;

char *strncat(s1, s2, n)

 char *s1, *s2;

 int n;�

The function strcat appends the contents of the string s2 to the end of the string

s1. The value of s1 is returned. The null character that terminates s1 (and per-

haps other characters following it in memory) is overwritten with characters from

s2 and a new terminating null character. Characters are copied from s2 until a

null character is encountered in s2. The memory area beginning with s1 is as-

sumed to be large enough to hold both strings.

The strncat function appends up to n characters from the contents of s2 to the

end of s1. If the null character that terminates s2 is encountered before n charac-

ters have been copied, then the null character is copied, but no more characters

after that are copied. If no null character appears among the first n characters of

s2, then the net effect is that the first n characters are copied and then a null

character is supplied to terminate the destination string; that is, n+1 characters in

all are written, the first replacing the null character that formerly terminated s1.

If the value of n is zero or negative, then calling this function has no effect.

The results of both functions are unpredictable if the two string arguments over-

lap in memory.

Page 289

15.2. C-Ref: STRCMP, STRNCMP

#include <string.h>

int strcmp(s1, s2)

 char *s1, *s2;

int strncmp(s1, s2, n)

 char *s1, *s2;

 int n;�

The function strcmp lexicographically compares the contents of the null-terminated

string s1 with the contents of the null-terminated string s2. It returns a value of

type int that is less than zero if s1 is less than s2; equal to zero if s1 is equal to

s2; and greater than zero if s1 is greater than s2. Therefore, to check only if two

strings are equal the programmer negates the return value from strcmp:

if (!strcmp(s1,s2)) printf("Strings are equal\n");

else printf("Strings are not equal\n");�

Two strings are equal if their contents are identical. String s1 is lexicographically

less than string s2 under either of two circumstances:

1. The contents of the strings are equal up to some character position, and at

that first differing character position the character value from s1 is less than

the character value from s2.

2. The string s1 is shorter than the string s2, and the contents of s1 are identi-

cal to those of s2 up to length of s1.�

The function strncmp is like strcmp except that it compares up to n characters of

the null-terminated string s1 with up to n characters of the null-terminated string

s2. In comparing the strings, the entire string is used if it contains fewer than n

characters, and otherwise the string is treated as if it were n characters long. If

the value of n is zero or negative, then both strings are treated as empty and

therefore equal, and zero is returned.

The function memcmp (section "C-Ref: ������� ����") provides similar func-

tionality to strcmp.

15.3. C-Ref: STRCPY, STRNCPY

#include <string.h>

char *strcpy(s1, s2)

 char *s1, *s2;

Page 290

char *strncpy(s1, s2, n)

 char *s1, *s2;

 int n;�

The function strcpy copies the contents of the string s2 to the string s1, overwrit-

ing the old contents of s1. The entire contents of s2 are copied, plus the terminat-

ing null character, even if s2 is longer than s1. A pointer to the first character of

s1 is returned.

The function strncpy copies exactly n characters to s1. It first copies up to n char-

acters from s2. If there are fewer than n characters in s2 before the terminating

null character, then null characters are written into s1 as padding until exactly n

characters have been written. If there are n or more characters in s2, then only n

characters are copied, and so only a truncated copy of s2 is transferred to s1. It

follows that the copy in s1 is terminated with a null by strncpy only if the length

of s2 (not counting the terminating null) is less than n. (This is true even in Draft

Proposed ANSI C.) If the value of n is zero or negative, then calling strncpy func-

tion has no effect.

The functions memcpy and memccpy (section "C-Ref: ������� �������� ����

����� ����") provide similar functionality to strcpy. The results of both strcpy

and strncpy are unpredictable if the two string arguments overlap in memory; the

function memmove (section "C-Ref: ������� �������� �������� ����") is

provided in Draft Proposed ANSI C for cases in which overlap may occur.

15.4. C-Ref: STRLEN

#include <string.h>

int strlen(string)

 char *string;�

The function strlen returns the number of characters in s preceding the terminat-

ing null character. An empty string has a null character as its first character and

therefore the length of an empty string is zero. In Draft Proposed ANSI C the re-

turn type of strlen is size_t and the argument has type const char *. In some im-

plementations of C this function is called lenstr.

15.5. C-Ref: STRCHR, STRPOS, STRRCHR, STRRPOS

#include <string.h>

char *strchr(s, c)

 char *s, c;

Page 291

int strpos(s, c) /* Non-ANSI form */

 char *s, c;

char *strrchr(s, c)

 char *s, c;

int strrpos(s, c) /* Non-ANSI form */

 char *s, c;�

The functions in this section all search for a single character c within a null-

terminated string s. In Draft Proposed ANSI C c has type int and s has type con-

st char *.

The function strchr searches the string s for the first occurrence of the character

c. If the character c is found in the string, a pointer to the first occurrence is re-

turned. If the character is not found, a null pointer is returned. The terminating

null character is considered to be a part of s for the purposes of this search, so

searching for a null character will return a pointer to the null character, not a

null pointer.

The function strpos is like strchr except that the position of the first occurrence

of c is returned (where the first character of s is considered to be at position 0).

If the character is not found, the value -1 is returned. Searching for a null charac-

ter will return the position of the terminating null character (that is, the length of

the string), not the value -1.

The function strrchr is like strchr except that it returns a pointer to the last oc-

currence of the character c. If the character is not found, a null pointer is re-

turned. Searching for a null character will return a pointer to the terminating null

character, not a null pointer.

The function strrpos is like strrchr except that the position of the last occurrence

of c is returned (where the first character of s is considered to be at position 0).

If the character is not found, the value -1 is returned. Searching for a null charac-

ter will return the position of the terminating null character (that is, the length of

the string), not the value -1.

The function memchr (section "C-Ref: ������") provides similar functionality to

strchr. In some implementations of C strchr and strrchr are called index and

rindex, respectively. Some implementations of C provide the function scnstr, which

is a variant of strpos.

15.6. C-Ref: STRSPN, STRCSPN, STRPBRK, STRRPBRK

#include <string.h>

int strspn(s, set)

 char *s, *set;

Page 292

int strcspn(s, set)

 char *s, *set;

char *strpbrk(s, set)

 char *s, *set;

char *strrpbrk(s, set)

 char *s, *set;�

The functions in this section all search a null-terminated string s for occurrences

of characters specified by whether or not they are included in a second null-

terminated string set. The second argument is regarded as a set of characters; the

order of the characters, or whether there are duplications, does not matter. In

Draft Proposed ANSI C both s and set have type const char *, and the return val-

ue of strspn and strcspn has type size_t.

The function strspn searches the string s for the first occurrence of a character

that is not included in the string set, skipping over ("spanning") characters that

are in set. The value returned is the length of the longest initial segment of s�

that consists of characters found in set. If every character of s appears in set,

then the total length of s (not counting the terminating null character) is re-

turned. If set is an empty string, then the first character of s will not be found in

it, and so zero will be returned.

The function strcspn is like strspn except that it searches s for the first occur-

rence of a character that is included in the character set set, skipping over char-

acters that are not in set.

The function strpbrk is like strcspn except that it returns a pointer to the first

character found from set rather than the number of characters skipped over. If no

characters from set are found, a null pointer is returned.

The function strrpbrk is like strpbrk except that it returns a pointer to the ����

character from set found within s. If no character within s occurs in set, then a

null pointer is returned.

In some implementations of C the functions strspn and strcspn are called notstr

and instr.

15.7. C-Ref: STRSTR, STRTOK

#include <string.h>

char *strstr(src, sub) /* ANSI */

 const char * src,* sub;

char *strtok(str, set)

 char *str,*set;�

Page 293

The function strstr is new in Draft Proposed ANSI C. It locates the first occur-

rence of the string sub in the string src and returns a pointer to the beginning of

the first occurrence. If sub does not occur in src, a null pointer is returned.

The function strtok may be used to separate a string str into tokens separated by

characters from the string set. A call is made on strtok for each token, possibly

changing the value of set in successive calls. The first call includes the string str;

subsequent calls pass a null pointer as the first argument, directing strtok to con-

tinue from the end of the previous token.

More precisely, if str is not null then strtok first skips over all characters in str

that are also in set. If all the characters of str occur in set then strtok returns a

null pointer and an �������� ����� ������� is set to a null pointer. Otherwise, the in-

ternal state pointer is set to point to the first character of str not in set and exe-

cution continues as if str had been null.

If str is null and the internal state pointer is null then strtok returns a null

pointer and the internal state pointer is unchanged. If str is null but the internal

state pointer is not null, then the function searches beginning at the internal state

pointer for the first character contained in set. If such a character is found, the

character is overwritten with ‘\0’, strtok returns the value of the internal state

pointer, and the internal state pointer is adjusted to point to the character imme-

diately following inserted null character. If no such character is found, strtok re-

turns the value of the internal state pointer and the internal state pointer is set to

null.

15.8. C-Ref: STRTOD, STRTOL, STRTOUL

#include <stdlib.h> /* ANSI */

double strtod(str, ptr)

 char *str, **ptr;

long strtol(str, ptr, base)

 char *str, **ptr;

 int base;

unsigned long strtoul(str, ptr, base) /* ANSI */

 char *str, **ptr;

 int base;�

These functions, found in Draft Proposed ANSI C and System V UNIX, convert

strings to numbers. In each case, str points to the string to be converted and ptr

(if not NULL) is set by the functions to point to the first character in str immedi-

ately following the converted part of the string. If str begins with whitespace

characters (as defined by the isspace function) they are skipped.

The function strtod expects the number to be converted to consist of:

Page 294

1. an optional plus or minus sign,

2. a sequence of decimal digits possibly containing a single decimal point, and

3. an optional exponent part, consisting of the letter e or E, an optional sign,

and a sequence of decimal digits.�

The longest sequence of characters matching this model is converted to a floating-

point number of type double, which is returned. Stated a different way, strtod ac-

cepts numbers beginning with an optional sign and then having the syntax of �����

������������, ��������������, or �����������������. Numbers having the format of ���

������������ are still treated as decimal numbers, and in no case are trailing �����

������� recognized as part of the number.

If no conversion is possible because the string does not match the expected num-

ber model (or is empty), zero is returned, ptr (if not NULL) is set to the value of

str, and errno is set to ERANGE. If the number converted would cause overflow,

HUGE_VAL (with the correct sign) is returned; if the number converted would cause

underflow, zero is returned. In either case, errno is set to ERANGE. (According to

this definition, an illegal number is indistinguishable from one that causes under-

flow, except perhaps by the value set in *ptr. Some implementations may set errno

to EDOM when the string does not match the number model.)

The functions strtol and strtoul convert the initial portion of the argument

string to an integer of type long int or unsigned long int, respectively. The ex-

pected format of the numberwhich changes with the value of base, the expected

radixis the same in both cases except that an optional sign may preceed the

number in the case of strtol but not in the case of strtoul.

If base is zero, the number should have the format of a ����������������, ������

��������, or ��������������������. The number’s radix is deduced from its format.

If the value of base is between 2 and 36, inclusive, the number must consist of a

nonzero sequence of letters and digits representing an integer in the specified

base. The letters a through z (or A through Z) represent the values 10 through 36,

respectively. Only those letters representing values less than base are permitted.

(As a special case, if base is 16 then the number may begin with 0x or 0X, which

is ignored.)

If no conversion can be performed, the functions return zero, ptr (if not NULL) is

set to the value of str, and errno is set to ERANGE. If the number to be converted

would cause an overflow, then strtol returns LONG_MAX or LONG_MIN (depending on

the sign of the result in the case of strtol) or ULONG_MAX (in the case of strtoul)

and errno is set to ERANGE.

Page 295

15.9. C-Ref: ATOF, ATOI, ATOL

#include <stdlib.h> /* ANSI */

double atof(str)

 char *str;

int atoi(str)

 char *str;

long atol(str)

 char *str;�

These functions, which convert strings to numbers, are found in many UNIX im-

plementations. In Draft Proposed ANSI C they are present for compatibility but

the functions strtod, strtol, and strtoul are preferred. They may be defined in

terms of the more general functions:

extern double strtod();

extern long strtol();

extern unsigned long strtoul();

double atof(str)

 char *str;

{

 return strtod(str, (char **)NULL);

}

int atoi(str)

 char *str;

{

 return (int) strtol(str, (char **) NULL, 10);

}

long atol(str)

 char *str;

{

 return strtol(str, (char **) NULL, 10);

}�

Page 296

Page 297

16. C-Ref: Memory Functions

Name Section

bcmp "C-Ref: ������������"

bcpy "C-Ref: ������������������������������"

bzero "C-Ref: �������������"

memchr "C-Ref: ������"

memcmp "C-Ref: ������������"

memcpy "C-Ref: ������������������������������"

memccpy "C-Ref: ������������������������������"

memmove "C-Ref: ������������������������������"

memset "C-Ref: �������������"

The facilities in this section give the C programmer efficient ways to copy, com-

pare, and set blocks of memory. In Draft Proposed ANSI C these functions are

considered part of the string functions and are declared in the library header file

string.h. In many other implementations they are declared in the header file

memory.h.

16.1. C-Ref: MEMCHR

#include <string.h> /* ANSI */

#include <memory.h> /* Non-ANSI form */

char *memchr(ptr, val, len)

 char *ptr;

 int val, len;�

The function memchr searches for the value val in each of the first len characters

beginning at ptr. It returns a pointer to the first character containing val, if any,

or returns a null pointer if no such character is found. In Draft Proposed ANSI C,

memchr has return type void *, its first argument has type const void *, and the

argument len has type size_t. See also strchr (section "C-Ref: ������� ����

���������������������").

Page 298

16.2. C-Ref: MEMCMP, BCMP

#include <string.h> /* ANSI */

#include <memory.h> /* Non-ANSI form */

int memcmp(ptr1, ptr2, len)

 char *ptr1, *ptr2;

 int len;

int bcmp(ptr1, ptr2, len) /* Berkeley UNIX */

 char *ptr1, *ptr2;

 int len;�

The function memcmp compares the first len characters beginning at ptr1 with the

first len character beginning at ptr2. If the first string of characters is lexico-

graphically less than the second, memcmp returns a negative integer. If the first

string of characters is lexicographically greater than the second, memcmp returns a

positive integer. Otherwise memcmp returns 0. In Draft Proposed ANSI C, the argu-

ments ptr1 and ptr2 have type void *, and the argument len has type size_t.

The function bcmp, found on some implementations, also compares two strings of

characters, but returns 0 if they are the same and nonzero otherwise. No compari-

son for less or greater is made. See also strcmp (section "C-Ref: �������

�������").

16.3. C-Ref: MEMCPY, MEMCCPY, MEMMOVE, BCPY

#include <string.h> /* ANSI */

#include <memory.h> /* Non-ANSI form */

char *memcpy(dest, src, len)

 char *dest, *src;

 int len;

char * memccpy(dest, src, val, len) /* Non-ANSI form */

 char *dest, *src;

 int val, len;

void * memmove(dest, src, len) /* ANSI */

 void *dest;

 const void *src;

 size_t len;

char *bcopy(src, dest, len)

 char *dest, *src;

 int len;�

Page 299

The function memcpy copies len characters from src to dest and returns the value

of src. If the source and destination areas overlap, the results will be unpre-

dictable. In Draft Proposed ANSI C, memcpy has type void *, its first argument has

type const void *, and the argument len has type size_t.

The function memmove, found in Draft Proposed ANSI C, differs from memcpy only in

that it is guaranteed to work for overlapping memory regions. That is, the effect

is as if the source area were first copied to a separate temporary area and then

copied back to the destination area. (Some implementations define memcpy to have

these semantics.)

The function memccpy, found in some implementations, also copies len characters

from src to dest, but it will stop immediately after copying a character whose val-

ue is val. When all len characters are copied memccpy returns a null pointer; other-

wise it returns a pointer to the character following the copy of val in dest.

The function bcopy, found on some implementations, works like memcpy but the

source and destination operands are reversed. See also strcpy (section "C-Ref:

���������������").

16.4. C-Ref: MEMSET, BZERO

#include <string.h> /* ANSI */

#include <memory.h> /* Non-ANSI form */

char *memset(ptr, val, len)

 char *ptr;

 int val, len;

void bzero(ptr, len) /* Berkeley UNIX */

 char *ptr;

 int len;�

The function memset copies the value val into each of len characters beginning at

ptr. It returns the value of ptr. In Draft Proposed ANSI C, memset has type void

*, its first argument has type const void *, and the argument len has type size_t.

The more restricted function bzero copies the value 0 into each of len characters

beginning at ptr; it is found in some UNIX implementations.

Page 300

Page 301

17. C-Ref: Input/Output Facilities

Name Section

clearerr "C-Ref: ����������������������"

feof "C-Ref: ����������������������"

ferror "C-Ref: ����������������������"

fflush "C-Ref: ������������������������������"

fgetc "C-Ref: ����������������������������"

fgets "C-Ref: �����������"

fclose "C-Ref: ������������������������������"

fopen "C-Ref: ������������������������������"

fputc "C-Ref: ��������������������"

fputs "C-Ref: �����������"

fprintf "C-Ref: ������������������������"

fread "C-Ref: �������������"

freopen "C-Ref: ������������������������������"

fscanf "C-Ref: ���������������������"

fseek "C-Ref: ��������������������"

ftell "C-Ref: ��������������������"

fwrite "C-Ref: �������������"

getc "C-Ref: ����������������������������"

getchar "C-Ref: ����������������������������"

gets "C-Ref: �����������"

mktemp "C-Ref: �����������������������"

perror "C-Ref: �����������������������"

printf "C-Ref: ������������������������"

putc "C-Ref: ��������������������"

putchar "C-Ref: ��������������������"

puts "C-Ref: �����������"

remove "C-Ref: ��������������"

rename "C-Ref: ��������������"

rewind "C-Ref: ��������������������"

scanf "C-Ref: ���������������������"

Page 302

setbuf "C-Ref: ���������������"

setvbuf "C-Ref: ���������������"

sprintf "C-Ref: ������������������������"

sscanf "C-Ref: ���������������������"

stderr "C-Ref: ���������������������"

stdin "C-Ref: ���������������������"

stdout "C-Ref: ���������������������"

tmpfile "C-Ref: �����������������������"

tmpnam "C-Ref: �����������������������"

ungetc "C-Ref: ����������������������������"

vfprintf "C-Ref: ���������������������������"

vprintf "C-Ref: ���������������������������"

vsprintf "C-Ref: ���������������������������"�

C has a very rich and useful set of I/O facilities based on the concept of a ������,

which may be a file or some other source or consumer of data, including a termi-

nal or other physical device. The data type FILE (defined in stdio.h along with the

rest of the I/O facilities) holds information about a stream. A ���� �������, an object

of type FILE *, is created by calling fopen and is used as an argument to most of

the I/O facilities described in this chapter.

Among the information included in a FILE object is the current position within the

stream, pointers to any associated buffers, and indications whether an error or

end-of-file has occurred. Streams are normally buffered unless they are associated

with physical devices. The programmer has some control over buffering with the

setvbuf facility, but in general streams can be implemented very efficiently and

the programmer should not have to worry about performance.

There are two general forms of streams: text and binary. A text stream consists of

a sequence of characters divided into lines; each line consists of zero or more

characters followed by (and including) a newline character ‘\n’. Text streams are

portable when they consist only of complete lines made from characters from the

standard character set. The hardware and software components underlying a par-

ticular C run-time library implementation may have different representations for

text files (especially for the end-of-line indication) but the run-time library must

map those representations into the standard one. Draft Proposed ANSI C requires

implementations to support text stream lines of at least 254 characters including

the terminating newline.

Binary streams are sequences of data values of type char. Because any C data val-

ue may be mapped onto an array of values of type char, binary streams can trans-

parently record internal data.

Page 303

17.1. C-Ref: EOF

#include <stdio.h>

#define EOF (-1)�

The value EOF is conventionally used as a value that is "not a real character." For

example, fgetc (section "C-Ref: ������ ����� �������� ������") returns

EOF when at end-of-file, because there is no "real character" to be read. It must be

remembered, however, that the type char may be signed in some implementations,

and so EOF is not necessarily distinguishable from a "real character" if nonstandard

character values appear. (Standard character values are always nonnegative, how-

ever, even if the type char is signed.) When the value EOF is read, it is best to use

the feof facility (section "C-Ref: ����� ������� ��������") to determine

whether end-of-file has indeed been encountered.

17.2. C-Ref: FOPEN, FCLOSE, FFLUSH, FREOPEN

#include <stdio.h>

FILE *fopen(filename, type)

 char *filename, *type;

int fclose(stream)

 FILE *stream;

int fflush(stream)

 FILE *stream;

FILE *freopen(filename, type, stream)

 char *filename, *type;

 FILE *stream;�

The function fopen takes as arguments a file name and a type; each is specified as

a character string. The file name is used in an implementation-specified manner to

identify or create a file. A stream is associated with the file in a manner indicated

by the type argument. A pointer of type FILE * is returned to identify the stream

for other input/output operations. If any error is detected, fopen stores an error

code into errno and returns a null pointer. The number of streams that may be

open simultaneously is not specified; in Draft Proposal ANSI C it is given by the

value of the macro SYS_OPEN, which must be at least eight.

The function fclose takes a stream, which should be open for input or output. The

stream is closed in an appropriate and orderly fashion, including any necessary

emptying and freeing of internal data buffers. The function fclose returns EOF if

an error is detected; otherwise, it returns zero.

Page 304

The function fflush takes an output stream as its argument and causes any inter-

nal buffers to be emptied to the destination device. The stream remains open. If

any error is detected, fflush returns EOF; otherwise, it returns 0. fflush is typical-

ly used only in exceptional circumstances; fclose and exit normally may be relied

upon to take care of flushing output buffers.

The function freopen takes a file name, a type, and an open stream. It first tries

to close stream as if by a call to fclose, but any error while doing so is ignored.

Then, filename and type are used to open a new file as if by a call to fopen, ex-

cept that the new stream is associated with stream rather than getting a new val-

ue of type FILE *. The function freopen returns stream if it is successful; other-

wise (if the new open fails) a null pointer is returned. One of the main uses of

freopen is to reassociate one of the standard input/output streams stdin, stdout,

and stderr with another file.

The following values are permitted for the type specification in fopen and freopen:

"r" Open an existing file for input.

"w" Create a new file, or truncate an existing one, for output.

"a" Create a new file, or append to an existing one, for output.

"r+" Open an existing file for update (both reading and writing),

starting at the beginning of the file.

"w+" Create a new file, or truncate an existing one, for update.

"a+" Create a new file, or append to an existing one, for update.�

When a file is opened for update (‘+’ is present in the type string), the resulting

stream may be used for both input and output. However, an output operation may

not be followed by an input operation without an intervening call to fseek, rewind,

or fflush and an input operation may not be followed by an output operation with-

out an intervening call to fseek, rewind, or fflush or an input operation that en-

counters end-of-file.

Draft Proposed ANSI C allows any of the types listed above to be followed by the

character b to indicate a "binary" (as opposed to "text") stream is to be created.

(The distinction under UNIX was blurred because both kinds of files are handled

the same; other operating systems are not so lucky.) Draft Proposed ANSI C also

allows any of the "update" file types to assume binary mode.

17.3. C-Ref: SETBUF, SETVBUF

#include <stdio.h>

Page 305

int setvbuf(stream, buf, type, size)

 FILE *stream;

 char *buf;

 int type, size;

void setbuf(stream, buf)

 FILE *stream;

 char *buf;

/* Buffer size */

#define BUFSIZ ...

/* Values for ’type’ in setvbuf */

#define _IOFBF ...

#define _IOLBF ...

#define _IONBF ...�

These functions allow the programmer to control the buffering strategy for

streams in those rare instances in which the default buffering is unsatisfactory.

The functions must be called after a stream is opened and before any data is read

or written.

The function setvbuf is the more general function. The first argument is the

steam being controlled; the second (if not NULL) is a character array to use in

place of the automatically-generated buffer; type specifies the type of buffering,

and size specifies the buffer size. The function returns zero if it is successful and

nonzero if the arguments are improper or the request cannot be satisfied.

If type is _IOFBF, the stream is fully buffered; if type is _IOLBF, the buffer is

flushed when a newline character is written or when the buffer is full; if type is

_IONBF, the stream is unbuffered. If buffering is requested and if buf is not a null

pointer, then the array specified by buf should be size bytes long and will be used

in place of the automatically-generated buffers. The constant BUFSIZ is an "appro-
priate" value for the buffer size. In Draft Proposed ANSI C the parameter size

has type size_t.

The function setbuf is a simplified form of setvbuf. The call

setbuf(stream,buf)�

is equivalent to the expression

((buf==NULL) ?

 (void) setvbuf(stream,NULL,_IONBF,0) :

 (void) setvbuf(stream,buf,_IOFBF,BUFSIZ))�

Page 306

17.4. C-Ref: STDIN, STDOUT, STDERR

#include <stdio.h>

extern FILE *stderr;

extern FILE *stdin;

extern FILE *stdout;�

The external variables stdin, stdout, and stderr are initialized prior to the start

of an application program to certain standard text streams. stdin is initialized to

an input stream that is the "normal input" to the program. Similarly, stdout is ini-

tialized to an output stream that is to receive the "normal output" from the pro-

gram, and stderr is initialized to an output stream that is to receive error mes-

sages and other unexpected output from the program. In an interactive environ-

ment, all three streams are typically associated with the terminal used to start the

program.

UNIX systems in particular provide convenient ways to associate these standard

streams with files or other programs, making them very powerful when used ac-

cording to certain standard conventions.

17.5. C-Ref: FSEEK, FTELL, REWIND

#include <stdio.h>

/* Seek codes for ’wherefrom’ in fseek. */

#define SEEK_SET 0 /* ANSI */

#define SEEK_CUR 1 /* ANSI */

#define SEEK_END 2 /* ANSI */

int fseek(stream, offset, wherefrom)

 FILE *stream;

 long int offset;

 int wherefrom;

long int ftell(stream)

 FILE *stream;

void rewind(stream)

 FILE *stream;�

The function fseek allows random access within a file. The first argument must be

a stream that is open for input or output. The second two arguments specify a file

position: offset is a signed integer specifying a number of characters, and where-

from is a "seek code" indicating from what point in the file the offset should be

measured. The stream is positioned as requested and fseek returns zero if success-

ful or a nonzero value if an error occurs. Any end-of-file indication is cleared and

any effect of ungetc is undone. Draft Proposal ANSI C defines the constants

SEEK_SET, SEEK_CUR, and SEEK_END to represent the values of wherefrom; other imple-

mentations simply use the integer values specified.

Page 307

The new position of the file is:

• offset characters from the beginning of the file if wherefrom is SEEK_SET (0);

• offset characters from the current file position if wherefrom is SEEK_CUR (1); or

• offset characters from the end of the file if wherefrom is SEEK_END (2).�

If wherefrom is SEEK_END and offset is positive, the file is extended the indicated

amount from its end with unspecified contents.

The function fseek is usually applied to binary streams; this more limited set of

calls is permitted (portably) for text streams:

fseek(������,0L,SEEK_SET) /* Position at beginning */

fseek(������,0L,SEEK_CUR) /* No effect */

fseek(������,0L,SEEK_END) /* Position at end */

fseek(������,���������,SEEK_SET)

/* Position at previous location */�

The value ��������� must be a value previously returned by ftell for ������. Any

effects of a call to ungetc are also undone by a call to fseek.

The function ftell takes a stream that is open for input or output and returns the

position in the stream in the form of a value suitable for the second argument to

fseek. Using fseek on a saved result of ftell will result in resetting the position

of the stream to the place in the file at which ftell had been called. For binary

files, the value returned will be the number of characters preceeding the current

file position. For text files, the value returned is implementation-defined (usable in

fseek), but the value 0L must be used to represent the beginning of the file. If

ftell encounters an error, it returns -1L and sets errno to an implementation-

defined value. Since -1L may also be a valid file position, errno must be checked to

confirm the error.

The function rewind resets a stream to its beginning. The call rewind(stream) is

equivalent to fseek(stream,0L,SEEK_SET).

17.6. C-Ref: FGETC, GETC, GETCHAR, UNGETC

#include <stdio.h>

int fgetc(stream)

 FILE *stream;

int getc(stream)

 FILE *stream;

int getchar()

Page 308

int ungetc(c, stream)

 char c;

 FILE *stream;�

The function fgetc takes as its argument an input stream. It reads the next char-

acter from the stream and returns it as a value of type int. Successive calls to

fgetc will return successive characters from the input stream. If an error occurs

or if the stream is at end-of-file, fgetc returns EOF. The feof facility should be

used in this case to determine whether end-of-file has really been reached.

The function getc is identical to fgetc, except that getc is usually implemented as

a macro for efficiency. The argument expression should not have any side effects,

because it may be evaluated more than once.

The function getchar reads the next character from the standard input stream

stdin and returns it as a value of type int. The call getchar() has the same effect

as the call getc(stdin). Like getc, getchar is often implemented as a macro.

The function ungetc causes the character c to be pushed back onto the specified

input stream. That character will be returned by the next call to fgetc, getc, or

getchar on that stream. ungetc returns c when the character is successfully pushed

back, EOF if the attempt fails.

One character of pushback is guaranteed provided the stream is buffered and at

least one character has been read from the stream since then last fseek, fopen, or

freopen operation on the stream. An attempt to push the value EOF back onto the

stream as a character has no effect on the stream and returns EOF. A call to fseek

or freopen erases all memory of pushed-back characters from the stream.

The function ungetc is useful for implementing input-scanning operations such as

scanf. A program can "peek ahead" at the next input character by reading it and

then putting it back if it is unsuitable.

17.7. C-Ref: FGETS, GETS

#include <stdio.h>

char *fgets(s, n, stream)

 char *s;

 int n;

 FILE *stream;

char *gets(s)

 char *s;�

The function fgets takes three arguments: a pointer s to the beginning of a char-

acter array, a count n, and an input stream. Characters are read from the input

stream into s until:

Page 309

1. A newline is seen.

2. End-of-file is reached.

3. n-1 characters have been read without encountering end-of-file or a newline

character.�

A terminating null character is then appended to the array after the characters

read. If the input is terminated because a newline was seen, the newline character

will be stored in the array just before the terminating null character. The argu-

ment s is returned upon successful completion.

If end-of-file is encountered before any characters have been read from the stream,

then fgets returns a null pointer and the contents of the array s are unchanged.

If an error occurs during the input operation, then fgets returns a null pointer

and the contents of the array s are indeterminate. The feof facility (section

"C-Ref: ����� ������� ��������") should be used to determine whether

end-of-file has really been reached when NULL is returned.

The function gets reads characters from the standard input stdin into the charac-

ter array s. However, unlike fputs, when the input is terminated by a newline

character gets discards the newline and does ��� put into s. The use of gets can

be dangerous because it is always possible for the input length to exceed the stor-

age available in the character array. The function fgets is safer because no more

than n characters will ever be placed in s.

17.8. C-Ref: FSCANF, SCANF, SSCANF

#include <stdio.h>

int fscanf(stream, format, ��������������������)

 FILE *stream;

 char *format;

int scanf(format, ��������������������)

 char *format;

int sscanf(s, format, ��������������������)

 char *s, *format;�

The function fscanf parses formatted input text, reading characters from the

stream specified as the first argument and converting sequences of characters ac-

cording to the control string format. Additional arguments may be required, de-

pending on the contents of the control string. Each argument after the control

string must be a pointer; converted values read from the input stream are stored

into the locations pointed to by the pointers.

The functions scanf and sscanf are like fscanf. In the case of scanf characters are

read from the standard input stream stdin. In the case of sscanf characters are

Page 310

read from the string s. When sscanf attempts to read beyond the end of the string

s it operates as fscanf and scanf do when end-of-file is reached.

The input operation may terminate prematurely because the input stream reaches

end-of-file or because there is a conflict between the control string and a character

read from the input stream. The value returned by these functions is the number

of successful assignments performed before termination of the operation for either

reason. If the input reaches end-of-file before any conflict or assignment is per-

formed, then the functions return EOF.

The control string is a picture of the expected form of the input. One may think

of fscanf as performing a simple matching operation between the control string

and the input stream. The contents of the control string may be divided into three

categories:

1. Whitespace characters. A whitespace character in the control string causes

whitespace characters to be read and discarded. The first input character en-

countered that is not a whitespace character remains as the next character to

be read from the input stream. Note that if several consecutive whitespace

characters appear in the control string, the effect is the same as if only one

had appeared. Thus any sequence of consecutive whitespace characters in the

control string will match any sequence of consecutive whitespace characters,

possibly of different length, from the input stream.

2. Conversion specifications. A conversion specification begins with a percent

sign %; the remainder of the syntax for conversion specifications is described

in detail below. The number of characters read from the input stream de-

pends on the conversion operation. As a rule of thumb, a conversion operation

processes characters until: (a) end-of-file is reached, (b) a whitespace charac-

ter or other inappropriate character is encountered, or (c) the number of

characters read for the conversion operation equals the explicitly specified

maximum field width. A conversion operation may cause an assignment to a

location indicated by the next pointer argument to be used.

3. Other characters. Any character other than a whitespace character or a per-

cent sign must match the next character of the input stream. If it does not

match, a conflict has occurred; the fscanf operation is terminated, and the

conflicting input character remains in the input stream to be read by the

next input operation on that stream.�

There should be exactly the right number of pointer arguments, each of exactly

the right type, to satisfy the conversion specifications in the control string; other-

wise, the results are unpredictable. If any conversion specification is malformed,

then the effects are unpredictable.

A conversion specification begins with a percent sign %. After the percent sign, the

following conversion specification elements should appear in this order:

1. An optional ���������� ����������� ����, written as an asterisk *. If this is

present for a conversion operation that normally performs an assignment,

Page 311

then characters are read and processed from the input stream in the usual

way for that operation, but no assignment is performed and no pointer argu-

ment is consumed.

2. An optional ������� ����� �����, expressed as an unsigned decimal integer;

that is, as a nonempty sequence of decimal digits. This width must not be

zero; it must be a positive number.

3. An optional ���� �������������, expressed as the character h, meaning short, or

as the character l (lowercase letter L), meaning long. The letter h may be

used with the d, u, o, or x operation to indicate assignment to a location of

type short or unsigned short. The letter l may be used with the d, u, o, or x

operation to indicate assignment to a location of type long or unsigned long.

The letter l may be used with the e, f, or g operation to indicate assignment

to a location of type double rather than type float.

4. A required ���������� ���������, expressed (with one exception) as a single

character: c, d, e, E, f, g, G, o, s, u, x, X, %, or ‘[’. (Draft Proposal ANSI C

adds i, n, and p.) The exception is the [operation, which causes all following

characters up to the next] to be part of the conversion specification.�

The conversion specifications for fscanf are similar in syntax and meaning to

those for fprintf. In a few cases it is possible to use the same format control

string for both fscanf and fprintf. However, there are certain differences. The

‘[’ conversion operation is peculiar to fscanf. On the other hand, fscanf does not

admit any precision specification of the kind accepted by fprintf, nor any of the

flag characters -, +, space, 0, and # that are accepted by fprintf. For fprintf, an

explicitly specified field width is a minimum; for fscanf, it is a maximum. Where-

as fprintf allows a field width to be specified by a computed argument, indicated

by using an asterisk for the field width, fscanf uses the asterisk for another pur-

pose, namely assignment suppression; this is perhaps the most glaring inconsisten-

cy of all. It is best to regard the control string syntax for fprintf and fscanf as

being only vaguely similar; do not use the documentation for one as a guide to the

other.

The conversion operations are very complicated. Brief descriptions of each opera-

tion are given here first, for convenient reference; detailed explanations then fol-

low.

d Signed decimal conversion is performed. A value of type int,

short, or long is assigned, depending on the size specification.

i (Draft Proposed ANSI C) Signed, based integer conversion is

performed. A value of type int, short, or long is assigned, de-

pending on the size specification. The format of the integer ex-

pected is that of a C ���������������� except that a following

����������� may not appear. (See section "C-Ref: Integer Con-

stants".)

Page 312

u Unsigned decimal conversion is performed. A value of type un-

signed, unsigned short, or unsigned long is assigned, depending

on the size specification.

o Unsigned octal conversion is performed. A value of type un-

signed, unsigned short, or unsigned long is assigned, depending

on the size specification.

x, X Unsigned hexadecimal conversion is performed. A value of type

unsigned, unsigned short, or unsigned long is assigned, depend-

ing on the size specification. The x and X operations are com-

pletely identical; either will accept all of the characters

0123456789abcdefABCDEF as valid hexadecimal digits. A prefix 0x

or 0X may appear in the input but is not required.

c One or more characters are read and assigned, as many as

specified by the field width. No terminating null character is

appended.

s A whitespace-delimited string is read and assigned and an ex-

tra terminating null character is appended.

p (Draft Proposed ANSI C) A pointer valuesuch as produced by

the %p conversion in fprintfis converted assigned to the ar-

gument, which must have type void **. Pointer values typically

lose their meanings between program executions.

n (Draft Proposed ANSI C) No conversions occur. Rather, the

number of characters read from the input stream so far is

written out through the argument, which must have type int

*. This operation does not increment the assignment count re-

turned by fscanf.

f, e, E, g, G Signed decimal floating-point conversion is performed. A value

of type float or double is assigned, depending on the size

specification. These operations are all identical.

% A single percent sign is expected in the input. No pointer ar-

gument is consumed.

[Input characters are scanned over and assigned. The charac-

ters following the ‘[’ in the control string up to the next ‘[’
indicate what characters may be scanned over. The scanned

characters are stored as a string, and an extra terminating

null character is appended.�

Detailed explanations of how each conversion operation is performed follow.

d Signed decimal conversion is performed. One pointer argument

is consumed; it must be of type int * (if no size specification

is present), type short * (if an h size specification is present),

or type long * (if an l size specification is present).

Page 313

First, any leading whitespace characters are skipped; they are

not counted toward the maximum field width. An optional sign

(+ or -) may be present, followed by some number of decimal

digits (possibly none). Characters are read until end-of-file is

reached, until a nondigit character is seen (in which case that

character remains unread), or (if a field width was specified)

until the maximum number of characters has been read. The

characters read are then interpreted as a signed decimal num-

ber and converted to a signed integer value. If no digits are

read, the value is zero. If the value expressed by the input is

too large to be represented as a signed integer of the appropri-

ate size, then an unpredictable value results.

The value is assigned to the location indicated by the next

pointer argument unless the assignment suppression flag * is

present in the conversion specification.

u Unsigned decimal conversion is performed. One pointer argu-

ment is consumed; it must be of type unsigned * (if no size

specification is present), type unsigned short * (if an h size

specification is present), or type unsigned long * (if an l size

specification is present).

First, any leading whitespace characters are skipped; they are

not counted toward the maximum field width. Then decimal

digits (possibly none) are read. Characters are read until end-

of-file is reached, until a nondigit character is seen (in which

case that character remains unread), or (if a field width was

specified) until the maximum number of characters has been

read. The characters read are then interpreted as a decimal

number and converted to an unsigned integer value. If no dig-

its are read, the value is zero. If the value expressed by the in-

put is too large to be represented as an unsigned integer of

the appropriate size, then an unpredictable value results.

The value is assigned to the location indicated by the next

pointer argument unless the assignment suppression flag * is

present in the conversion specification.

o Unsigned octal conversion is performed. One pointer argument

is consumed; it must be of type unsigned * (if no size specifica-

tion is present), type unsigned short * (if an h size specifica-

tion is present), or type unsigned long * (if an l size specifica-

tion is present).

First, any leading whitespace characters are skipped; they are

not counted toward the maximum field width. Then octal digits

(possibly none) are read. Characters are read until end-of-file is

reached, until a nondigit character is seen (in which case that

character remains unread), or (if a field width was specified)

until the maximum number of characters has been read. If the

Page 314

digit 8 or 9 is seen in the input, the result is unpredictable.

The characters read are interpreted as an octal number (re-

gardless of whether there was a leading 0 in the input) and

converted to an unsigned integer value. If no digits are read,

the value is zero. If the value expressed by the input is too

large to be represented as an unsigned integer of the appropri-

ate size, then an unpredictable value results.

The value is assigned to the location indicated by the next

pointer argument unless the assignment suppression flag * is

present in the conversion specification.

x, X Unsigned hexadecimal conversion is performed. One pointer ar-

gument is consumed; it must be of type unsigned * (if no size

specification is present), type unsigned short * (if an h size

specification is present), or type unsigned long * (if an l size

specification is present).

First, any leading whitespace characters are skipped; they are

not counted toward the maximum field width. If the next char-

acter is 0 and the one after that is x or X, then they are count-

ed toward the maximum field width but are otherwise ignored.

Then hexadecimal digits (possibly none) are read. Characters

are read until end-of-file is reached, until a character not in

the set 0123456789abcdefABCDEF is seen (in which case that

character remains unread), or (if a field width was specified)

until the maximum number of characters has been read.

The characters read are interpreted as a hexadecimal number

(regardless of whether there was a leading 0x or 0X in the in-

put) and converted to an unsigned integer value. If no digits

are read, the value is zero. If the value expressed by the input

is too large to be represented as an unsigned integer of the ap-

propriate size, then an unpredictable value results.

The value is assigned to the location indicated by the next

pointer argument unless the assignment suppression flag * is

present in the conversion specification.

The x and X operations are completely identical; either will ac-

cept all of the characters 0123456789abcdefABCDEF as valid hex-

adecimal digits. Compare these to the x and X conversion oper-

ations for fprintf.

c One or more characters are read. One pointer argument is

consumed; it must be of type char *. The c conversion opera-

tion does ��� skip over initial whitespace characters.

If no field width is specified, then exactly one character is read

(unless the input stream is at end-of-file, in which case the

conversion operation fails). The character value is assigned to

Page 315

the location indicated by the next pointer argument unless the

assignment suppression flag * is present in the conversion

specification.

If a field width is specified, then the pointer argument is as-

sumed to point to the beginning of an array, and the field

width specifies the number of characters to be read; the con-

version operation fails if end-of-file is encountered before that

many characters have been read. The characters read are

stored into successive locations of the array unless the assign-

ment suppression flag * is present in the conversion specifica-

tion. No extra terminating null is appended to the characters

that are read. Size specification is not relevant to the c conver-

sion operation.

s A string is read. One pointer argument is consumed; it must

be of type char *.

First, any leading whitespace characters are skipped; they are

not counted toward the maximum field width. Characters are

read until end-of-file is reached, until a whitespace character is

seen (in which case that character remains unread), or (if a

field width was specified) until the maximum number of char-

acters has been read. If end-of-file is encountered before any

nonwhitespace character is seen, the conversion operation is

considered to have failed.

The pointer argument is assumed to point to the beginning of

an array of characters. The characters read are stored into

successive locations of the array unless the assignment sup-

pression flag * is present in the conversion specification. If as-

signment is not suppressed then an extra terminating null is

appended to the stored characters. Size specification is not rel-

evant to the s conversion operation.

The s conversion operation can be dangerous if no maximum

field width is specified because it is always possible for the in-

put length to exceed the storage available in the character ar-

ray.

The s operation with an explicit field width differs from the c

operation with an explicit field width. The c operation does not

skip over whitespace characters, and will read exactly as many

characters as were specified unless end-of-file is encountered;

the s operation skips over initial whitespace characters, will be

terminated by a whitespace character after reading in some

number of characters that are not whitespace, and will append

a null character to the stored characters.

f, e, E, g, G Signed decimal floating-point conversion is performed. One

pointer argument is consumed; it must be of type float * (if

Page 316

no size specification is present), or type double * (if an l size

specification is present).

First, any leading whitespace characters are skipped; they are

not counted toward the maximum field width. The expected in-

put format consists of an optional sign, zero or more decimal

digits, an optional decimal point, zero or more decimal digits,

and then possibly the letter e or E, which may be followed by

an optional sign and then zero or more decimal digits.

The characters read are interpreted as a floating-point number

representation and converted to a floating-point number of the

specified size. If no digits are read, or at least no digits are

read before the letter e or E is seen, then the value is zero. If

no digits are seen after the letter e or E, then the exponent

part of the decimal representation is assumed to be zero. If the

value expressed by the input is too large or too small to be

represented as a floating-point number of the appropriate size,

then an unpredictable value results. If the value expressed by

the input is not too large or too small but nevertheless cannot

be represented exactly as a floating-point number of the appro-

priate size, then some form of rounding or truncation occurs.

The value is assigned to the location indicated by the next

pointer argument unless the assignment suppression flag * is

present in the conversion specification.

The f, e, E, g, and G conversion operations are completely

identical; any one of them will accept any style of floating-

point representation, with or without an exponent part.

% A single percent sign is expected in the input. Because a per-

cent sign is used to indicate the beginning of a conversion

specification, it is necessary to write two of them in order to

have one matched. No pointer argument is consumed. The as-

signment suppression flag, field width, and size specification

are not relevant to the % conversion operation.

[A string is read. One pointer argument is consumed; it must

be of type char *.

The ‘[’ conversion operation does ��� skip over initial whites-

pace characters. The conversion specification indicates exactly

what characters may be read as a part of the input field. The

‘[’ must be followed in the control string by more characters,

terminated by ‘]’. All the characters up to the ‘]’ are part of

the conversion specification. If the character immediately fol-

lowing the ‘[’ is the circumflex ^, it has a special meaning as

a negation flag; all other characters between the ‘[’ and ‘]’ ,

including ^ if it does not immediately follow the initial ‘[’, are

treated alike. The characters in the control string between the

Page 317

initial ‘[’ and the terminating ‘]’ , other than the negation

flag if it is present, are regarded as a set in the mathematical

sense. Note that ‘[’ may be in the set, but ‘]’ cannot be.

Moreover, ^ can be in the set only if a negation flag is present

or if some other character precedes the ^; it is impossible to

have a set consisting only of ^ without a negation flag.

Characters are read until end-of-file is reached, until a termi-

nating character is seen (in which case that character remains

unread), or (if a field width was specified) until the maximum

number of characters has been read. If a negation flag is not

present, then a character is a terminating character if it is ���

in the set; if a negation flag is present, then a character is a

terminating character if it �� in the set. Looking at the other

side of the coin, if no negation flag is present then only char-

acters in the set are read, but if a negation flag is present

then only characters not in the set are read.

The pointer argument is assumed to point to the beginning of

an array of characters. The characters read are stored into

successive locations of the array unless the assignment sup-

pression flag * is present in the conversion specification. If as-

signment is not suppressed then an extra terminating null is

appended to the stored characters. Size specification is not rel-

evant to the ‘[’ conversion operation.

Like the s conversion, the ‘[’ conversion operation can be dan-

gerous if no maximum field width is specified because it is al-

ways possible for the input length to exceed the storage avail-

able in the character array.�

Note that none of the conversion operations normally skips over trailing whites-

pace characters as a matter of course. Trailing whitespace characters (such as the

newline that terminates a line of input) will remain unread unless explicitly

matched in the control string. However, doing this may be tricky because a whites-

pace character in the control string will attempt to match many whitespace char-

acter in the input, resulting in an attempt to read beyond a newline character.

It is not possible to determine directly whether matches of literal character in the

control string succeed or fail. It is also not possible to determine directly whether

conversion operations involving suppressed assignments succeed or fail. The value

returned by these functions reflects only the number of successful assignments

performed.

Page 318

17.9. C-Ref: FPUTC, PUTC, PUTCHAR

#include <stdio.h>

int fputc(c, stream)

 char c;

 FILE *stream;

int putc(c, stream)

 char c;

 FILE *stream;

int putchar(c)

 char c;�

The function fputc takes as arguments a character value and an output stream. It

writes the character to the stream and also returns the character as a value of

type int. Successive calls to fputc will write the given characters successively to

the output stream. If an error occurs, fputc returns EOF instead of the character

that was to have been written.

The function putc operates exactly like fputc, but it is usually implemented as a

macro. The argument expression must not have any side effects because they may

be evaluated more than once.

The function putchar writes a character to the standard output stream stdout.

Like putc, putchar is usually implemented as a macro and is quite efficient. The

call putchar(c) is equivalent to putc(c,stdout).

17.10. C-Ref: FPUTS, PUTS

#include <stdio.h>

int fputs(s, stream)

 char *s;

 FILE *stream;

int puts(s)

 char *s;�

The function fputs takes as arguments a null-terminated string and an output

stream. It writes to the stream all the characters of the string, not including the

terminating null character. If an error occurs, fputs returns EOF; otherwise, it re-

turns some other value. (Draft Proposal ANSI C specifies that fputs and puts re-

turn a nonzero value when an error occurs and zero otherwise, which is slightly

inconsistent with fputc and putchar.

The function puts is like fputs except:

Page 319

1. The characters are always written to the stream stdout.

2. After the characters in s are written out, an additional newline character is

written (regardless whether s contained a newline character).�

The functions fputs and puts are often implemented like this:

int fputs(s, stream)

 char *s;

 FILE *stream;

{

 int ch, retval; /* Error? */

 while (ch = *s++)

 last_return_val = fputc(ch, stream);

 return retval;

}

int puts(s)

 char *s;

{

 int ch;

 while(ch = *s++) putchar(ch);

 return putchar(’\n’, stream);

}�

Note that the implementation of fputs has an error; when the argument s is the

empty string the return value from fputs is indeterminate. This error actually ap-

pears in several versions of UNIX, and programmers might beware of that bound-

ary case.

17.11. C-Ref: FPRINTF, PRINTF, SPRINTF

#include <stdio.h>

int fprintf(stream, format, ��������������������)

 FILE *stream;

 char *format;

int printf(format, ��������������������)

 char *format;

int sprintf(s, format, ��������������������)

 char *s, *format;�

The function fprintf performs output formatting, sending the output to the stream

specified as the first argument. The second argument is a format control string.

Additional arguments may be required, depending on the contents of the control

string. A series of output characters is generated as directed by the control string;

these characters are sent to the specified stream.

Page 320

The functions printf and sprintf are related to fprintf. printf sends the charac-

ters to the standard output stream stdout, whereas sprintf causes the output

characters to be stored into the string buffer s. In the case of sprintf, a final null

character is output to s after all characters specified by the control string have

been output. (It is the programmer’s responsibility to ensure that the destination

string area is large enough to contain the output generated by the formatting op-

eration.)

The value returned by these functions is EOF if an error occurred during the out-

put operation; otherwise, the result is some value other than EOF. In Draft Pro-

posed ANSI C and most current implementations the functions return the number

of characters sent to the output stream if no error occurs. In the case of sprintf,

the count does not include the terminating null character. (Draft Proposed ANSI C

allows these functions to return any negative value if an error occurs.)

The control string is simply text to be copied verbatim, except that the string may

contain ���������� ��������������. A conversion specification may call for the pro-

cessing of some number of additional arguments, resulting in a formatted conver-

sion operation that generates output characters not explicitly contained in the con-

trol string. There should be exactly the right number of arguments, each of exact-

ly the right type, to satisfy the conversion specifications in the control string; oth-

erwise, the results are unpredictable. If any conversion specification is malformed

then the effects are unpredictable.

The sequence of characters output for a conversion specification may be conceptu-

ally divided into three elements: the ��������� ����� proper, which reflects the val-

ue of the converted argument; the ������, which, if present, is typically a sign or a

space; and the �������, which is a sequence of spaces or zero digits added if nec-

essary to increase the width of the output sequence to a specified minimum. The

prefix always precedes the converted value. Depending on the conversion specifica-

tion, the padding may precede the prefix, separate the prefix from the converted

value, or follow the converted value.

A conversion specification begins with a percent sign %. Following the percent

sign, the following conversion specification elements should appear in the following

order:

1. Zero or more optional ���� ����������, which modify the meaning of the main

conversion operation.

- Left-justify within the field width rather than right-

justify.

0 Use 0 for the pad character rather than space.

+ Always produce a sign, either + or -.

space Always produce either the sign - or a space.

Page 321

Use a variant of the main conversion operation.�

The effects of the flag characters are described in more detail below.

2. An optional ������� ����� �����, expressed as an decimal integer constant;

that is, as a nonempty sequence of decimal digits. The sequence of digits

should not begin with a zero digit (which can be confused with a flag). The

field width may also be specified by an asterisk *, in which case an argument

is consumed; the argument must be of type int, and its value specifies the

minimum field width. If the converted value results in fewer characters than

the specified field width then pad characters (spaces or zeros) are used to pad

the value to the specified width. If the converted value results in more char-

acters than the specified field width, the field is expanded to accommodate it.

3. An optional ��������� specification, expressed as a period ‘.’ followed by an op-

tional decimal integer. If the period appears but the integer is missing, the

integer is assumed to be zero, which usually has a different effect from omit-

ting the entire precision specification. The precision may also be specified by

an asterisk * following the period, in which case an argument is consumed;

the argument must be of type int, and its value specifies the precision. The

result of specifying a negative precision is unpredictable. The precision speci-

fication is used to control the number of digits to be printed for a numeric

conversion, and is described in detail in conjunction with the main conversion

operations.

4. An optional ���� ���� specification, expressed as the character l (lowercase

letter L), which in conjunction with the conversion operations d, o, u, x, and X

indicates that the argument is long. (Draft Proposed ANSI C uses the L (up-

percase letter L) prefix with e, E, f, F, g, and G to indicate that the argument

has type long double; it also allows an h prefix with d, o, u, x, and X to indi-

cate that the argument is a short integer type; this is only for uniformity

with scanf formats since the argument will have been converted to a

non-short type.)

5. A required ���������� ���������, expressed as a single character: c, d, e, E, f,

g, G, o, s, u, x, X, or %. (Draft Proposed ANSI C also adds i, p, and n.)�

If either the field width or the precision is specified with an asterisk, then the ar-

gument consumed by the asterisk precedes any arguments consumed by the main

conversion operation. If both the field width and the precision are specified with

asterisks, then the field-width argument precedes the precision argument. The gen-

eral rule is that situations in conversion specifications that consume arguments

are paired with arguments in the obvious strict left-to-right order.

The flag characters and their meanings are as follows:

- If a minus-sign flag is present, then the converted value will

be left-justified within the field; that is, any padding will be

placed to the right of the converted value. If no minus sign is

Page 322

present, then the converted value will be right-justified within

the field; that is, any padding will be placed to the left of the

converted value. This flag is relevant only when an explicit

minimum field width is specified and the converted value is

smaller than that minimum width.

0 If a zero-digit flag is present, then 0 will be used as the pad

character if padding is to be placed to the left of the converted

value. If no zero-digit flag is present, then space will be used

as the pad character. (Space is always used as the pad charac-

ter if padding is to be placed to the right of the converted val-

ue; that is, if the - flag character is present.) The 0 flag is

relevant only when an explicit minimum field width is specified

and the converted value is smaller than that minimum width.

Furthermore, this flag is superceded by the precision specifica-

tion that can be present in integer conversions.

+ If a plus-sign flag is present, then the result of a signed con-

version will always begin with a sign; that is, an explicit + will

precede a converted positive value. (Negative values are always

preceded by - regardless of whether a plus-sign flag is speci-

fied.) This flag is relevant only for the conversion operations d,

e, E, f, g, and G.

space If a space flag is present and the first character in the con-

verted value resulting from a signed conversion is not a sign

(+ or -), then a space will be added before the converted value.

The adding of this space on the left is independent of any

padding that may be placed to the left or right under control

of the minus-sign flag character. If both the space and plus-

sign flags appear in a single conversion specification, the space

flag is effectively ignored because the plus-sign flag ensures

that the converted value will always begin with a sign. This

flag is relevant only for the conversion operations d, e, E, f, g,

and G.

If a number-sign flag is present, then an alternate form of the

main conversion operation is used. This flag is relevant only

for the conversion operations e, E, f, g, G, o, x, and X. The mod-

ifications implied by the number-sign flag are described in con-

junction with the relevant main conversion operations.

The conversion operations are very complicated. Brief descriptions of each opera-

tion are given here first, for convenient reference; detailed explanations then fol-

low.

d, i Signed decimal conversion from type int or long.

u Unsigned decimal conversion from type unsigned or unsigned

long.

Page 323

o Unsigned octal conversion from type unsigned or unsigned

long.

x, X Unsigned hexadecimal conversion from type unsigned or un-

signed long. The x operation uses 0123456789abcdef as digits,

whereas the X operation uses 0123456789ABCDEF.

c The argument is printed as a character.

s The argument is printed as a string.

p The argument must have type void * and is printed in an im-

plementation-defined way (Draft Proposed ANSI C).

n The argument must have type int *; into that integer is writ-

ten the number of characters output so far by this call to

fprintf (Draft Proposal ANSI C).

f Signed decimal floating-point conversion is performed. The out-

put is in the form [-]ddd.dddd, loosely speaking. The precision

specifies the number of digits to be printed after the decimal

point.

e, E Signed decimal floating-point conversion is performed. The out-

put is in the form [-]d.ddddde+dd or [-]d.dddddE+dd, loosely

speaking. One digit appears before the decimal point; the preci-

sion specifies the number of digits to be printed after the deci-

mal point.

g, G Signed decimal floating-point conversion is performed. Loosely

speaking, if the value to be printed is not too large or too

small, then f format is used; otherwise, e or E format is used.

The general idea is to use whichever format will require less

space. The precision specifies the number of significant digits

to be printed.

% A single percent sign is printed.�

Detailed explanations of how each conversion operation is performed follow. Each

operation computes and prints a prefix and a converted value, in that order. Either

the prefix or the converted value may be empty. Additional padding may be printed

before or after the prefix/value pair.

The padding is handled in the same way for each conversion operator. If the prefix

and converted value together are shorter than the minimum field width, then

enough padding is added to increase the width to the specified minimum. If the -

flag is present, then space is the pad character, and the padding follows the con-

verted value. If the - flag is not present but the 0 flag is present, then 0 is the

pad character, and the padding is placed between the prefix and the converted

value. If neither the - flag nor the 0 flag is present, then space is the pad charac-

ter, and the padding precedes the prefix.

Here are the detailed explanations of how the individual conversion operators com-

pute a prefix and converted value.

Page 324

d, i Signed decimal conversion is performed. One argument is con-

sumed, which should be of type int (or type long int if the l

[long size] specification is present). (The i operator is present

in Draft Proposed ANSI C only and is primarily useful in fs-

canf. It is recognized by fprintf for uniformity, where it is

identical to the d operator.)

The converted value consists of a sequence of decimal digits

that represents the absolute value of the argument. This se-

quence is as short as possible but not shorter than the speci-

fied precision. The converted value will have leading zeros if

necessary to satisfy the precision specification; these leading

zeros are independent of any padding, which might also intro-

duce leading zeros (see below). If the precision is 1, then the

converted value will not have a leading 0 unless the argument

is 0, in which case a single 0 is output. If the precision is 0

and the argument is 0, then the converted value is empty (the

null string). If no precision is specified, then a precision of 1 is

assumed.

The prefix is computed as follows. If the argument is negative,

the prefix is a minus sign. If the argument is nonnegative and

the + flag is specified, then the prefix is a plus sign. If the ar-

gument is nonnegative, the space flag is specified, and the +

flag is not specified, then the prefix is a space. Otherwise, the

prefix is empty. The # flag is not relevant to the d conversion

operation.

u Unsigned decimal conversion is performed. One argument is

consumed, which should be of type unsigned (or type unsigned

long if the l [long size] specification is present).

The converted value consists of a sequence of decimal digits

that represents the value of the argument. This sequence is as

short as possible but not shorter than the specified precision.

The converted value will have leading zeros if necessary to sat-

isfy the precision specification; these leading zeros are indepen-

dent of any padding, which might also introduce leading zeros

(see below). If the precision is 1, then the converted value will

not have a leading 0 unless the argument is 0, in which case a

single 0 is output. If the precision is 0 and the argument is 0,

then the converted value is empty (the null string). If no preci-

sion is specified, then a precision of 1 is assumed. The prefix

is always empty.

The +, space, and # flags are not relevant to the u conversion

operation.

o Unsigned octal conversion is performed. One argument is con-

sumed, which should be of type unsigned (or type unsigned

long if the l [long size] specification is present).

Page 325

The converted value consists of a sequence of decimal digits

that represents the value of the argument. This sequence is as

short as possible but not shorter than the specified precision.

The converted value will have leading zeros if necessary to sat-

isfy the precision specification; these leading zeros are indepen-

dent of any padding, which might also introduce leading zeros

(see below). If the precision is 1, then the converted value will

not have a leading 0 unless the argument is 0, in which case a

single 0 is output. If the precision is 0 and the argument is 0,

then the converted value is empty (the null string). If no preci-

sion is specified, then a precision of 1 is assumed. If the # flag

is present, then the prefix is 0. If the # flag is not present,

then the prefix is empty. The + and space flags are not rele-

vant to the o conversion operation.

x, X Unsigned hexadecimal conversion is performed. One argument

is consumed, which should be of type unsigned (or type un-

signed long if the l [long size] specification is present).

The converted value consists of a sequence of decimal digits

that represents the value of the argument. This sequence is as

short as possible but not shorter than the specified precision.

The x operation uses 0123456789abcdef as digits, whereas the X

operation uses 0123456789ABCDEF. The converted value will have

leading zeros if necessary to satisfy the precision specification;

these leading zeros are independent of any padding, which

might also introduce leading zeros (see below). If the precision

is 1, then the converted value will not have a leading 0 unless

the argument is 0, in which case a single 0 is output. If the

precision is 0 and the argument is 0, then the converted value

is empty (the null string). If no precision is specified, then a

precision of 1 is assumed.

If the # flag is present, then the prefix is 0x (for the x opera-

tion) or 0X (for the X operation). If the # flag is not present,

then the prefix is empty. The + and space flags are not rele-

vant to the x conversion operation.

c The argument is printed as a character. One argument is con-

sumed, which should be of type int or unsigned. The value of

this integer argument must be a valid encoding of some char-

acter; if it is not a valid character code, then the results are

unpredictable. The converted value is the single character

specified by the argument. The prefix is always empty.

The +, space, and # flags, the precision specification, and the l

(long size) specification are not relevant to the c conversion

operation.

s The argument is printed as a string. One argument is con-

sumed, which should be of type "pointer to char." If no preci-

Page 326

sion specification is given, then the converted value is the se-

quence of characters in the string argument up to but not in-

cluding the terminating null character. If a precision specifica-

tion � is given, then the converted value is the first � charac-

ters of the string, or up to but not including the terminating

null character, whichever is shorter. The prefix is always emp-

ty.

The +, space, and # flags and the l (long size) specification are

not relevant to the s conversion operation.

p The argument must have type void * and it is printed in an

implementation-defined format. This conversion operator is

found in Draft Proposed ANSI C but is otherwise not common.

n The argument must have type int *. Instead of outputting

characters, this conversion operator causes the number of char-

acters output so far to be written into the designated integer.

This conversion operator is found in Draft Proposal ANSI C

but is otherwise not common.

f Signed decimal floating-point conversion is performed. One ar-

gument is consumed, which should be of type double. (Note

that if an argument of type float is given, it is converted to

type double by the usual function argument conversions before

printf ever sees it, so it does work to use %f to print a num-

ber of type float.)

The converted value consists of a sequence of decimal digits,

possibly with an embedded decimal point, that represents the

approximate absolute value of the argument. At least one digit

appears before the decimal point, but no more than are neces-

sary to represent the value (that is, no extraneous leading ze-

ros are produced). The precision specifies the number of digits

to appear after the decimal point. If the precision is 0, then no

digits appear after the decimal point; moreover, the decimal

point itself also does not appear unless the # flag is present. If

no precision is specified, then a precision of 6 is assumed.

If the floating-point value cannot be represented exactly in the

number of digits produced, then the converted value should be

the result of rounding the exact floating-point value to the

number of decimal places produced. (However, some implemen-

tations do not perform correct rounding in all cases.)

The prefix is computed as follows. If the argument is negative,

the prefix is a minus sign. If the argument is nonnegative and

the + flag is specified, then the prefix is a plus sign. If the ar-

gument is nonnegative, the space flag is specified, and the +

flag is not specified, then the prefix is a space. Otherwise, the

prefix is empty. The l (long size) specification is not relevant

to the f conversion operation.

Page 327

e, E Signed decimal floating-point conversion is performed. One ar-

gument is consumed, which should be of type double. (An argu-

ment of type float is permitted, as for the f conversion.)

The converted value consists of a decimal digit, then possibly a

decimal point and more decimal digits, then the letter e (for

the e operation) or E (for the E operation), then a plus sign or

minus sign, then finally at least two more decimal digits. The

part before the letter e or E represents a value between 1 (in-

clusive) and 10 (exclusive). The part after the letter e or E rep-

resents an exponent value as a signed decimal integer. The

value of the first part, multiplied by 10 raised to the value of

the second part, is approximately equal to the absolute value of

the argument.

Exactly one digit appears before the decimal point. The preci-

sion specifies the number of digits to appear after the decimal

point; the total number of digits printed before the letter e or

E is therefore one greater than the specified precision. (Com-

pare this to the g and G conversion operations, where if e for-

mat is used the number of digits printed is exactly equal to

the precision.) If the precision is 0, then no digits appear after

the decimal point; moreover, the decimal point itself also does

not appear unless the # flag is present. If no precision is spec-

ified, then a precision of 6 is assumed.

The exponent is printed always with a sign and always with at

least two decimal digits. If more than two digits are needed to

represent the exponent, then as few as are necessary are

printed.

If the floating-point value cannot be represented exactly in the

number of digits produced, then the converted value should be

the result of rounding the exact floating-point value to the

number of decimal places produced. (However, some implemen-

tations do not perform correct rounding in all cases.)

The prefix is computed as follows. If the argument is negative,

the prefix is a minus sign. If the argument is nonnegative and

the + flag is specified, then the prefix is a plus sign. If the ar-

gument is nonnegative, the space flag is specified, and the +

flag is not specified, then the prefix is a space. Otherwise, the

prefix is empty.

The l (long size) specification is not relevant to the e conver-

sion operation.

g, G Signed decimal floating-point conversion is performed. One ar-

gument is consumed, which should be of type double. (An argu-

ment of type float is permitted, as for the f, e, and E conver-

sions.) Only the g conversion operator is discussed below; the G�

Page 328

operation is identical except that wherever g uses e conversion,

G uses E conversion. If the specified precision is less than 1,

then a precision of 1 is used. If no precision is specified, then

a precision of 6 is assumed.

The conversion process may be explained as follows. Let � be

the precision to be used for the g conversion operation. Pro-

duce a converted value as if for e conversion operator, using a

precision for the e conversion equal to �-1 and assuming the #

flag to be present (regardless of whether it is present in the g

conversion specification). Let the exponent value (the part of

the converted value after the letter e) be called �. If � is

greater than � or less than -3, then the converted value from

the e conversion is used as the converted value for the g con-

version. (Some implementations use a lower bound of -4 instead

of -3.) If, however, � is between -3 and � (inclusive), then a

new converted value is produced by using f conversion with a

precision equal to p-n and assuming the # flag to be present

(regardless of whether it is present in the g conversion speci-

fication).

If the # flag is not present in the g conversion specification,

the converted value is then modified by stripping off trailing

zeros in the following manner. If the converted value resulted

from e conversion, then call the character just before the letter

e the "last fraction character"; if the converted value resulted

from f conversion, then call the last character in the converted

value the "last fraction character." Then the rule is that if the

last fraction character is 0 then that character is discarded

and the stripping process is repeated; if the last fraction char-

acter is . then that character is discarded and the stripping

process is terminated; otherwise, no character is discarded and

the stripping process is terminated. The effect is to discard

zero digits that do not contribute significantly to the value,

and then to discard the decimal point if no digits immediately

follow it. Note that only g conversion performs this process of

discarding trailing zeros; f and e conversions never do this.

The prefix is computed as follows. If the argument is negative,

the prefix is a minus sign. If the argument is nonnegative and

the + flag is specified, then the prefix is a plus sign. If the ar-

gument is nonnegative, the space flag is specified, and the +

flag is not specified, then the prefix is a space. Otherwise, the

prefix is empty.

The l (long size) specification is not relevant to the g conver-

sion operation.

% A single percent sign is printed. Because a percent sign is

used to indicate the beginning of a conversion specification, it

is necessary to write two of them in order to have one printed.

Page 329

No arguments are consumed. The converted value is the single

character %. The prefix is always empty.

Note that padding is performed for this conversion operation

just as for any other conversion operation; for example, the

conversion specification %05% will print 0000%; that is, a percent

sign right-justified with 0 padding in a field of width 5.

The +, space, and # flags, the precision specification, and the l

(long size) specification are not relevant to the % conversion

operation.�

The tables "C-Ref: Examples of Output Formatting (Part 1)" and "C-Ref: Examples

of Output Formatting (Part 2)" give some examples of how the various conversion

operations work and how the various flags affect them. For example, the third row

of Table "C-Ref: Examples of Output Formatting (Part 1)" was generated by this

call to printf:

printf("%6s|%#5d|%#5o|%#5x|%#7.2f|%#10.2e|%#10.4g|\n",

 "%#", 45, 45, 45, 12.678, 12.678, 12.678);�

The other rows were generated by similar calls differing only in which combina-

tion of flags was used. The third row of Table "C-Ref: Examples of Output Format-

ting (Part 2)" was generated by this call to printf:

printf("%6s|%#5s|%#5c|%#5%|%#7.2f|%#10.2e|%#10.4g|\n",

 "%#", "zap", ’*’, -3.4567, -3.4567, -3.4567);�

The examples in these tables by no means illustrate all of the interesting effects

that can be obtained with printf.

Page 330

17.11.1. C-Ref: Examples of Output Formatting (Part 1)

Value 45 45 45 12.678 12.678 12.678

Operation 5d 5o 5x 7.2f 10.2e 10.4g

Flags

 %| 45| 55| 2d| 12.68| 1.27e+01| 12.68|

 %0|00045|00055|0002d|0012.68|001.27e+01|0000012.68|

 %#| 45| 055| 0x2d| 12.68| 1.27e+01| 12.68|

 %#0|00045|00055|0x02d|0012.68|001.27e+01|0000012.68|

 % | 45| 55| 2d| 12.68| 1.27e+01| 12.68|

 % 0| 0045|00055|0002d| 012.68| 01.27e+01| 000012.68|

 % #| 45| 055| 0x2d| 12.68| 1.27e+01| 12.68|

 % #0| 0045|00055|0x02d| 012.68| 01.27e+01| 000012.68|

 %+| +45| 55| 2d| +12.68| +1.27e+01| +12.68|

 %+0|+0045|00055|0002d|+012.68|+01.27e+01|+000012.68|

 %+#| +45| 055| 0x2d| +12.68| +1.27e+01| +12.68|

 %+#0|+0045|00055|0x02d|+012.68|+01.27e+01|+000012.68|

 %+ | +45| 55| 2d| +12.68| +1.27e+01| +12.68|

 %+ 0|+0045|00055|0002d|+012.68|+01.27e+01|+000012.68|

 %+ #| +45| 055| 0x2d| +12.68| +1.27e+01| +12.68|

 %+ #0|+0045|00055|0x02d|+012.68|+01.27e+01|+000012.68|

 %-|45 |55 |2d |12.68 |1.27e+01 |12.68 |

 %-0|45 |55 |2d |12.68 |1.27e+01 |12.68 |

 %-#|45 |055 |0x2d |12.68 |1.27e+01 |12.68 |

 %-#0|45 |055 |0x2d |12.68 |1.27e+01 |12.68 |

 %- | 45 |55 |2d | 12.68 | 1.27e+01 | 12.68 |

 %- 0| 45 |55 |2d | 12.68 | 1.27e+01 | 12.68 |

 %- #| 45 |055 |0x2d | 12.68 | 1.27e+01 | 12.68 |

 %- #0| 45 |055 |0x2d | 12.68 | 1.27e+01 | 12.68 |

 %-+|+45 |55 |2d |+12.68 |+1.27e+01 |+12.68 |

 %-+0|+45 |55 |2d |+12.68 |+1.27e+01 |+12.68 |

 %-+#|+45 |055 |0x2d |+12.68 |+1.27e+01 |+12.68 |

 %-+#0|+45 |055 |0x2d |+12.68 |+1.27e+01 |+12.68 |

 %-+ |+45 |55 |2d |+12.68 |+1.27e+01 |+12.68 |

 %-+ 0|+45 |55 |2d |+12.68 |+1.27e+01 |+12.68 |

 %-+ #|+45 |055 |0x2d |+12.68 |+1.27e+01 |+12.68 |

%-+ #0|+45 |055 |0x2d |+12.68 |+1.27e+01 |+12.68 |

This table demonstrates the effects of the flag characters on various conversion

operations. Across the top of the table are shown the values printed for each col-

umn (45 for the first three columns, and 12.678 for the last three) and the conver-

sion operation, plus width and precision, used to print it. Down the left side are

shown all possible combinations of the five flag characters.

Page 331

17.11.2. C-Ref: Examples of Output Formatting (Part 2)

Value "zap" ’*’ none -3.4567 -3.4567 -3.4567

Operation 5s 5c 5% 7.2f 10.2e 10.4g

Flags

 %| zap| *| %| -3.46| -3.46E+00| -3.457|

 %0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 %#| zap| *| %| -3.46| -3.46E+00| -3.457|

 %#0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 % | zap| *| %| -3.46| -3.46E+00| -3.457|

 % 0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 % #| zap| *| %| -3.46| -3.46E+00| -3.457|

 % #0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 %+| zap| *| %| -3.46| -3.46E+00| -3.457|

 %+0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 %+#| zap| *| %| -3.46| -3.46E+00| -3.457|

 %+#0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 %+ | zap| *| %| -3.46| -3.46E+00| -3.457|

 %+ 0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 %+ #| zap| *| %| -3.46| -3.46E+00| -3.457|

 %+ #0|00zap|0000*|0000%|-003.46|-03.46E+00|-00003.457|

 %-|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-#|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-#0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %- |zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %- 0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %- #|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %- #0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+#|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+#0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+ |zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+ 0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

 %-+ #|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

%-+ #0|zap |* |% |-3.46 |-3.46E+00 |-3.457 |

This table demonstrates the effects of the flag characters on various conversion

operations. Across the top of the table are shown the values printed for each col-

umn (the string "zap" for the first column; the character ’*’ for the second; none

for the third, which uses the % conversion operation; and and -3.4567 for the last

three) and the conversion operation, plus width and precision, used to print it.

Down the left side are shown all possible combinations of the five flag characters.

Page 332

17.12. C-Ref: VFPRINTF, VPRINTF, VSPRINTF

#include <varargs.h> /* Non-ANSI form */

#include <stdarg.h> /* ANSI */

#include <stdio.h>

int vfprintf(stream, format, arg)

 FILE *stream;

 char *format;

 va_list arg;

int vprintf(format, arg)

 char *format;

 va_list arg;

int vsprintf(s, format, arg)

 char *s, *format;

 va_list arg;�

The functions vfprintf, vprintf, and vscanf are the same as the functions fprintf,

printf, and sprintf, respectively, except that the extra arguments are given as a

variable argument list as defined by the vararg facility (section "C-Ref: �������

������"). They were adopted into Draft Proposal ANSI C from System V UNIX.

These functions are useful when the programmer wants to define his own variable-

argument functions that use the formatted output facilities. The functions do not

invoke the va_end facility.

As an example, suppose the programmer wanted to write a general function, trace,

that printed the name of a function and its arguments. Any function to be traced

would begin with a call to trace of the form:

trace(name,format,parm1,parm2,...,parmN)�

where name is the name of the function being called and format is a format string

suitable for printing the argument values parm1, parm2, ..., parmN. For example,

here is what a function f would look like with a call to trace:

int f(x,y)

 int x;

 double y;

{

 trace("f","x=%d, y=%f", x, y);

 ...

}�

A possible implementation of trace is given below:

#include <varargs.h>

#include <stdio.h>

extern global_trace_enabled;

Page 333

void trace(va_alist)

 va_dcl

{

 va_list args;

 char *name;

 char *format;

 if (global_trace_enabled) {

 va_start(args);

 name = va_arg(args,char*);

 format = va_arg(args,char *);

 fprintf(stderr,"--> entering %s(", name);

 vfprintf(stderr, format, args);

 fprintf(stderr,")\n");

 va_end(args);

 }

}

17.13. C-Ref: FREAD, FWRITE

#include <stdio.h>

int fread(ptr, element_size, count, stream)

 char *ptr;

 unsigned element_size;

 int count;

 FILE *stream;

int fwrite(ptr, element_size, count, stream)

 char *ptr;

 unsigned element_size;

 int count;

 FILE *stream;�

The functions fread and fwrite perform input and output, respectively, to binary

files. In both cases, stream is the input or output stream and ptr is a pointer to an

array of count elements, each of which is element_size characters long. In Draft

Proposed ANSI C, the parameter ptr has type void * and the parameters el-

ement_size and count have type size_t.

The function fread reads up to count elements of the indicated size from the input

stream into the specified array. The actual number of items read is returned by

fread; it may be less than count if end-of-file is encountered. If an error is en-

countered, zero is returned. The feof or ferror facilities may be used to determine

whether an error or an immediate end-of-file caused zero to be returned. If either

Page 334

count or element_size is zero, no data is transferred and zero is returned. As a

simple example, the following program reads an input file containing objects of a

structure type and prints the number of such objects read. The program depends

on the exit function to close the input file.

/* Count the number of elements

 of type "struct S" in file "in.dat" */

#include <stdio.h>

static char *FileName = "in.dat";

struct S { int a,b; double d; char str[103]; };

main()

{

 struct S buffer;

 int items_read = 0;

 FILE *in_file = fopen(FileName,"r");

 if (in_file == NULL)

 { fprintf(stderr,"?Couldn’t open %s\n",FileName);

 exit(1); }

 while (fread((char *) &buffer,

sizeof(struct S), 1, in_file) == 1)

 items_read++;

 if (ferror(in_file))

 { fprintf(stderr,"?Read error, file %s record %d\n",

 FileName,items_read+1); exit(1); }

 printf("Finished; %d elements read\n",items_read);

 exit(0);

}

The function fwrite writes count elements of size element_size from the specified

array. The actual number of items written is returned by fwrite; it will be the

same as count unless an error occurs. To read or write blocks of data in random

order, use the functions fseek and ftell.

17.14. C-Ref: FEOF, FERROR, CLEARERR

#include <stdio.h>

int feof(stream)

 FILE *stream;

int ferror(stream)

 FILE *stream;

void clearerr(stream)

 FILE *stream;�

Page 335

The function feof takes takes as its argument an input stream. If end-of-file has

been detected while reading from the input stream, then a nonzero value is re-

turned; otherwise, zero is returned. Note that even if there are no more characters

in the stream to be read, feof will not signal end-of-file unless and until an at-

tempt is made to read "past" the last character. The function is normally used af-

ter an input operation has signaled a failure.

The function ferror returns the error status of a stream. If an error has occurred

while reading from or writing to the stream, then ferror returns a nonzero value;

otherwise, zero is returned. Once an error has occurred for a given stream, repeat-

ed calls to ferror will continue to report an error unless clearerr is used to ex-

plicitly reset the error indication. Closing the stream, as with fclose, will also re-

set the error indication.

The function clearerr resets any error indication on the specified stream; subse-

quent calls on ferror will report that no error has occurred for that stream unless

and until another error occurs.

17.15. C-Ref: REMOVE, RENAME

#include <stdio.h> /* ANSI */

int remove(filename) /* ANSI */

 char *filename;

int rename(oldname,newname)

 char *oldname, *newname;�

The remove function removes or deletes the named file; it returns zero if the oper-

ation succeeds and a nonzero value if it does not. The string pointed to by file-

name is not altered. Implementations may differ in the details of what "remove" or

"delete" actually mean, but it should not be possible for a program to open a file it

has deleted. If the file is open or if the file does not exist the action of remove is

implementation-defined. (In the latter case we think the function should do nothing

and return zero.) This function is not present in the C library of most UNIX sys-

tems.

The rename function changes the name of oldfile to newfile; it returns zero if the

operation succeeds and a nonzero value if it does not. The strings pointed to by

oldname and newname are not altered. If oldfile is open, if oldfile does not exist,

or if newfile already exists then the action of rename is implementation-defined.

Page 336

17.16. C-Ref: TMPFILE, TMPNAM, MKTEMP

#include <stdio.h>

FILE *tmpfile()

char *tmpnam(buf)

 char *buf;

#define L_tmpnam �

#define TMP_MAX � /* ANSI */

char *mktemp(buf) /* Non-ANSI form */

 char *buf;�

The function tmpfile creates a new file and opens it for output using fopen mode

"w+" ("w+b" in Draft Proposed ANSI C). tmpfile returns a file pointer for the new

file, or a null pointer if the operation fails. The intent is that the new file be used

only during the current program’s execution, and it is automatically deleted upon

program termination. After writing data to the file, the programmer can use the

rewind function to reposition the file at its beginning for reading.

The function tmpnam is used to create new file names that do not conflict with any

other file names currently in use; the programmer can then open a new file with

that name using the full generality of fopen. The files so created are not "tempo-

rary"; they are not deleted automatically upon program termination. If buf is NULL,

tmpnam returns a pointer to the new file name string; the string may be altered by

subsequent calls to tmpnam. If buf is not NULL it must point to an array of not less

than L_tmpnam characters; tmpnam will copy the new file name string into that array

and return buf. If tmpnam fails, it returns a null pointer. Draft Proposal ANSI C

defines the value TMP_MAX to be the number of successive calls to tmpnam that will

generate unique names.

The function mktemp is like tmpnam except that buf (the "template") must point to a

string with six trailing ‘X’ characters, which will be overwritten with other letters

or digits to form a unique file name. The value buf is returned. Successive calls to

mktemp should specify different templates to ensure unique names.

An example of a common but poor programming practice in C is to write:

ptr = fopen(mktemp("/tmp/abcXXXXXX"),"w+");�

This idiom depends upon being able to alter the characters of the string constant,

since that is what mktemp will do. The programmer also loses the ability to refer-

ence the file name string. It is better and no less efficient to write:

char filename[]="/tmp/abcXXXXXX";

ptr = fopen(mktemp(filename),"w+");�

Page 337

18. C-Ref: Storage Allocation

Name Section

calloc "C-Ref: ��������������������������������"

cfree "C-Ref: �����������"

clalloc "C-Ref: ��������������������������������"

free "C-Ref: �����������"

malloc "C-Ref: ��������������������������������"

mlalloc "C-Ref: ��������������������������������"

realloc "C-Ref: �����������������"

relalloc "C-Ref: �����������������"

The storage allocation facilities provide a simple form of heap memory manage-

ment that allows a program to repeatedly request allocation of a "fresh" region of

memory and perhaps later to deallocate such a region when it is no longer needed.

Explicitly deallocated regions are recycled by the storage manager for satisfaction

of further allocation requests.

When a region of memory is allocated in response to a request, a pointer to the

region is returned to the caller. This pointer will be of type char * (void * in

Draft Proposed ANSI C) but is guaranteed to be properly aligned for any data

type. The caller may then use a cast operator to convert this pointer to another

pointer type.

In Draft Proposed ANSI C the facilities described in this section are declared in

the header file stdlib.h. In other C implementations there is typically no associat-

ed header file and the programmer must declare the facilities himself.

18.1. C-Ref: MALLOC, CALLOC, MLALLOC, CLALLOC

#include <stdlib.h> /* ANSI */

char *malloc(size)

 unsigned size;

char *calloc(elt_count, elt_size)

 unsigned elt_count, elt_size;

char *mlalloc(size) /* Non-ANSI form */

 unsigned long size;

char *clalloc(elt_count, elt_size) /* Non-ANSI form */

 unsigned long elt_count, elt_size;�

Page 338

The function malloc allocates a region of memory large enough to hold an object

whose size (as measured by the sizeof operator) is size. A pointer to the first ele-

ment of the region is returned. If it is impossible for some reason to perform the

requested allocation, or if size is 0, a null pointer is returned. The region of mem-

ory is not specially initialized in any way and the caller must assume that it will

contain garbage information. In Draft Proposed ANSI C the parameter to malloc

has type size_t (section "C-Ref: ����� �������_�� ����_�") and the pointer

returned has type void *.

The function calloc allocates a region of memory large enough to hold an array of

elt_count elements, each of size elt_size (typically given by the sizeof operator).

The region of memory is cleared (all bits are set to zero) and a pointer to the first

element of the region is returned. If it is impossible for some reason to perform

the requested allocation, or if elt_count or elt_size is zero, a null pointer is re-

turned. In Draft Proposed ANSI C the parameters to calloc both have type size_t�

and the pointer returned has type void *. Programmers should note that arith-

metic values consisting of zero bits do not necessarily have the value zero, nor do

pointers filled with zero bits necessarily have the value NULL.

The function mlalloc is just like malloc, except that its arguments are of type un-

signed long int rather than unsigned int. In some C implementations it is possible

to allocate memory regions so large that numbers of type unsigned int are not

large enough to specify them. This function is not provided in Draft Proposed AN-

SI C because the use of type size_t for the parameter of malloc avoids the prob-

lem.

Similarly, the function clalloc is just like calloc, except that its arguments are of

type unsigned long int rather than unsigned int.

The caller of an allocation routine will typically cast the result pointer to an ap-

propriate pointer type:

/* Return a pointer to a new object. */

typedef struct { /*...*/ } object;

object *NewObject()

{

 object *objptr = (object *) malloc(sizeof(object));

 if (objptr==NULL)

printf("NewObject: ran out of memory!\n");

 return objptr;

}�

18.2. C-Ref: FREE, CFREE

#include <stdlib.h> /* ANSI */

void free(ptr)

 char *ptr;

Page 339

void cfree(ptr) /* Non-ANSI form */

 char *ptr;�

The function free deallocates a region of memory previously allocated by malloc,

or mlalloc, realloc (section "C-Ref: �������� ��������"), or relalloc. The

argument to free must be a pointer that is equivalent (except for possible interme-

diate type casting) to a pointer previously returned by the allocation routine. (If

the argument to free is a null pointer then no action should occur, but this is

known to cause trouble in some C implementations.) Once a region of memory has

been explicitly freed it must not be used for any other purpose.

The function cfree deallocates a region of memory previously allocated by calloc

or clalloc. In Draft Proposed ANSI C free is used to deallocate storage returned

by calloc, and the argument to free has type void *.

18.3. C-Ref: REALLOC, RELALLOC

#include <stdlib.h> /* ANSI */

char *realloc(ptr, size)

 char *ptr;

 unsigned size;

char *relalloc(ptr,size) /* Non-ANSI form */

 char *ptr;

 unsigned long size;�

The function realloc takes a pointer to memory region previously allocated by one

of the standard functions and changes its size while preserving its contents. If

necessary, the contents are copied to a new memory region. A pointer to the (pos-

sibly new) memory region is returned. If the request cannot be satisfied, a null

pointer is returned and the old region is not disturbed.

If the first argument to realloc is a null pointer then the function behaves like

malloc (section "C-Ref: ������� ������� �������� �������"). If ptr is

not null and size is zero, realloc returns a null pointer and the old region is

deallocated. If the new size is smaller than the old size, then some of the old con-

tents at the end of the old region will be discarded. If the new size is larger than

the old size, then all of the old contents are preserved and new space is added at

the end; the new space is not specially initialized in any way, and the caller must

assume that it contains garbage information. Whenever realloc returns a pointer

that is different from its first argument the programmer should assume that the

old region of memory was deallocated and should not be used.

The function relalloc behaves like relalloc except that the size argument has

type unsigned long int instead of int. This function is not present in Draft Pro-

posed ANSI C, in which the size argument to realloc has type size_t.

Page 340

Below is shown a typical use of realloc to expand the dynamic array samples. The

elements of the array are always referenced using array subscripts; any pointers

into the array could be invalidated by the call to realloc.

#define SAMPLE_INCREMENT 100

int sample_limit = 0;

int sample_count = 0;

double *samples = NULL;

int AddSample(new_sample)

 double new_sample;

{

 if (sample_count >= sample_limit) {

 sample_limit += SAMPLE_INCREMENT;

 samples = (double *)

 realloc((char *) samples,

 sample_limit *

 sizeof(double));

 }

 samples[sample_count++] = new_sample;

 return sample_count;

}�

Page 341

19. C-Ref: Mathematical Functions

Name Section

abs "C-Ref: ���������������"

acos "C-Ref: �����������������������"

asin "C-Ref: �����������������������"

atan "C-Ref: �����������������������"

atan2 "C-Ref: �����������������������"

ceil "C-Ref: �����������������"

cos "C-Ref: �������������"

cosh "C-Ref: ����������������"

div "C-Ref: ���������"

exp "C-Ref: ���������������"

fabs "C-Ref: ���������������"

floor "C-Ref: �����������������"

fmod "C-Ref: �����������������"

frexp "C-Ref: ������������������"

labs "C-Ref: ���������������"

ldexp "C-Ref: ������������������"

ldiv "C-Ref: ���������"

log "C-Ref: ���������������"

log10 "C-Ref: ���������������"

modf "C-Ref: ������������������"

pow "C-Ref: ���������"

rand "C-Ref: �����������"

sin "C-Ref: �������������"

sinh "C-Ref: ����������������"

sqrt "C-Ref: ���������"

srand "C-Ref: �����������"

tan "C-Ref: �������������"

tanh "C-Ref: ����������������"�

Most of the facilities described in this section are declared by the library header

file math.h. All of the operations on floating-point numbers are defined only for ar-

Page 342

guments of type double, because of the rule that all actual function arguments of

type float are converted to type double before the call is performed. In Draft Pro-

posed ANSI C this convention is maintained for compatibility.

Two general kinds of errors are possible with the mathematical functions, although

older C implementations may not handle them consistently. When an input argu-

ment lies outside the domain over which the function is defined, a ������ �����

occurs. The variable errno (section "C-Ref: ������ ��������� ������") is

set to the value EDOM and the function returns an implementation-defined value.

Zero is the traditional error return value but some implementations may have bet-

ter choices, such as special "not a number" values. (System V UNIX has a more

elaborate mechanism, matherr.)

If the result of a function is too large in magnitude to be represented as a value

of the function’s return type, then a ����� ����� occurs. When this happens, errno

should be set to the value ERANGE and the function should return the largest repre-

sentable floating-point value with the same sign as the correct result. In Draft

Proposed ANSI C this is the value of the macro HUGE_VAL; in System V it is HUGE.

If the result of a function is too small in magnitude to be represented, the func-

tion should return zero; whether errno is also set to ERANGE is left to the discre-

tion of the implementation.

19.1. C-Ref: ABS, FABS, LABS

#include <math.h>

double fabs(x)

 double x;

#include <stdlib.h> /* ANSI */

int abs(x)

 int x;

long int labs(x)

 long int x;�

The functions abs, fabs, and labs all return the absolute value of their arguments.

More precisely, if the argument is nonnegative, then the value of the argument it-

self is returned; if the argument is negative, then the result of negating the argu-

ment (as if by the unary ‘-’ operator) is returned. The argument and the result

are both of type int for abs, of type double for fabs, and of type long int for labs.

In Draft Proposed ANSI C the functions abs and labs are defined in stdlib.h in-

stead of math.h. The absolute value functions are so easy to implement that some

compilers may treat them as built-in functions; this is permitted in Draft Proposed

ANSI C.

Page 343

19.2. C-Ref: DIV, LDIV

#include <stdlib.h>

typedef ... div_t;

typedef ... ldiv_t;

div_t div(n,d) /* ANSI */

 int n, d;

ldiv_t ldiv(n,d) /* ANSI */

 long int n, d;�

The functions div and ldiv are found in Draft Proposed ANSI C but are otherwise

not common in C implementations. They compute simultaneously the quotient and

remainder of the division of n by d. The type div_t is a structure containing two

components, quot and rem (in any order), both of type int. The type ldiv_t is also

a structure with components quot and rem, both of type long int. The returned

quotient has the same sign as n/d and its magnitude is the largest integer not

greater than n/d. The behavior of the functions when d is zero, or when n/d is not

representable, is undefined (not necessarily a domain error) to allow for the most

efficient implementation.

19.3. C-Ref: CEIL, FLOOR, FMOD

#include <math.h>

double ceil(x)

 double x;

double floor(x)

 double x;

double fmod(x, y)

 double x, y;�

The function ceil rounds its argument up to an integer; the argument and the re-

sult are both of type double. More precisely, it returns the smallest floating-point

number not less than x whose value is an exact mathematical integer. If the value

of the argument is already a mathematical integer, then the result equals the ar-

gument.

Similarly, floor rounds its argument down to an integer. It returns the largest

floating-point number not greater than x whose value is an exact mathematical in-

teger. If the value of the argument is already a mathematical integer, then the re-

sult equals the argument.

The function fmod returns the floating-point remainder of x/y. If y is zero, x is re-

turned; if the quotient x/y cannot be represented, the result is undefined. More

Page 344

precisely, fmod returns an approximation to the mathematical value f such that f

has the same sign as x, the absolute value of f is less than the absolute value of

y, and there exists an integer k such that k*y+f equals x. The function fmod should

not be confused with modf (section "C-Ref: ������ ������ ����"), a function

that extracts the fractional and integer parts of a floating-point number.

19.4. C-Ref: EXP, LOG, LOG10

#include <math.h>

double exp(x)

 double x;

double log(x)

 double x;

double log10(x)

 double x;�

The function exp computes a floating-point approximation to the exponential func-

tion; that is, � raised to the power x, where � is the base of the natural loga-

rithms. The argument and the result are both of type double. A range error can

occur for large arguments.

The function log computes a floating-point approximation to the natural logarithm

function. The argument and the result are both of type double. If the argument is

negative, a domain error occurs. Otherwise if the argument is zero or close to

zero, a range error occurs (towards minus infinity). Some C implementations may

treat zero as a domain error, and some implementations name this function ln.

The function log10 computes a floating-point approximation to the base-10 loga-

rithm function. The conditions causing domain and range errors are the same as

for the function log.

19.5. C-Ref: FREXP, LDEXP, MODF

#include <math.h>

double frexp(x, nptr)

 double x;

 int *nptr;

double ldexp(x, n)

 double x;

 int n;

Page 345

double modf(x, nptr)

 double x;

 int *nptr;�

The function frexp splits a floating-point number into a fraction f and an expo-

nent n, such that the absolute value of f is less than 1.0 but not less than 0.5 and

such that f times 2 raised to the power n is equal to x. The fraction f is returned

and as a side effect the exponent n is stored into the place pointed to by nptr. If

the argument to frexp is zero then both returned values will be zero.

The function ldexp is the inverse of frexp; it computes the value x times 2 raised

to the power n. A range error may occur.

The function modf splits a floating-point number into a fractional part f and an in-

teger part n, such that the absolute value of f is less than 1.0 and such that f

plus n is equal to x. Both f and n will have the same sign as the input argument.

The fractional part f is returned, and as a side effect the integer part n is stored

into the place pointed to by nptr.

The function modf should not be confused with fmod (section "C-Ref: �����

������ ����"), a function that computes the remainder from evenly dividing

one floating-point number by another. The name modf is a misnomer, because the

value it computes is properly called a ���������.

19.6. C-Ref: POW, SQRT

#include <math.h>

double pow(x, y)

 double x, y;

double sqrt(x)

 double x;�

The function pow computes a floating-point approximation to the power function;

that is, � raised to the power y. When x is nonzero and y is zero, the result is 1.0.

When x is zero and y is positive, the result is zero. Domain errors occur if x is

negative and y is not an exact integer, or if x is zero and y is nonpositive. Range

errors may also occur.

The function sqrt computes a floating-point approximation to the nonnegative

square root of the argument. A domain error occurs if the argument is negative.

Implementations that support the concept of a negative floating-point zero may re-

turn that number as the square root of itself, while still recording a domain error.

Page 346

19.7. C-Ref: RAND, SRAND

#include <stdlib.h> /* ANSI */

int rand();

void srand (seed)

 /* unsigned */ int seed;�

Successive calls to rand return values in the range 0 to the largest representable

positive value of type int (inclusive) that are the successive results of a pseudo-

random-number generator. In Draft Proposal ANSI C the upper bound of the range

of rand is given by RAND_MAX, which will be at least 32767.

The function srand may be used to initialize the pseudorandom-number generator

that is used to generate successive values for calls to rand. After a call to srand,

successive calls to rand will produce a certain series of pseudorandom numbers. If

srand is called again with the same argument, then after that point successive

calls to rand will produce the same series of pseudorandom numbers. Successive

calls made to rand before srand is ever called in a user program will produce the

same series of pseudorandom numbers that would be produced after srand is called

with argument 1.

19.8. C-Ref: COS, SIN, TAN

#include <math.h>

double cos(x)

 double x;

double sin(x)

 double x;

double tan(x)

 double x;�

The function cos computes a floating-point approximation to the trigonometric co-

sine function of the argument value, where the argument is taken to be in radi-

ans. No domain or range errors are possible, but the programmer should be aware

that the result may have little or no signficance for arguments whose absolute val-

ue is very large.

The functions sin and tan similarly compute floating-point approximations to the

trigonometric sine and tangent functions, respectively. A range error may occur in

the tan function if the argument is close to an odd multiple of π/2. The same cau-

tion about large-magnitude arguments applies to sin and tan.

Page 347

19.9. C-Ref: ACOS, ASIN, ATAN, ATAN2

#include <math.h>

double acos(x)

 double x;

double asin(x)

 double x;

double atan(x)

 double x;

double atan2(y, x)

 double y, x;�

The function acos computes a floating-point approximation to the principal value of

the trigonometric arc cosine function of the argument value. The result is in radi-

ans and lies between 0 and π. (The range of these functions is approximate be-

cause of the effect of round-off errors.) A domain error occurs if the argument is

less than -1.0 or greater than 1.0.

The function asin computes a floating-point approximation to the principal value of

the trigonometric arc sine function of the argument value. The result is in radians

and lies (approximately) between -π/2 and π/2. A domain error occurs if the argu-

ment is less than -1.0 or greater than 1.0.

The function atan computes a floating-point approximation to the principal value

of the trigonometric arc tangent function of the argument value. The result is in

radians and lies (approximately) between -π/2 and π/2. No range or domain errors

are possible. In some implementations of C this function is called arctan.

The function atan2 computes a floating-point approximation to the principal value

of the trigonometric arc tangent function of the value y/x. The signs of the two

arguments are taken into account to determine quadrant information. Viewed in

terms of a Cartesian coordinate system, the result is the angle between the posi-

tive x-axis and a line drawn from the origin through the point (x, y). The result is

in radians and lies (approximately) between -π and π. If x is zero the result is π/2
or -π/2, depending on whether y is positive or negative. A domain error occurs if

both x and y are zero.

19.10. C-Ref: COSH, SINH, TANH

#include <math.h>

double cosh(x)

 double x;

Page 348

double sinh(x)

 double x;

double tanh(x)

 double x;�

The function cosh computes a floating-point approximation to the hyperbolic cosine

function of the argument value. A range error can occur if the absolute value of

the argument is large.

The function sinh computes a floating-point approximation to the hyperbolic sine

function of the argument value. A range error can occur if the absolute value of

the argument is large.

The function tanh computes a floating-point approximation to the hyperbolic tan-

gent function of the argument value.

Page 349

20. C-Ref: Time and Date Functions

Name Section

asctime "C-Ref: ��������������"

CLK_TCK "C-Ref: ������������_������_����������"

clock "C-Ref: ������������_������_����������"

clock_t "C-Ref: ������������_������_����������"

ctime "C-Ref: ��������������"

difftime "C-Ref: ��������"

gmtime "C-Ref: �������������������������"

localtime "C-Ref: �������������������������"

mktime "C-Ref: �������������������������"

time_t "C-Ref: ����������_�"

times "C-Ref: ������������_������_����������"

tm (struct) "C-Ref: �������������������������"�

The facilities in this section give the C programmer ways to manipulate the (cal-

endar) date and time and the process time, that is, the amount of time used by the

running program.

Calendar time is represented in two forms: a simple arithmetic value returned by

the time function, and a "broken-down," structured form computed from the arith-

metic value by the gmtime and localtime functions.

Process time is represented by an arithmetic value (usually integral) returned by

the clock function.

20.1. C-Ref: CLOCK, CLOCK_T, CLK_TCK, TIMES

/* unsigned */ long clock() /* System V UNIX */

#include<time.h> /* ANSI */

typedef ... clock_t; /* ANSI */

#define CLK_TCK ... /* ANSI */

clock_t clock() /* ANSI */

#include <sys/types.h> /* Berkeley UNIX */

#include <sys/times.h> /* Berkeley UNIX */

void times(tmsbuf) /* Berkeley UNIX */

struct tms {...} tmsbuf; /* Berkeley UNIX */

Page 350

The clock function returns the processor time used by the current process. The

units in which the time is expressed vary with the implementation; microseconds

are customary. Although the return type of clock is long, the value returned is re-

ally of type unsigned long; the use of long predates the addition of unsigned long�

to the language. Unsigned arithmetic should always be used when computing with

process times.

Programmers should be aware of "wrap-around" in the process time. For instance,

if type long is represented in 32 bits and clock returns the time in microseconds,

the time returned will "wrap around" to its starting value in about 2,147 seconds

or 36 minutes.

The Draft Proposed ANSI C version of clock allows the implementor freedom to

use any arithmetic type, clock_t, for the process time. The number of time units

("clock ticks") per second is defined by the macro CLK_TCK. If the processor time is

not available, the value -1 (cast to be of type clock_t) will be returned.

Here is a typical example of how the clock function can be used to time a pro-

gram.

typedef unsigned long clock_t;

extern clock_t clock();

#define CLK_TCK 1000000

...

clock_t start, finish, duration;

start = clock();

process();

finish = clock();

printf("process() took %f seconds to execute\n",

 ((double) (finish - start)) / CLK_TCK);�

Note how the cast to type double allows clock_t and CLK_TCK to be either floating-

point or integral.

The times function is found in Berkeley UNIX and in some non-UNIX systems in-

stead of clock; it returns a structured value that reports various components of

the process time, each typically measured in units of 1/60 seconds. A rough equiva-

lent to the clock function can be written using times:

#include <sys/types.h>

#include <sys/times.h>

#define CLK_TCK 60

long clock()

{

 struct tms tmsbuf;

 times(tmsbuf);

 return (tmsbuf.tms_utime + tmsbuf.tms_stime);

}�

There is a type, time_t, used in the above structure; it is a "process time" unit

and therefore is ��� the same as the "calendar time" type time_t defined in con-

junction with the time function.

Page 351

20.2. C-Ref: TIME, TIME_T

/*unsigned*/ long time(tptr) /* Non-ANSI form */

 /*unsigned*/ long *tptr;

#include <time.h> /* ANSI */

typedef ... time_t; /* ANSI */

time_t time(tptr) /* ANSI */

 time_t *tptr;�

The function time returns the current calendar time encoded in an integer of type

long. If the parameter tptr is not NULL, the return value is also stored at *tptr. If

errors are encountered, the value -1 is returned; in System V UNIX errno is also

set to EFAULT. Although the return type of time is long, the value returned is usu-

ally of type unsigned long; the use of long predates the addition of unsigned long�

to the language.

The Draft Proposed ANSI C version of time gives the implementor more freedom

by allowing the return type, time_t, to be any arithmetic type. If errors are en-

countered, the value -1 (cast to be of type time_t) will be returned.

Typically, the value returned by time is passed to the function asctime or ctime to

convert it to a readable form, or is passed to localtime or gmtime to convert it to a

form that is more easily processed. Computing the interval between two calendar

times can be done by the Draft Proposed ANSI C function difftime; in other im-

plementations the programmer must either work with the broken-down time from

gmtime or depend on a customary representation of the time as the number of sec-

onds since some arbitrary past date. (January 1, 1970 is popular.)

20.3. C-Ref: ASCTIME, CTIME

#include <time.h>

#include <sys/time.h> /* Berkeley UNIX */

char *asctime(ts)

 struct tm *ts;

char *ctime(timptr)

 long *timptr; /* Non-ANSI form */

 time_t *timptr; /* ANSI */�

The asctime and ctime functions both return a pointer to a string that is a print-

able date and time of the form:

Mon Jan 26 12:34:56 1952\n\0�

The asctime function takes as its single argument a pointer to a a structured cal-

endar time; such a structure is produced by localtime or gmtime from the arith-

metic time that is returned by time. The ctime function takes the value returned

Page 352

by time directly, and therefore ctime(t) is equivalent to the expression

asctime(localtime(t))�

In most implementations the functions return a pointer to a static data area, and

therefore the returned string should be printed or copied (with strcpy) before any

subsequent call to either function.

20.4. C-Ref: GMTIME, LOCALTIME, MKTIME

#include <time.h>

#include <sys/time.h> /* Berkeley UNIX */

struct tm { ... };

struct tm *gmtime(t)

 long *t;

 time_t *t; /* ANSI */

struct tm *localtime(t)

 long *t;

 time_t *t; /* ANSI */

time_t mktime(tmptr) /* ANSI */

 struct tm *tmptr;�

The functions gmtime and localtime convert an arithmetic calendar time returned

by time to a "broken-down" form of type struct tm. The gmtime function converts

to Greenwich Mean Time (GMT) while localtime converts to local time, taking in-

to account the time zone and possible daylight savings time. The functions return

a null pointer if they encounter errors. These functions are portable across UNIX

systems and Draft Proposed ANSI C.

In most implementations the functions return a pointer to a single static data area

that is overwritten on every call. Therefore, the returned structure should be used

or copied before any subsequent call to either function.

The structure struct tm includes these fields:

int tm_sec; /* seconds; range 0..59 */

int tm_min; /* minutes; range 0..59 */

int tm_hour; /* hours since midnight; range 0..23 */

int tm_mday; /* day of month; range 1..31 */

int tm_mon; /* month; range 0..11 */

int tm_year; /* year; with 0==1900 */

int tm_wday; /* day of week; range Sun==0..6 */

int tm_yday; /* day of year; range 0..365 */

int tm_isdst; /* nonzero implies daylight savings */�

Page 353

The function mktime constructs a value of type time_t from the broken-down local

time specified by the argument tmptr. The values of tmptr->tm_wday and tmptr-

>tm_yday are ignored by mktime. If successful, mktime returns the new time value

and adjusts the contents of *tmptr, setting the tm_wday and tm_yday components. If

the indicated calendar time cannot be represented as a value of time_t, mktime re-

turns the value (time_t)-1.

20.5. C-Ref: DIFFTIME

#include <time.h> /* ANSI */

double difftime(t1, t0) /* ANSI */

 time_t t1,t0;�

The difftime function is found only in Draft Proposed ANSI C; it subtracts calen-

dar time t0 from calendar time t1, returning the difference in seconds as a value

of type double. Because the encoding of the calendar time in type time_t is not

specified, difftime may involve special processing.

Page 354

Page 355

21. C-Ref: Control Functions

abort "C-Ref: �����������"

alarm "C-Ref: ������������"

assert "C-Ref: ��������������"

exec "C-Ref: ������������"

exit "C-Ref: �����������"

_exit "C-Ref: �����������"

gsignal "C-Ref: ��"

jmp "C-Ref: ��������������������_���"

kill "C-Ref: ��"

longjmp "C-Ref: ��������������������_���"

NDEBUG "C-Ref: ��������������"

onexit "C-Ref: ��������������_�"

onexit_t "C-Ref: ��������������_�"

psignal "C-Ref: ��"

raise "C-Ref: ��"

setjmp "C-Ref: ��������������������_���"

signal "C-Ref: ��"

sleep "C-Ref: ������������"

ssignal "C-Ref: ��"

system "C-Ref: ������������"

The facilities in this chapter provide extensions to the standard flow of control in

C programs. The functions signal and raise implement a primitive exception han-

dling mechanism; assert and exit provide program-termination capabilities; and

exec and system allow other programs to be started from within a C program.

21.1. C-Ref: ASSERT, NDEBUG

#include <assert.h>

Page 356

#ifndef NDEBUG

#define assert(expression) ...

#else

#define assert(expression) ;

#endif�

The macro assert takes as its single argument a value of any scalar type. If that

value is 0 (false) and if additionally the macro NDEBUG is ��� defined, then assert

will print a diagnostic message on the standard output stream and halt the pro-

gram by calling exit. The assert facility is always implemented as a macro and

the header file assert.h must be included in the source file to use the facility.

If the macro NDEBUG is defined when the header file assert.h is read, the assert

facility is disabled, usually by defining assert to be the empty statement. Not only

are no diagnostic messages printed, but the expression that is an argument to as-

sert is not evaluated. The assert facility is typically used during program develop-

ment to check that certain conditions are true at run time.

21.2. C-Ref: EXEC, SYSTEM

#include <stdlib.h> /* ANSI */

int system(command)

 char *command;

execl (name, arg0, arg1, ..., argn, 0) /* UNIX form */

execlp(name, arg0, arg1, ..., argn, 0)

execle(name, arg0, arg1, ..., argn, 0, envp)

 char *name, *arg0, *arg1, ..., *argn, *envp[];

execv (name, argv) /* UNIX form */

execvp(name, argv)

execve(name, argv, envp)

 char *name, *argv[], *envp[];�

The function system passes its string argument to the operating system’s command

processor for execution in some implementation-defined way. In UNIX systems, the

command processor is the shell. The value returned by system is implementation-

defined but is usually the completion status of the command.

In Draft Proposed ANSI C, system may be called with a null argument in which

case 0 is returned if there is no command processor provided in the implementa-

tion and a nonzero value is returned if there is a command processor.

The various forms of exec are found mainly in UNIX systems; they are not includ-

ed in Draft Proposed ANSI C. In all cases, they transform the current process into

a new process by executing the file name (typically created by the loader). They dif-

fer in how arguments are supplied for the new process:

Page 357

1. The functions execl, execlp, and execle take a variable number of arguments,

all character (string) pointers. The last argument must be a null pointer (0).

By convention, arg0 should point to a string that is the same as name, that is,

it should be the name of the program being (to be) executed.

2. The functions execv, execvp, and execve supply a pointer to a vector of argu-

ments, such as is provided to function main. By convention, argv[0] should

point to a string that is the same as name, that is, it should be the name of

the program being (to be) executed. The list specified by argv must be termi-

nated by a null pointer.

3. The functions execle and execve also pass an explicit "environment" to the

new process. The parameter envp is an array of string pointers terminated by

a null pointer. Each string is of the form "name=value." In the other versions

of exec, the environment pointer of the calling process is passed to the new

process.

4. The functions execlp and execvp are the same as execl and execv, respective-

ly, except that the system looks for the file name in the set of directories nor-

mally searched for commands (usually the value of the environment variable

path or PATH).�

When the new process is started, the arguments supplied to exec are made avail-

able to the new process’ main function.

21.3. C-Ref: EXIT, ABORT

#include <stdlib.h> /* ANSI */

void exit(status)

 int status;

void _exit(status)

 int status;

void abort()�

The exit, _exit, and abort functions cause the program to terminate. Control does

not normally return to the caller of these functions.

The function exit causes "normal" termination of a program, performing normal

cleanup activities such as flushing buffers and closing any open streams (see

fflush and fclose, section "C-Ref: ������ ������� ������� �������").
The function _exit differs in that cleanup activities are not performed. Both func-

tions return an integer value, ������, to the host environment. By convention, a

������ of 0 signifies successful program termination and nonzero values are used to

signify various kinds of abnormal termination. In a C program, returning an inte-

ger value from the function main with a return statement acts like calling exit

with the same value.

Page 358

The abort function stops program execution, usually by executing an illegal in-

struction or causing some other form of hardware fault. Often this fault is trans-

lated to a special signal that can be caught or ignored; if ignored, control returns

to the caller of abort (returning a value in some implementations). (The signal is

SIGABRT in Draft Proposed ANSI C and SIGIOT in System V UNIX.) Whether or not

abort causes cleanup actions is implementation-defined. When abort causes the

program to terminate, the status value returned is implementation-defined but

must be nonzero.

In Draft Proposed ANSI C, exit causes all functions registered with the onexit

function to be called in the reverse order of their registration. This happens before

the normal cleanup operations. In addition, exit closes files created by tmpfile.

21.4. C-Ref: SETJMP, LONGJMP, JMP_BUF

#include <setjmp.h>

typedef ... jmp_buf;

int setjmp(env)

 jmp_buf env;

void longjmp(env, status)

 jmp_buf env;

 int status;�

The setjmp and longjmp functions implement a primitive form of nonlocal jumps,

which may be used to handle abnormal or exceptional situations. This facility was

traditionally considered more portable than signal, but the latter has also been in-

corporated into Draft Proposed ANSI C.

The function setjmp records its caller’s environment in the "jump buffer" env, an

implementation-defined array, and returns 0 to its caller. (The type jmp_buf must

be an array type so that a pointer to env is actually passed to setjmp.)

The function longjmp takes as its arguments a jump buffer previously filled by

calling setjmp and an integer value, status, that is usually nonzero. The effect of

calling longjmp is to cause the program to return from the call to setjmp again,

this time returning the value status. Some implementations, including Draft Pro-

posed ANSI C, do not permit longjmp to cause 0 to be returned from setjmp, and

will return 1 from setjmp if longjmp is called with a status argument of 0.

If the jump buffer argument to longjmp is not set by setjmp, or if the function con-

taining setjmp returns before the call to longjmp, indeterminate and probably una-

musing behavior can result. In some implementations a call to setjmp or longjmp

during interrupt processing or signal handling will not operate correctly; Draft

Proposed ANSI C specifies that longjmp operate correctly in nonnested signal han-

dlers.

Page 359

21.5. C-Ref: ONEXIT, ONEXIT_T

#include <stdlib.h> /* ANSI */

typedef ... onexit_t;

onexit_t onexit(func)

 onexit_t (*func)();�

The onexit function is found in Draft Proposed ANSI C. It "registers" a function

so that the function will be called when the program terminates when exit is

called or when function main returns. The functions are not called when the pro-

gram terminates abnormally, as with abort or raise. Implementations must allow

at least 32 functions to be registered. The onexit function returns a nonzero (true)

value of scalar type onexit_t if it succeeds, a zero (false) value if it does not.

The registered functions are called in the reverse order of their registration, be-

fore any standard cleanup actions are performed by exit. Each function is called

with no arguments and should have return type void. A registered function should

not attempt to reference any objects with storage class auto or register except

those it defines itself. Registering the same function more than once has unpre-

dictable results.

21.6. C-Ref: SIGNAL, RAISE, GSIGNAL, SSIGNAL, PSIGNAL

#include <signal.h>

#define SIG_IGN ...

#define SIG_DFL ...

#define SIG_ERR ... /* ANSI */

#define SIGxxx ...

...

void (*signal(sig,func))()

 int sig;

 void (*func)();

int raise(sig) /* ANSI */

 int sig;

int kill(pid,sig) /* Non-ANSI form */

 int pid, sig;

int (*ssignal(softsig,func))() /* System V UNIX */

 int softsig;

 int (*func)();

Page 360

int gsignal(softsig) /* System V UNIX */

 int softsig;

void psignal(sig,prefix) /* Berkeley UNIX */

 int sig;

 char *prefix;�

������� are (potentially) asynchronous events that may require special processing

by the user program or by the implementation. Signals are named by integer val-

ues and each implementation defines a set of signals in header file signal.h. Sig-

nals may be triggered or ������ by the computer’s error-detection mechanisms, by

the user program itself via kill or raise, or by actions external to the program.

���������������� used by the functions ssignal and psignal are user-defined, with

values generally in the range 1 through 15; otherwise they operate like regular

signals.

A ������ ������� for signal ��� is a user function that is invoked when signal ��� is

"raised." The handler function is expected to perform some useful action and then

return, generally causing the program to resume at the point it was interrupted.

(Handlers may also call exit or longjmp.) Signal handlers are normal C functions

taking one argument, the raised signal:

void my_handler(sig)

 int sig; /* the signal */

{

 ...

}�

Some implementations may pass extra arguments to handlers for certain prede-

fined signals.

The function signal is used to associate signal handlers with specific signals. In

the normal case signal is passed a signal value and a pointer to the signal handler

for that signal. If the association is successful, signal returns a pointer to the pre-

vious signal handler (which may be SIG_DFL if there was no handler); otherwise it

returns the value -1 (SIG_ERR in Draft Proposed ANSI C) and sets errno.

void new_handler(sig) int sig; { ... }

void (*old_handler)();

...

old_handler = signal(sig, &new_handler);

if (old_handler==SIG_ERR)

 printf("?Couldn’t establish new handler.\n");

...

if (signal(sig,old_handler)==SIG_ERR)

 printf("?Couldn’t put back old handler.\n")�

The function argument to signal may also have two special values, SIG_IGN and

SIG_DFL. A call to signal of the form

signal(sig, SIG_IGN)�

means that signal sig is to be ignored. A call to signal of the form

Page 361

signal(sig, SIG_DFL)�

means that signal sig is to receive its "default" handling, which usually means ig-

noring some signals and terminating the program on other signals.

The ssignal function works exactly like signal but is used only in conjunction

with gsignal for user-defined software signals. Handlers supplied to ssignal may

return integer values that become the return value of gsignal.

The raise and gsignal functions cause the indicated signal (or software signal) to

be raised in the current process. The kill function causes the indicated signal to

be raised in the specified process; it is less portable.

When a signal is raised for which a handler has been established by signal or

gsignal, the handler is given control. Most implementations reset the associated

handler to SIG_DFL before the handler is given control to prevent unwanted recur-

sion. The handler may return, in which case execution continues at the point of

interruption. If the signal was raised by raise or gsignal, those functions return

to their caller.

The psignal function prints on the standard error output the string prefix (which

is customarily the name of the program) and a brief description of signal sig. This

function may be useful in handlers that are about to call exit.

21.7. C-Ref: SLEEP, ALARM

void sleep(seconds)

 unsigned seconds;

unsigned alarm(seconds)

 unsigned seconds;�

The alarm function sets an internal system timer to the indicated number of sec-

onds and returns the number of seconds previously on the timer. When the timer

expires, the signal SIGALRM is raised in the program. If the argument to alarm is 0,

the effect of the call is to cancel any previous alarm request. The alarm function is

useful for escaping from various kinds of deadlock situations.

The sleep function suspends the program for the indicated number of seconds, at

which time the sleep function returns and execution continues. Sleep is typically

implemented using the same timer as alarm, and if the sleep time exceeds the time

already on the alarm timer, sleep will return immediately after the SIGALRM signal

is handled. If the sleep time is shorter than the time already on the alarm timer,

sleep will reset the timer just before it returns so that the SIGALARM signal will be

received when expected.

Implementation will generally terminate sleep when any signal is handled; some,

including System V UNIX, supply the number of unslept seconds as the return val-

ue of sleep (of type unsigned).

Page 362

Some implementations may define these functions as taking arguments of type un-

signed long. These functions are not part of Draft Proposal ANSI C.

Page 363

22. C-Ref: Miscellaneous Functions

bsearch "C-Ref: �������"

ctermid "C-Ref: ����������������"

cuserid "C-Ref: ����������������"

getcwd "C-Ref: �������������"

getenv "C-Ref: ��������������������������������"

getlogin "C-Ref: ��������������������������������"

getopt "C-Ref: ��������������������������������"

getwd "C-Ref: �������������"

main "C-Ref: ����"

putenv "C-Ref: ��������������������������������"

qsort "C-Ref: �����"�

The facilities in this section ways the C programmer can interrogate, and in some

cases modify, the environment in which the program is running. They also the

function main, which programmers must to establish an entry point in their C pro-

grams; and the functions bsearch and qsort, which provide general searching and

sorting capabilities.

22.1. C-Ref: MAIN

int main()

int main(argc,argv)

 int argc;

 char *argv[];

int main(argc,argv,env)

 int argc;

 char *argv[];

 char *env[];

extern char *environ[];�

The function main is not a library function; it is a function that the programmer

defines to designate the entry point of his program and to serve as a vehicle for

obtaining information about the program’s execution environment. Among all the

source files making up a C program, there must be exactly one definition of main.

Most C implementations, including Draft Proposed ANSI C, permit main to be de-

fined with zero or two parameters, customarily called argc and argv. Some imple-

Page 364

mentations provide a third parameter, env. The arguments to main are set up by

the execution environment and are not directly under control of the C program-

mer.

The parameter argc is the count of the number of "program arguments" or "op-
tions" supplied to the program when it was invoked by a user or another program.

Because the first argument is customarily the name of the program itself, argc

must be greater than zero.

The parameter argv is a vector of pointers to strings representing the program ar-

guments. argv[0] points to a string which is the name of the program. argv[�],

where �=1,...,argc-1, points the �’th program argument. The value of argv[argc] may

be a null pointer, but is not so in all implementations.

The parameter env points to a vector of "environment values," each one a pointer

to a null-terminated string of the form

"����=�����"�

The vector env ends with a null pointer. In some UNIX implementations an exter-

nal variable, environ, holds the environment pointer instead of it being passed to

main as an argument.

For example, the following short program prints out its name and arguments, and

its environment:

#include <stdio.h>

int main(argc,argv,envp)

 int argc;

 char *argv[],*envp[];

{

 int i;

 printf("Invocation: ");

 for(i=0; i<argc; i++)

 printf("%s ",argv[i]);

 printf("\nEnvironment:\n");

 for(i=0; envp[i] != NULL; i++)

 printf("%s\n",envp[i]);

 return 0;

}

22.2. C-Ref: CTERMID, CUSERID

#include <stdio.h> /* System V UNIX */

char * ctermid(s) /* System V UNIX */

 char *s;

Page 365

char *cuserid(s) /* System V UNIX */

 char *s;

#define L_ctermid �

#define L_cuserid � �

The function ctermid computes a file name that corresponds to the controlling ter-

minal for the current process. This file name can be passed to fopen to establish

an I/O connection with the terminal. The concept of treating I/O devices like ter-

minals as files is central to UNIX but may be less natural in other systems. How-

ever, many C implementations provide a similar facility.

The argument s may be null, in which case the terminal file name is stored in an

internal buffer whose address is returned as the value of the call. The next call to

ctermid might overwrite the buffer. If s is not null, it is assumed to point to a

character array at least L_ctermid characters long, into which the name is stored.

The value of s is then returned.

The function cuserid retrieves the name of the user who "owns" the current pro-

cess. The argument s may be null, in which case the user name is stored in an in-

ternal buffer whose address is returned as the value of the call. The next call to

cuserid will overwrite the buffer. If s is not null, it is assumed to point to a char-

acter array at least L_cuserid characters long, into which the name is stored. The

value of s is then returned.

22.3. C-Ref: GETCWD, GETWD

char *getcwd(buf,size) /* System V UNIX */

 char *buf;

 int size;

char *getwd(pathname) /* Berkeley UNIX */

 char *pathname;

#include <sys/parm.h> /* Berkeley UNIX */

#define MAXPATHLEN ...�

The functions getcwd or getwd (depending on the implementation) are used to de-

termine the "current working directory," which is generally the file system directo-

ry in which file I/O will take place if a specific directory is not specified in a file

name.

The getcwd function returns a pointer to the current working directory name. If

the argument buf is not null, it should point to at least size characters of space

into which the working directory name will be copied and the address buf will be

returned by getcwd. If the argument buf is a null pointer, then size bytes of stor-

age are allocated by malloc; the working directory name is copied into that storage

and its address is returned. In some implementations, size must be somewhat

Page 366

larger than the longest pathname to be returned (e.g., 2 bytes longer). If an error

occurs, a null pointer is returned and errno is set.

The getwd function copies into the character array at pathname the working directo-

ry name. The array should be at least MAXPATHLEN characters long. If an error oc-

curs, a null pointer is returned and a message is placed in pathname.

22.4. C-Ref: GETENV, GETLOGIN, GETOPT, PUTENV

char * getenv(name)

 char * name;

#include <stdlib.h> /* ANSI */

char * getenv(const char *name) /* ANSI */

The getenv function takes as its single argument a pointer to a string which is in-

terpreted as a "name" understood by the execution environment. The function re-

turns a pointer to another string which is the "value" of the argument name. If

the indicated name has no value, a null pointer is returned.

The value string should not be modified by the programmer, and it may be over-

written by a subsequent call to getenv.

The set of (name,value) bindings is also available to the program entry point, the

main function.

22.5. C-Ref: BSEARCH

#include <stdlib.h> /* ANSI */

char *bsearch(key, base, count, size, compar)

 char *key, *base;

 unsigned count;

 int size;

 int (*compar)();�

The function bsearch searches an array of count elements whose first element is

pointed to by base. The size of each element in characters is specified by size.

compar is a function that takes as arguments pointers to two elements and returns

-1 if the first element is "less than" the second, 1 if the first element is "greater
than" the second, and 0 if the two elements are equal. The array is assumed to be

sorted in ascending order (according to compar) at the beginning of the search.

bsearch returns a pointer to the element of the array that matches the element

pointed to by key, or NULL if no such element is found.

In Draft Proposed ANSI C, key and base have type void *; count and size have

type size_t; bsearch returns a pointer of type void *; and compar has type

Page 367

int (*compar)(const void *, const void *)�

22.6. C-Ref: QSORT

#include <stdlib.h> /* ANSI */

void qsort(base, count, size, compar)

 char *base;

 unsigned count;

 int size;

 int (*compar)();�

The function qsort sorts an array of count elements whose first element is pointed

to by base. The size of each element in characters is specified by size. compar is a

function that takes as arguments pointers to two elements and returns -1 if the

first element is "less than" the second, 1 if the first element is "greater than" the

second, and 0 if the two elements are equal. The array will be sorted in ascending

order (according to compar) at the end of the sort.

In Draft Proposed ANSI C, base has type void *; count and size have type size_t;

and compar has type

int (*compar)(const void *, const void *)

Page 368

Page 369

PART IV.

C-REF: THE ASCII CHARACTER SET

Page 370

The ASCII character set is the one most commonly used by C implementations. In

the following table, each column gives an ASCII character and its octal, decimal,

and hexadecimal value.

Page 371

Oct Dec Hex Character

 00 0 0x0 ’\0’

 01 1 0x1 ’\001’

 02 2 0x2 ’\002’

 03 3 0x3 ’\003’

 04 4 0x4 ’\004’

 05 5 0x5 ’\005’

 06 6 0x6 ’\006’

 07 7 0x7 ’\007’

010 8 0x8 ’\b’

011 9 0x9 ’\i’

012 10 0xA ’\n’

013 11 0xB ’\v’

014 12 0xC ’\f’

015 13 0xD ’\r’

016 14 0xE ’\016’

017 15 0xF ’\017’

020 16 0x10 ’\020’

021 17 0x11 ’\021’

022 18 0x12 ’\022’

023 19 0x13 ’\023’

024 20 0x14 ’\024’

025 21 0x15 ’\025’

026 22 0x16 ’\026’

027 23 0x17 ’\027’

030 24 0x18 ’\030’

031 25 0x19 ’\031’

032 26 0x1A ’\032’

033 27 0x1B ’\033’

034 28 0x1C ’\034’

035 29 0x1D ’\035’

036 30 0x1E ’\036’

037 31 0x1F ’\037’

Oct Dec Hex Character

040 32 0x20 ’ ’ space

041 33 0x21 ’!’

042 34 0x22 ’"’

043 35 0x23 ’#’

044 36 0x24 ’$’

045 37 0x25 ’%’

046 38 0x26 ’&’

047 39 0x27 ’\’’

050 40 0x28 ’(’

051 41 0x29 ’)’

052 42 0x2A ’*’

053 43 0x2B ’+’

Page 372

054 44 0x2C ’,’

055 45 0x2D ’-’

056 46 0x2E ’.’

057 47 0x2F ’/’

060 48 0x30 ’0’

061 49 0x31 ’1’

062 50 0x32 ’2’

063 51 0x33 ’3’

064 52 0x34 ’4’

065 53 0x35 ’5’

066 54 0x36 ’6’

067 55 0x37 ’7’

070 56 0x38 ’8’

071 57 0x39 ’9’

072 58 0x3A ’|’

073 59 0x3B ’;’

074 60 0x3C ’<’

075 61 0x3D ’=’

076 62 0x3E ’>’

077 63 0x3F ’?’

 Oct Dec Hex Character

0100 64 0x40 ’@’

0101 65 0x41 ’A’

0102 66 0x42 ’B’

0103 67 0x43 ’C’

0104 68 0x44 ’D’

0105 69 0x45 ’E’

0106 70 0x46 ’F’

0107 71 0x47 ’G’

0110 72 0x48 ’H’

0111 73 0x49 ’I’

0112 74 0x4A ’J’

0113 75 0x4B ’K’

0114 76 0x4C ’L’

0115 77 0x4D ’M’

0116 78 0x4E ’N’

0117 79 0x4F ’O’

0120 80 0x50 ’P’

0121 81 0x51 ’Q’

0122 82 0x52 ’R’

0123 83 0x53 ’S’

0124 84 0x54 ’T’

0125 85 0x55 ’U’

0126 86 0x56 ’V’

0127 87 0x57 ’W’

0130 88 0x58 ’X’

Page 373

0131 89 0x59 ’Y’

0132 90 0x5A ’Z’

0133 91 0x5B ’[’

0134 92 0x5C ’\\’

0135 93 0x5D ’]’

0136 94 0x5E ’^’

0137 95 0x5F ’_’

Page 374

 Oct Dec Hex Character

0100 64 0x40 ’@’

0101 65 0x41 ’A’

0102 66 0x42 ’B’

0103 67 0x43 ’C’

0104 68 0x44 ’D’

0105 69 0x45 ’E’

0106 70 0x46 ’F’

0107 71 0x47 ’G’

0110 72 0x48 ’H’

0111 73 0x49 ’I’

0112 74 0x4A ’J’

0113 75 0x4B ’K’

0114 76 0x4C ’L’

0115 77 0x4D ’M’

0116 78 0x4E ’N’

0117 79 0x4F ’O’

0120 80 0x50 ’P’

0121 81 0x51 ’Q’

0122 82 0x52 ’R’

0123 83 0x53 ’S’

0124 84 0x54 ’T’

0125 85 0x55 ’U’

0126 86 0x56 ’V’

0127 87 0x57 ’W’

0130 88 0x58 ’X’

0131 89 0x59 ’Y’

0132 90 0x5A ’Z’

0133 91 0x5B ’[’

0134 92 0x5C ’\\’

0135 93 0x5D ’]’

0136 94 0x5E ’^’

0137 95 0x5F ’_’

 Oct Dec Hex Character

0140 96 0x60 ’‘’

0141 97 0x61 ’a’

0142 98 0x62 ’b’

0143 99 0x63 ’c’

0144 100 0x64 ’d’

0145 101 0x65 ’e’

0146 102 0x66 ’f’

0147 103 0x67 ’g’

0150 104 0x68 ’h’

0151 105 0x69 ’i’

0152 106 0x6A ’j’

Page 375

0153 107 0x6B ’k’

0154 108 0x6C ’l’

0155 109 0x6D ’m’

0156 110 0x6E ’n’

0157 111 0x6F ’o’

0160 112 0x70 ’p’

0161 113 0x71 ’q’

0162 114 0x72 ’r’

0163 115 0x73 ’s’

0164 116 0x74 ’t’

0165 117 0x75 ’u’

0166 118 0x76 ’v’

0167 119 0x77 ’w’

0170 120 0x78 ’x’

0171 121 0x79 ’y’

0172 122 0x7A ’z’

0173 123 0x7B ’{’

0174 124 0x7C ’|’

0175 125 0x7D ’}’

0176 126 0x7E ’~’

0177 127 0x7F ’\177’

Page 376

Page 377

PART V.

C-REF: SYNTAX OF THE C LANGUAGE

Page 378

This appendix contains a sorted copy of the lexical rules and the syntax for tradi-

tional and Draft Proposed ANSI C as it is presented in the text. Lexical rules are

identified by the appearance of "(LEXICAL)" in their definition.

Page 379

����������������������

�������������������������

����������������������������

���������������

+��-

����������������������

�������������������������

��

���������������������

&�����������������

�������������������

�����������[��������������������opt�]

������������������������

����������������������

��

����������������������

=�����+=����-=���*=���/=���%=

<<=���>>=���&=���^=��� =

������������ ����������opt�:�������

�������������������������

�������������������

������������������������&���������������������

������������������������������

~�����������������

������������������������

����������������������

�����������������������|������������������������

�������������������������

����������������������

������������������������^������������������������

������������������

break�;

��������������

case��������������������

Page 380

�������������������

(�����������)�����������������

�������������(LEXICAL)

�������������������

����������������

����������������������(LEXICAL)

’�������������’

������������������������������ (LEXICAL)

n���t���b���r���f���v���\���’���"

������������������������������ (Draft Proposed ANSI C)�(LEXICAL)

a n t b r f

v���\���’���"���?

���������������������(LEXICAL)

���������

����������������������������

���������������������������

unsignedopt�char

���������������������������(Draft Proposed ANSI C)

char

signed�char

unsigned�char

�������������������

���������������������

�����������������,����������������������

������������������������

���;�

�����������������������

�����������������

���������

����������������������������

��������������������

�������������������������,����������������������

���������������������������������

��������������������������

����������������������������

Page 381

���������������������

{�����������������������opt����������������opt�}

�������������������������

���������������������

�����������������������?��������������:�����������������������

������������������������

������������

�����������������

������������������������

������������

�����������������

�����������������������(Draft Proposed ANSI C)

�����

�����������(LEXICAL)

����������������

�����������������������

������������������

���������������

����������������������

����������

���������������������

continue�;

��������������������(LEXICAL)

�������������

�����������������������

��������������

��;

������������������

�����������

�����������������������������

������������������������

�����������������������

��������������

���

��������������������������������������

Page 382

�������������

�����������������

(������������)

�������������������

����������������

������������������

����������������

default

�������������� (LEXICAL)

0 1 2 3 4 5 6 7 8 9

������������������(LEXICAL)

�����

��������������������

�����������������������������

�������������������.�����

���������������

do�����������while�(������������)�;

�����������������(LEXICAL)

���������������.

���������������.���������������

.���������������

���������������������������

���������������������=�����������

�����������������������

����������

����������������������������������

��������������������

���������������������=�����������

������������������������������

�������������������������������

��������������������������� ,��������������������������������

������������������

����������

������������������������������

Page 383

enum����������������opt
{�����������������������������}

�����������������������������

enum����������������

�����������������������������

���������������������������

��������������������������

����������������������

���������������������

���

��������������������

==���!=

��������������������(LEXICAL)

\�������������

���������������(LEXICAL)

����������������������

�������������������

������������(LEXICAL)

e�����������opt�����������������
E�����������opt�����������������

������������

����������������

�����������������

���������������������

����������������,����������������������

�����������������������

�����������;

�������������

���������������������

��������������������������������

��������������������� (Draft Proposed ANSI C)�(LEXICAL)

f��F��l��L

���������������������(LEXICAL)

������������������������

Page 384

�����������������������opt

��������������������(Draft Proposed ANSI C)�(LEXICAL)

��������������������������������������opt
�����������������������opt��������������opt

��������������������������

float

long�float

double

��������������������������(Draft Proposed ANSI C)

float

double

long�double

����������������������(LEXICAL)

������

����������

�����

������������������

(�����������opt�;�����������opt�;�����������opt�)

����������������

for��������������������������

���������������

��������������������������opt��������������������

����������������

�������������������(����������������opt��)

���������������������

�����������(���������������opt�)

����������������������(Draft Proposed ANSI C)

�����������(�������������������������opt��)
�����������(���������������opt�)

����������������������

����������������������opt����������������������������

�����������������

goto������������;

������������������ (LEXICAL)

Page 385

0 1 2 3 4 5 6 7 8 9

A B C D E F a b c d e f

������������������� (LEXICAL)

0x���0X

������������������������(LEXICAL)

����������

�������������������������������

�������������(LEXICAL)

����������

������

�������������������������������

��������������������

if�(������������)�����������else����������

���������������

if�(������������)����������

�������������������������������

�������������������->�����

�������������������������

*�����������������

�������������������������

��;

�������������������������

����������������������������opt

������������������������������

����������������������

�����������������������������,�����������������������

��������������

����������

{�������������������,opt��}

������������������

�����������

������������������,�������������

������������������

’=’������������

Page 386

������������������������

����������������������������

��������������������(LEXICAL)

���������������������������������opt
���������������������������������opt
�������������������� �����������opt

�������������������������

���������������������

�����������������������

������������������������

����������������������

���������������

������������

�������������

��������

������������

����������

�������������

��������������������

������:����������

��������������� (LEXICAL)

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

�������������������������

���������������������

������������������������&&�����������������������

������������������������������

!�����������������

������������������������

����������������������

�����������������������||������������������������

�������������������� (Draft Proposed ANSI C)�(LEXICAL)

l���L

����������������

Page 387

*��/��%

����������������������������

����������������

���

��������������

����������

�������������������������������

(������������������������������)

��������������������(�)

��������������������[�����������opt�]
*��������������������

����������������������

��(LEXICAL)

1 2 3 4 5 6 7 8 9

�����������������

;

����������������������(LEXICAL)

�������������

��������������������������

���������������������������������������

x������������(Draft Proposed ANSI C)

x����������������������(Draft Proposed ANSI C)

x��������������������������������(Draft Proposed ANSI C)

������������������(LEXICAL)

0�

���������������������������

�������������������� (LEXICAL)

0 1 2 3 4 5 6 7

������������������������(Draft Proposed ANSI C)

����������������������������������

���

�����������������������������

����������������

����������������

Page 388

����������

���������������,�����������

����������������������(Draft Proposed ANSI C)

���������������������

��������������������,����������������������

���������������������������

(�������������)

���������������������

*�����������

���������������������(Draft Proposed ANSI C)

*��������������������opt������������

���������������������������

�������������������--

��������������������

������������������

��������������������

������������������������������

�������������

������������������������

������������������������

���������������������������

�������������������++

��������������������������

--�����������������

��������������������������

++�����������������

���������������������

����

�������

������������������������

����������

��������������������������opt

������������������������

����������������

Page 389

���

����������������������

<���<=���>���>=

�������������������

return�����������opt�;

�������������������

�������������������

���

�����������������

<<��>>

������������������������

short�intopt
int�

long�intopt

������������������������(Draft Proposed ANSI C)

signed

signedopt int
signedopt short�intopt
signedopt long�intopt

�������������������

����������

��������������������

����������

��������������������

sizeof�(�����������)

sizeof�����������������

������������

��������������������

�����������������

������������������

���������������������

�������������������

����������������

���������������

������������������

����������������

Page 390

��������������

��������������

����������������

���������

�������������������������

��������������������������������

auto�extern�register�static�typedef�

�������������������(LEXICAL)

"��������������������opt��"

����������������

����������

���������������������������

�������������������������opt��{������������}

���������������������������

struct��������������

���������������������������

�������������������������

������������������������

�����������������������

�������������������[������������]

�������������������

switch�(������������)����������

�����������������������

�����������������������

�������������������

�����������������������������

���������������������

���

�������������������� (LEXICAL)

l���L

��������������(Draft Proposed ANSI C)�(LEXICAL)

����������������������������opt
����������������������������opt

Page 391

������������

�����������������������������������

�����������������

����������������������(Draft Proposed ANSI C)

��������������������������

�����������������������������

����������������������

������������������������

������������

��������������������

�������������������

�������������������������(Draft Proposed ANSI C)

����������������������(Draft Proposed ANSI C)

�����������������������������������

���������������

����������

������������������

������������������

���������������

�����������������

����������������������

�����������������������(Draft Proposed ANSI C)

���������������������������

���������������������������

������������������

����������������������

�����������������������

�����������������������

�������������������������

-�����������������

������������������������(Draft Proposed ANSI C)

+�����������������

��������������(LEXICAL)

_

������������

�����������

Page 392

������������������������

union����������opt�{������������}�

�����������������������

union�����������

�����������������������

���������������������

��������������������

������������������������� (Draft Proposed ANSI C) (LEXICAL)

u���U

��������������������������

unsigned�short�intopt
unsigned�intopt
unsigned�long�intopt

����������������������

void

��������������������������(Draft Proposed ANSI C)�

��������

������������������

while�(������������)����������

��������

�����������

Page 393

�

Index

� logical negation, 147
�� not equal, 158
� string constants, 236

" string constants, 24
� preprocessor command, 29, 48
������� preprocessor command, 31
����� preprocessor command, 239

#elif preprocessor command, 43
#else preprocessor command, 42
#endif preprocessor command, 42
������ preprocessor command, 239

#ifdef preprocessor command, 45
#ifndef preprocessor command, 45
#if preprocessor command, 42
�������� preprocessor command, 41, 238
����� preprocessor command, 48
������� preprocessor command, 239
������ preprocessor command, 37

#undef preprocessor command, 45
$ character, 11, 16
�� assign remainder, 172

% remainder, 151
� , 98
� address operator, 59, 71, 87, 98, 100, 148, 258
� bitwise and, 159
�� logical and, 168
�� assign bitwise AND, 172
� indirection operator, 87, 138
�� assign product, 172

* multiplication, 151
� addition, 153, 259
�� increment, 143, 149
�� assign sum, 172
� subtraction, 153, 259
� unary minus, 147
� unary plus, 258
� selection operator, 95
�� assign quotient, 172

/ division, 151
� null pointer, 87

Page 394

� less than, 157
�� left shift, 155
��� assign left shift, 172
�� less or equal, 157
�� assign difference, 172
� assignment, 171
�� equal, 158
� greater than, 157
�� selection operator’), 98
�� greater or equal, 157
�� right shift, 155
��� assign right shift, 172

-> structures, 98
� conditional, 169

@ character, 11
@t[*] indirection operator, 149
@t[sizeof] operator applied to arrays, 92
@t[typedef] storage class, 110
����� facility, 357
��� facility, 342

absolute value functions, 342
abstract data type, 95
abstract declarators, 114
���� facility, 347

Ada, 187, 198
addition expressions, 153, 259
addition pointers, 153, 259
additive expressions, 153, 259
address expression, 148, 258
addressing structure, 118
adjustments to type formal parameters, 212
advice on defining external names, 78
aggregate types, 79
agreement of parameters functions, 215
agreement of return values functions, 216
����� facility, 361

Algol 60, 7, 187
alignment of structures, 102
alignment of unions, 104
alignment restrictions, 119
allocation of storage, 223
American National Standards Institute (ANSI), 8,

233
ANSI C, 233
ANSI C character escapes, 236
ANSI C character set, 233
ANSI C constants, 234

Page 395

ANSI C floating point constants, 235
ANSI C identifiers, 234
ANSI C libraries, 266
ANSI C line continuation, 233
ANSI C predefined macros, 238
ANSI C type specifiers, 241
������ function, 347

argument conversions, 130, 257
argument conversions functions, 130, 141, 257
argument usual conversions, 130, 141, 257
arithmetic exceptions, 134
arithmetic types, 79
array bounds, 91
array declarators, 65
array initializers, 72
arrays and pointers, 90
arrays subscripting, 90
array to pointer conversions, 71, 90, 126
array types, 90
ASCII character set, 370
������� facility, 351
���� facility, 347

asm reserved word, 18
������ facility, 355
�������� header files, 355

assignment expressions, 170
assignment operators, 15
assignment usual conversions, 127, 255
associativity expressions, 132
associativity of binary expressions, 151
associativity of expressions, 132
���� facility, 347
����� facility, 347
���� facility, 295
���� facility, 295
���� facility, 295
���� storage class, 59

automatic variables, 56
auto storage class specifier, 59
backspace character, 11, 12
���� facility, 298

BCPL, 7
���� facility, 298

Bell Laboratories, 7
big endian computers, 118
binary expressions, 151
binary streams, 301

Page 396

binary usual conversions, 129, 256
bit fields, 100, 248
bit fields alignment, 100
bit fields portability, 100, 102
bit fields size, 100
bit fields structures, 100
bitwise and expressions, 159
bitwise expressions, 147, 159, 160, 161
bitwise expressions portability, 147, 159, 248
bitwise or expressions, 161
bitwise xor expressions, 160
B language, 7
blank character, 11
blocks, 50, 186
block statements, 186
body switch statement, 186
bounds of arrays, 91
break, 203
����� statements, 202

Brian Kernighan, 8
������� facility, 366

buffered I/O, 301, 304
������ value, 304

byte, 117
byte order, 23, 118
byte order portability, 118
����� facility, 299

calendar time conversions, 352
call-by-value, 214
calling functions, 141, 214, 258
������ facility, 337

carriage return character, 11, 12
case, 200
���� labels, 198
�� cast, 145

cast expressions, 114
cast expressions), 145
categories of types, 79
���� facility, 343
����� facility, 338
���� type specifiers, 83, 248

’’ character constants, 23
character constants, 23
character sets, 11, 12
character types, 83, 248
������� facility, 337

C language standardization, 8, 233

Page 397

�������� facility, 334
������� facility, 349
����� facility, 349
������� facility, 349

comma expression, 138, 141, 173
comments, 14
COMMON, 77
comparison pointers, 157, 158, 259
compatibility assignment, 127
compile-time objects, 58
Compiling a C program, 9
component names overloading, 98
components, 95
component selection expressions, 140, 257
component selection structures, 98
components of structures, 95
components of unions, 95
components selection, 140
components structures, 95, 98
components unions, 103
compostion of declarators, 68
compound statements, 186
concatenation of strings, 236
concatenation strings, 236
� conditional, 169

conditional compilation, 42
conditional expressions, 169
conditional statement, 188
conflicting declarations, 55
����� reserved word, 234
����� type specifier, 249

constant expressions, 174, 259
constant expressions in initializers, 71
constant expressions initializers, 174
constant expressions in preprocessor commands,

47
constant expressions portability, 174, 259
constant expressions preprocessor, 174
constants strings, 236
continuation of preprocessor commands, 30
continuation of source lines, 12, 24, 233
continuation of string constants, 24, 236
continue, 203
�������� statements, 202

control expressions, 184
control functions, 355
control library functions, 355

Page 398

conversions, 122, 254
conversions between pointers, 89, 255
conversions during assignment, 127, 255
conversions during cast expressions, 127
conversions expressions, 128, 129, 255, 256
conversions functions to pointers>), 71
conversions to array, 126
conversions to arrays pointers, 90
conversions to function, 126
conversions to pointer arrays, 90
conversions to pointers arrays, 126
conversions to pointer strings, 71
conversions to void, 127
conversions unsigned, 123
conversion to pointer arrays, 71
conversion to pointer integers, 71
conversion to pointers functions, 126
conversion types, 122, 254
��� facility, 346
���� facility, 347

CPL, 7
creating identifiers with preprocessor, 40
C-Ref: ABS, FABS, LABS, 342
C-Ref: ACOS, ASIN, ATAN, ATAN2, 347
C-Ref: Additive Operators, 153
C-Ref: Addressing a 32-Bit Integer At Address A,

118
C-Ref: Addressing Structure and Byte Ordering,

118
C-Ref: Address Operator, 148
C-Ref: Adjustments to Parameter Types, 212
C-Ref: Advice, 78
C-Ref: Agreement of Actual and Declared Return

Type, 216
C-Ref: Agreement of Formal and Actual

Parameters, 215
C-Ref: Alignment Restrictions, 119
C-Ref: Allocating and Deallocating Stacks, 223
C-Ref: A Note on Implementation of Typedef

Names, 112
C-Ref: An Overview of C Programming, 9
C-Ref: ANSI C #include, 238
C-Ref: ANSI C Addition and Subtraction, 259
C-Ref: ANSI C Address Operator, 258
C-Ref: ANSI C Assignment Conversions, 255
C-Ref: ANSI C Character Escape Codes, 236
C-Ref: ANSI C Character Sets, 233
C-Ref: ANSI C Component Selection, 257

Page 399

C-Ref: ANSI C const, 249
C-Ref: ANSI C Constant Expressions, 259
C-Ref: ANSI C Conversions and Representations,

254
C-Ref: ANSI C Declarations, 240
C-Ref: ANSI C Declarators, 242
C-Ref: ANSI C Expressions, 257
C-Ref: ANSI C External Names, 247
C-Ref: ANSI C Floating-point Characteristics, 254
C-Ref: ANSI C Floating Point Constants, 235
C-Ref: ANSI C Floating-point Types, 249
C-Ref: ANSI C Forward References to Structures,

241
C-Ref: ANSI C Function Calls, 258
C-Ref: ANSI C Function Prototypes, 243
C-Ref: ANSI C Generic Pointers, 253
C-Ref: ANSI C Identifiers, 234
C-Ref: ANSI C Initializers, 246
C-Ref: ANSI C Integer Constants, 234
C-Ref: ANSI C Integer Types, 248
C-Ref: ANSI C Lexical Elements, 233
C-Ref: ANSI C Lexical Structure, 237
C-Ref: ANSI C Macro Definition and Expansion,

239
C-Ref: ANSI C Minimum Integer Sizes, 254
C-Ref: ANSI C New Commands, 239
C-Ref: ANSI C Number Representation, 254
C-Ref: ANSI C Predefined Macros, 238
C-Ref: ANSI C Preprocessor, 237
C-Ref: ANSI C Relational Expressions, 259
C-Ref: ANSI C Reserved Words, 234
C-Ref: ANSI C Run-time Library, 260
C-Ref: ANSI C Scopes and Name Spaces, 240
C-Ref: ANSI C ������ Operator, 258

C-Ref: ANSI C Statements, 260
C-Ref: ANSI C String Constants, 236
C-Ref: ANSI C Stringization and Merging of

Tokens, 237
C-Ref: ANSI C The Function Argument

Conversions, 257
C-Ref: ANSI C The Usual Binary Conversions, 256
C-Ref: ANSI C The Usual Unary Conversions, 255
C-Ref: ANSI C Types, 247
C-Ref: ANSI C Type Specifiers, 241
C-Ref: ANSI C Unary Plus Operator, 258
C-Ref: ANSI C Usual Conversions in an Example

Signed Implementation, 256
C-Ref: ANSI C volatile, 250

Page 400

C-Ref: A Package for Manipulating Sets of Integers
(1), 162

C-Ref: A Package for Manipulating Sets of Integers
(2), 163

C-Ref: A Package for Manipulating Sets of Integers
(3), 164

C-Ref: A Package for Manipulating Sets of Integers
(4), 165

C-Ref: A Program for Enumerating Subsets of a
Given Set, 165

C-Ref: Array Bounds, 91
C-Ref: Array Declarators, 65
C-Ref: Arrays, 72
C-Ref: Arrays and Pointers, 90
C-Ref: Array Types, 90
C-Ref: ASCTIME, CTIME, 351
C-Ref: ASSERT, NDEBUG, 355
C-Ref: Assignment Expressions, 170
C-Ref: ATOF, ATOI, ATOL, 295
C-Ref: Binary Operator Expressions, 151
C-Ref: Bit Fields, 100
C-Ref: Bitwise AND Operator, 159
C-Ref: Bitwise Negation, 147
C-Ref: Bitwise OR Operator, 161
C-Ref: Bitwise XOR Operator, 160
C-Ref: Break and Continue Statements, 202
C-Ref: BSEARCH, 366
C-Ref: Casts, 145
C-Ref: CEIL, FLOOR, FMOD, 343
C-Ref: Character Constants, 23
C-Ref: Character Encodings, 13
C-Ref: Character Escape Codes, 25
C-Ref: Character Processing, 281
C-Ref: Character Set, 11
C-Ref: Character Type, 83
C-Ref: CLOCK, CLOCK_T, CLK_TCK, TIMES,

349
C-Ref: Comments, 14
C-Ref: Compiler Optimization of Memory

Accesses, 179
C-Ref: Compile-time Objects, 58
C-Ref: Components, 98
C-Ref: Component Selection, 140
C-Ref: Composition of Declarators, 68
C-Ref: Compound Assignment, 172
C-Ref: Compound Statement, 186
C-Ref: Computing the Greatest Common Divisor,

156

Page 401

C-Ref: Conditional Compilation, 42
C-Ref: Conditional Expressions, 169
C-Ref: Conditional Statement, 188
C-Ref: Constant Expressions, 174
C-Ref: Constant Expressions in Conditional

Commands, 47
C-Ref: Constants, 18
C-Ref: Control Expressions, 184
C-Ref: Control Functions, 355
C-Ref: Conventions for Identifiers, 17
C-Ref: Conversions, 122
C-Ref: Conversions and Representations, 117
C-Ref: Conversions to Array and Function Types,

126
C-Ref: Conversions to Enumeration Types, 126
C-Ref: Conversions to Floating-point Types, 125
C-Ref: Conversions to Integer Types, 123
C-Ref: Conversions to Pointer Types, 126
C-Ref: Conversions to Structure and Union Types,

125
C-Ref: Conversions to the Void Type, 127
C-Ref: Converting Tokens to Strings, 39
C-Ref: C Operators in Order of Precedence, 133
C-Ref: COSH, SINH, TANH, 347
C-Ref: COS, SIN, TAN, 346
C-Ref: CTERMID, CUSERID, 364
C-Ref: Data Structures, 221
C-Ref: Declarations, 49
C-Ref: Declarations Within Compound Statements,

186
C-Ref: Declarators, 64
C-Ref: Default Storage Class Specifiers, 60
C-Ref: Default Type Specifiers, 62
C-Ref: Defining Macros with Parameters, 33
C-Ref: Definition and Replacement, 31
C-Ref: Designing the Stack Module, 220
C-Ref: Difficult Addressing Models, 121
C-Ref: DIFFTIME, 353
C-Ref: Discarded Values, 178
C-Ref: DIV, LDIV, 343
C-Ref: Do Statement, 192
C-Ref: Draft Proposed ANSI C, 233
C-Ref: Draft Proposed ANSI C Facilities, 266
C-Ref: Draft Proposed ANSI C Libraries (Part 1),

267
C-Ref: Draft Proposed ANSI C Libraries (Part 2),

269
C-Ref: Duplicate Declarations, 55

Page 402

C-Ref: Duplicate Visibility, 56
C-Ref: Eliding Braces, 75
C-Ref: Enumerations, 73
C-Ref: Enumeration, Structure, and Union Types,

113
C-Ref: Enumeration Types, 92
C-Ref: EOF, 303
C-Ref: Equality Operators, 158
C-Ref: ERRNO, STRERROR, PERROR, 274
C-Ref: Escape Characters, 25
C-Ref: Examples of Output Formatting (Part 1),

330
C-Ref: Examples of Output Formatting (Part 2),

331
C-Ref: Examples of Storage Class Specifiers, 60
C-Ref: EXEC, SYSTEM, 356
C-Ref: Execution Character Set, 12
C-Ref: EXIT, ABORT, 357
C-Ref: Explicit Line Numbering, 48
C-Ref: EXP, LOG, LOG10, 344
C-Ref: Expressions, 131
C-Ref: Expressions and Precedence, 132
C-Ref: Expression Statements, 184
C-Ref: Extent, 56
C-Ref: External Names, 58, 76
C-Ref: FEOF, FERROR, CLEARERR, 334
C-Ref: FGETC, GETC, GETCHAR, UNGETC, 307
C-Ref: FGETS, GETS, 308
C-Ref: File Inclusion, 41
C-Ref: Floating-point, 70
C-Ref: Floating-point Constants, 21
C-Ref: Floating-Point Types, 86
C-Ref: FOPEN, FCLOSE, FFLUSH, FREOPEN,

303
C-Ref: Formal Parameter Declarations, 211
C-Ref: For Statement, 193
C-Ref: Forward References, 53
C-Ref: FPRINTF, PRINTF, SPRINTF, 319
C-Ref: FPUTC, PUTC, PUTCHAR, 318
C-Ref: FPUTS, PUTS, 318
C-Ref: FREAD, FWRITE, 333
C-Ref: FREE, CFREE, 338
C-Ref: FREXP, LDEXP, MODF, 344
C-Ref: FSCANF, SCANF, SSCANF, 309
C-Ref: FSEEK, FTELL, REWIND, 306
C-Ref: Function Calls, 141
C-Ref: Function Declarators, 67
C-Ref: Function Definitions, 209

Page 403

C-Ref: Function Return Types, 216
C-Ref: Functions, 209
C-Ref: Function Types, 107
C-Ref: General Comments, 131
C-Ref: General Syntactic Rules for Statements,

183
C-Ref: GETCWD, GETWD, 365
C-Ref: GETENV, GETLOGIN, GETOPT, PUTENV,

366
C-Ref: GMTIME, LOCALTIME, MKTIME, 352
C-Ref: Goto Statement and Named Labels, 206
C-Ref: Identifiers, 16
C-Ref: Implicit Declarations, 76
C-Ref: Indirection, 149
C-Ref: Initializers, 69
C-Ref: Initial Values, 57
C-Ref: Input/Output Facilities, 301
C-Ref: Integer Constants, 19
C-Ref: Integer Constants Table, 21
C-Ref: Integers, 70
C-Ref: Integer Types, 80
C-Ref: Introduction, 7
C-Ref: Introduction to the Libraries, 265
C-Ref: ISALNUM, ISALPHA, ISASCII, ISCNTRL,

282
C-Ref: ISCSYM, ISCSYMF, 283
C-Ref: ISDIGIT, ISODIGIT, ISXDIGIT, 283
C-Ref: ISGRAPH, ISPRINT, ISPUNCT, 284
C-Ref: ISLOWER, ISUPPER, 284
C-Ref: ISSPACE, ISWHITE, 285
C-Ref: Iterative Statements, 190
C-Ref: Labeled Statements, 185
C-Ref: Lexical Elements, 11
C-Ref: Literals, 137
C-Ref: Logical AND Operator, 168
C-Ref: Logical Negation, 147
C-Ref: Logical Operator Expressions, 167
C-Ref: Logical OR Operator, 168
C-Ref: MAIN, 363
C-Ref: Main Programs, 217
C-Ref: MALLOC, CALLOC, MLALLOC,

CLALLOC, 337
C-Ref: Mathematical Functions, 341
C-Ref: MEMCHR, 297
C-Ref: MEMCMP, BCMP, 298
C-Ref: MEMCPY, MEMCCPY, MEMMOVE, BCPY,

298
C-Ref: Memory Functions, 297

Page 404

C-Ref: MEMSET, BZERO, 299
C-Ref: Miscellaneous Functions, 363
C-Ref: Missing Declarators, 63
C-Ref: Mixed Common Model, 77
C-Ref: Modularization, 219
C-Ref: More About Array Types, 113
C-Ref: More About Typedef Names, 113
C-Ref: Multidimensional Arrays, 91
C-Ref: Multiple Control Variables, 197
C-Ref: Multiplicative Operators, 151
C-Ref: Multiway Conditional Statements, 188
C-Ref: Names, 135
C-Ref: NULL, PTRDIFF_T, SIZE_T, 273
C-Ref: Null Statement, 207
C-Ref: Numeric Escape Codes, 26
C-Ref: Objects and LValues, 131
C-Ref: ONEXIT, ONEXIT_T, 359
C-Ref: Operations, 92
C-Ref: Operations on Stacks, 225
C-Ref: Operations on Structures, 98
C-Ref: Operators and Separators, 15
C-Ref: Order of Evaluation, 176
C-Ref: Organization of Declarations, 50
C-Ref: Other Function Conversions, 130
C-Ref: Other Problems, 41
C-Ref: Overflow and Other Arithmetic Exceptions,

134
C-Ref: Overloading of Names, 53
C-Ref: Packaging the Module, 228
C-Ref: Parameter-Passing Conventions, 214
C-Ref: Paranthesized Expressions, 137
C-Ref: Pointer Arithmetic, 88
C-Ref: Pointer Declarators, 65
C-Ref: Pointers, 71
C-Ref: Pointer Sizes, 121
C-Ref: Pointer Types, 87
C-Ref: Portability Problems, 102
C-Ref: Postdecrement Operator, 144
C-Ref: Postfix Expressions, 138
C-Ref: Postincrement Operator, 143
C-Ref: POW, SQRT, 345
C-Ref: Precedence and Associativity of Operators,

132
C-Ref: Precedence Errors in Macro Expansions, 38
C-Ref: Predecrement Operator, 150
C-Ref: Predefined Macros, 36
C-Ref: Preface, 2
C-Ref: Preincrement Operator, 149

Page 405

C-Ref: Preprocessor Commands, 29
C-Ref: Preprocessor Lexical Conventions, 30
C-Ref: Primary Expressions, 135
C-Ref: Printargs Function in Draft Proposed ANSI

C, 279
C-Ref: Printargs Function in Traditional C, 278
C-Ref: Program Structure, 219
C-Ref: QSORT, 367
C-Ref: RAND, SRAND, 346
C-Ref: REALLOC, RELALLOC, 339
C-Ref: Redefining Typedef Names, 111
C-Ref: Relational Operators, 157
C-Ref: REMOVE, RENAME, 335
C-Ref: Representational Issues, 117
C-Ref: Representation Changes, 122
C-Ref: Rescanning of Macro Expressions, 35
C-Ref: Reserved Words, 18
C-Ref: Return Statement, 205
C-Ref: Robustness, 221
C-Ref: Sample Output From Enumerating Subsets,

166
C-Ref: Scope, 51
C-Ref: Semicolons, 183
C-Ref: Sequential Expressions, 173
C-Ref: SETBUF, SETVBUF, 304
C-Ref: SETJMP, LONGJMP, JMP_BUF, 358
C-Ref: Shift Operators, 155
C-Ref: Side Effects in Macro Arguments, 39
C-Ref: SIGNAL, RAISE, GSIGNAL, SSIGNAL,

PSIGNAL, 359
C-Ref: Signed Integer Types, 80
C-Ref: Simple Assignment, 171
C-Ref: Simple Declarators, 64
C-Ref: Simple Macro Definitions, 31
C-Ref: Size of Operator, 145
C-Ref: Sizes of Structures, 102
C-Ref: Sizes of Unions, 104
C-Ref: SLEEP, ALARM, 361
C-Ref: Some Problems with Pointers, 89
C-Ref: Stack Example: Allocation of Stacks, 224
C-Ref: Stack Example: Conditionally Compiled

Debugging Code, 222
C-Ref: Stack Example: Deallocation of Stacks, 225
C-Ref: Stack Example: Determining Stack Sizes,

228
C-Ref: Stack Example: Header File (Part 1, Types),

229

Page 406

C-Ref: Stack Example: Header File (Part 2,
Operations), 229

C-Ref: Stack Example: Peek Operation, 227
C-Ref: Stack Example: Push and Pop Operations,

226
C-Ref: Standard Language Additions, 273
C-Ref: Statements, 183
C-Ref: STDIN, STDOUT, STDERR, 306
C-Ref: Storage Allocation, 337
C-Ref: Storage Class Specifiers, 59
C-Ref: Storage Units and Data Sizes, 117
C-Ref: STRCAT, STRNCAT, 288
C-Ref: STRCHR, STRPOS, STRRCHR,

STRRPOS, 290
C-Ref: STRCMP, STRNCMP, 289
C-Ref: STRCPY, STRNCPY, 289
C-Ref: String Constants, 24
C-Ref: String Processing, 287
C-Ref: STRLEN, 290
C-Ref: STRSPN, STRCSPN, STRPBRK,

STRRPBRK, 291
C-Ref: STRSTR, STRTOK, 292
C-Ref: STRTOD, STRTOL, STRTOUL, 293
C-Ref: Structure Component Layout, 99
C-Ref: Structures, 74
C-Ref: Structure Type References, 97
C-Ref: Structure Types, 95
C-Ref: Subscripting Expressions, 138
C-Ref: Switch Statement; Case and Default Labels,

198
C-Ref: Syntax Notation, 10
C-Ref: Syntax of the C Language, 378
C-Ref: Terminology, 51
C-Ref: The #elif Commands, 43
C-Ref: The #if, #else, and #endif Commands, 42
C-Ref: The #ifdef and #ifndef Commands, 45
C-Ref: The ASCII Character Set, 370
C-Ref: The Assignment Conversions, 127
C-Ref: The Casting Conversions, 127
C-Ref: The C Language, 6
C-Ref: The C Libraries, 264
C-Ref: The Common Model, 77
C-Ref: The C Preprocessor, 29
C-Ref: The Dangling Else Problem, 189
C-Ref: The ������� Operator, 47

C-Ref: The Function Argument Conversions, 130
C-Ref: The Initializer Model, 77
C-Ref: The Omitted Storage Class Model, 77

Page 407

C-Ref: The Usual Binary Conversions, 129
C-Ref: The Usual Conversions, 127
C-Ref: The Usual Unary Conversions, 128
C-Ref: Time and Date Functions, 349
C-Ref: TIME, TIME_T, 351
C-Ref: TMPFILE, TMPNAM, MKTEMP, 336
C-Ref: TOASCII, 285
C-Ref: TOINT, 285
C-Ref: Token Merging in Macro Expansions, 40
C-Ref: Tokens, 15
C-Ref: TOLOWER, TOUPPER, 285
C-Ref: Trivial Conversions, 123
C-Ref: Type Categories, 79
C-Ref: Typedef Names, 110
C-Ref: Typedef Names for Function Types, 111
C-Ref: Type Equivalence, 112
C-Ref: Type Names and Abstract Declarators, 114
C-Ref: Types, 79
C-Ref: Types of Functions, 210
C-Ref: Type Specifiers, 62
C-Ref: Unary Expressions, 144
C-Ref: Unary Minus, 147
C-Ref: Undefining and Redefining Macros, 37
C-Ref: Union Component Layout, 104
C-Ref: Unions, 75
C-Ref: Union Types, 103
C-Ref: Unreferenced External Declarations, 78
C-Ref: Unsigned Integer Types, 82
C-Ref: Use of Compound Statements, 187
C-Ref: Use of Switch Statements, 200
C-Ref: Using ����� and ��������, 203

C-Ref: Using the For Statement, 194
C-Ref: Using the ���� statement, 206

C-Ref: Using Union Types, 105
C-Ref: VARARG, STDARG, 276
C-Ref: VFPRINTF, VPRINTF, VSPRINTF, 332
C-Ref: Visibility, 52
C-Ref: Void, 109
C-Ref: While Statement, 191
C-Ref: Whitespace and Line Termination, 12
C-Ref: Who Defines C?, 8
C-Ref: �����������������������

��������������, 275
������� facility, 364
����� facility, 351
������� header files, 281
������� facility, 364

Page 408

dangling else, 189
dangling else conditional statement, 189
data objects size, 117
data representation, 117
data tags, 105
data tags unions, 105
date, 238
date facilities, 349
decimal point, 21
declaration of functions, 107
declaration of structures, 95
declaration of unions, 103
declaration point, 51, 53, 56
declarations, 49
declarations at head of blocks, 60
Declarations extent, 56
declarations in compound statements, 186
declarations scope, 51, 240
declaration syntax enumerations, 92
declarators, 49, 64, 242
declarators for arrays, 65
declarators for functions, 67, 242
declarators for pointers, 65, 242
declarators for Variables, 64
�� decrement, 144, 150

decrement expression, 144
decrement expressions, 150
default, 200
������� labels, 198

default declarations, 76
default storage classes declarations, 60
default storage class specifier, 60, 62
default type specifiers, 62
������� preprocessor command, 47, 239

defining declarations, 76
defining integer values of enumerations, 92
defining macros, 31, 33, 49
defining your own ���� type specifier, 18

definition functions, 209
definition of functions, 107
Dennis Ritchie, 7, 8
dereferencing null, 149
�������� facility, 353

discarded expressions, 173, 178, 184, 193
��� facility, 343

divide by 0, 134, 151
division expressions, 151

Page 409

�� statement, 192

domain error, 341
������ type specifier, 86

duplicate declarations, 55
duplicate visibility, 56, 97
duplicate visibility declarations, 56
���� macro, 341
���� conditional statement, 188

enclosed by declarators identifiers, 64
encodings of characters, 13
end-of-file, 301
end of line, in source program, 11, 24
entry point of programs, 217
enum, 92
enumeration constants, 92
enumeration constants identifiers, 92
enumeration constants in expressions, 135
enumeration constants scope, 58, 92
enumeration initializers, 73
enumerations constants, 92
enumerations size, 92
enumeration tags, 92
enumeration tags scope, 58, 240
enumeration types, 92
enumeration type specifiers, 92
environmental functions, 363
environmental library functions, 363
��� facility, 281, 303

equality expressions, 158, 259
equivalence of typedef names, 113
equivalence of types, 112
������ macro, 341
����� facility, 274, 341
����� variable, 225

error indication in files, 301
escape characters, 12, 25, 236
Euclid’s GCD algorithm, 151
evaluation order, 176
���� facility, 356

executable program, 9
���� facility, 357
��� facility, 344

expansion macros, 239
expansion of macros, 33
exported identifiers, 58
expressions, 131, 257
expressions assignment, 170

Page 410

expressions as statements, 184
expressions operators, 131
expression statements, 184
extent of declarations, 56
������ storage class, 59

external identifiers, 17, 51, 58, 240, 247
external names, 51, 58, 76, 234, 240, 247
external names portability, 58
extern identifiers, 234
extern storage class specifier, 59
���� facility, 342
������ facility, 303
���� facility, 303, 334
������ facility, 334
������ facility, 303
����� facility, 307
����� facility, 308

field pointers, 89
fields of structures, 95
fields of unions, 95
file, 238
���� type, 301

file inclusion, 41, 238
file names in ��������, 41, 238

file pointer, 301
file position, 301, 306
����� type specifier, 86
�������header files, 254

floating-point constants, 21, 235
floating-point initializers, 70
floating-point objects size, 86
floating-point to floating-point conversions, 125
floating-point to integer conversions, 123
floating-point types, 86, 235
����� facility, 343
���� facility, 343
����� facility, 303
��� statement, 193

formal parameters, 33, 211, 214
formal parameters passing conventions, 214
formatting characters, 11, 23
form feed character, 11, 12
FORTRAN, 77, 198
fortran reserved word, 18
forward references, 53, 241
������� facility, 215, 319
����� facility, 318

Page 411

����� facility, 318
����� facility, 333
���� facility, 223, 338
������� facility, 303
����� facility, 344
������ facility, 309
����� facility, 306
����� facility, 306
�� function call, 141, 258

function call, 141
function call expressions, 141, 258
function declarations, 107
function declarators, 67, 242
function prototypes, 243
function return type, 216
functions conversion to pointers>), 71
functions definition, 50
functions parameters, 211
functions pointers, 107
functions returning structures, 140
functions types, 107, 210
function to pointer conversions, 126
������ facility, 333

generic pointers, 253
generic pointers portability, 121
���� facility, 307
������� facility, 307
������� function, 25, 83
�������., 83
������ facility, 365
������ facility, 366
�������� facility, 366
������ facility, 366
���� facility, 308
����� facility, 365
������ facility, 352
���� statement, 206
���� statement , 53

goto statement effect on initialization, 57
graphic characters, 11
Greatest Common Divisor, 151
������� facility, 359

header files, 9, 228, 260
heap sort, 60
hexadecimal constants, 19
hexadecimal escape characters, 26
hidden declarations, 52

Page 412

holes in structures, 98
horizontal tab character, 11, 12
host computer, 12
���� macro, 341
�������� macro, 341

hyperbolic functions, 347
identifier names, 16
identifier naming conventions, 17
identifiers declarations, 49
identifiers in expressions, 135
identifiers scope, 51
identifiers spelling rules, 16
�� statement, 188

if conditional statement, 188
illegal declarators, 68
implicit declarations, 76
increment expression, 143, 149
����� facility, 290

indirection expression, 149
initializer arrays, 72
initializer enumerations, 73
initializers, 246
Initializers, 57, 69
initializers for automatic variables, 69
initializers for automatic variables>), 246
initializers for integers, 70
initializers for static variables, 69, 246
initializers in compound statements, 186
initializers pointers, 71
initializer structures, 74
initializer unions, 75
inner declarations, 50
input/output portability, 301
insertion sort, 194
����� facility, 291
��� type specifier, 82, 248
��� type specifiers, 80

integer arithmetic portability, 134
integer constants, 19, 234
integer conversions overflow, 123
integer conversions pointers, 126
integer initializers, 70
integer sizes representation, 254
integer to floating-point conversion, 125
integer to integer conversions, 123
integer to pointer conversions, 71, 126
integer types, 80

Page 413

integer type specifiers, 80
integer types portability, 80
integral types, 80
������� facility, 282
������� facility, 282
������� facility, 282
������� facility, 282
������ facility, 283
������� facility, 283
������� facility, 283
������� facility, 284
������� facility, 284
�������� facility, 283
������� facility, 284
������� facility, 284
������� facility, 285
������� facility, 284
������� facility, 285
�������� facility, 283

iterative loops, 190
iterative statements), 190
������� facility, 358

Ken Thompson, 7
keywords, 18, 234
labeled statements, 185, 206
���� facility, 342

LALR(1) grammar, 62, 112
����� facility, 344
���� facility, 343

length of source lines, 12
������ facility, 290

lexical constants, 18
lexical converting to strings, 237
lexical elements, 11, 233
lexical merging by preprocessor, 237
lexical tokens, 15
library functions, 9, 260
library functions character processing, 281
library functions characters, 281
library functions string processing, 287
library functions strings, 287, 297
�������� header files, 254

line, 238
line break characters, 12
line termination characters, 12
linker, 9
list expressions, 173

Page 414

literal constants, 18
literals, 18
little endian computers, 118
�� function, 344
��������� facility, 352
��� facility, 344
����� facility, 344

logical and expressions, 168
logical expressions, 167
logical negation, 147
logical or expression, 168
���� ������ type specifier, 249
���� ����� type specifier, 86, 249
���� type specifier, 82, 86, 248
���� type specifiers, 80

long constants, 19
������� facility, 358

loops, 190
lvalues, 131
lvalues expressions, 131
�������� macro, 336

macro arguments, 33
macro body, 31
() macro call, 33
macro call, 33
macro calling, 33
macro expansion, 33
macro parameters, 33
macro parameters in characters, 39
macro parameters in strings, 39, 237
macro pitfalls, 31, 38
macro replacement, 35
macro replacement in file names, 41
macros precedence, 38
macros replacement, 48
macros scope, 51
���� facility, 363
���� functions, 217, 363

main program, 9, 217, 363
������ facility, 89, 119, 223, 337

Martin Richards, 7
������ header files, 341

mathematical library functions, 341
������� facility, 341

members of structures, 95
members of unions, 95
������� facility, 298

Page 415

������ facility, 297
������ facility, 298
������ facility, 298
������� facility, 298
�������� header files, 297

memory accesses, 179
memory alignment, 119
memory functions, 297
memory library functions, 297
������ facility, 299

merging by preprocessor tokens (lexical), 40
merging of tokens, 40, 237
minimum integer sizes, 254
minimum sizes types, 254
minus expressions, 147
minus operator, 147
missing declarators, 63
mixed common model, 247
������ facility, 336
������ facility, 352
������� facility, 337
���� facility, 344

Modula-2, 187
modularization, 219
modules, 219
multicharacter constants, 23
multidimensional arrays, 65, 91, 138
multiplicative expressions, 151
names, 135
������ facility, 355

negation arithmetic expressions, 147
negation (bitwise) expressions, 147
negation logical expressions, 147
nested comments, 14
newline character, 12
notation representation, 123
������ facility, 291
���� facility, 273

null character, 12
null pointer, 87, 123, 273
null pointers, 123
null statement, 207
numeric escape characters, 25, 26
numeric escapes characters, 236
object code, 9
object module, 9
objects, 131

Page 416

objects expressions, 131
octal constants, 19
of arrays length, 65
omitted storage class model, 247
������ facility, 359
�������� facility, 359

operations on arrays, 92
operations on functions, 107
operations on pointers, 88
operations on structures, 98
operator characters, 15
optimization of memory accesses, 179, 250
order of evaluation, 176
order of evaluation expressions, 176, 179
organization of declarations, 50
overflow, 134
overflow floating-point conversion, 125
overloading, 52, 53, 135
overloading class components, 53, 98, 103, 240
overloading class enumeration constants, 53, 92
overloading class labels, 53, 240
overloading class macros, 53
overloading class name space, 53
overloading class statement labels, 53, 240
overloading class tags, 240
overloading class tags , 53
overloading class typedef names, 53
overloading identifiers, 53
overloading of identifiers, 53
packing of components structures, 98
packing of components unions , 104
parameter conversions functions, 130
parameter declarations, 60, 211
parameters functions, 212, 214
�� parenthesized expression, 137

parenthesized expressions, 137
Pascal, 187, 191, 192, 198
������ facility, 274

PL/I, 187
plus operator, 258
plus (unary) expressions, 258
pointer arguments functions, 141
pointer arithmetic portability, 153, 157
pointer conversions integers, 126
pointer declarators, 242
pointer Declarators, 65
pointer function arguments, 141
pointer Initializers, 71

Page 417

pointers and arrays, 90
pointers and integers portability, 71, 126
pointers cast, 119
pointers size, 126
pointers subscripting, 90
pointers to functions, 107, 255
pointer to array conversions, 90
pointer to integer conversions, 123
pointer to pointer conversions, 89, 126
pointer types, 87, 253
portability, 117, 233
portability character sets, 16, 26
portability comments, 14
portability constant expressions, 23
portability of external names, 17
portability of floating-point types, 86
portability of macros, 39
portability of unions, 105
Portable C Compiler (PCC), 8
position in file, 301, 306
postfix expressions, 138
��� facility, 345

precedence expressions, 132
precedence of binary expressions, 151
precedence of declarators, 68
precedence of expressions, 132
precedence of unary operators, 144
predefined macros, 36, 45, 238
preprocessor, 29, 237
preprocessor commands, 29, 239
preprocessor comments, 14, 40
preprocessor lexical conventions, 30, 237
preprocessor pitfalls, 31, 38
preprocessor stringization, 237
preprocessor token merging, 40, 237
primary expressions, 135
������ facility, 319

printing characters, 23, 24
process time, 349
program, 9, 50
prototypes, 240, 243
prototypes functions, 240
pseudo-character types, 83
pseudo-unsigned characters, 83
������� facility, 359
��������� facility, 273
���� facility, 318
������� facility, 318

Page 418

������ facility, 366
���� facility, 318

qsort, 367
����� facility, 367
����� facility, 359
���� facility, 346

range error, 341
������� facility, 339

redefining macros, 37, 239
redefining typedef names, 111
referencing declarations, 76
�������� storage class, 59, 148

register declarations portability, 148
�������� facility, 339

relational expressions, 157, 259
relaxed ref/def model, 247
remainder, 343
remainder), 151
remainder expressions, 151
������ facility, 335
������ facility, 335

replacement macros, 41, 43
representation of boolean values, 80
representation of characters, 80
representation of data, 117, 254
representation of pointers, 89
representation of types, 122
reserved word entry, 18
reserved words, 18, 234
respresentation changes conversions, 122
������ statement, 205, 216

return character, 11
returning from functions structures, 140
returning void functions, 141
return statement functions, 205
return types functions, 216
������ facility, 306
������ facility, 290

rvalue, 131
scalar types, 79
����� facility, 309
������ facility, 290

scope declarations, 51, 240
scope identifiers, 51
scope of component names structures, 58, 240
scope of component names unions, 58, 240
scope of constants enumerations, 58, 92

Page 419

scope of enumeration tags, 92
scope of tag enumerations, 92
scope of tags enumerations, 58
scope of tags structures, 58, 240
scope of tags unions, 58, 240
scope statement labels, 51
�������� macro, 306
�������� macro, 306
�������� macro, 306

selection components, 257
selection of components, 140, 257
selection of components structures, 95
self-referential structures, 97, 241
separator characters, 15
sequence point, 250
� sequential expression, 173

sequential expressions, 173
������ facility, 304
������ facility, 358
�������� header files, 355

set package (example), 161
������� facility, 304

shell sort, 194
shift expressions, 155
shift expressions portability, 155
shift left expressions, 155
shift right expressions, 155
����� type specifier, 82, 248
����� type specifiers, 80

side effects of macros, 39
������ facility, 359
�������� header files, 355
������ reserved word, 234
������ type specifier, 248

signed and unsigned characters, 83
signed and unsigned conversions, 82
signed types, 80, 248
signed type specifiers, 80, 248
signed versus unsigned characters, 23, 281
simple declarators, 64
simple macros, 31
��� facility, 346
���� facility, 347

size arrays, 90, 92
size characters, 117
������ expressions, 145, 258
������ operator, 24, 126, 145, 258

Page 420

������ operator , 117
������ operator applied to arrays, 90
������ operator applied to functions, 107
������ operator type name arguments, 114

size of arrays, 65, 90, 92
size of characters, 117
size of enumerations, 92
size of floating-point, 86
size of integers, 80, 82, 254
size of pointers, 121, 126
size of structures, 102
size of unions, 104
size types, 117
������ facility, 273
������ type, 258
����� facility, 361

sorting library facilities, 367
source computer, 12
source files, 9
space character, 11
������� facility, 319
���� facility, 345
����� facility, 346
������ facility, 309
������� facility, 359

stack module example, 219
standard characters, 11
standard I/O functions, 301
standard I/O library functions, 301
� statement label, 185

statement labels, 53, 185, 206, 240
statement labels scope, 240
statements syntax, 183
������ storage class, 59

static storage class specifier, 59
������ facility, 276
�������� header files, 273

STDC, 238
�������� header files, 273
������ facility, 306
����� facility, 306
������� file, 83
������� header files, 301
�������., 83
�������� header files, 337, 341, 355
������ facility, 306

storage allocation, 223, 337

Page 421

storage allocation library functions, 337
storage classes functions, 60, 209
storage class specifier, 59
storage units, 117
storage units size, 117
������ facility, 288
������ facility, 290
������ facility, 289
������ facility, 289
������� facility, 291

streams, 301
�������� facility, 274

strict ref/def model, 247
�������� header files, 287

string concatenation, 288
string constants, 236
stringization of tokens, 39, 237
strings used to initialize array of char, 72
string to pointer conversions, 71
������ facility, 290
������� facility, 288
������� facility, 289
������� facility, 289
������� facility, 291
������ facility, 290
������� facility, 290
�������� facility, 291
������� facility, 290
������ facility, 291
������ facility, 292
������ facility, 293
������ facility, 292
������ facility, 293
������� facility, 293

struct, 95
structure component names scope, 58, 240
structure components, 95
structure components alignment, 98
structure conversions, 125
structure declarations, 95
structure initializers, 74
structures alignment , 102
structures packing of components, 99
structures portability problems, 102
structures size, 102
structure tags, 95
structure tags scope, 58, 240

Page 422

structure type, 95
structure types, 95
subscript expressions, 138
subscripting, 90, 138
subscripting arrays, 138
�� subscripts, 138

subtraction expressions, 153, 259
subtraction pointers, 153, 259
switch, 200
������ statement, 198
������ statement body, 186

switch statement effect on initialization, 57
switch statement use, 200
syntax listing, 378
syntax notation, 10
����������� header files, 349
����������� header files, 349
������ facility, 356
�������� macro, 303

tag enumerations, 92
tags structures, 95
��� facility, 346
���� facility, 347

target computer, 12
text streams, 301
time, 238
���� facility, 351
������ header files, 349

time and date library functions, 349
time-of-day facilities, 349
����� facility, 349
������ facility, 351
�� library structure, 352
������� facility, 336
������ facility, 336
������� macro, 336
������� facility, 285
����� facility, 285
������� facility, 285

top-level declarations, 50, 60
������� facility, 285

trigonometric functions, 346, 347
trigraph characters, 233
trigraphs, 233, 238
trivial conversions, 123
two’s complement representation, 123
type characters, 83, 248

Page 423

type checking formal parameters, 215
type checking of function parameters, 215
type checking of function return values, 216
������� storage class, 59
������� storage class specifier, 59

typedef names, 110
typedef names effect on LALR(1) grammar, 112
typedef names for functions, 111
typedef names scope, 58
type equivalence, 112
type equivalence enumerations, 113
type equivalence functions, 112
type equivalence pointers, 112
type equivalence structures, 113
type equivalence unions, 113
type managers, 219
type names, 114
type names in ������ expression, 145

type of arrays, 90
type of enumerations, 92
type of functions, 79, 107, 210
type of structures, 95
type of unions, 105
types, 247
types floating-point, 86
type specifiers, 49, 62, 110, 241
type specifiers without declarators, 63
types pointers, 87
type strings, 83
unary expressions, 144
unary minus expression, 147
unary plus expression, 258
unary usual conversions, 128, 255
undefining macros, 37
underflow, 134
underflow floating-point conversion, 125
underscore character in external names, 17
������ facility, 306, 307
����� type specifier, 103

union component names scope, 58, 240
union components overloading, 103
union conversions, 125
union initializers, 75, 246
unions alignment, 104
unions components, 103
unions declarations, 103
unions size, 104
unions types, 105

Page 424

union tags, 103
union tags scope, 58, 240
union type, 103
union types portability, 105
UNIX, 7, 24, 78, 112
���� macro, 36
�������� type specifier, 82, 248
�������� type specifiers, 83

unsigned integers, 82
unsigned integers arithmetic rules, 134
unsigned integers conversions, 123
unsigned operators, 82
unsigned types, 82
unsigned type specifiers, 248
unspecified bounds arrays, 65, 72
use of semicolons in statements, 183
use of void cast expressions , 109
user-defined types, 110
usual argument conversions, 130, 141, 257
usual assignment conversions, 127, 255
usual binary conversions, 129, 256
usual casting conversions, 127
usual conversions casts, 127
usual unary conversions, 255
value of constants, 137
value of enumeration constant, 92
value of name arrays, 135
value of name functions, 135
������ facility, 276
��������� header files, 273

variable argument lists portability, 215, 243
variables in expressions, 135
��� macro, 36

VAX-11, 9, 36
vertical tab character, 11, 12
�������� facility, 332

visibility declarations, 52
visibility identifiers, 52
���� types, 109
���� type specifier, 62, 79, 109, 178, 216
���� type specifier function result, 141
���� type specifier in casts, 109
���� type specifiers, 253

void discarded expressions, 178
void function result, 141
void in casts, 109
void pointers, 253

Page 425

void return type, 216
�������� reserved word, 234
�������� type specifier, 250
������� facility, 332
�������� facility, 332

what type integers to use, 80
����� statement, 191, 192

whitespace characters, 12
writing into strings, 24
X3J11, 8, 233
YACC, 112
� line continuation, 233
� line continuation in strings, 236
�� trigraph escape, 233
�� alert, 236

\’ apostrophe, 25
\b backspace, 25
\ character escape, 25
\’’ double quote>}, 25
\f form feed, 25
\ line continuation in macro calls, 33
\ line continuation in preprocessor commands, 30
\line continuation, in strings, 24
\n newline, 25
\r carriage return, 25
\t tabulate, 25
\v vertical tabulate, 25
�� hexadecimal escape, 236

\\ back slash, 25
� bitwise xor, 160
�� assign bitwise XOR, 172

_ character in identifiers, 16
_external, 17
FILE facility, 36
_ in external names, 17
������ value, 304
������ value, 304
������ value, 304

LINE facility, 36
�������� facility, 285
�������� facility, 285
�������� facility, 238, 275
�������� facility, 238, 275
�������� facility, 238, 275
�������� facility, 238, 275
�������� facility, 238, 275

‘ character, 11

Page 426

�� compound statements, 186
�� enumeration definition, 92
�� initializers, 69
�� structure definition, 95
�� union definition, 103
� bitwise or, 161
�� assign bitwise OR, 172
�� logical or, 168
� bitwise negation, 147

