
iii
February 2018 Table of Contents

Table of Contents

Page

��� ��������

��� ���������������������������

2.1 3Introduction to CLIM’s Presentation Model

2.2 6How CLIM Helps You Achieve a Portable User Interface

2.3 7Highlights of CLIM Tools and Techniques

��� ��������������������������������������

3.1 9Converting an Application From DW to CLIM

3.2 9Converting an Application From TV to CLIM

3.3 10Similarities Between Dynamic Windows and CLIM

3.4 10CLIM as a UIMS, and Not a Window System

3.5 11CLIM is Built up From Layered Protocols

3.6 11Comparing the Presentation Type Systems

3.7 12CLIM’s Unified Geometric Model

3.8 12CLIM and User Interface Appearance

iv
List of Figures February 2018

�

List of Figures

Page

1 4Cycle of Input/Computation/Output

2 4Conventional Approach to the Input/Computation/Output Cycle

3 5CLIM Approach to the Input/Computation/Output Cycle

4 6Foundation of a Portable Application

5 7How CLIM is Layered Over the Host System

6 11CLIM Protocol Layers

1
February 2018 Preface

1. Preface

In this document, we introduce CLIM with a series of questions and answers that

clarify what CLIM is, where it came from, and how Symbolics is involved in it. We

then give a more detailed technical overview of CLIM. Finally, we compare and

contrast the concepts of CLIM and Dynamic Windows, for the benefit of Symbolics

users familiar with Dynamic Windows.

Since the CLIM Specification is not yet complete, some details given in this docu-

ment might change in the future. The documentation to be provided with Symbol-

ics CLIM will contain more detailed and specific information about converting pro-

grams than is available now.

2
Preface February 2018

3
February 2018 Technical Overview of CLIM

2. Technical Overview of CLIM

CLIM is an acronym for the Common Lisp Interface Manager. It is a portable,

powerful, high-level user interface management system toolkit intended for Com-

mon Lisp software developers. The important things to understand about CLIM

are:

• ��� �� ����� ��� ������� � �������� ���� ���������  how it fits into an existing

host system; how you can achieve the look and feel of the target host system

without implementing it directly, and without using the low-level implementa-

tion language of the host system.

• ��� ����� �������� �� ��� ������������ �����  the advantages of having the vi-

sual representation of an object linked directly to its semantics.

• ��� ��� �� ���������� ����������� ���������� �� ��������  capabilities that en-

able you to develop a user interface conveniently, including formatted output,

graphics, windowing, and commands that are invoked by typing text or clicking

a mouse (or ‘‘pointer’’) button, among other techniques.

CLIM 2.0 does not currently provide any high-level user interface building tools,

nor does it provide any sort of high-level graphical or text editing substrate. These

are areas into which future releases of CLIM may extend.

CLIM is also not suitable for high performance, very high quality graphics of the

sort needed for sophisticated paint, animation, or video postproduction applications.

Of course, it is possible to write the bulk of such an application’s user interface

using CLIM, and use lower level facilities for drawing in the main ‘‘canvas’’ of the

application.

2.1. Introduction to CLIM’s Presentation Model

A software application typically needs to interact with the person using it. The

user interface is responsible for managing the interaction between the user and

the application program. The user interface gets information from the user (com-

mands, which might be entered by typing text or by clicking a mouse), gives that

information to the application, and later presents information (the program’s re-

sults) to the user. Figure 1 shows this common paradigm.

We might describe one conventional approach to the input/computation/output cycle

as follows. Invisibly to the user, the application takes the commands and interprets

them in terms the program can handle. For example, if the application uses object-

oriented techniques, it might build objects based on information garnered from the

command and arguments, then manipulate those objects internally, finish its com-

putation, and finally translate from the resulting objects to the appropriate re-

sponse which is then given to the user. Figure 2 depicts this sequence of events.

The conventional approach uses object-oriented techniques within the computation

4
Technical Overview of CLIM February 2018

Input

Computation

Output

Figure 1. Cycle of Input/Computation/Output�

Input

Output

Computation

User enters command and arguments

User sees results of the program

Program interprets command and arguments

Program builds objects based on commands

Program manipulates its internal objects

Program translates objects to visible results

Program discards objects

Figure 2. Conventional Approach to the Input/Computation/Output Cycle�

phase, but the objects do not surface to the user interface. The program performs

two translations: from user input to objects, and later from objects to output in-

tended for the user. CLIM revolutionizes the cycle by bringing the power of object-

oriented programming to the surface, all the way up to the user interface.

CLIM recognizes that many applications manipulate internal objects which we call

����������� ������� and they have ������� �������, which are presented to the user.

A display object can appear as text or a graphic picture. CLIM supports a direct

linking between application objects and display objects. CLIM automatically main-

tains the association between application objects and display objects, so there is no

need for the application to do any translation. Figure 3 shows how CLIM views the

cycle of input/computation/output.

In effect, CLIM replaces some of the tedious and error-prone steps of the conven-

tional user-interface model with higher-level object-oriented techniques. The advan-

tages of the object-oriented user interface are subtle but extremely powerful (in

5
February 2018 Technical Overview of CLIM

User enters command

Program prompts for and accepts valid arguments*

Application objects are created or reused automatically

Program manipulates its application objects
Display objects are created from application objects

User sees display objects

User can operate on display objects

Application and display objects continue to exist

Input

Output

Computation

Display objects remain linked to application objects

*The command and arguments can also come from a single gesture.

Figure 3. CLIM Approach to the Input/Computation/Output Cycle�

fact, you might not recognize them at first glance, but they will grow on you grad-

ually as you develop your CLIM applications):

• A command is structured so that the user interface understands something of

the semantics of its arguments. That is, each argument must be an object of a

specified type. This helps the user in several ways:

° The user is prevented from entering invalid input, because the user interface

automatically enforces the validity of each argument.

° The user can get online help or prompting from the user interface, based on

the type of the argument.

° The user can enter input in creative and convenient ways, such as by clicking

on object displayed on the screen by a previous command. The user interface

knows which displayed objects are valid within the current context, and can

make them ��������� (the objects are highlighted as the pointer passes over

them).

° The user has a flexible means of interacting with the application, and often

can choose whether to use the mouse or keyboard to communicate with the

application.

• In CLIM, the user interface directly reflects the application’s structure, because

the display objects stand for application objects. Unlike the conventional model,

a CLIM user interface is not tacked on the application as a separate entity

6
Technical Overview of CLIM February 2018

which can diverge from the application to ill effect. CLIM’s direct linking be-

tween the application and display objects ensures a natural consistency between

the application and its user interface.

• Display objects are organized in a type lattice in the usual object-oriented way,

so inheritance can be used to good advantage. For example, when the user is

entering an argument of a given type, objects of that type ��� ��� �������� are

valid as input. For example, an application might define display objects repre-

senting buildings, schools, and houses. When the application needs a building as

input, the user can enter a school, because school is a subtype of building.

CLIM also offers a library of predefined types, saving the application program-

mer some effort when dealing with commonly used display types.

• Objects can be shared freely among different applications. CLIM’s ability to

share objects directly contrasts to some conventional systems, in which data can

be shared among applications only by reducing it to its lowest common denomi-

nator (usually text). �

2.2. How CLIM Helps You Achieve a Portable User Interface

CLIM provides a consistent stream-oriented interface to window systems across a

large set of hosts. When developing a portable user interface, you write your appli-

cation in terms of CLIM windows and their operations. You can also use Common

Lisp and CLOS. Figure 4 shows the elements on which your application depends.

CLIM

Portable application

Common Lisp
CLOS

Figure 4. Foundation of a Portable Application�

Your application is portable because it depends only on languages which have been

standardized: Common Lisp, CLOS, and CLIM. Of course, porting is never entirely

effortless, because different implementations of standardized languages can differ

from one another in minor ways.

From the perspective of your application, the details of the host window system,

host operating system, and host computer should be invisible. CLIM handles the

interaction with the underlying window system. Figure 5 shows the elements of

the host system from which CLIM shields your application.

7
February 2018 Technical Overview of CLIM

CLIM

Window System

Operating System

Hardware Platform

Portable application

Common Lisp
CLOS

Figure 5. How CLIM is Layered Over the Host System�

CLIM shields you from the details of any one window system by abstracting out

the concepts that many window systems have in common. Using CLIM, you specify

the appearance of your application’s output in general, high-level terms. CLIM

turns your high-level description into the appropriate appearance for a given win-

dow system.

In some cases, you might prefer to control the appearance of your user interface

more directly. You can bypass CLIM and use functions provided in the underlying

window system or toolkit to achieve more explicit control, at the expense of porta-

bility.

2.3. Highlights of CLIM Tools and Techniques

CLIM offers the following tools and techniques:

Windows and events

A portable layer for implementing ����� classes (types of win-

dow-like objects) that are suited to support particular high lev-

el facilities or interfaces. The windowing module of CLIM de-

fines a uniform interface for creating and managing hierar-

chies of these objects regardless of their sheet class. This layer

also provides event management.

Graphics A rich set of drawing operations, including complex geometric

shapes, a wide variety of drawing options (such as line thick-

ness), and a sophisticated color inking model. CLIM provides

full affine transforms, so that you can perform arbitrary trans-

lations, rotations, and scaling of drawings.

8
Technical Overview of CLIM February 2018

Output recording A facility for capturing all output done to a stream, which pro-

vides the automatic support for scrollable windows. In many

cases, programs produce output in the form of ������� �������,

which can be manipulated directly by the user (see context-

sensitive input). Thus, not only is the output recorded 
whether textual or graphic  but it also retains its semantics

and can be reused when appropriate.

Formatted output High-level macros that enable you to produce neatly formatted

tabular and graphical displays with minimal effort.

Context-sensitive input

Simple, direct means of using a displayed output object as in-

put. As mentioned above, an application can produce output via

objects, which retain their semantics. Users can recycle visible

output into input for the same application or a different one.

Each CLIM application sets up a context for what kind of in-

put is expected at a given time. For example, a CAD program

that supports designing electrical circuits might have a com-

mand called Set Resistance which sets up an input context in

which a resistor object is expected. Any resistors appearing in

the CAD programs display are automatically made mouse-

sensitive in that context, so the user can click on one to enter

it as input.

Adaptive toolkit A uniform interface to the standard compositional toolkits

available in many environments. CLIM defines abstract panes

that are analogous to the gadgets or widgets of a toolkit like

Motif or OpenLook. CLIM fosters look and feel independence

by specifying the interface of these abstract panes in terms of

their function and not in terms of the details of their appear-

ance or operation. If an application uses these interfaces, its

user interface will adapt to use whatever toolkit is available in

the host environment. By using this facility, application pro-

grammers can easily construct applications that will automati-

cally conform to a variety of user interface standards. In addi-

tion, a portable CLIM-based implementation of the abstract

panes is provided.

Application-building facilities

High-level facilities for defining applications, helping you to lay

out windows and gadgets, manage command menus and menu

bars, and link user interface gestures (such as mouse clicks)

with application operations. The application-building tools help

you construct a flexible user interface that can grow from the

protototype to the delivery phase.

9
February 2018 Comparing and Contrasting DW and CLIM

3. Comparing and Contrasting DW and CLIM

This section describes CLIM in terms of how it is similar to and how it differs

from Dynamic Windows. It also discusses conversion issues.

CLIM offers some advantages over Dynamic Windows. In brief, these are:

• Ability to develop a portable user interface.

• Support for using toolkits offered on various window systems to achieve the

look-and-feel of a given system.

• Simplification of some Dynamic Windows functionality, resulting in greater ease

of use and superior performance.

• Exposed underlying protocols, enabling you to modify or extend the behavior of

CLIM.�

3.1. Converting an Application From DW to CLIM

Genera users do not have to convert programs from Dynamic Windows to CLIM.

Symbolics will continue to support DW in Genera. In fact, it is possible that the

portions of Genera that use Dynamic Windows will not be reimplemented in CLIM.

One good reason to convert an existing program to CLIM is to take advantage of

the portability benefit that CLIM provides. If your goal is to deliver an application

with a user interface on a variety of Lisp platforms with different window systems,

you will probably want to convert the application’s user interface to CLIM.

Another good reason to convert a Dynamic Windows program to CLIM is that

many of the high level facilities in CLIM are faster than in Dynamic Windows.

Symbolics provides a conversion tool to help automate the procedure of converting

programs from DW to CLIM. For more information, see the section "Converting

from Dynamic Windows to CLIM" in ������ ���� ��������� ������� ������� ���

���������.

When developing a new application, you will need to decide whether the user in-

terface should be programmed in Dynamic Windows or CLIM. Although both will

coexist in Genera, there is no direct compatibility between them, and hence no

mixed programming approach.

3.2. Converting an Application From TV to CLIM

Some Genera users have applications that depend on Release 6 window functions

in the �� package. In some cases, these applications were not converted to Dynam-

ic Windows because of performance reasons. CLIM’s performance is superior to

that of Dynamic Windows, so for performance reasons, users may want to convert

programs that use Release 6 window functions to CLIM.

10
Comparing and Contrasting DW and CLIM February 2018

Note that the Release 6 window system has a very different architecture from DW

or CLIM. For example, window programs typically define new flavors of the win-

dow with methods that handle very low-level events (such as refresh and mouse

motion). Because of this architectural difference, converting from �� to CLIM usu-

ally requires a careful redesign of an application’s user interface, and the useful-

ness of automatic conversion tools is limited.

3.3. Similarities Between Dynamic Windows and CLIM

• CLIM supports essentially the same presentation model as that in Dynamic

Windows. CLIM captures the Dynamic Windows’ philosophy that a program’s

user interface should reflect its semantics.

• CLIM provides a graphics model which is similar to that of Dynamic Windows,

but is simplified and more uniform.

• CLIM includes an application-building tool similar to the ������������������

��������� of Dynamic Windows.

• CLIM’s command processor is virtually identical to that of Dynamic Windows.

• CLIM’s input editor is a simplification of that of Dynamic Windows.

• CLIM supports a version of Genera’s character styles. In Dynamic Windows

characters, strings, and displayed text have style. In CLIM only displayed text

has style.

• CLIM supports completion and context-sensitive help in the spirit of Dynamic

Windows.

3.4. CLIM as a UIMS, and Not a Window System

Dynamic Windows plays two distinct roles. It is both a window system and a user

interface management system. CLIM is not a window system; it is layered on top

of some other window system, such as X, NeWS, or Microsoft Windows. Therefore,

CLIM recasts the interfaces of Dynamic Windows related to being a window sys-

tem in a portable manner. CLIM encompasses the functionality of many window

systems; it acts as an ‘‘abstract window system’’ or a ‘‘generic window system’’

which can be layered on top of another window system. CLIM enables you to devel-

op a portable user interface, whereas Dynamic Windows does not.

The portions of Dynamic Windows that are directly related to its role as a window

system are not included in CLIM. For example, in Dynamic Windows, you can op-

erate on a window by sending it a message because some dynamic windows are im-

plemented as flavors that use the message-sending paradigm. CLIM does not sup-

port that paradigm.

CLIM, like the second role of Dynamic Windows, is a user interface management

system. CLIM shares the philosophy that you as programmer should be able to ex-

press what you want to do in high-level terms, and the system should manage the

details for you.

11
February 2018 Comparing and Contrasting DW and CLIM

3.5. CLIM is Built up From Layered Protocols

Whereas Dynamic Windows includes a great deal of flexibility in its single docu-

mented interface, CLIM is a layered protocol in the spirit of CLOS. In this docu-

ment, we refer to the higher level as the CLIM Application Programmer Interface

(or API) and the underlying level as the CLIM Class Protocol.

CLIM Programmer Interface

CLIM Class Protocol

Figure 6. CLIM Protocol Layers�

At the API level, an important design goal is that there should be one simple way

to do something. There can be some exceptions to this goal; when a very common

idiom is identified, it might be included even if there is another (more verbose)

way to do the same thing. Where some Dynamic Windows functions and macros of-

fer many keyword arguments, CLIM pares these down to a minimal set without

sacrificing functionality.

The CLIM Class Protocol is exposed to allow advanced users to modify or extend

CLIM in the object-oriented way. The API functions and macros are implemented

in terms of the CLIM Class Protocol. The CLIM Class Protocol, for the most part,

is not documented in this book. If you are interested in the CLIM Class Protocol,

you should consult the ���������������������.

3.6. Comparing the Presentation Type Systems

Dynamic Windows allows the presentation type lattice to be computed at run-time.

In Dynamic Windows, using inheritance can get complicated, because you must

specify what happens at run-time. In CLIM, the type lattice is fixed at load-time,

as it is in CLOS. By fixing the type lattice at load-time, CLIM achieves a perfor-

mance improvement and simplifies the conceptual model. In practice, this restric-

tion has had no negative effects on any applications, and has the benefit of making

CLIM’s presentation type system far faster than the Dynamic Windows presenta-

tion type system.

The CLIM presentation type system is a straightforward extension of the CLOS

type system. In CLIM, defining a presentation type is similar to defining a CLOS

class. CLIM extends the CLOS type system by supporting parameterized types,

such as integer ranges. This has the benefit of making the CLIM presentation type

system ‘‘feel’’ almost exactly like CLOS.

12
Comparing and Contrasting DW and CLIM February 2018

3.7. CLIM’s Unified Geometric Model

CLIM includes a unified geometric model which is used to represent windows,

graphics, and widgets. In other words, everything from a window itself to the

graphics drawn on it conforms to the same geometric model. This enables you to

deal with windows and graphics in a uniform way. CLIM also provides a general

model for transforming, rotating, and scaling geometric objects. CLIM’s unified ge-

ometric model results in a simplification of some mechanisms used in Dynamic

Windows.

3.8. CLIM and User Interface Appearance

It is an ambitious goal of CLIM to bridge a wide gap between two styles of user

interface programming.

In Genera’s style, the principal goal is for the user interface to convey the appli-

cation’s semantics. This goal leads to a natural consistency between the application

and its user interface. However, Genera and Dynamic Windows have been weak in

enabling programmers to specify a unique and attractive appearance of the user

interface. In other words, Genera has tended to sacrifice form for content.

Many commercial toolkits have powerful means of controlling the visual appear-

ance of a user interface. Traditionally, these toolkits offer no support at all for

connecting the application’s semantics to its user interface. The user interface is

thus designed and implemented as a separate, add-on piece to the application. In

other words, the toolkits tend to sacrifice content for form.

What’s missing from each of these approaches is the connection between the se-

mantics and the appearance of a user interface. CLIM enables the programmer to

specify the semantics and appearance of the user interface in an integrated way. It

provides the glue between the two.

For example, suppose that your user interface wants to use a dialog to read a real

number in the range from zero to ten from the user. A conventional toolkit might

make it easy to provide a visually attractive slider to prompt the user, but when

the application receives the input, there are no semantics associated with it; the

programmer must write some callback that handles events on the slider and con-

verts them to the desired real number. In Genera, the straightforward way to get

the number is to give a textual prompt such as "Enter a number from 0 to 10".
The appearance of the prompt is not particularly appealing, but when the input

arrives, Genera knows its semantics; it is a real number in the correct range.

CLIM aims to include the strength of each of these paradigms. The presentation

model maintains the link between the application’s semantics and its user inter-

face. The adaptive toolkit enables you to provide a visually attractive user inter-

face. So, if you want to use a slider to get a real number in the range from 0 to

10 from the user, you can use the following:

(clim:accept ’((real 0 10)) :view clim:+slider-view+)�

13
February 2018 Index

�

Index

CLIM and User Interface Appearance, 12
CLIM as a UIMS, and Not a Window System, 10
CLIM is Built up From Layered Protocols, 11
CLIM’s Unified Geometric Model, 12
Comparing and Contrasting DW and CLIM, 9
Comparing the Presentation Type Systems, 11
Converting an Application From DW to CLIM, 9
Converting an Application From TV to CLIM, 9
Highlights of CLIM Tools and Techniques, 7
How CLIM Helps You Achieve a Portable User

Interface, 6
Introduction to CLIM’s Presentation Model, 3
Preface, 1
Similarities Between Dynamic Windows and CLIM,

10
Technical Overview of CLIM, 3

