
iii
February 2018 Table of Contents

Table of Contents

Page

1 1Overview of Advanced Joshua Concepts

1.1 2The Joshua Protocol of Inference

1.2 2The Default Implementation of the Protocol

1.3 5Customizing the Joshua Protocol

2 7Storing and Retrieving Knowledge in Joshua: the Virtual Database

2.1 7What is a Virtual Database?

2.2 7Predications as Instances

2.3 8The Joshua Database Protocol

2.3.1 9The Contract of the Generic Function joshua:insert

2.3.2 10The Contract of the Generic Functions joshua:ask-data

and joshua:fetch

2.3.3 14The Contract of the Generic Function joshua:uninsert

2.3.4 14The Contract of the Generic Function joshua:clear

2.4 16Joshua’s Default Database: the Discrimination Net

2.4.1 17Organization of the Default Discrimination Net

3 23The Joshua Rule Facilities�

3.1 24Advanced Features of Joshua Rules

3.2 26The Joshua Rule Compiler

3.2.1 27The Forward Rule Compiler

3.2.2 33The Backward Rule Compiler

3.3 35Ordering Rule Execution

3.4 35Controlling Rule Invocation

3.5 36The Joshua Rule Indexing Protocol

3.5.1 38The Contract of the Trigger Adding Functions

3.5.2 38The Contract of the Trigger Deleting Functions

3.5.3 39The Contract of the Trigger Locating Functions

3.5.4 41The Contract of the Trigger Mapping Functions

4 47The Joshua Question Facilities

4.1 47Controlling Question Invocation

4.2 48The Joshua Question Indexing Protocol

4.2.1 48The Contract of joshua:add-backward-question-trigger

4.2.2 48The Contract of joshua:delete-backward-question-trigger

4.2.3 49The Contract of joshua:locate-backward-question-trigger

4.2.4 50The Contract of joshua:map-over-backward-question-

triggers

iv
Table of Contents February 2018

5 53Truth Maintenance Facilities

5.1 54The Truth Maintenance Protocol

5.1.1 54The Contract of the Joshua TMS Protocol Functions

5.1.2 55The Contract of a Joshua TMS Justification

5.1.3 56TMS Utility Routines

5.1.4 57Signalling Contradictions and Managing Backtracking

5.1.5 63Signalling Truth Value Changes

5.2 65The Joshua LTMS

5.2.1 65Clause Justification Structures

6 73Joshua Metering

6.1 73Joshua Metering Types

6.1.1 73Joshua Tell Metering

6.1.2 75Joshua Ask Metering

6.1.3 76Joshua Merge Metering

6.2 77Choosing Joshua Metering Types

7 79Controlling Data and Rule Indexing

7.1 81Customizing the Data Index

7.1.1 85Customizing the Data Index Without Storing Predications

7.2 88Customizing the Rule Index

7.3 92Customizing the Rule Compiler

7.3.1 102Customizing the Matchers Generated by the Rule Compiler

8 105The Joshua Object Facility

8.1 105Introduction to the Joshua Object Facility

8.2 107Basic Capabilities of the Joshua Object Facility

8.3 109Using Paths to Refer to the Structure of an Object

8.4 110Type Hierarchy in the Joshua Object Facility

8.5 112Part-Whole Hierarchy in the Joshua Object Facility

8.6 113Other Capabilities of Slots

8.6.1 113Initial Values of Slots

8.6.2 113Set Valued and Single Valued Slots

8.6.3 114Slots and Truth Maintenance

8.6.4 114Slots and Attached Actions

8.6.5 115Invoking Methods Associated with the Object Associated

with a Slot

8.6.6 116Equalities Between Slot Values

8.7 117Other Options in Define-Object-Type

8.8 118The Predicates Used in the Joshua Object Facility

9 121Joshua Language Dictionary

9.1 121Dictionary Entries

v
February 2018 List of Figures

�

List of Figures

Page

1 4The Joshua Protocol of Inference

2 4Type Network for non-TMS Predicates

3 4Type Network for LTMS Predicates

4 5The Default Implementation of the Protocol of Inference

5 11The tell data-indexing protocol and its default implementation

6 13The ask-data protocol and its default implementation

7 15The untell protocol and its default implementation

8 16The clear protocol and its default implementation

9 18Sample Discrimination Net Display

10 23Summary of Joshua Rule Operation

11 29Sample Rete Network

12 30Sample Rete Network Display

13 31Sample Rete Network Display with Filter Nodes

14 32Sample Rete Network Display with or Node

15 32Rete Network For Rule with Nested Ands

16 38Rule Indexing Protocol

17 39The Trigger-Adding Protocol and Default Implementation

18 40The Trigger-Deleting Protocol and Default Implementation

19 42The justify protocol and its default implementation

20 44The ask-rules protocol and its default Implementation

21 48The Question Protocol

22 49The Question Trigger Adding Protocol and Default Implementation

23 49The Question Trigger Deleting Protocol and Default Implementation

24 51The ask-questions protocol and its default implementation

25 64Example Trace of Condition Handler

26 66Example of setting up a nogood clause

27 75Tell metering of the unmodelled good-to-eat predicate.

28 76Tell metering of the modelled good-to-eat predicate.

29 79Knowledge Structures Can Be Diversely Implemented

30 95Graph of the Mixed Chaining Rule Foo

31 96Trace of The Mixed Chaining Rule Foo

32 98Graph of Mixed Chaining Rule Foo

33 99Trace of Explicitly Controlled Mixed Chaining

34 99Trace of Explicitly Controlled Mixed Chaining

35 105Predications Being Mapped into an Object Representation

36 106Other Capabilities of the Object Facility

37 107A Resistor and its Representation as an Object

38 111The Object-Type Hierarchy of Two-Terminal Devices

39 117Equality Links in a Two Resistor Voltage Divider

40 174Graph of the Mixed Chaining Rule Foo

vi
List of Figures February 2018

41 174Trace of The Mixed Chaining Rule Foo

42 176Graph of Mixed Chaining Rule Foo

43 177Trace of Explicitly Controlled Mixed Chaining

44 177Trace of Explicitly Controlled Mixed Chaining

1
February 2018 Overview of Advanced Joshua Concepts

1. Overview of Advanced Joshua Concepts

Joshua is an extensible software product for building and delivering expert system

applications. It is implemented on the Symbolics 3600 and Ivory families, on top of

the Symbolics Genera environment. Joshua is optimized for applications where per-

formance and delivered functionality are important.

������ ����� �� ����� ������, the first manual in the Joshua documentation set,

gives an introduction to the Joshua language and development environment. It cov-

ers everything you need to know to program using Joshua’s built-in facilities.

Among Joshua’s strengths is that this system is a coherent, multi-level environ-

ment, making advanced features available when you need them. Joshua is built

around some 30 core functions, the Protocol of Inference, which are ���������� ��

��������������������������

This modularity and accessibility offer powerful advanced features: user interfaces,

control structures, storage structures can all be customized to reflect what is most

natural for the application; external databases can be accessed; existing software

tools can be seamlessly integrated into the Joshua application; performance can be

fine-tuned.

This documentation volume, ������ ��������� ������, describes in detail the pro-

tocol of inference and the default implementation of that protocol supplied as part

of the Joshua system. In addition, it describes how you can customize Joshua to

your own particular application. We often refer to this tailoring or customization

process as ��������.

The specific topics covered here include:

• The Database Protocol

• The Default Discrimination Net

• The Rule Compiler

• The Rule Indexing Protocol

• The Question Indexing Protocol

• The Truth Maintenance Facilities

• The Joshua LTMS

• Controlling Data and Rule Indexing

The implementation of the Joshua protocol of inference depends heavily on the ob-

ject-oriented programming facilities of Symbolics Common Lisp. These same fea-

tures will be included in the Common Lisp Object System. A working knowledge of

2
Overview of Advanced Joshua Concepts February 2018

the concepts of this style of object-oriented programming will be helpful in under-

standing how to customize the protocol of inference. For more information, see the

section "Flavors" in ��.

1.1. The Joshua Protocol of Inference

Each different Joshua predicate is implemented as an object type (������ in Sym-

bolics Common Lisp terminology, ����� in the Common Lisp Object System). Each

protocol step is implemented as a generic function, so that generic dispatch can se-

lect the method appropriate for that function and that predicate. By defining your

own methods for protocol functions for particular predicates or groups of predi-

cates, you customize Joshua’s behavior for those functions and predicates.

The protocol of inference is a way of grouping the many steps of the inferencing

process into a functional hierarchy. Figure1 shows the hierarchy of generic func-

tions.

This grouping of the protocol functions splits the protocol into relatively indepen-

dent parts. For example, an implementation of the TMS protocol should work with

just about any implementation of the database interface. This independence en-

hances sharing of code between different applications, and makes the whole proto-

col easier to understand.

The protocol imposes a level of modularity on your application which will help you

organize your program and think about its many parts in a more coherent way.

Conversely, the many levels of the protocol allow you to customize the protocol

with "just the right amount" of effort. Although comprehensive changes may re-

quire significant effort, simple changes require minimal effort. In all cases, the

careful organization and definition of the protocol will make your applications easi-

er to design, build, and understand.

1.2. The Default Implementation of the Protocol

The Joshua system provides a complete implementation of the protocol of infer-

ence. We refer to this as the ������� ��������������, to encourage customization of

the protocol. We expect that the default implementation will be perfectly adequate

for prototyping and for large parts of production-quality applications. Where the

default implementation is lacking, either in features or performance, customization

can be done. The fine-grained control offered by Joshua allows this customization

to be applied where necessary, while the rest of an application can continue to use

the default implementation.

The default implementation of the protocol of inference is provided by a set of ob-

ject types (flavors in the current implementation) which have methods defined for

all the generic functions of the protocol. The object types are arranged so that

they may be used either by the default implementation or by user-defined imple-

mentations. Figure2 shows the network of types used by the default implementa-

tion of non-TMS predicates, joshua:default-predicate-model.

3
February 2018 Overview of Advanced Joshua Concepts

RULE-INDEXING PROTOCOL
add-forward-rule-trigger
delete-forward-rule-trigger

map-over-forward-rule-triggers

USER INTERFACE

add-backward-question-trigger

say

delete-backward-question-trigger

locate-backward-question-trigger

RULE CUSTOMIZATION PROTOCOL

expand-forward-rule-trigger expand-backward-rule-action

positions-forward-rule-matcher-can-skip

locate-forward-rule-trigger

add-backward-rule-trigger
delete-backward-rule-trigger

locate-backward-rule-trigger

map-over-backward-rule-triggers

TMS PROTOCOL

justify
unjustify support

notice-truth-value-change

DATABASE INTERFACE

insert

tell clear

ask

ask-data ask-rules ask-questions

fetch

untell

uninsert

nontrivial-tms-p

current-justification

all-justifications

QUESTION PROTOCOL

map-over-backward-question-triggers

act-on-truth-value-change

prefetch-forward-rule-matches

write-backward-rule-matcher

write-forward-rule-semi-matcher
write-forward-rule-full-matcher

4
Overview of Advanced Joshua Concepts February 2018

Figure 1. The Joshua Protocol of Inference

Figure 2. Type Network for non-TMS Predicates

Figure 3 shows the network of types for the LTMS implementation, ltms:ltms-

predicate-model.

Figure 3. Type Network for LTMS Predicates

Notice that it is built by adding ltms:ltms-mixin to joshua:default-predicate-

model, and so includes as a subgraph all the parts of joshua:default-predicate-

model. So the basic predicate behavior of LTMS predicates in the default LTMS

model comes from joshua:default-predicate-model, and ltms:ltms-mixin provides

the TMS behavior.

Figure 4 shows which methods are associated with each component of the imple-

mentation object types.

The implementation techniques chosen for the default should be efficient over a

wide range of Joshua programs and applications. These techniques are robust and

general. Particular attention has been paid to optimizing them for "typical" appli-

cations, and they should prove sufficient for most Joshua programmers’ needs. In

addition, the default implementation has been optimized for the Symbolics Common

Lisp and Genera environment.

5
February 2018 Overview of Advanced Joshua Concepts

Figure 4. The Default Implementation of the Protocol of Inference

1.3. Customizing the Joshua Protocol

When the default implementation of the protocol of inference is lacking, whether

in features or performance, you should customize the protocol.

Since each step of the protocol of inference is implemented as a generic function,

you can define your own methods for these functions. In this way you can modify

the behavior of Joshua. Each protocol function has a ��������, or set of things it

must do. As long as the contract is followed, the Joshua system will function cor-

rectly. The default implementation supplies methods which implement each proto-

col function correctly. The default techniques have been chosen to be robust, gen-

eral, and efficient. However, for any particular problem there may be more effi-

cient ways to implement parts of that problem.

We will describe each grouping of protocol functions to show the different ways

that the protocol can be customized. An important feature of the protocol is the

multi-level nature of the generic function tree. This allows fine-grained control

over the customization, so that you can specify as much or as little of the behavior

as you need. If you define methods for high-level functions, you are taking over

most or all of the behavior. If you wish to change the behavior in less drastic

ways, you would define methods for lower-level functions. Descriptions and exam-

ples for each part of the protocol will explain the levels and how the different

parts of the protocol interact.

6
Overview of Advanced Joshua Concepts February 2018

7
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

2. Storing and Retrieving Knowledge in Joshua: the
Virtual Database

2.1. What is a Virtual Database?

Conceptually, a database is an infinitely extensible collection of facts. In Joshua, a

database is a structure where you store statements together with associated infor-

mation, such as truth values. The data is in the form of predications.

The Joshua database protocol makes a ������� �������� possible. That is, the proto-

col gives you the capability to implement your data structures in any way suitable

to your needs; in fact, since different data structures can coexist, you can choose

the best data representation for each individual problem piece. This flexibility

means you can minimize storage and lookup time for particular kinds of data,

thereby increasing the efficiency of your application.

The Joshua database protocol consists of five database generic functions,

joshua:insert, joshua:ask-data, joshua:fetch, joshua:uninsert, and joshua:clear,

that are separated from the database implementation functions. This modular orga-

nization provides for a stable, consistent interface to diversely implemented data

structures.

Joshua’s default database is implemented as a �������������� ���. This is a gener-

al-purpose data structure, commonly used in AI, that is reasonably efficient over a

wide range of applications. However, for a fixed problem, you can usually do bet-

ter.

This chapter discusses the general contract of the five data-indexing functions, as

well as their default implementation. We also cover the organization of the dis-

crimination net.

2.2. Predications as Instances

Predications have a dual role in Joshua. They store data, and thus are a knowl-

edge representation, that is they "mean" something; they also have program ac-

tions associated with them, and in that sense they "do" something. Predications

can be remembered, asked about, printed, and so on, as specified by the generic

functions in the Joshua protocol.

Although predications look like lists with square brackets, they are really ���������

and each of the operations you perform on them is a generic function. (Readtables

change bracketed input to appropriate joshua:make-predication forms; print meth-

ods arrange for predications to be printed with brackets. But underneath the user

interface, predications are just instances.) This lets Joshua keep interface and im-

plementation separate in dealing with predicates, in the same way the Flavor sys-

tem separates interface (generic functions) from implementation (methods). You

use joshua:define-predicate to specify the implementation for a given predicate by

mixing in all its base models (or flavors).

8
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

2.3. The Joshua Database Protocol

Recall that the interface to the Joshua database is controlled by the four protocol

generic functions, joshua:tell, joshua:ask, joshua:untell, and joshua:clear.

joshua:tell Inserts predication objects (predications and related informa-

tion) into the database.

joshua:ask Retrieves these predication objects from the database.

joshua:untell Removes a predication object from the database.

joshua:clear Flushes the database.

Each of these four functions dispatches to a method that calls on other generic

functions to do part of its work. The generic functions that manage the data in-

dexing are:

joshua:insert Does data indexing for joshua:tell. Puts a predication where

joshua:fetch can find it.

joshua:ask-data Performs unification and calls the continuation on objects re-

trieved by joshua:fetch. If the database does not actually re-

tain the predication you joshua:tell, joshua:ask-data is the

place where one should be reconstructed.

joshua:fetch Does data indexing for joshua:ask. Finds a predication object

in the place that joshua:insert put it. joshua:fetch always

calls its continuation on a predication that was found in the

database.

joshua:uninsert Does data indexing for joshua:untell. Removes a predication

object from the place that joshua:insert put it.

joshua:clear The joshua:clear method takes care of data flushing, that is,

of resetting the database so that it is completely empty.

The Protocol lets you change the way predications are stored in the virtual

database. The section "Customizing the Data Index" covers this topic.

The point to note here is that if you customize your database you must always in-

clude methods for all five (or sometimes four) generic functions, namely,

joshua:insert, joshua:fetch or joshua:ask-data, joshua:uninsert, and

joshua:clear. This is because they must be consistent in their functionality;

joshua:tell must know where to put data, joshua:ask and joshua:untell must

know where to find data, and joshua:clear must know how to flush data. (It is not

always necessary to write a new method for joshua:ask-data, since it relies on

joshua:fetch for database access. Similarly, joshua:ask-data when customized,

might never call joshua:fetch.)

joshua:insert, joshua:fetch, joshua:ask-data, joshua:uninsert, and joshua:clear

dispatch to the appropriate method for the model the predicate is built on. The de-

fault method for joshua:ask is on default-ask-model. The default model for predi-

9
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

cations is joshua:discrimination-net-data-mixin, which implements the generic

database as a discrimination net. (Note that you would seldom call joshua:insert

or joshua:uninsert directly, except when debugging a data model.)

The general contract of joshua:insert, joshua:ask-data, joshua:fetch,

joshua:uninsert, and joshua:clear, as distinct from their particular implementa-

tion, is detailed in the following sections:"The Contract of the Generic Function

joshua:insert", "The Contract of the Generic Functions joshua:ask-data and

joshua:fetch", "The Contract of the Generic Function joshua:uninsert", "The Con-

tract of the Generic Function joshua:clear".

For an example of how these functions work together: See the section "Customiz-

ing the Data Index", page 81.

2.3.1. The Contract of the Generic Function joshua:insert

joshua:insert stores predication objects in the database, or at least records enough

data from which joshua:ask-data can reconstruct these predication objects. This

function does not deal with the other operations of joshua:tell, namely, justifica-

tion and locating forward rules. These are the responsibility of joshua:justify,

joshua:map-over-forward-rule-triggers, and joshua:notice-truth-value-change.

See the section "The Joshua Rule Facilities ", page 23. By modularizing the opera-

tions of joshua:tell, we let you pinpoint the specific functionality you might want

to modify; for instance, you can still use the existing joshua:insert function, even

if you define your own way of doing justification and locating forward rules. (If

you want to redefine justification, forward rule mapping, ��� data indexing, all at

once, you would, probably, want to redefine the function joshua:tell itself. But in

almost all cases it is sufficient to move down a level and rewrite only the piece of

functionality you need.)

Although you can redefine the database structure, joshua:insert always expects da-

ta in the form of predications. Once installed by joshua:tell, predications are ob-

jects containing state information such as justifications. The system usually ex-

pects to deal with these objects, not with copies or patterns; for example, the con-

tinuation of joshua:ask is called with an argument which contains the actual

predication object retrieved from the database.

joshua:insert must return two values. If the predication is being added for the

first time, joshua:insert returns it, as well as the value joshua::t.

If a variant of the predication already exists in the database, joshua:insert returns

the canonical version of it (the version already inserted in the database), together

with the value joshua::nil.

joshua:insert uses the joshua:variant test to determine if the predication it is in-

serting already exists in the database. Patterns p1 and p2 are variants under the

following conditions:

• If the constants in p1 are joshua::eql to the constants in p2.

10
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

• If the variables in p1 and p2 are in the same places, and if there is a renaming

of variables that makes them the same.

• Recursive structures (such as lists and predications) inside a predication must

be recursively variants.

For more detail: See the function joshua:variant, page 252.

Figure 5 shows the organization of the joshua:tell data-inserting protocol includ-

ing the default implementation of joshua:insert.

2.3.2. The Contract of the Generic Functions joshua:ask-data and joshua:fetch

Like those of joshua:tell, the operations of joshua:ask are modularized to allow

fine-tuning of functionality changes. The data-indexing functionality of joshua:ask

is also broken down into separate functionality assumed by joshua:ask-data and

joshua:fetch.

The contract of joshua:ask-data is to do unification on the objects passed to it by

joshua:fetch, and to call the joshua:ask continuation on the unified query and its

support.

joshua:ask-data does not deal with backward rules or questions; these are the re-

spective responsibility of joshua:ask-rules, and joshua:ask-questions, which in

turn pass off to joshua:map-over-backward-rule-triggers and joshua:map-over-

backward-question-triggers.

joshua:ask-data is not required to find the canonical predication in the database.

That is the responsibility of joshua:fetch. If the data model does not store the ac-

tual predication, but rather information from which a copy of the predication may

be reconstructed, joshua:ask-data is the place where this reconstruction should be

done.

Loosely defined, the contract of joshua:fetch is to get a superset of objects that

might unify with the query (including those objects matching the pattern it is

given). Note that while joshua:fetch deals with its input objects as �������� that

must be matched, the continuation must be called on predication objects found in

the database.

joshua:fetch does not check truth values of joshua:*true* or joshua:*false*;

joshua:ask-data, on the other hand, does.

joshua:fetch is not required to do unification, as that is the responsibility of

joshua:ask-data; the contract of joshua:fetch merely specifies that it do whatever

is convenient at the database level. Thus joshua:fetch can fetch anything that

might unify with its pattern, skipping only definite failures. For some examples of

this: See the section "Organization of the Default Discrimination Net", page 17.

How and to what extent joshua:fetch filters objects is up to the implementation.

Since filtering is cheap and unification is expensive, the more filtering you can do,

the better.

11
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

insert
[Generic Function]

tell

justify

[Generic Function]

[Generic Function]

.

.

.

(tell default-tell-model)
[Method]

Default implementation of tell

(insert discrimination-net-data-model)
[Method]

discrimination-net-insert
[Function]

Default implementation of insert

Figure 5. The tell data-indexing protocol and its default implementation

One proper, but slow, implementation of joshua:fetch is to call the continuation

on ����� predication in the database, and let unification do the filtering. That

12
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

would be corect, but slow (like a database without indices). Here’s an example.

(defvar *slow-database* nil "Just a list of all the facts.")

(define-predicate-model slow-data-model () ())

(define-predicate-method (insert slow-data-model) ()

 ;; if this is new data, push it onto the list.

 ;; Otherwise return the canonical version.

 (let ((found (find self *slow-database* :test #’variant)))

 (if found

(values found nil)

(progn (push self *slow-database*)

 (values self t)))))

(define-predicate-method (fetch slow-data-model) (continuation)

 ;; indiscriminately suggest every fact as a candidate

 (mapc continuation *slow-database*))

(define-predicate-method (clear slow-data-model) (clear-data-p ignore)

 ;; clearing the database is just setting it to nil

 (when clear-data-p

 (setq *slow-database* nil)))

(define-predicate-method (uninsert slow-data-model) ()

 ;; uninsert just deletes self from the list

 (setq *slow-database* (delete self *slow-database*)))

(compile-flavor-methods slow-data-model)

(define-predicate slow (arg1 arg2) (slow-data-model default-predicate-model))�

The default implementation of joshua:fetch uses the discrimination net. See the

section "Joshua’s Default Database: the Discrimination Net", page 16.

Figure

6, shows the organization of the joshua:ask data-retrieval protocol including the

default implementation of joshua:ask-data and joshua:fetch.

2.3.2.1. Signalling a Condition When joshua:ask-data or joshua:fetch Can’t Handle a
Query
The Joshua Database Protocol allows you to structure your data in ways that are

appropriate for your application; sometimes this involves trading off generality for

performance. For example, if a significant portion of your data consists of object-

attribute-value triples (such as the ����� of the ����� is ����), then you might want

to use an object-oriented representation (such as joshua::flavor instances) to store

this data. However, using this representation makes it awkward or slow to respond

to a query that asks for every object with a specific property, such as:

[has-eye-color ?who blue]

13
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

ask
[Generic Function]

[Method]

fetch
[Generic Function]

(fetch discrimination-net-data-mixin)
[Method]

discrimination-net-fetch
[Function]

[Generic Function]

Default Implementation of ask-data

ask-data ask-rules ask-questions
[Generic Function][Generic Function]

(ask-data default-ask-model)

(ask default-ask-model)
[Method]

Default Implementation of fetch

.

.

. .
.
.

Figure 6. The ask-data protocol and its default implementation�

An implementation of joshua:ask-data or joshua:fetch would ideally answer such

a query even if it did so slowly. However, such queries may be of such little value

to an application that a developer decides not to waste effort on implementing a

method that can respond to the query.

It is important, however, that joshua:fetch and joshua:ask-data methods do not

cause errors when faced with a query that they do not wish to handle. One reason

14
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

for this is that the command Show Joshua Database may post such a query even if

the application never makes such queries on its own.

The contract of joshua:ask-data and joshua:fetch requires these methods to

joshua::signal a specific condition when they decline to handle a query. The base

flavor for such condition objects is ji:model-cant-handle-query. A second condition

flavor (built on this base flavor) is called ji:model-can-only-handle-positive-

queries which (as the name suggests) should be used if the implementation is pre-

sented with a negated query, but only expects queries which are not negated.

The following is an example of how to use these conditions:

(define-predicate-method (ask-data object-model)

 (truth-value continuation)

 (unless (eql truth-value *true*)

 (signal ’ji:model-can-only-handle-positive-queries

 :query self

 :model ’port-direction-model))

 (with-statement-destructured (object value) ()

 (typecase object

 (unbound-logic-variable

(signal ’ji:model-cant-handle-query

:model ’port-direction-model

:query self))

 (otherwise < whatever you really want to do >))))

2.3.3. The Contract of the Generic Function joshua:uninsert

The contract of joshua:uninsert is to remove a single predication object that

joshua:insert stored into a particular model. joshua:untell passes all TMS issues

to joshua:unjustify. The clearing of internal caches (such as the Rete net), is

handled automatically, even if you supply your own method for joshua:uninsert.

Figure 7, shows the organization of the joshua:untell data removal protocol in-

cluding the default implementation of joshua:uninsert.

2.3.4. The Contract of the Generic Function joshua:clear

The contract of joshua:clear is to remove all facts that joshua:insert stored into

a particular model. Note that if you write a model that redefines joshua:insert

and joshua:fetch, you almost certainly need to write (or inherit) a corresponding

joshua:clear method.

Figure 8 shows the organization of the database clearing protocol, including its de-

fault implementation.

15
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

uninsert
[Generic Function]

untell
[Generic Function]

unjustify
[Generic Function]

(untell default-tell-model)
[Method]

[Function]

(uninsert discrimination-net-data-model)
[Method]

discrimination-net-uninsert

Default implementation of uninsert

Default implementation of untell

.

.

.

Figure 7. The untell protocol and its default implementation

16
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

clear

clear

(clear discrimination-net-data-mixin)

discrimination-net-clear

[Lisp Function]

[Generic Function]

[Method]

[Function]

Default Implementation of clear

Figure 8. The clear protocol and its default implementation

2.4. Joshua’s Default Database: the Discrimination Net

Joshua uses a data structure called a discrimination net for data storage and re-

trieval. This is a standard, domain independent data structure; it is organized so

that in general the time needed to look up an item is independent of the number

of items contained in the database. (In some specific problems you can do better

than a discrimination net. See the section "Customizing the Data Index", page 81.)

17
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

The default discrimination net is written to support the basic model,

joshua:discrimination-net-data-mixin.

Note: A good introduction to the practical matters of discrimination networks can

be found in Eugene Charniak, Christopher K. Riesbeck, and Drew V. McDermott,

���������� ������������ �����������, second edition (New Jersey: Lawrence Erlbaum

Associates, 1987), chs. 8 and 11. In chapter 11 the authors discuss eight design de-

cisions involved in the creation of a discrimination net. Here is the list of these,

and the Joshua designers’ choice in each case:

1. Are variables allowed in the data patterns? Yes

2. Are variables allowed in the query patterns? Yes

3. Does one keep track of variable bindings during fetching? No.

4. Should one return a list or a stream of possibilities? Pass closure down into

dn fetcher.

5. Should one use CAR or CAR-CDR indexing? CAR. (Except for tail variables.)

6. Should one uniquify subexpressions? Yes.

7. Should one completely discriminate the data? Yes.

8. Should one use multiple indexing? No.

Please refer to the aforementioned book for further details.

2.4.1. Organization of the Default Discrimination Net

The organization of a storage structure such as a discrimination net has to do

with the way in which the structure differentiates (�������������) the objects that

it stores. The discrimination net is organized to limit the search by eliminating in-

valid search targets. This is called ����������� ������; it answers queries like, "find
everything in the database that looks like this."

To see how the discrimination net stores predications, display a graph of the dis-

crimination net with the form:

(graph-discrimination-net ji:*data-discrimination-net*)

The graphic representation of the database can also be a useful debugging aid if

you are debugging an advanced model that calls the discrimination net, or if you

suspect a performance bottleneck in the discrimination net. (You might, for exam-

ple, look for a node with an unnecessarily large number of inferiors.)

The argument ji:*data-discrimination-net* contains the root node of the discrimi-

nation net to be graphed. The default root contains the token ji::*begin-

predication*; this merely stands for an object that begins predications in the dis-

crimination net.

Figure 9, page 18 shows a sample graph display of a database containing predica-

tion objects with various arguments (lists, logic variables, nested predications,

number, string, constant), to show how they are stored.

18
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

[hobby al (eating sleeping)] ;list argument

[hobby jane (sailing skiing hiking)] ;list argument

[foo ?x ?x] ;logic variable arguments (repeated)

[foo ?x ?y] ;logic variable arguments

[foo 1 [doodle 2]] ;nested predication argument

[foo 1 [doodle ?x]] ;nested predication with logic variable

[foo bar ?x] ;logic variable argument

[foo bar 2] ;numeric argument

[alcohol-content vodka "100%"] ;string argument

[has-eye-color jane brown]

[has-eye-color fred green]

Figure 9. Sample Discrimination Net Display�

The net looks like a tree seen horizontally, with the root node at the leftmost side.

The immediate descendants of the root are predicates. The leaf nodes list the

predication(s) that are stored in that node.

When more than one predication is built from the same predicate (as is the case

with [has-eye-color ...] and [foo ...] in the figure), the tree branches, with sep-

arate branches discriminating the arguments for each predication.

Thus, if we are looking for a predication built on [foo ...], the retrieval function

joshua:discrimination-net-fetch (called by the joshua:fetch method of

19
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

joshua:discrimination-net-data-mixin) can ignore all predication branches other

than those starting from [foo ...]. The search area is further narrowed down

while searching a predicate tree: if you are looking for predication pattern [foo bar

...], the lookup function can ignore the other branches of [foo ...], and travel

only through the arguments branching off from the bar node.

Figure 9 shows the individual storage of constant arguments, string arguments,

numeric arguments, and nested predications. When the discrimination net encoun-

ters a nested predication like [foo 1 [doodle 2]] in the graph example, it re-

discriminates the nested predication from the root, and uses the resulting (unique)

leaf node as a token for the nested predication. The nested predication also ap-

pears in the containing predication; here it is stored in a node labelled ������

�����������.

Discrimination of arguments helps to limit the number of items that are retrieved.

So, for example, if you want to look up all persons with green eyes, joshua:fetch

traverses the branches for both [has-eye-color Fred ...] and [has-eye-color Jane

...], but rejects the latter because the color arguments don’t match. Here are

some examples using constant and string arguments.

; discrimination net filters non-matching constant and string arguments

 (fetch [has-eye-color ?person green] #’print)

[HAS-EYE-COLOR FRED GREEN]

NIL

 (fetch [has-eye-color jane ?color] #’print)

[HAS-EYE-COLOR JANE BROWN]

NIL

 (fetch [has-eye-color ?who ?color] #’print)

[HAS-EYE-COLOR FRED GREEN]

[HAS-EYE-COLOR JANE BROWN]

NIL

 (fetch [alcohol-content ?x "100%"] #’print)

[ALCOHOL-CONTENT VODKA "100%"]

NIL

 (fetch [alcohol-content vodka ?x] #’print)

[ALCOHOL-CONTENT VODKA "100%"]

NIL

Two types of arguments, namely, lists and logic variables, are not stored individu-

ally. This is reflected in the way joshua:fetch deals with queries containing such

arguments.

All lists are equivalent to the discrimination net. They are stored in a node whose

token is ji::*embedded-list*. The grapher displays this as ����. That is, all lists

look pretty much the same to the discrimination net. See the branches for predi-

cate hobby in figure 9.

20
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

Since lists are not discriminated at the database level, and the lookup function is

not responsible for unification, joshua:fetch gets all possibilities when dealing

with list arguments. In the example below, even though we specify to joshua:fetch

the exact pattern to find, we get everything that starts with the target predicate,

including answers that don’t necessarily unify with the query.

; discrimination net does not discriminate lists

; fetch gets all possible answers

(fetch [hobby ?x (eating sleeping)] #’print)

[HOBBY JANE (SAILING SKIING HIKING)]

[HOBBY AL (EATING SLEEPING)]

NIL

Since no unification is done at the database level, logic variable arguments are not

discriminated, but rather stored in a node whose token is ji::*variable*. The gra-

pher displays this as ���. That is, all variables look pretty much alike to the dis-

crimination net. So, for example, although the logic variables in [foo ?x ?x] and

[foo ?x ?y] are distinct to the unifier, both predications are stored identically, as

we see in figure 9, and both appear in the same rightmost node.

As it does with lists, the lookup function gets all possibilities when dealing with

logic variables either in the lookup pattern or in the database.

; discrimination net does not discriminate logic variables

; fetch gets all possible answers

 (fetch [foo ?x ?x] #’print)

 ;; this finds six answers, even though only three will pass

 ;; the unification test in ask-data

[FOO 1 [DOODLE ?X]]

[FOO 1 [DOODLE 2]]

[FOO BAR 2]

[FOO BAR ?X]

[FOO ?X ?Y]

[FOO ?X ?X]

NIL

21
February 2018 Storing and Retrieving Knowledge in Joshua: the Virtual Database

 (fetch [foo 1 ?x] #’print)

[FOO 1 [DOODLE ?X]]

[FOO 1 [DOODLE 2]]

[FOO ?X ?Y]

[FOO ?X ?X]

NIL

 (fetch [foo bar 2] #’print)

[FOO BAR 2]

[FOO BAR ?X]

[FOO ?X ?Y]

[FOO ?X ?X]

NIL

22
Storing and Retrieving Knowledge in Joshua: the Virtual Database February 2018

23
February 2018 The Joshua Rule Facilities

3. The Joshua Rule Facilities�

The basics of rule syntax and operation were presented in the section "Rules and

Inference". Figure 10, page 23 summarizes the main points of this earlier discus-

sion here, for quick reference.

Rule Type Triggered
by

Forward

Backward

if-part

then-part

TELL

ASK

Compound

Single

then-part

if-part

Rule executes
action part

ASK calls
continuation

Rule Success
(all if-parts

Trigger
Part

Predications
In Trigger

Rule Fires
When

Action
Part

Trigger
Asked

Triggers
Satisfied

satisfied)

Figure 10. Summary of Joshua Rule Operation

This chapter amplifies some of the basics, and discusses the ������������� and ����

��������. The rule compiler translates your rules into Lisp. Rule indexing is the

way the system adds, deletes, and finds rules.

Given an initial set of facts, rules allow us to infer or deduce additional new facts,

that are consequences or conclusions. Since rules define how the system reasons

about its knowledge, they are one means of controlling the acquisition and exten-

sion of current knowledge.

Joshua programs can use either ������� �������� or �������� �������g rules, or

both. Forward chaining is triggered by a joshua:tell statement and its action(s)

can result in more joshua:tell statements, adding newly deduced facts to the

database. Backward chaining is triggered by an joshua:ask statement, and its

action(s) involve the joshua:ask mechanism, that is, it works from existing data

rather than inferring new data.

Seen declaratively, a forward or backward rule is simply a special kind of fact,

stating a logical truth. In other words, there is nothing special in terms of logic to

distinguish a forward from a backward rule, since both are derived from modus

ponens. Seen mechanistically, there is a distinction between forward and backward

rules, in terms of the processing directives each gives the system.

There are many ways of doing inference. For most engineering applications, how-

ever, forward and backward chaining are computationally efficient problem solvers

that balance the power of mathematical logic with the efficiency of the computing

mechanism. Both of these rules are �����, but they are ����������. Soundness

means that using these rules of inference always produces logically (mathemati-

cally) correct conclusions. Incompleteness means that, in some cases, some correct

conclusions will not be found.

24
The Joshua Rule Facilities

February 2018

Soundness is obviously a desirable characteristic. Incompleteness is undesirable,

but complete rules of inference are computationally less efficient; also for most

practical applications incompleteness doesn’t seem to be a problem. (One applica-

tion area which does require completeness is mathematical theorem proving.)

In general, then, the Joshua programmer need not worry about these formal prop-

erties of the Joshua inferencing mechanism. But looking at your program in terms

of logic can give you some guidance in debugging it. In brief, we can separate

bugs into four categories:

1. Drawing incorrect conclusions.

2. Not drawing correct conclusions.

3. Non-termination ("infinite loops").

4. Errors detected when rules call Lisp functions incorrectly.�

Soundness tells us that if our system is drawing incorrect conclusions, there must

be an incorrect piece of data or an incorrect rule.

When the system is failing to draw some correct conclusion, it may be due to in-

correct data or rules, or it may be due to the incompleteness of the rule of infer-

ence. In that case, it is necessary to change the program in ways which leave it

logically the same, but change the structure enough to allow the inference mecha-

nisms to cope with it. This change can either be adding rules or data which are

logically redundant, or it can be restructuring the rules or data.

3.1. Advanced Features of Joshua Rules

This section summarizes the full syntax of both forward and backward chaining

rules.

Both forward and backward rules allow various keywords to be attached to the pat-

terns of the If-part of the rule. Both Forward and Backward rules allow the Key-

word :support followed by a logic-variable:

(defrule foobar (:forward)

 If [and [foo ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2]

 Then (format t "~&I won with F1 = ~s and F2 = ~s" ?f1 ?f2))

(defrule foobar (:backward)

 If [and [bar ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2]

 Then [foo ?x ?z])�

This indicates that the logic-variable should be bound to the "support" for this

pattern. In the case of a forward rule, the support is simply the fact which

matched the corresponding pattern. Thus

25
February 2018 The Joshua Rule Facilities

(tell [and [foo 1 2] [bar 2 3]])�

will cause the first rule above to print:

I won with F1 = [FOO 1 2] and F2 = [BAR 2 3]

Backward rules turn their If-part into a series of nested joshua:ask’s. When the

first joshua:ask finds a match, it calls a continuation which performs the next

joshua:ask. The argument to this continuation is a "backward-support" structure,

see the section "Continuation Argument", page 125.

The support keyword in a backward rule binds the logic-variable to the backward

support corresponding to its query.

Thus with the following rule and data:

(defrule foobar (:backward)

 If [and [bar ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2

 (progn (format t "~&I won with F1 = ~s and F2 = ~s" ?f1 ?f2)

 (succeed))

]

 Then [foo ?x ?z])

(tell [and [bar 1 2] [bar 2 3]])�

The query:

(ask [foo 1 3] #’print-query)�

will cause the following output:

I won with F1 = ([BAR 1 2] 1 [BAR 1 2]) and F2 = ([BAR 2 3] 1 [BAR 2 3])

[FOO 1 3]

This backward support may be used to provide a justification (for a TMS) when a

backward rule caches the results of its work, as follows:

26
The Joshua Rule Facilities

February 2018

(defrule foobar (:backward)

 If [and [bar ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2

 (progn

 (tell [foo ?x ?z]

 :justification ‘(foobar

 (,(ask-database-predication ?f1)

 ,(ask-database-predication ?f2))))

 (succeed))

]

 Then [foo ?x ?z])�

Backward rules also support two other keywords :do-backward-rules and :do-

questions. These can be used to control the behavior of the joshua:ask corre-

sponding to a backward action. If the :do-backward-rules keyword is present then

the value following it should evaluate to either joshua::t or joshua::nil; if it is

joshua::nil, then this query will not attempt to use rules to satisfy the query, oth-

erwise rules will be used. Similarly, the :do-questions questions controls whether

backward questions will be invoked to query the user. The default value is that

backward rules are used and that questions will be attempted if the query which

caused this rule to be invoked allowed questions to be used.

3.2. The Joshua Rule Compiler

The ���� �������� is the part of Joshua that translates the rules you write into

Lisp. This section describes, in general terms, how the rule compiler operates.

Knowledge of how the rule compiler operates is important if you would like to ex-

tend the rule compiler later on by defining your own methods for the rule com-

piler’s generic functions.

The rule compiler uses several generic functions to generate data structures that

drive the rest of rule compilation. These five generic functions are as follows:

joshua:expand-forward-rule-trigger

joshua:expand-backward-rule-action

joshua:write-backward-rule-matcher

joshua:write-forward-rule-semi-matcher

joshua:write-forward-rule-full-matcher�

The functions handle forward chaining and backward chaining for both triggers

and actions. Recall that the trigger of a forward chaining rule is the �������, and

the action is the ���������. For backward-chaining rules, the trigger is the �����

����, and the action is the �������. See the section "Rules and Inference" in ������

���������������������.

Any user-written joshua:defrule expression expands into two things:

• ������������ that decides when to execute the rule

27
February 2018 The Joshua Rule Facilities

• A function, written by the rule compiler, that becomes the ���������.�

3.2.1. The Forward Rule Compiler

In this section we examine what happens when the rule compiler encounters a for-

ward chaining rule of the form:

(defrule <name> (:forward <...>)

if <trigger>

 then <action>)

(The code within broken brackets is a schematic representation of the actual code

you supply.)

3.2.1.1. Compiling the Action Part of a Forward Rule
The action part of a forward rule is not generic, it is always handled the same

way:

1. If the action is a Lisp form, insert it into the rule body.

2. If the action is a predication, (except an joshua::and) insert

[tell predication :justification

 <a justification that depends on the triggers>]

If the action is an joshua::and predication, recurse over its arguments as in

(1) and (2).

3.2.1.2. Forward Rule Triggers: the Rete Network
A forward chaining rule should fire as soon as its trigger is matched by predica-

tions in the database. However, the trigger part of a rule typically consists of sev-

eral patterns linked by the connective and. For such a rule to fire, two conditions

must be met:

1. Each pattern must match some predication in the virtual database.

2. The matches must be consistent. Any logic variable which is bound by match-

ing one of the patterns must be bound to the same value by all of the pat-

terns.

Since each pattern of the rule may match several predications in the database (and

these matches lead to different bindings of the logic variables), finding consistent

sets of matches inherently involves a form of search.

The firing of a forward chaining rule should not depend on the order in which the

predications which match the rule’s patterns are asserted. A rule should fire as

soon as a consistent set of matches is available. In effect, each time a predication

changes truth-value, a search is conducted for such consistent matches. The task

of the rule compiler is to build a data-driven structure which can conduct this

search in an efficient manner whenever the truth-value of a predication in the vir-

tual database changes. This stucture is called a ���� �������; the triggers of a

forward rule are ����� in this network, specifically �����������.

28
The Joshua Rule Facilities

February 2018

(Rete networks were originally used in ���������� ������ languages such as OPS-

5. For more information on Rete networks, see C. Forgy 1982. "Rete: A Fast Algo-

rithm for the Many Pattern/Many Object Pattern Match Problem." ���������� ��������

����� 19: pp. 17-37.)

Here’s an example rule with a multiple trigger -- a set of predications linked by

and:

(defrule example (:forward)

 if [and [foo ?x]

 [bar ?x ?y]

 [bar ?y ?z]]

 then <some-action>))

This rule should fire twice if the following predications are in the database:

[foo 1]

[bar 1 2]

[bar 2 3]

[foo 2]

[bar 3 4]�

One firing should have the follow binding of logic variables:

?x → 1, ?y → 2, ?z → 3

The second firing should have the following set of bindings:

?x → 2, ?y → 3, ?z → 4

The rete network accomplishes this triggering relatively efficiently. This rule’s

Rete network conceptually looks like the drawing in figure 11. Note how the vari-

able bindings, denoted in braces, flow down, until the rule is fully triggered.

This Rete network consists of two types of nodes: ����������� and �����������.

Match nodes contain ����� ���������� generated by the rule compiler; each match

procedure corresponds to a particular pattern of the rule. When a predication

changes truth-value (and assumes a definite truth-value for the first time), the

match node is located in the rule index. See the section "The Joshua Rule Index-

ing Protocol", page 36. The match procedure is then invoked with the predication

as argument; its job is to determine if the predication can be unified with its cor-

responding pattern. If the unification succeeds, the match procedure returns a

������� ����������� which maps each logic-value to the value assigned to it by the

unification. This environment is remembered in the match node.

Match nodes also contain pointers to subordinate merge nodes. The match node

passes the binding environments stored in it down to each merge node subordinate

to it.

Merge nodes receive binding environments from their left and right inputs and, if

possible, produce a consistent extension of those environments as output. When a

new environment is sent to a merge node from a left parent, the merge node

checks this environment against every environment stored in its right parent.

Similarly, when an environment arrives from the right parent, the merge node

checks it against every environment stored in the left parent.

29
February 2018 The Joshua Rule Facilities

Match node 0 Match node 1 Match node 2

Merge node 3

Merge node 4

Execution queue

[foo ≡x] for [bar ≡x ≡y] for [bar ≡y ≡z]

{≡x} {≡x, ≡y} {≡y, ≡z}

{≡x, ≡y}

{≡x, ≡y, ≡z}

Figure 11. Sample Rete Network�

The check for consistency between pairs of environments is performed by a �����

��������� generated by the rule compiler and stored in the merge node. Each

merge procedure corresponds to a set of patterns. In the rule shown in figure 11

the merge nodes correspond to the sets:

[foo ?x] [bar ?x ?y] --> Merge Node 3

[foo ?x] [bar ?x ?y] [bar ?y ?z] --> Merge Node 4�

In effect, each merge node in this Rete network adds in the bindings resulting

from the matching of one additional pattern. This is normally the case; however,

the use of a nested group of patterns connected by and can lead to other merge

patterns.

Each Merge node contain pointers to subordinate merge nodes. When the merge

node successfully unifies a pair of binding environments, it creates an extended en-

vironment which it stores in the node; it also sends the extended environment to

each merge node subordinate to it. A merge node which corresponds to the full set

of patterns in the trigger part of the rule initiates execution of the rule.

To summarize, match nodes are the triggers produced by the rule compiler. They

are invoked when a predication first assumes a definite truth-value (as the result

of joshua:tell or joshua:justify, for example). A match node checks if the predica-

tion matches a particular pattern. If so, it produces an environment which is sent

to subordinate merge nodes. These check if the environments produced by match-

ing different patterns are consistent (in the sense that they produce compatible

logic variable bindings). Merge nodes pass their environments along to other

merge nodes until a terminal merge node for a rule is reached. At that point all

30
The Joshua Rule Facilities

February 2018

the patterns for the rule have been consistently matched and the rule may be exe-

cuted. All these environments are remembered, so that rules can be partially trig-

gered and not have to redo the partial trigger combination.

The command Graph Forward Rule Triggers lets you display the Rete network for

the rule (s) specified. Figure12shows the graph for the rule EXAMPLE.

Figure 12. Sample Rete Network Display

Joshua’s Rete networks actually include four kinds of nodes, ����� nodes, �����

nodes, ���������� nodes and �� nodes. We have already seen match and merge

nodes; we now turn to the other two types of rete network nodes.

Some rules include ���������� ��������, i.e. Lisp code in the ���part of the rule. Pro-

cedural triggers can play either of two roles: ������� and ����������. A filter is a

piece of Lisp code that returns t or nil but does not bind new logic variables. A

generator is a piece of Lisp code that binds new logic variables (using joshua:ask

or joshua:unify) and calls joshua:succeed (possibly many times). Calling

joshua:succeed "endorses" the current variable bindings, thus allowing the rule

body to execute with those bindings.

The Rete networks for these rule have �����������������corresponding to this code.

Here’s a simple example of a procedural trigger, acting as a filter on the previous

bindings:

(defrule filter-example (:forward)

 if [and [foo ?x]

 (> ?x 5)

 [bar ?x ?y]]

 then <some-action>))

Figure 13 shows the graph for the rule filter-example.

This filter ensures that the logic variable ?x is bound to a value larger than 5.

Within the filter you can refer to the values bound to the logic variables in previ-

ous patterns.

���������� can side-effect the current variable bindings and they can

joshua:succeed several times. Here is an example of a generator:

31
February 2018 The Joshua Rule Facilities

Figure 13. Sample Rete Network Display with Filter Nodes

(defrule eating-test (:forward)

 If [and [good-to-eat ?x]

 [hungry ?y]

 (loop for eating-mode in ’(orally intravenously) do

 (with-unification

 (unify ?z eating-mode)

 (succeed)))

 [can-eat ?y ?z]]

 Then ...)

Here the triggers check to see if ?x is something good to eat and ?y is hungry.

For every "eating mode" that ?y can use, the rule unifies ?z to that mode and

calls joshua:succeed.

When a forward chaining rule uses or to link together trigger patterns, the rule

compiler builds an �� ���� in the Rete network. For example, the rule above could

have also been written as follows:

(defrule eating-test (:forward)

 If [and [good-to-eat ?x]

 [hungry ?y]

 [or [eating-mode ?y orally]

 [eating-mode ?y intravenously]]

 [can-eat ?y ?z]]

 Then ...)

Then we would get a Rete network with an �� ���� which joins the two match

nodes for the [eating-mode ?y orally] and the [eating-mode ?y intravenously]

patterns, as shown in figure 14.

The forward rule syntax allows arbitary nesting of groups of patterns linked by

and and or. Semantically there is no reason to nest one and group within another;

however, there is a procedural difference.

Each nested and group forms its own sub rete network (i.e its own merge group)

which is then merged with the patterns from the enclosing group. Consider the

following rule with a nested and group:

(defrule nested-and (:forward)

 if [and [foo ?x]

 [and [bar ?x ?y]

 [bar ?y ?z]]]

 then < ... >)�

32
The Joshua Rule Facilities

February 2018

Figure 14. Sample Rete Network Display with or Node

The rete network for this rule is:

Figure 15. Rete Network For Rule with Nested Ands

Notice that the two BAR patterns merge first and then the result of this is merged

with the FOO patterns. Suppose that it is unlikely that the results of matching the

two BAR patterns will successfully merge but that it is very likely that the result of

matching the FOO pattern will almost certainly merge successfully with the result

of matching the first BAR pattern. The rete network shown will improve efficiency

by not generating a merged environment resulting from matching the first two

patterns when it is likely that this intermediate result will not successfully merge

with the result of matching the last pattern.

In most cases, the code generated by the rule compiler can be made significantly

more compact using a few simple techniques,see the section "Optimizing Forward

Rule Compilation for Semi Unification".

The forward rule compiler may be customized by use of the Joshua protocol func-

tions: joshua:expand-forward-rule-trigger, joshua:write-forward-rule-full-

matcher, joshua:write-forward-rule-semi-matcher, and joshua:positions-forward-

rule-matcher-can-skip.

33
February 2018 The Joshua Rule Facilities

The joshua:expand-forward-rule-trigger protocol function allows you to control

how trigger patterns are compiled by first allowing you to expand the trigger into

a set of expressions which are understood by the rule compiler.

The joshua:write-forward-rule-full-matcher and joshua:write-forward-rule-semi-

matcher protocol functions allow you to control the generation of the pattern

matching code corresponding to each forward rule trigger.

The joshua:positions-forward-rule-matcher-can-skip protocol function is called by

joshua:write-forward-rule-semi-matcher; it allows you to provide advice to the

match generator about what parts of a pattern have already been checked by the

rule indexer.

See the section "Customizing the Rule Index", page 88.

3.2.2. The Backward Rule Compiler

This section describes the rule compiler’s operation on backward chaining rules.

Here, in schematic form, is a backward chaining rule.

(defrule <name> (:backward <...>)

if <action>

then <trigger>)

As this indicates, the trigger of a backward chaining rule is the then-part of the

rule. A backward trigger is a single predication. The matcher for the trigger of a

backward chaining rule is simple:

match <trigger>

invoke rule body

For the action part of a backward chaining rule, the rule compiler creates a func-

tion that is called when the rule is invoked.

(defun <name> (args ... <continuation> ...)

 ... BODY ...

(funcall <continuation>)

Calling the <name> is referred to as ������ the rule, and calling the <continuation>
is referred to as ����������. The BODY decides when to call the continuation, this

being the main task of the action part of a backward chaining rule.

Three types of actions are possible.

1. The action is a single predication (excluding joshua::and), and the rule com-

piler generates an joshua:ask for that predication:

(ask <predication> <continuation>)

2. The action includes multiple predications joined by an joshua::and

34
The Joshua Rule Facilities

February 2018

[and p1 p2 ... pn]

and the rule compiler generates a set of nested joshua:ask functions:

(ask p1

 #’(lambda (p1-support)

 (ask p2

 ...

(ask pn ...))))

Note that the last continuation (the innermost joshua:ask) is the continua-

tion argument to the rule.

3. The action part of a backward chaining rule is a Lisp form. In this case, the

form is called and if it returns non-nil, the firing of the rule goes on. Users

can force rule firing to continue by having the form call joshua:succeed ex-

plicitly. Here is an example of this kind of action.

(defvar *known-foods* ’(chinese-food))

(defrule good-to-eat-rule (:backward)

 if (typecase ?x (sys:unbound-logic-variable)

 ;; if ?x is unbound succeed once for every element of *known-foods*

 (loop for food in *known-foods*

 doing (unify ?x food)

 (succeed))

 ;;the case where ?x is bound is omitted.

 ...)

 then [good-to-eat ?x])

In this way, the procedural Lisp code in the ���part can act either as a filter

or a generator. This treatment of Lisp code is the same as for forward rules.

See the section "The Forward Rule Compiler", page 27. The person that calls

this rule is interested in obtaining a list of everything that is good to eat or

in finding out if a specific food is good to eat.

The behavior of the backward rule compiler can be customized by use of 2 Joshua

protocol functions: joshua:expand-backward-rule-action and joshua:write-

backward-rule-matcher.

The joshua:expand-backward-rule-action protocol function allows you to control

how the action part of a backward rule (i.e. the If-part) patterns are compiled by

first allowing you to expand the actions into a set of expressions which are under-

stood by the rule compiler.

The joshua:write-backward-rule-matcher protocol function allows you to control

the generation of the pattern matching code corresponding to the backward rule’s

trigger (i.e. its then part).

35
February 2018 The Joshua Rule Facilities

3.3. Ordering Rule Execution

When you define a rule, the keyword :importance lets you specify the order of

rule execution. This keyword takes a value that can be any numeric argument, a

symbol, or a form. The larger the number, the higher the priority. High priority

rules run first.

Some expense is associated with using :importance. In forward chaining rules or-

dering causes a "best-first" search of rules according to the value associated with

:importance. Backward chaining only orders the local "best-first" search of related

rules.

Using :importance is convenient, but reduces efficiency. The system is most effi-

cient when only one rule at a time is applicable. A situation where more than one

rule is applicable usually indicates that insufficient knowledge is built into the

rules. For example, a picture-taking program might have three separate rules re-

sponding to a request for a picture: one rule focuses the camera, another reads the

light meter, and another sets the time and aperture. If you now tell the system to

take a picture, it will not know which of the three rules to execute first. Although

the :importance feature could be used to order the execution of these rules, it

would be clearer and more robust to make the rules more explicit about their pre-

conditions, thereby restricting their applicability (your focusing rule might only

trigger if the light meter shows acceptable readings, and so on).

The :importance feature can be quite useful to control performance tradeoffs,

such as trying a cheap algorithm first, in preference to more expensive algorithms.

(Readers familiar with the ���������� ������ model used in OPS-5 will recognize

that the :importance feature serves a similar role for forward rules to the ��������

���������� �������� of a production system).

Sometimes it is useful to be able to suspend forward rule triggering until the exe-

cution of a block of code has completed. The code might contain a number of

joshua:tell’s and joshua:untell’s intermixed in such a way that the changes to the

database are not coherent until the entire block of code has finished executing.

Joshua provides a special form which offers this form of control. See the macro

joshua:with-atomic-action, page 254.

3.4. Controlling Rule Invocation

Typically during a joshua:tell or an joshua:ask, the database is searched first

(joshua:insert, or joshua:fetch, respectively), after which the appropriate trigger-

mapping function (forward, backward, or backward question) is executed, to find

and run relevant rules or questions. Several facilities are available to let you modi-

fy this sequence.

When you set the joshua:ask keyword :do-backward-rules to nil, backward rule

invocation is inhibited, and the system does a database lookup only.

Example:

36
The Joshua Rule Facilities

February 2018

(define-predicate age (person age))

(define-predicate attained-majority (person))

(defrule old-enough (:backward)

 if [and [age ?person ?age]

 (> ?age 21)]

 then [attained-majority ?person])

(tell [age Fred 21])

(ask [attained-majority Fred] #’print-query :do-backward-rules nil)

NIL ; information is not in the database

(ask [attained-majority Fred] #’print-query)

[ATTAINED-MAJORITY FRED] ; backward rule is invoked

NIL

Six built-in flavors are also available for predicates used in joshua:ask goals.

These flavors do subsets of what joshua:ask normally does, by leaving out one or

more of the steps joshua:ask-data, joshua:ask-rules, or joshua:ask-questions.

Thus the models save a certain amount of overhead when their predicates are used

as goals to joshua:ask. The steps which ��� done are indicated by the names:

• joshua:ask-data-only-mixin

• joshua:ask-rules-only-mixin

• joshua:ask-questions-only-mixin

• joshua:ask-data-and-rules-only-mixin

• joshua:ask-data-and-questions-only-mixin

• joshua:ask-rules-and-questions-only-mixin

3.5. The Joshua Rule Indexing Protocol

Joshua manages rules by manipulating rule triggers. There are four trigger opera-

tions, namely:

• Adding triggers

• Deleting triggers

• Locating triggers

• Iterating over triggers�

���� �������� refers to the protocol steps that determine how these rule operations

are performed.

37
February 2018 The Joshua Rule Facilities

Often systems spend most of their time looking for applicable rules, as opposed to

executing them. If this is the case, customizing the trigger index can help. This is

the process of changing the way the system stores, removes, looks up, and iterates

over triggers. If you provide a consistent alternative implementation of these ac-

tions, you have changed the way your program looks for rules. This is discussed in

detail elsewhere:See the section "Customizing the Rule Index", page 88.

This chapter covers the protocol and implementation details that you need to know

about before you attempt to customize the rule index. If you are using the default

rule index, you may not find these topics of immediate interest.

The rule indexing protocol uses separate functions for forward and backward rule

indexing operations. Here is the list of functions.

joshua:add-forward-rule-trigger Add a forward rule trigger

joshua:add-backward-rule-trigger

Add a backward rule trigger

joshua:delete-forward-rule-trigger

Remove a forward rule trigger

joshua:delete-backward-rule-trigger

Remove a backward rule trigger

joshua:locate-forward-rule-trigger

Find a forward trigger data index, and calls a

continuation on it.

joshua:locate-backward-rule-trigger

Find a backward trigger data index, and calls a

continuation on it.

joshua:map-over-forward-rule-triggers

Call a continuation on all forward triggers that

might unify with a given predication

joshua:map-over-backward-rule-triggers

Call a continuation on all backward triggers

that might unify with a given predication�

Figure 16 shows how the rule-indexing functions relate to each other.

Like the data indexing functions, the trigger indexing functions work together in

the sense that they must share a knowledge of the trigger storage location. The

adding functions must install a trigger in a place such that the mapping and delet-

ing functions can find it. The deleting functions must delete triggers from places

where the mapping functions look for them.

The trigger object that is processed by the rule-indexing protocol is created by the

rule compiler. Exactly what this object is depends on what kind of rule is involved.

For a forward rule, the triggers are Rete match nodes. See the section "Forward

Rule Triggers: the Rete Network", page 27. Invoking a trigger means a call to

some Rete network code to start the match process. For backward rules the

38
The Joshua Rule Facilities

February 2018

RULE-INDEXING PROTOCOL
add-forward-rule-trigger delete-forward-rule-trigger

map-over-forward-rule-triggers

locate-forward-rule-trigger

delete-backward-rule-trigger

locate-backward-rule-trigger

map-over-backward-rule-triggers

add-backward-rule-trigger

Figure 16. Rule Indexing Protocol

(unique) trigger is also a match procedure, but without some of the complications

of the Rete mechanism.

The contract of the rule indexing functions is very similar to that of the data in-

dexing functions. (See the section "The Joshua Database Protocol", page 8.)

3.5.1. The Contract of the Trigger Adding Functions

The protocol functions joshua:add-forward-rule-trigger and joshua:add-

backward-rule-trigger are analogous to the data-indexing function joshua:insert.

When a new rule is compiled, the compiler uses the appropriate version of the

trigger adding functions (forward or backward) to add a trigger object to the data

structure that holds trigger objects.

When a new forward trigger is installed, the database must be searched for facts

that might match the new trigger. joshua:add-forward-rule-trigger does this

database lookup by calling the protocol function joshua:prefetch-forward-rule-

matches; the default version of this protocol function simply calls joshua:ask to

find the appropriate facts.

In the default implementation, the finding, building, and updating of trigger stor-

age structures is the responsibility of the trigger locating functions, joshua:locate-

forward-rule-trigger, and joshua:locate-backward-rule-trigger. See the section

"The Contract of the Trigger Locating Functions", page 39.

Figure 17 shows the protocol for the trigger adding functions and their default

implementation.

See the section "Forward Rule Triggers: the Rete Network", page 27.

3.5.2. The Contract of the Trigger Deleting Functions

The protocol functions, joshua:delete-forward-rule-trigger and joshua:delete-

backward-rule-trigger are analogous to the data-indexing function

joshua:uninsert. These trigger deleting functions are used by joshua:undefrule to

remove a trigger object from a list of triggers. The default implementation stores

trigger information in a discrimination net.

39
February 2018 The Joshua Rule Facilities

add-forward-rule-trigger
[Generic Function]

(add-forward-rule-trigger default-protocol-implementation-model)

[Protocol Method]

(locate-forward-rule-trigger default-protocol-implementation-model)

[Protocol Method]

locate-forward-rule-trigger
[Generic Function]

(locate-backward-rule-trigger default-protocol-implementation-model)

locate-backward-rule-trigger
[Generic Function]

[Protocol Method]

(add-backward-rule-trigger default-protocol-implementation-model)

add-backward-rule-trigger
[Generic Function]

[Protocol Method]

prefetch-forward-rule-matches

Figure 17. The Trigger-Adding Protocol and Default Implementation

The trigger deleting functions rely on the trigger locating functions to do the ac-

tual removal of the trigger and to update the trigger storage location. See the sec-

tion "The Contract of the Trigger Locating Functions", page 39.

Figure 18 shows the protocol for the trigger deleting functions and their default

implementation.

3.5.3. The Contract of the Trigger Locating Functions

The contract of the protocol functions joshua:locate-forward-rule-trigger

joshua:locate-backward-rule-trigger and joshua:locate-backward-question-

trigger is to ����, ������ ��� ������ forward and backward trigger storage struc-

40
The Joshua Rule Facilities

February 2018

(delete-forward-rule-trigger default-protocol-implementation-model)
[Protocol Method]

locate-forward-rule-trigger
[Generic Function]

delete-forward-rule-trigger
[Generic Function]

[Protocol Method]
(locate-forward-rule-trigger default-protocol-implementation-model)

(delete-backward-rule-trigger default-protocol-implementation-model)

(locate-backward-rule-trigger default-protocol-implementation-model)

locate-backward-rule-trigger

delete-backward-rule-trigger
[Generic Function]

[Protocol Method]

[Generic Function]

[Protocol Method]

Figure 18. The Trigger-Deleting Protocol and Default Implementation

tures. The updating portion of the contract is implemented by a ������������ argu-

ment to joshua:locate-forward-rule-trigger, joshua:locate-forward-rule-trigger

and joshua:locate-backward-question-trigger.

This contract is implemented as follows:

• The locate method finds the place where the trigger is to be stored, or builds it,

if it does not yet exist

• The method calls its continuation function, passing it the list of existing trig-

gers that it just found.

• The continuation function:

° Checks if the trigger being added (deleted) is new, or if it is a variant of an

existing trigger (one trigger may represent several variant patterns).

41
February 2018 The Joshua Rule Facilities

° Updates its list of triggers to reflect the addition or deletion of the trigger, if

it is not a variant.

° Returns three values:

1. A new list of triggers (or the old one, if nothing has changed).

2. A boolean flag indicating whether or not it modified the list of triggers

3. The ��������� ������� for this pattern. If the trigger being added is a

variant of an existing trigger, then the existing trigger will be returned

as the canonical trigger. If the trigger being inserted is the first such

pattern, then it will be returned as the canonical trigger.�

• The locate method updates the trigger index structure if the continuation indi-

cates that a change is appropriate.

• The locate method returns the canonical trigger as its value.

Figures 17 and 18 show the trigger locating protocol and its default implementa-

tion.

Please consult the dictionary entries for the generic functions joshua:locate-

backward-rule-trigger, joshua:locate-forward-rule-trigger and joshua:locate-

backward-question-trigger for more detailed information about this protocol.

3.5.4. The Contract of the Trigger Mapping Functions

The trigger mapping protocol functions, joshua:map-over-forward-rule-triggers

and joshua:map-over-backward-rule-triggers are responsible for looking up rule

triggers for joshua:tell and joshua:ask in the place where the indexing functions

have stored these triggers. The mapping functions walk over all triggers that

might unify with the joshua:tell or joshua:ask pattern, and call the continuation

on each candidate trigger. If you are writing your own trigger storage methods,

your implementation of the trigger mapping functions must be consistent with the

implementation of the trigger adding, locating, and deleting functions. See the sec-

tion "Customizing the Rule Index", page 88.

3.5.4.1. Finding Forward Rule Triggers
When joshua:tell installs a new fact into the database, the system must find all

forward rules that can be (partially) triggered by this new fact. It is the contract

of joshua:map-over-forward-rule-triggers to look up the appropriate rule triggers.

In the default implementation, forward rule triggers are Rete Network nodes built

by the compiler. The section "Forward Rule Triggers: the Rete Network", discusses

this topic in more detail.

As we see from figure 19, finding the list of triggers happens in the course of jus-

tifying the newly inserted fact.

42
The Joshua Rule Facilities

February 2018

tell
[Generic Function]

(tell default-tell-model)
[Method]

Default implementation of tell

Default implementation of act-on-truth-value-change

(act-on-truth-value-change default-tell-model)
(act-on-truth-value-change default-protocol-implementation-model :before)

(act-on-truth-value-change default-protocol-implementation-model :after)
[Methods]

(map-over-forward-rule-triggers default-protocol-implementation-model)

map-over-forward-rule-triggers
[Generic Function]

[Protocol Method]

Default implementation of map-over-forward-rule-triggers

discrimination-net-fetch
[Function]

justify
[Generic Function]

insert
[Generic Function]

.

.

.

(justify default-tell-model)
[Method]

act-on-truth-value-change
[Generic Function]

Default implementation of justify

Figure 19. The justify protocol and its default implementation

43
February 2018 The Joshua Rule Facilities

The sequence is as follows:

The joshua:tell method forces the truth value of the just inserted predication to

be joshua:*unknown* if the predication is new (not a variant of an existing fact).

The joshua:tell method then calls joshua:justify.

Using the predication’s current truth value of joshua:*unknown*, its original

truth value in the joshua:tell statement, and its justification as given in the key-

word argument to joshua:tell, joshua:justify is responsible for:

• Setting the correct truth value for the predication

• Notifying the TMS (if one is being used) to propagate this truth value, and to

make the current world consistent with this value.

The default joshua:justify method (which assumes that no TMS is being used) im-

plements this contract as follows:

• Forces the truth value to correspond to the value passed to the method in an

argument

• If this value differs from the current value of the predication (which is still

ju::unknown), the joshua:justify method calls joshua:*unknown*), the

joshua:justify method calls joshua:notice-truth-value-change and joshua::act-

on-truth-value-change. �

joshua:act-on-truth-value-change has a primary method, and :before and :after

methods. The primary method does nothing and can be overidden by the user,

while the :after method does some internal bookkeeping for the TMS. (This is also

true of the joshua:notice-truth-value-change protocol function). The :before

method is the one of interest. It calls joshua:map-over-forward-rule-triggers and

empties the forward rule queue.

The joshua:map-over-forward-rule-triggers method calls joshua:discrimination-

net-fetch to get the applicable triggers. The continuation argument to the map-

ping function performs the unification if it is called.

For more on the justification protocol: See the section "The Truth Maintenance

Protocol", page 54.

3.5.4.2. Finding Backward Rule Triggers
When you use joshua:ask to satisfy a goal, Joshua first looks in the database and

then tries to run applicable backward rules and questions.

The protocol function joshua:ask-rules is the component of joshua:ask that finds

backward rules to run, and that empties the backward rule queue. (joshua:ask-

data tries to find database facts to satisfy the goal, and joshua:ask-questions

tries to find and run applicable questions. See the section "The Contract of the

Generic Functions joshua:ask-data and joshua:fetch", page 10. See the section

"The Contract of the Trigger Locating Functions", page 39.)

44
The Joshua Rule Facilities

February 2018

joshua:ask-rules calls joshua:map-over-backward-rule-triggers to find appropri-

ate backward rule triggers. Figure 20 shows the joshua:ask-rules protocol and de-

fault implementation.

[Method]

map-over-backward-rule-triggers
[Generic Function]

(ask-rules default-ask-model)

ask
[Generic Function]

(ask default-ask-model)
[Method]

Default Implementation of ask-rules

[Generic Function]
ask-rulesask-data

[Generic Function]
.
.
.

ask-questions
[Generic Function].

.

.

(map-over-backward-rule-triggers

[Method]

discrimination-net-fetch
[Function]

default-protocol-implementation-model)

Default Implementation of map-over-backward-rule-triggers

Figure 20. The ask-rules protocol and its default Implementation

45
February 2018 The Joshua Rule Facilities

joshua:map-over-backward-rule-triggers searches the index of backward rule trig-

gers to find backward rules that can solve the goal. This function works analo-

gously to the data-indexing function joshua:fetch that gets database facts for

joshua:ask-data. Unification is done inside the rule; if unification succeeds, the

rule performs the actions in the ���part.

The default rule index stores trigger information in a discrimination net. The de-

fault joshua:map-over-backward-rule-triggers method thus uses

joshua:discrimination-net-fetch to search for backward triggers.

46
The Joshua Rule Facilities

February 2018

47
February 2018 The Joshua Question Facilities

4. The Joshua Question Facilities

The basics of question syntax and operation were presented earlier: See the section

"Asking the User Questions" in ������ ����� �� ����� ������. Here we elaborate a

bit on ways of controlling question invocation. See the section "Controlling Ques-

tion Invocation", page 47.

The bulk of the chapter discusses �������� ��������, that is, the way Joshua adds,

deletes, and finds questions. This material is primarily useful if you want to pro-

vide your own implementation of these operations. If you are using the default

question indexing, the topics discussed here are probably of no immediate interest.

4.1. Controlling Question Invocation

Typically during an joshua:ask the database is searched first (joshua:fetch), after

which the appropriate rule trigger-mapping function (forward or backward) is exe-

cuted, to find and run relevant rules. As a last step, question trigger-mapping

functions are executed, to find and run backward questions (if :do-questions was

set to non-nil).

Six built-in flavors for predicates used in joshua:ask goals are available to let you

modify the above sequence. These flavors do subsets of what joshua:ask normally

does, by leaving out one or more of the steps joshua:ask-data, joshua:ask-rules,

or joshua:ask-questions. Thus the models save a certain amount of overhead

when their predicates are used as goals to joshua:ask. The steps which ��� done

are indicated by the names:

• joshua:ask-data-only-mixin

• joshua:ask-rules-only-mixin

• joshua:ask-questions-only-mixin

• joshua:ask-data-and-rules-only-mixin

• joshua:ask-data-and-questions-only-mixin

• joshua:ask-rules-and-questions-only-mixin

48
The Joshua Question Facilities February 2018

4.2. The Joshua Question Indexing Protocol

Joshua manages questions by manipulating question triggers. There are four trig-

ger operations, namely:

• Adding triggers: joshua:add-backward-question-trigger

• Deleting triggers: joshua:delete-backward-question-trigger

• Locating triggers: joshua:locate-backward-question-trigger

• Iterating over triggers: joshua:map-over-backward-question-triggers�

Figure 21 shows how the question indexing facilities relate to each other.

add-backward-question-trigger delete-backward-question-trigger

locate-backward-question-trigger

QUESTION PROTOCOL

map-over-backward-question-triggers

Figure 21. The Question Protocol�

The contract of the question indexing functions is very similar to that of the data

indexing functions. See the section "The Joshua Database Protocol", page 8.

4.2.1. The Contract of joshua:add-backward-question-trigger

The protocol function joshua:add-backward-question-trigger is analogous to the

data-indexing function joshua:insert. When a new question is compiled, the com-

piler uses joshua:add-backward-question-trigger to add a trigger object to the

data structure that holds trigger objects.

In the default implementation, the finding, building, and updating of trigger stor-

age structures is the responsibility of the trigger locating function, joshua:locate-

backward-question-trigger. Tailoring of backward question indexing is usually ac-

complished by providing methods for the joshua:locate-backward-question-trigger

and joshua:map-over-backward-question-triggers functions.

Figure 22 shows the trigger adding protocol and its default implementation.

4.2.2. The Contract of joshua:delete-backward-question-trigger

joshua:undefquestion calls this protocol function with the pattern from the trig-

ger part of a backward question. The function "unindexes" the trigger data struc-

ture of the backward question that corresponds to the pattern, making the ques-

tion inaccessible.

49
February 2018 The Joshua Question Facilities

[Protocol Method]
(locate-backward-question-trigger default-protocol-implementation-model)

[Generic Function]

(add-backward-question-trigger default-protocol-implementation-model)

locate-backward-question-trigger

[Protocol Method]

[Generic Function]
add-backward-question-trigger

Figure 22. The Question Trigger Adding Protocol and Default Implementation

In the default implementation, the finding, building, and updating of trigger stor-

age structures is the responsibility of the trigger locating function, joshua:locate-

backward-question-trigger. Tailoring of backward question indexing is usually ac-

complished by providing methods for the joshua:locate-backward-question-trigger

and joshua:map-over-backward-question-triggers functions.

Figure 23 shows the trigger deleting protocol and its default implementation.

(delete-backward-question-trigger default-protocol-implementation-model)

(locate-backward-question-trigger default-protocol-implementation-model)

locate-backward-question-trigger

delete-backward-question-trigger
[Generic Function]

[Protocol Method]

[Generic Function]

[Protocol Method]

Figure 23. The Question Trigger Deleting Protocol and Default Implementation

4.2.3. The Contract of joshua:locate-backward-question-trigger

The joshua:locate-backward-question-trigger method is responsible for managing

the data structures used to index backward question triggers. Each backward

chaining question has a unique trigger structure, indexed by the pattern (and its

truth value) of the question. Just as joshua:insert maps variant predications to a

unique location in a data index, joshua:locate-backward-question-trigger locates

50
The Joshua Question Facilities February 2018

the unique place in a question index where Joshua stores a backward chaining

question’s trigger structure.

joshua:locate-backward-question-trigger is used as a subroutine of both

joshua:add-backward-question-trigger and joshua:delete-backward-question-

trigger. Knowledge of how to index a pattern is localized in the joshua:locate-

backward-question-trigger methods, while the knowledge of the internal structure

of the backward trigger data structures is localized in joshua:add-backward-

question-trigger and joshua:delete-backward-question-trigger. These two higher

levels routines call joshua:locate-backward-question-trigger passing to it ��������

�����, a function which understands how to manipulate sets of backward question

trigger data structures.

For more details see the section "The Contract of the Trigger Locating Functions",
page 39.

4.2.4. The Contract of joshua:map-over-backward-question-triggers

joshua:map-over-backward-question-triggers is responsible for looking up back-

ward question triggers capable of satisfying a query given to joshua:ask. It

searches the questions index to find a set of backward question triggers whose pat-

terns might unify with ����������� (the query given to joshua:ask), and calls ����

��������� once for each backward question trigger found, thereby invoking the

question.

If you are writing your own trigger storage methods, your implementation of the

trigger mapping function must be consistent with the implementation of the trig-

ger adding, deleting, and locating functions.

joshua:map-over-backward-question-triggers is the dual protocol function to

joshua:locate-backward-question-trigger.

Figure 24 shows the joshua:map-over-backward-question-triggers protocol and

default implementation.

4.2.4.1. Finding Backward Question Triggers
The protocol function joshua:ask-questions is the component of joshua:ask that

finds backward questions to run, and that empties the backward question queue.

(joshua:ask-data tries to find database facts to satisfy the goal, and joshua:ask-

rules tries to find and run applicable rules.

See the section "The Contract of the Generic Functions joshua:ask-data and

joshua:fetch", page 10. See the section "Finding Backward Rule Triggers", page

43.)

Figure 24 shows the joshua:ask-questions protocol and default implementation.

51
February 2018 The Joshua Question Facilities

ask
[Generic Function]

(ask default-ask-model)
[Method]

ask-data
[Generic Function]

.

.

.

ask-questions
[Generic Function][Generic Function]

ask-rules

.

.

.

[Method]

map-over-backward-question-triggers
[Generic Function]

(ask-questions default-ask-model)

Default Implementation of ask-questions

(map-over-backward-question-triggers

[Method]

discrimination-net-fetch
[Function]

default-protocol-implementation-model)

Default Implementation of map-over-backward-question-triggers

Figure 24. The ask-questions protocol and its default implementation

52
The Joshua Question Facilities February 2018

53
February 2018 Truth Maintenance Facilities

5. Truth Maintenance Facilities

We have covered the basic information about Truth Maintenance earlier: See the

section "Justification and Truth Maintenance" in ����������������������������.

This chapter provides a detailed explanation of the Truth Maintenance part of the

Joshua protocol. It also explains how a different Truth Maintenance System (TMS)

of your own design can be interfaced to Joshua. Finally, it provides a detailed ex-

planation of the TMS supplied with Joshua.

(If you are interested in interfacing a new TMS of your own design to Joshua this

chapter will provide useful information to you, however the information provided

may not be sufficient. If you do wish to interface a TMS to Joshua, we strongly

advise that you contact the Symbolics Consulting Services for assistance in build-

ing the interface.)

The Funtions of a Truth Maintenance System

A Truth Maintenance System performs several useful functions for Joshua:

1. The TMS is responsible for maintaining a record of why predications are be-

lieved to be true or false (hence the name Truth Maintenance); these records

are called justifications.

2. The TMS can use these justifications to explain the reason why a predication

is currently believed to be true (or false). As a special case of this, the TMS

can identify the primitive beliefs (i.e. assumptions and premises) that are the

ultimate reason for believing the predication.

3. The TMS can consistently propagate changes in truth-values. For example,

suppose that the sole reason why predication B is believed to be true is that

it was deduced from predication A. If A should ever change its truth-value to

joshua:*unknown*, then the TMS should also change the truth-value of B to

joshua:*unknown*. Similarly, if A should ever change its truth-value back to

joshua:*true*, then B should have its truth-value restored to joshua:*true*.

4. It can consistently remove a justification from a predication. If this justifica-

tion is the sole reason why the predication is believed, then the TMS must

change the truth value of the predication to joshua:*unknown* and propa-

gate the change of truth-value.

5. Finally, the TMS is responsible for ensuring that the database does not con-

tain a contradiction. Whenever both a fact and its negation are asserted to be

true, it is the TMS’s job to determine what primitive beliefs (i.e. assumptions

and premises) are ultimately responsible for the contradictory beliefs. The

54
Truth Maintenance Facilities February 2018

TMS can then inform Joshua’s error handlers of the situation by signalling a

joshua:tms-contradiction condition. The handler which handles the condition,

may then chose to unjustify one of the primitive beliefs underlying the con-

tradiction in the hopes of removing the contradiction.

Types of Truth Maintenance Systems

There are several different varieties of Truth Maintenance Systems and these dif-

fer along several dimensions. Some TMS’s such as Johan deKleer’s ATMS main-

tains several viewpoints concurrently. The LTMS provided as a default in Joshua

provides a single viewpoint at any one time, but allows you freely to switch back

and forth between these viewpoints. Both of these styles of TMS have unique ad-

vantages and neither is appropriate in all circumstances.

Another dimension along which TMS’s differ is whether they allow �������������

�������������� in which one statement is believed because another fact has

joshua:*unknown* truth-value. Jon Doyle’s TMS supported this capability. The

LTMS does not directly support this capability but allows it to be simulated using

the joshua:notice-truth-value-change and the joshua:act-on-truth-value-change

protocol methods.

A third dimension along which TMS’s vary is whether their justification structures

are unidirectional or multidirectional. Many TMS’s (such as Doyle’s and deKleer’s)

use a justification structure in which there is a unique conclusion and several an-

tecedents. When all of the antecendents achieve their desired truth-values, the

conclusion’s truth-value is changed to that indicated by the justification. In effect,

these TMS’s perform only the simplest logic inference, namely ����� ������.

The LTMS provided with Joshua (and the 3-valued TMS of David McAllester upon

which it is based) is a multidirectional TMS. In the LTMS, constituents of a justi-

fication are not restricted to playing a unique role as consequent or antecedent.

Instead, the LTMS will change the truth-value of any constituent of the justifica-

tion whenever the truth-values of all the other constituents force this choice.

5.1. The Truth Maintenance Protocol

The Joshua protocol provides a uniform mechanism for interfacing a TMS of your

own design if the one supplied with Joshua does not meet your needs. (The cur-

rent version of Joshua will not completely support a multiple-viewpoint TMS such

as the ATMS, because of a difficultly of interfacing the triggering method for for-

ward-chaining rules the Rete Network with the ATMS. This will be resolved

in a subsequent release of Joshua. If you need this capability now, Symbolics per-

sonnel can help you figure out how to build the appropriate interface.)

5.1.1. The Contract of the Joshua TMS Protocol Functions

The interface between Joshua and a TMS consists of several Joshua protocol func-

tions:

55
February 2018 Truth Maintenance Facilities

• joshua:nontrivial-tms-p: A protocol method that should return t for any predi-

cation which uses a TMS. This method is supplied by the predicate-model basic-

tms-mixin which should be mixed into any predicate model that implements a

TMS.

• joshua:justify: The protocol method that is used to tell the TMS to add a new

justification. (This is most often invoked indirectly by providing a :justification

argument to joshua:tell).

• joshua:unjustify: The protocol method that is used to tell the TMS to remove a

justification from a predication.

• joshua:current-justification: The protocol method that is used to ask a predica-

tion for the justification that is responsible for its current truth-value. If the

predication has joshua:*unknown* truth-value this should return nil.

• joshua:all-justifications: Returns all justifications into which the predication

enters either as a supporting predication or as the predication supported by the

justification.

• joshua:notice-truth-value-change: The protocol method used by the TMS to tell

the rest of Joshua to update internal data structures to reflect the fact that a

predication has changed its truth-value.

• joshua:act-on-truth-value-change: The protocol method used by the TMS to tell

the rest of Joshua that a predication has changed its truth-value. In response,

other parts of the application may initiate new inferential processes or produce

visible side effects (such as updating a display).

5.1.2. The Contract of a Joshua TMS Justification

The TMS protocol functions allow Joshua to tell the TMS to create justifications.

The format of these justifications is left completely up to the designer of the TMS

(in the LTMS, justifications are implemented as ������� See the section "Clause

Justification Structures", page 65. However, it is necessary for Joshua to be able

to understand some of the information contained in a Justification, however it is

implemented. Justifications are therefore required to obey a simple contract; they

must be able to ����������� themselves into several parcels of information, defined

by the Joshua protocol.

Justifications used in a Joshua TMS must be understood by the generic function

joshua:destructure-justification. (If justifications are implemented as flavor in-

stances, this merely amounts to defining a joshua:destructure-justification

method for the flavor of the justification. This is the approach used in the LTMS

provided with Joshua).

Conceptually, every justification must contain the following information:

56
Truth Maintenance Facilities February 2018

• Mnemonic: A name providing additional information, such as what rule created

this justification or the type of a primitive justification (:premise, :assumption,

and so on.)

• Conclusion: The predication supported by the justification.

• True-support: Those facts which must have truth-value joshua:*true* in order

for the conclusion to follow.

• False-support: Those facts which must have truth-value joshua:*false* in order

for the conclusion to follow.

• Unknown-support: Those facts which must have truth-value joshua:*unknown*

in order for the conclusion to follow.

Justifications don’t actually have to contain all this information; the

joshua:destructure-justification generic function simply must return a value for

each of these items. A TMS (such as the LTMS) which does not allow unknown-

support does not actually have to have a field in the justification for this informa-

tion, since it is uniformly empty. How the TMS stores information in a justifica-

tion is completely at the discretion of the TMS implementor, as long as the proto-

col is obeyed.

5.1.3. TMS Utility Routines

Joshua provides a number of utility routines that will work with any TMS that

obeys the protocol. Any predication that wants to use a TMS should mix in the

Joshua predicate-model joshua:basic-tms-mixin; this provides default implementa-

tions for two protocol methods (joshua:nontrivial-tms-p and joshua:support). It

also defines the generation-mark instance variable which is used by the default

joshua:support method and may be useful for other TMS implementors. This in-

stance variable can be used by any TMS which finds it convenient.

The utilities currently provided are:

• joshua:support: Return the primitive assertions which ultimately underlie the

belief in a predication. This is a protocol method which can be overridden by an-

other TMS implementation, although it is unlikely that this would be desirable.

• joshua:support-with-name: Returns a subset of the primitive assertions under-

lying a predication’s belief. Only those predications with a justification whose

Mnemonic is the second argument to this function are returned.

• joshua:assumption-support: Returns that subset of the primitive support of a

predication which are justified by a justification whose Mnemonic is

:assumption.

57
February 2018 Truth Maintenance Facilities

• joshua:premise-support: Returns that subset of the primitive support of a pred-

ication which are justified by a justification whose Mnemonic is :premise.

• joshua:explain: Prints an explanation of why a predication is believed to hold

its current truth-value. This routine walks back through the tree of justifica-

tions that support a fact, printing one level of explanation for each level of jus-

tification.

• joshua:remove-justification: Takes a justification as argument and removes it

from the Joshua world. This is a convenient function in some contexts; it is de-

fined trivially in terms of joshua:current-justification, joshua:unjustify and

joshua:destructure-justification.

• joshua:graph-tms-support: Takes a set of predications as arguments. Produces

a graph display of the TMS justification structures supporting these predica-

tions. This graph continues backward until reaching predications which have

primitive justifications.

An implementor of a TMS might need to use a few bits as flags as part of the in-

ternal algorithms of the TMS. These can of course be provided as instance vari-

ables that are part of the TMS mixin. However a few single bit flags are provided

in all predications which may be accessed as (TMS-Bits (Predication-Bits Pred-

ication)).

5.1.4. Signalling Contradictions and Managing Backtracking

When a TMS detects a contradiction it must signal a condition See the section

"Signalling Conditions" in ��������� ������ ���� ����������� ����������. The

condition signalled should be an instance of a flavor based on joshua:tms-

contradiction. All such conditions should contain at least the following informa-

tion:

• The Contradictory Predication: If the contradiction is detected by the TMS in

such a way that it can localize the blame completely in an individual predication

then this field should contain that predication. Some TMS’s provide an entry-

point through which the user can declare a particular predication to be unac-

ceptable even though it does not have joshua:*contradictory* truth-value (in

the LTMS provided with Joshua this is called ltms:backtrack). If such is the

case this field should contain the predication so blamed. This field is called

joshua:tms-contradiction-contradictory-predication.

• The Unsatisfiable Justification: In some TMS’s (in particular the LTMS pro-

vided with Joshua) contradictions are detected because a justification becomes

unsatisfiable. In such a case this field should contain this invalid justification. If

the user has declared a particular predication to be unacceptable and that predi-

cation has a current justification, then that justification should be included in

this field. This field is called joshua:tms-contradiction-justification.

58
Truth Maintenance Facilities February 2018

• All the primitive support: Given an unacceptable predication or an unsatisfi-

able justification (i.e. a contradiction), the TMS must determine the set of prim-

itively supported predications that are in the support tree of the contradiction.

Primitively supported predications are those whose justifications involve no oth-

er predication. This field is called joshua:tms-contradiction-support.

• The subset of this which are premises: A TMS may make a distinction be-

tween predications that may be retracted and those which are considered "im-

mutable laws of the universe". This field of the condition should contain the

subset of the primitive support which is considered unretractable, i.e. premises.

This field is called joshua:tms-contradiction-premises.

• The subset of this which aren’t premises: This field of the condition signalled

should contain that part of the primitive support which are allowed to be re-

tracted. This field is called joshua:tms-contradiction-non-premises.

There is a default handler for the joshua:tms-contradiction condition provided in

Joshua which handles two special cases automatically. If the condition signalled

contains exactly one member of the non-premise primitive support set, then the

handler automatically retracts this single predication (i.e. it removes its current

justification). If the condition contains no non-premise primitive support, then the

default handler signals another condition which should be based on joshua:tms-

hard-contradiction. The intent is that this condition is one that a user might

want to consider really wrong, so we provide a specific condition for this case. For

the default handler to know what condition to signal, the first condition must im-

plement a method for the joshua:tms-contradiction-hard-contradiction-flavor

generic function; this must return the name of the flavor to be signalled for a

joshua:tms-hard-contradiction. (For example, see the beginning of

joshua:code;ltms).

By condition binding either or both of these conditions a program can completely

control the backtracking process.

5.1.4.1. Using TMS Conditions: a Balance Beam Example
Suppose that we were writing a planning system for a blocks world construction

task that includes balance beams like the following:

During the task of constructing a configuration like the one above, we must be

careful that we never unbalance the beam enough to tip over the whole configura-

tion. One situation that might result in such an unbalance is if we place a block

59
February 2018 Truth Maintenance Facilities

on one side without a counter balancing block at the other end. Another dangerous

situation results when one block is grossly outweighed by a block at the other side.

We’ll call the first situation BLOCK-UNBALANCED-BY-BROTHER and the second BLOCK-

OVERBALANCED-BY-BROTHER. The following are the predicates we use to describe this

domain:

(define-predicate on (block balance-beam position) (ltms:ltms-predicate-model))

(define-predicate weight (block weight) (ltms:ltms-predicate-model))

(define-predicate block-unbalanced-by-brother (block supporter)

 (backtrack-when-true-mixin ltms:ltms-predicate-model))

(define-predicate block-overbalanced-by-brother (block supporter other-block)

 (backtrack-when-true-mixin ltms:ltms-predicate-model))

Notice that BLOCK-OVERBALANCED-BY-BROTHER and BLOCK-UNBALANCED-BY-BROTHER both

mix in the BACKTRACK-WHEN-TRUE-MIXIN. This flavor defines a joshua:notice-truth-

value-change method that signals a contradiction if the predication it is mixed in-

to ever becomes joshua:*true*.

(define-predicate-model backtrack-when-true-mixin () ()

 (:required-flavors ltms:ltms-mixin))

(define-predicate-method (act-on-truth-value-change backtrack-when-true-mixin)

(ignore)

 (when (eql (predication-truth-value self) *true*)

 (ltms:backtrack self)))

See the section "Notifying the LTMS of Contradictions", page 70.

When such a condition is signalled, we want to take recovery actions, by adding

blocks that will keep the beam from tipping over. There are two such techniques.

The first is a scaffold:

The second is a center weight:

The following predicates and rules describe and reason about these techniques:

(define-predicate scaffold (block balance-beam position)

(ltms:ltms-predicate-model))

(define-predicate is-scaffolded (block position) (ltms:ltms-predicate-model))

(define-predicate is-counterweighted (block) (ltms:ltms-predicate-model))

(defrule detect-scaffolding (:forward)

 If [scaffold ?block ?supporter ?position]

 then [is-scaffolded ?supporter ?position])

60
Truth Maintenance Facilities February 2018

(defrule detect-counterweighting (:forward)

 If [and [on ?block ?supporter center]

 [weight ?block very-heavy]]

 then [is-counterweighted ?supporter])

(defun is-counterweighted (balance-beam)

 (let ((counterweighted nil))

 (map-over-database-predications

 ‘[is-counterweighted ,balance-beam]

 #’(lambda (ignore) (setq counterweighted t)))

 counterweighted))

(defun is-scaffolded (balance-beam position)

 (let ((scaffolded nil))

 (map-over-database-predications

 ‘[is-scaffolded ,balance-beam ,position]

 #’(lambda (ignore) (setq scaffolded t)))

 scaffolded))

61
February 2018 Truth Maintenance Facilities

(defrule detect-unbalance (:forward)

 if [and [on ?block ?supporter left] :support ?f1

 [on nothing ?supporter right] :support ?f2]

 then (unless

 (or (is-counterweighted ?supporter)

 (is-scaffolded ?supporter ’left))

 (let ((missing-assumptions

 (list (tell [not [is-counterweighted ?supporter]]

 :justification :assumption)

 (tell [not [is-scaffolded ?supporter left]]

 :justification :assumption))))

 (tell [block-unbalanced-by-brother ?block ?supporter]

 :justification ‘(unbalanced

 (,?f1 ,?f2)

 ,missing-assumptions

 nil))

)))

(defrule detect-overbalance (:forward)

 if [and [on ?block-1 ?supporter left] :support ?f1

 [weight ?block-1 light] :support ?f2

 [on ?block-2 ?supporter right] :support ?f3

 [weight ?block-2 heavy] :support ?f4

]

 then (unless (is-scaffolded ?supporter ’right)

 (let ((missing-assumption

 (tell [not [is-scaffolded ?supporter right]]

 :justification :assumption)))

 (tell [block-overbalanced-by-brother ?block-1 ?supporter ?block-2]

 :justification ‘(Overbalance

 (,?f1 ,?f2 ,?f3 ,?f4)

 (,missing-assumption))))))

The rules DETECT-OVERBALANCE and DETECT-UNBALANCE are responsible for noticing

situations in which the balance beam will fall over. When one of these rule notices

such a situation it causes a joshua:tms-contradiction to be signalled by

joshua:telling a BLOCK-OVERBALANCED-BY-BROTHER or a BLOCK-UNBALANCED-BY-BROTHER�

predication (in effect, the rule "gripes" about the situation to use the term used in

Scott Fahlman’s BUILD program).

The application can respond to these "gripes" by binding a condition handler that

rectifies the problem (Falhman used the name "gripe catcher" for the equivalent

functionality in BUILD). See the section "Introduction to Signalling and Handling

Conditions" in ��.

Here are two functions that can be used as "gripe catchers":

62
Truth Maintenance Facilities February 2018

(defun handle-overbalanced-condition (condition-object)

 (let ((contradictory-predication

 (tms-contradiction-contradictory-predication condition-object)))

 (if (typep contradictory-predication ’block-overbalanced-by-brother)

(let ((no-scaffolding

(find ’is-scaffolded

 (tms-contradiction-non-premises condition-object)

 :key #’(lambda (thing)

 (predication-predicate

 (multiple-value-bind (ignore supportee)

 (destructure-justification thing)

 supportee))))))

 (with-statement-destructured (light-guy supporter heavy-guy)

 contradictory-predication

 (format t "~&Overbalance of ~s on ~s by ~s noticed"

 light-guy supporter heavy-guy)

 (remove-justification no-scaffolding)

 (tell ‘[scaffold ,(gentemp "BLOCK-") ,supporter right]

 :justification :premise)

 t))

(values))))

(defun handle-unbalanced-condition (condition-object)

 (let ((contradictory-predication

 (tms-contradiction-contradictory-predication condition-object)))

 (if (typep contradictory-predication ’block-unbalanced-by-brother)

(let ((no-counterweight

(find ’is-counterweighted

 (tms-contradiction-non-premises condition-object)

 :key #’(lambda (thing)

 (predication-predicate

 (multiple-value-bind (ignore supportee)

 (destructure-justification thing)

 supportee))))))

 (with-statement-destructured (light-guy supporter)

 contradictory-predication

 (format t "~&Unbalance of ~s on ~s"

 light-guy supporter)

 (remove-justification no-counterweight)

 (let ((new-block (gentemp "BLOCK-")))

 (tell ‘[on ,new-block ,supporter center]

 :justification :premise)

 (tell ‘[weight ,new-block very-heavy]

 :justification :premise)))

 t)

(values))))

Each of these fetches the contradictory predication from the condition object, and

63
February 2018 Truth Maintenance Facilities

then checks that it is the type of gripe which this function wants to handle. If so,

it examines the assumption support part of the condition object. For example, HAN-

DLE-UNBALANCED-CONDITION looks for an IS-COUNTERWEIGHTED statement (which the

handler assumes has truth-value joshua:*false*) in the assumption support. [No-

tice that the condition object contains the �������������� of the assumptions underly-

ing the contradiction. So the handler must destructure the justification to get the

assumption �����������. It then tests if the ��������� of the predication is IS-

COUNTERWEIGHTED]. If the condition object represents a situation that HANDLE-

UNBALANCED-CONDITION can manage, it then repairs things by joshua:unjustifying

the assumption that there is no counterweight (using joshua:remove-justification)

and then joshua:telling two new statements: the first states that there is a block

on the center of the balance beam; the second states that the block is very heavy.

In effect the condition handler, repairs the situation by making there be a heavy

centerweight. The other handler repairs the situation where there is a single block

at one end, by inserting a scaffold under the beam. Each of the handlers follows

the usual protocol for condition handlers of return joshua::t if it handled the con-

dition and joshua::nil if it declines to handle the condition.

One can now use these handlers by joshua::condition-binding them and then de-

scribing a world situation (or running a planner). For example:

(condition-bind ((tms-contradiction #’handle-overbalanced-condition))

 (condition-bind ((tms-contradiction #’handle-unbalanced-condition))

 (clear)

 (tell [on block-1 balance-beam left] :justification :assumption)

 (tell [weight block-1 light])

 (tell [on nothing balance-beam right] :justification :assumption)

))

The following figure shows a trace of this code from the point where the condition

handler takes control.

5.1.5. Signalling Truth Value Changes

As a result of resolving a contradiction, a TMS may cause the truth-value of many

facts to change. A contradiction is usually resolved by unjustifying some member

of its primitive support; this causes the unjustified predication to change from a

definite truth-value (joshua:*true* or joshua:*false*) to joshua:*unknown*. Any

predication which depended on the retracted one similarly changes its truth-value

to joshua:*unknown*. In some TMS’s however, some facts may change from

joshua:*unknown* to a definite truth-value.

It is the responsibility of the TMS to inform the rest of the Joshua application of

these changes in truth-values. To do this the TMS should call the joshua:notice-

truth-value-change and the joshua:act-on-truth-value-change methods for each

fact which undergoes a transition in truth-values. The joshua:notice-truth-value-

change method can then update any data structures that are maintained outside

the TMS to correspond to the changed truth-values. In addition, the joshua:act-on-

truth-value-change method may initiate a deductive process or otherwise affect

the world.

64
Truth Maintenance Facilities February 2018

Figure 25. Example Trace of Condition Handler

Notice that although there may be several predications that have changed truth-

value, the joshua:notice-truth-value-change methods for these predications are in-

voked sequentially. As the method for each predication is called, it updates the

current view of the world to correspond to the changed truth value of the predica-

tion. Thus, until all the methods have had a chance to run, the model of the world

will be partially inconsistent.

To allow this problem to be addressed, there are two mehtods to handle the up-

dating: joshua:notice-truth-value-change and joshua:act-on-truth-value-change.

The TMS should first call the joshua:notice-truth-value-change method for every

predication that has changed truth-value. After that, the TMS should call the

joshua:act-on-truth-value-change method for each predication that has changed

truth-value.

A predication’s joshua:notice-truth-value-change method should update whatever

internal data-structures require modification, but should avoid any other action

that might depend on examining other data-structures which have not yet been

updated. The joshua:act-on-truth-value-change method is allowed to take whatev-

er actions it desires.

The most important example of this two-pass protocol is the Rete-Network used to

trigger forward chaining rules. During the joshua:notice-truth-value-change pass,

the Rete-Network updates its internal data structures to remove partial triggering

information that depended on the previous truth-value of predications that have

changed truth-value. (If this were not done, then rules might be executed even

though the triggering predications no longer have the truth value appropriate for

triggering the rule). During the joshua:act-on-truth-value-change pass the new

truth-values of predications are propagated through the network, allowing rules

65
February 2018 Truth Maintenance Facilities

that have a valid triggering set to execute. TMS implementors do not have to con-

cern themselves with these details, since they are implemented by system supplied

:before and :after methods.

5.2. The Joshua LTMS

This section explains how the Truth Maintenance System provided with Joshua

works and how to use its features. The Joshua TMS, which we call an LTMS (us-

ing terminology due to Forbus and deKleer) is derived from the 3-valued Truth

Maintenance Sytem developed by David McAllester at MIT.

The Joshua LTMS also provides an additional feature (the :One-Of justification)

which allows you to control the invocation of assumptions.

5.2.1. Clause Justification Structures

The justification structure used in the LTMS is called a ������. A clause is simply

a logical disjunction of several facts. For example,

F1 ∨ F2 ∨ ... Fn�

Logically, if all but one of these facts is false, then the other must be true. For

example, if F
�
, F

�
, ... , F

���
 are all false, then F

�
 must be true. Similarly, if F1,

F2, ... , Fi-1,Fi+1, ... , Fn are all false, then Fi must be true. (This is known both as

the ��� rule and as ���������������). Thus, a clause can be used to perform as

many inferences as there are constituents of the clause.

The normal ����� ������ rule is actually a special case of the above clausal in-

ferencing. This is because

P → Q

is logically equivalent to

¬P ∨ Q.
Once an implication has been converted to clausal form, the normal ����� ������

rule follows immediately (since P is the negation of ¬P, every constituent of the

clause ¬P ∨ Q but Q is false and, therefore Q must be true). In addition, clausal in-

ferencing can deduce ¬P from ¬Q (since ¬Q negates Q leaving only ¬P).

The clausal mechanism used in the Joshua LTMS diverges from this simple de-

scription only slightly. First of all, in addition to its constituents a clause also con-

taints a ��������. If the clause was created to memoize an inference drawn by a

rule, then the mnemonic should be the name of the rule. In other cases, the

mnemonic may be used to indicate some special property of the clause.

The second variation is that since in Joshua both P and ¬P are represented by the

same database predication, it is necessary to indicate in the clause data structure

which truth-value of P is intended. Thus, a clause actually consists of two lists of

predications: the positive constituents and the negated constituents. The intended

truth-value of the positive constituents is *true* and the intended truth-value of

the negated constituents is *false*.

66
Truth Maintenance Facilities February 2018

If all but one of the constituents of a clause have the opposite truth-value from

their intended truth-value, then the final constituent is forced to assume its in-

tended truth-value. (Note: *true* and *false* are each other’s opposite truth-value;

unknown is not the opposite truth-value of either *true* or *false*).

A unit (or primitive) justification in the LTMS is simply a clause with only one

constituent. This single constituent will, therefore, be forced to assume its intend-

ed truth-value. We refer to the predications so justified as ����������� ���������

predications. One special kind of primitively justified predication is a �������;

these have a supporting clause whose mnemonic is :premise.

If every constituent of a clause has the opposite truth-value from its intended

truth-value, then the clause is ������������� and a contradiction is signalled. See

the section "Signalling Contradictions and Managing Backtracking", page 57.

The Condition signalled by the LTMS is called ltms:ltms-contradiction. If the sup-

port underlying the contradiction contains only premises then the condition called

ltms:ltms-hard-contradiction is signalled. These conditions have the same in-

stance variables as the base tms-contradiction flavors.

Nogoods in the LTMS

When the LTMS signals a contradiction it automatically constructs a new clause,

called a ������. The idea behind the nogood is as follows: there is a set of primi-

tively justified predications whose current truth-value assignments led to the con-

tradiction. Since a contradiction is unacceptable, at least one of these primitively

justified predications must have the opposite truth-value from that which it cur-

rently has.

Thus suppose we justify a fact with three justifications as follows:

(define-predicate loser (a) (ltms:ltms-predicate-model))

(define-predicate cause-of-lossage (a) (ltms:ltms-predicate-model))

(let ((cause-1 (tell [cause-of-lossage a] :justification :assumption))

 (cause-2 (tell [cause-of-lossage b] :justification :assumption))

 (cause-3 (tell [cause-of-lossage c] :justification :assumption)))

 (tell [loser X]

 :justification ‘(causing-part-of-lossage-1

(,cause-1 ,cause-2 ,cause-3))))

The result is shown in figure 26:

Figure 26. Example of setting up a nogood clause

67
February 2018 Truth Maintenance Facilities

Then the primitive support of the fact will consist of the three assumptions as can

be seen below:

(map-over-database-predications [loser X] #’explain)

(support �������X�)

([CAUSE-OF-LOSSAGE A] [CAUSE-OF-LOSSAGE B] [CAUSE-OF-LOSSAGE C])�

If we now tell the LTMS that the predication [LOSER X] is contradictory then, in

addition to invoking the contradiction handler, it will create a new Nogood clause:

#<LTMS:NOGOOD ¬[CAUSE-OF-LOSSAGE A]

 ∨ ¬[CAUSE-OF-LOSSAGE B]

 ∨ ¬[CAUSE-OF-LOSSAGE C]>

Which says that at least one of the causes of the contradiction must be *false*

since each of them was true at the time the contradiction occured. A constituent

of a clause is printed with a leading negation sign (¬) if its intended truth-value

in the clause if *false*.

A ������ is just a normal clause whose �������� is ltms:nogood. Once created,

it behaves no differently from any other clause. (However, nogoods are internals of

the LTMS that need never be manipulated by a user).

Suppose that [CAUSE-OF-LOSSAGE C] was unjustified in order to resolve the above

contradiction and that the above nogood was then installed. Notice that both

[CAUSE-OF-LOSSAGE A] and [CAUSE-OF-LOSSAGE B] are still joshua:*true*. Therefore,

[CAUSE-OF-LOSSAGE C] is the only constituent of the nogood which does not have

the opposite truth-value from the clause’s intended truth-value. The LTMS will,

therefore, force [CAUSE-OF-LOSSAGE C] to assume its intended truth-value of *false*.

Controlling Choices in the LTMS

The LTMS recognizes one special type of clause called a ������. One-Ofs are dis-

tinguished by having a mnemonic field whose value is :one-of. One-ofs can be

used to control the making of assumptions.

In a normal clause, the LTMS forces a constituent to assume a definite truth-value

only when every other constituent has the opposite truth-value from that intended

for it by the clause. Thus, if every constituent of a clause has *unknown* truth-

value, the LTMS will take no action.

In a One-Of clause, however, the LTMS will guarantee that at least one con-

stituent has its intended definite truth-value. It does this by adding to that con-

stituent a primitive justification whose mnemonic is :choice.

68
Truth Maintenance Facilities February 2018

Although you can create One-Of clauses directly (by using justify or the

:justification keyword argument to tell) it is usually easier and more effective to

use the special predicate ltms:one-of provided with the LTMS to do this, for ex-

ample:

(tell [ltms:one-of [loser X] [loser Y] [loser Z]]

 :justification :assumption)

Notice that this creates and inserts into the database one predication for each con-

stituent of the One-Of; however, it initially provides no justification for any of

these constituents. In addition, it creates a ltms:one-of predication which is justi-

fied as an :assumption as directed by the joshua:tell. Finally, since no constituent

of the One-Of has its intended truth-value, the LTMS picks one and justifies it

with a :choice justification.

This choice can be overridden by explicitly asserting its negation with a premise

justification (as far as the LTMS is concerned, a :choice primitive justification is

just an assumption; only :premise justifications are treated as unretractable):

(tell [not [loser x]] :justification :premise)

Notice that when the choice of [LOSER X] is overriden, the LTMS picks another

constitutent of the clause to justify with a :choice justification. This leaves the

69
February 2018 Truth Maintenance Facilities

database in the following state:

Similarly, if we now override this choice, the following will result:

(tell [not [loser y]] :justification :premise)�

Finally, if we override the last choice, then the ltms:one-of predication will simply

be retracted since it is justified as an :assumption:

(tell [not [loser z]] :justification :premise)

70
Truth Maintenance Facilities February 2018

And at this point the database will look like:

Notifying the LTMS of Contradictions

The LTMS notices logical contradictions any time that a predication is about to as-

sume both joshua:*true* and joshua:*false* truth-values. At such tims, the LTMS

intervenes and initiates ������������ (the process of handling and removing con-

tradictions). However, there are times when you may want the LTMS to treat

some condition as if it’s a contradiction, even though there is no predication which

is contradictory.

The LTMS provides two techniques for doing this. The first of these is the func-

tion ltms:backtrack. The second is the ltms:contradiction predicate.

The function ltms:backtrack takes three arguments. The first should be a

database predication, the second a truth-value that defaults to the current truth-

value of the predication. The third argument is used to instruct the LTMS to sig-

nal a user-defined condition. Calling ltms:backtrack causes the LTMS to initiate

backtracking just as if its first argument had become contradictory. Backtracking

will continue until the predication has a truth-value other than the second argu-

ment to ltms:backtrack.

One technique for using this function is via the joshua:notice-truth-value-change

protocol function. For example:

�define-predicate�I�should-never-be-in ()��ltms:ltms-predicate-model))

(define-predicate-method (act-on-truth-value-change I-should-never-be-in)

(ignore)

 (when (eql (predication-truth-value self) *true*)

 (ltms:backtrack self)))

(tell [I-should-never-be-in] :justification :assumption)

 Telling predication [I-SHOULD-NEVER-BE-IN]

 Justifying: [I-SHOULD-NEVER-BE-IN] <-- ASSUMPTION

 Justifying: [I-SHOULD-NEVER-BE-IN] as false <-- NOGOOD

¬[I-SHOULD-NEVER-BE-IN]

T �

Notice that as soon as the [I-SHOULD-NEVER-BE-IN] predication is justified as an

assumption, the joshua:notice-truth-value-change method is invoked causing back-

tracking to begin. This creates a nogood which causes the predication to assume

joshua:*false* truth-value.

71
February 2018 Truth Maintenance Facilities

The predicate ltms:contradiction is defined in a manner similar to the I-should-

never-be-in predicate in the example above. Thus, it can be used to notify the

LTMS of a contradiction. Whenever a ltms:contradiction predication assumes a

truth-value of joshua:*true* backtracking is initiated. The following rule (which is

in the Jericho system of Joshua examples) causes backtracking to be initiated

whenever any type of tragedy is deduced.

(defrule trying-to-write-a-comedy (:forward)

 ;; no tragedies, please

 IF [tragedy ?fact]

 THEN [ltms:contradiction])

72
Truth Maintenance Facilities February 2018

73
February 2018 Joshua Metering

6. Joshua Metering

Joshua extends the system metering facilities in order to provide specific tools for

analyzing Joshua programs. These tools are conveniently available in the Metering

Interface. Joshua metering can help you do three things:

• Find bugs in your program that show up only as performance problems

• Improve the performance of your Joshua rules by changing the ordering of the

triggers

• Use the Joshua modeling capabilities.

Because the Metering system is not part of the default world, you must load it

separately, using the command:

Load System Joshua Metering�

By loading the Joshua Metering system you also load the standard Metering sys-

tem.

Before using Joshua metering you should familiarize yourself with how to use the

Metering Interface. See the section "Metering Interface" in ������� �����������

���������.

6.1. Joshua Metering Types

Joshua defines new Metering Types designed for metering Joshua programs. Un-

like the system-provided metering types which collect data about function calls, the

Joshua metering types collect data about the Joshua Protocol steps and the for-

ward rule Rete network. This lets you study the execution of your Joshua pro-

grams without overwhelming you with the details of every function call.

There are three new Metering Types:

• Joshua Tell Metering

• Joshua Ask Metering

• Joshua Merge Metering

6.1.1. Joshua Tell Metering

The Joshua Tell Metering type collects information about each joshua:tell. The da-

ta for each joshua:tell of a predication is indexed by the predicate of that predica-

tion. To illustrate: in the hardware trouble-shooting example from the Jericho sys-

tem, all tells of predications of the form [has-status ...] will be indexed under

the predicate has-status.

74
Joshua Metering February 2018

Tell Metering collects two types of data: ������ and �����.

������ simply keep track of the number of times an event occurs while telling a

predication of a particular predicate. Metering collects four counts for each predi-

cate:

1. Tells: How many times a predication of this predicate is told to the database.

2. Matches: How many attempted matches are caused by telling a predication of

this predicate. These are matches against forward rule triggers in the for-

ward rule Rete net.

3. Merges: The number of attempted merges in the Rete net occurring while

telling predications of this predicate.

4. Rules: How many forward rule firings occurred while telling predications of

this predicate.

The ����� collected by Joshua metering tell you how much time is spent in each of

the five protocol steps called directly or indirectly by joshua:tell. The time report-

ed for a protocol step includes the time in the protocol function and the time in

all functions that it calls. It does not include the time spent in other protocol

steps. This is referred to as exclusive time of the protocol step.

Tell Metering collects exclusive times for the following protocol steps:

1. joshua:tell

2. joshua:insert

3. joshua:justify

4. joshua:notice-truth-value-change

5. joshua:act-on-truth-value-change

6. joshua:map-over-forward-rule-triggers�

In addition exclusive times are collected for two important operations which are

not part of the protocol:

1. Matching: The time spent doing the actual matching of told predications

against forward rule triggers.

2. Merging: The time spent trying to merge the binding environments generated

by the matches.

Exclusive times are collected as histograms. See the section "Expanding Metering

Data" in ������� ����������� ���������.Times include paging time and, unless the

metering run is done using the without-interrupts option, other process time as

well. See the section "Interpreting the Results of a Metering Run" in ������� ���

�������������������.

Here’s an example of what a Joshua Tell Metering run might look like. Notice

that we can use use the Metering Interface to show us only the counts or times

that interest us.

75
February 2018 Joshua Metering

Meter Form (ht:diagnose-circuit nil) Joshua Tell Everything

�

With Joshua Tell Metering you can locate the predicates your program uses the

most. You can also find the predicates that spend the most time in joshua:insert

(or joshua:justify or joshua:map-over-forward-rule-triggers ...) This information

can help you determine how to speed up your program. For example if your pro-

gram spends a lot of time in joshua:insert for a particular predicate, that predi-

cate might be a good candidate for data modeling. See the section "Customizing

the Data Index", page 81. If your program spends a great deal of time in

joshua:map-over-forward-rule-triggers you might try trigger modeling to improve

the performance. See the section "Customizing the Matchers Generated by the

Rule Compiler", page 102.

Modeling is only advantageous when you use a data structure that is more effi-

cient than the default data structures. Metering can help you choose efficient data

structures for your model. You can meter your program before modeling and care-

fully look at the times for the relevant protocol steps, for example joshua:insert.

With these numbers in hand, you can implement alternative models; re-meter and

compare the numbers. You will immediately be able to see if your modeling was

successful.

Here’s a simple example of using Joshua metering to measure the performance im-

provement caused by modeling a predicate.

Figure 27. Tell metering of the unmodelled good-to-eat predicate.

6.1.2. Joshua Ask Metering

Joshua Ask Metering collects information about each use of joshua:ask in your

Joshua program. It provides the data in a similar format to that used by Tell Me-

tering, only it shows the protocol steps called while retrieving data from the

database and running backward rules.

76
Joshua Metering February 2018

Figure 28. Tell metering of the modelled good-to-eat predicate.

Two counts are collected for each predicate:

1. Asks: The number of asks performed for predications of the predicate.

2. Rules: The number of backward rules fired while asking predications of the

predicate.

Exclusive time is collected for the following protocol steps:

1. joshua:ask

2. joshua:ask-data

3. joshua:fetch

4. joshua:ask-rules

5. joshua:map-over-backward-rule-triggers

Note that the time spent in joshua:ask-questions is not explicitly reported, but its

time is excluded from the other protocol steps.

6.1.3. Joshua Merge Metering

Joshua Merge Metering collects information about the matches and merges that

happen in the rete network. See the section "Forward Rule Triggers: the Rete Net-

work", page 27. The data is indexed by the node in the rete network and displayed

as several trees. The root of each tree is a rule and the children are the nodes in

the network that lead to the triggering of that rule.

In the rete net a single match or merge node can be used in triggering more than

one rule. In the Metering Interface these shared nodes are duplicated, so that each

rule has its own independent tree of nodes. There is however a visual indicator (an

asterisk next to the node name) in the display of each shared node.

The node trees are very similar to the call trees used in other metering types. Ini-

tially only the roots of all the trees are visible. There are commands which allow

you to show and hide nodes or show and hide node children. This set of commands

parallels the commands on call trees. See the section "Exploring a Call Tree" in

������� ����������� ���������. The common commands are invoked with the same

gesture for both kinds of trees. See the section "Using the Mouse in the Metering

Interface" in �����������������������������.

Example:

Meter Form (ht:diagnose-circuit nil) Joshua Merge Everything

77
February 2018 Joshua Metering

Joshua Merge metering helps you locate two different types of wasted work:

1. Rules that may be firing too many times.

2. Rule patterns that may be badly ordered or too general, causing low success

percentages for merges.

Probably the most important number provided by Joshua Merge Metering is the

merge success percentage. This number gives you the ratio of successful merges to

attempted merges. Success percentages for merges can often be improved by re-

ordering the clauses in the rule pattern and recompiling the rule. The optimal or-

der depends upon several factors. The two major ones are the number of predica-

tions that match this clause and how many variables this clause shares with other

clauses.

If you are using trigger modeling, the match success percentages will also be use-

ful. The contract of joshua:map-over-forward-rule-triggers is to map over all

match nodes that �������� match the given predication. The match node itself then

determines if it actually matches the predication. If a joshua:map-over-forward-

rule-triggers method is not selective enough there will be a low match success

percentage. Improving the match success rate will decrease the match time (avail-

able in Tell Metering) and improve the performance of your Joshua program.

6.2. Choosing Joshua Metering Types

Which type of Joshua metering you should use depends on what your program is

doing. Joshua Ask Metering is most useful in programs that include backward

chaining. It is also useful for programs that don’t do any backward chaining but

still use joshua:ask frequently to query the database. Joshua Tell Metering is

most useful in programs that include forward chaining or for measuring the time

spent in setting up an initial database. It is rarely useful for programs that do

strictly backward chaining. You should only use Joshua Merge Metering for pro-

grams that execute forward rules.

78
Joshua Metering February 2018

Other system metering types can be useful if a Joshua program includes extensive

use of Lisp code or if you want to understand the internal details of how Joshua

works.

79
February 2018 Controlling Data and Rule Indexing

7. Controlling Data and Rule Indexing

This chapter shows you some basic ways of using the Joshua Protocol to customize

Joshua components.

Joshua is a system with "replaceable" parts; that is, you can easily redefine the be-

havior of any system component. The protocol also makes it straightforward to

build an interface that incorporates an existing tool into Joshua without modifying

that tool.

In Joshua both the knowledge structures and the contracts of the protocol func-

tions are �������� ���� ����� ��������������. Because the Joshua protocol provides a

standard interface for the knowledge structures to communicate with diverse im-

plementations, you can, for example, select any option for data storage without af-

fecting the rule structure or the way that statements involving predications are

used for inferencing purposes. Figure29 shows sample interactions between some

knowledge structures and their implementations by way of the protocol. As you can

see from these examples, the various implementations shown have no effect on the

appearance of the knowledge structures, or on the behavior of the top level

joshua:tell and joshua:ask protocol functions as seen by the user. This is because

the contract of these functions remains unchanged, regardless of how you imple-

ment their behavior.

Chicken is good to eat. (tell [good-to-eat chicken])

Is OBJECT-1 a cable? (ask [type-of OBJECT-1 cable] #’...)

How fast is OP-AMP-1? (ask [freq OP-AMP-1 ≡f]#’...)

(pushnew ’chicken *foods*)

(typep (obj-named ’OBJECT-1) ’CABLE)

Behavior

of OP-AMP-1

SPICE
Description

of OP-AMP-1

Knowledge vs. Protocol vs. Implementation

Protocol Possible ImplementationKnowledge

Figure 29. Knowledge Structures Can Be Diversely Implemented�

Why should you use the protocol to provide implementations other than the de-

faults provided with Joshua? There is often a gain in efficiency when you use spe-

cialized representations for certain key parts of your application. For example,

80
Controlling Data and Rule Indexing February 2018

choosing the right data structure for a problem improves performance. In the case

of a system that spends more than half of its time asking questions like, "Is this a

cable?" or "Is this a light?", you could improve performance by using a retrieval

mechanism that uses joshua::typep to answer such questions, as shown in figure

29.

The protocol also allows your application access to the facilities of a specialized

tool. For example, as figure29 shows, a Joshua application that needs to answer

questions about the behavior of circuits might want to take advantage of a pro-

gram like SPICE that simulates electronic circuits. Joshua provides a "seamless"
way to access customized or external facilities using generic functions like

joshua:ask and joshua:tell.

Or you might want to use a TMS. You get a TMS by creating a mixin that imple-

ments the TMS protocol methods (typically this means joshua:justify,

joshua:unjustify, and joshua:destructure-justification). With the protocol you can

create as many kinds of TMS facilities as your application needs.

How does one customize the protocol? Basically, you need to define a component

flavor (using joshua:define-predicate-model) and then write methods to imple-

ment those portions of the protocol whose behavior you are customizing. This com-

ponent is then mixed into those predicates (using joshua:define-predicate) which

need to take advantage of the customized behavior.

Data indexing, rule compilation, rule triggering and truth maintenance are all

parts of the protocol, as are their component steps. Since the protocol identifies

and makes accessible each step of processing a statement, you can focus modifica-

tions very precisely. Typically you would customize the fine grain steps thus pre-

serving the gross structure. Most predicates continue to use most of the default

methods. So for example, if you want to change the way data is justified, you de-

fine a method for the joshua:justify component of joshua:tell, but you need not

define methods for the data-indexing and rule-locating components of joshua:tell.

Obviously while customizing any level of the protocol, you need to be aware of

functions that work together, (such as joshua:insert, joshua:uninsert,

joshua:fetch, and joshua:clear), since redefining one of these functions requires

redefining the others. But typically the effects of customizing are localized, and

changing one area does not require massive changes in the rest of the system.

When should you customize the protocol? Not every application needs customiza-

tion. Often Joshua’s general-purpose facilities serve quite well. However, as you

gain more knowledge about your program, you can identify what, if any, portions

of it data, rules, compilation, or truth maintenance would benefit by cus-

tomizing, or whether you want to interface to an external tool such as a database.

You can thus enrich Joshua’s built-in facilities incrementally. In sum, decisions

about when and what to customize are entirely application dependent. Joshua’s me-

tering tools can be very helpful here, both to identify bottlenecks, and to deter-

mine the effect of customizing on your application. See the section "Joshua Meter-

ing", page 73.

Here is the list of predicate customizing facilities. We illustrate their use in the

examples that follow.

81
February 2018 Controlling Data and Rule Indexing

joshua:define-predicate-model

This is the form for specifying new component flavors that be

combined and mixed into predicates. Predicate models are not

instantiable flavors, they can only be mixed into the defini-

tions of predicates.

joshua:define-predicate

This is the standard predicate-defining form that lets you

specify the component flavors each predicate is built on. Pred-

icates are the flavors that can be instantiated; the instances

of these are predications (or statements).

joshua:define-predicate-method

This form lets you define methods of component flavors (de-

fined by joshua:define-predicate-model) or of predicates (de-

fined by joshua:define-predicate) for any of the protocol

functions that need redefinition. To undo, use �-� Kill Defini-

tion from your Zmacs editor.

joshua:undefine-predicate-model

This form lets you expunge a predicate model definition.

joshua:undefine-predicate

This form lets you expunge a predicate definition.�

This chapter discusses and illustrates the following types of customizations:

• Customizing the techniques for Data Indexing

• Customizing the techniques for Rule Indexing

• Customizing the Rule Compiler�

The discussion assumes an understanding of the default operation of all the above

Joshua features, as described in earlier chapters of this manual.

7.1. Customizing the Data Index

Quick Reference: For a description of the default implementation, see the section

"Storing and Retrieving Knowledge in Joshua: the Virtual Database", page 7.

There are many ways in which you can use the Joshua Protocol to change the be-

havior of your programs; among the most useful is to change the way predications

are stored in the virtual database.

Customization of Joshua’s data indexing techniques is usually done by defining

new methods for joshua:insert, joshua:uninsert, joshua:fetch, and joshua:clear.

(Under some circumstances, it is preferable to define new methods for joshua:tell,

joshua:untell, and joshua:ask-data rather than joshua:insert, joshua:uninsert,

and joshua:fetch. One such case is discussed in an example. See the section "Cus-

82
Controlling Data and Rule Indexing February 2018

tomizing the Data Index Without Storing Predications", page 85.) You have to pro-

vide a consistent implementation of these methods so that joshua:tell knows where

to put data, joshua:untell knows how to remove specific items, joshua:ask knows

where to find data, and joshua:clear knows how to flush all of it.

This idea is best explained by an example. Suppose you are writing an expert sys-

tem to mimic the behavior of some animal. When this animal gets hungry, it

starts looking for food. Thus, it must have some means of recognizing objects in

its world that are good to eat. To start with, you might implement this by defining

a predicate like good-to-eat, along with a companion joshua:say method for a bet-

ter-looking display:

(define-predicate good-to-eat (food-name))

(define-predicate-method (say good-to-eat) (&optional (stream *standard-output*))

 (with-statement-destructured (food-name) self

 (format stream "~&I like to eat ~S." food-name)))

Then you can joshua:tell your program about some acceptable classes of food. By

default, this information is stored in the discrimination net.

(tell [and [good-to-eat suan-la-chow-show]

 [good-to-eat kung-pao-chi-ding]

 [good-to-eat ta-chien-chi-ding]

 [good-to-eat lychee-nuts]])�

Having done this, you can joshua:ask your program what’s good to eat:

(ask [good-to-eat ?] #’say-query :do-backward-rules nil)

I like to eat LYCHEE-NUTS.

I like to eat TA-CHIEN-CHI-DING.

I like to eat KUNG-PAO-CHI-DING.

I like to eat SUAN-LA-CHOW-SHOW.�

When such a program gets hungry, it searches for a Chinese restaurant.

Eventually you notice that your program spends a great deal of time deciding what

to eat. You do a bit of metering and you find that the program is slow because it

is fetching predications of the form [good-to-eat ?food] (where ?food may or may

not be instantiated), from a rather large discrimination net database, and this is

causing too much paging. (The discrimination net potentially takes a page fault on

each discrimination net node, the tables in the node, and the list containing the

successor nodes. Variables in either the query or the database aggravate this,

since more arcs of the discrimination net are followed.)

The solution is to create a data index for good-to-eat that stores data about foods

in some special place, more easily accessed than the discrimination net. For exam-

ple, you might just want to have a special variable called *known-foods* that is a

list of all the foods the program knows about. You’d like joshua:tell to push new

elements onto that list; depending on whether or not the argument to good-to-eat

is instantiated, you’d like joshua:ask to either search for a particular food, or to

loop over the list of known foods. joshua:clear should just joshua::setq the vari-

able to joshua::nil.

83
February 2018 Controlling Data and Rule Indexing

Note that often when customizing the data index you give up some generality in

return for some performance, or for access to a data source controlled by some

other program, such as an external database stored on, for example, a departmen-

tal data-processing computer. That’s a good trade-off if you’re not using the full

generality anyway. In this example, we note that food names are always symbols,

so we needn’t check for strings and such, and can use joshua::eql to compare

them. We take advantage of the fact that there is only one argument to the good-

to-eat predicate.

Furthermore, we never joshua:tell things like [good-to-eat ?everything], that is,

we can forbid the use of variables in the database. These restrictions simplify the

implementation considerably, to the point where we need only use a list of food-

names and their associated database predications. (One could use a hash table, al-

so, if the number of foods were to get large. Joshua lets you use the whole world

of Lisp machine data structures hash tables, lists, arrays, heaps, or whatever.)

Here is some code that sets up this data index. First, we define the global variable

that will be the "database" for known foods.

(defvar *known-foods* nil "What’s on the menu.")

Then we define a predicate model, good-to-eat-data-model, for foods the program

knows about. Since the methods will be referring to the argument of the predicate

frequently, we make the argument an instance variable by putting a :required-

instance-variables in the joshua:define-predicate-model form (as well as a

:destructure-into-instance-variables in the later joshua:define-predicate).

(define-predicate-model good-to-eat-data-model () ()

 (:required-instance-variables food))

Here is code which implements the strategy we have discussed: using the variable

known-foods as an association list that holds the data and the predication, the

joshua:insert, joshua:uninsert, and joshua:fetch methods operate using Lisp list-

handling functions.

(define-predicate-method (insert good-to-eat-data-model) ()

 ;; tell something about food

 (when (typep food ’unbound-logic-variable)

 (error "You can’t possibly mean that everything is good to eat: ~S" self))

 (let ((entry (assoc food *known-foods*)))

 (if entry

 ;; this thing is already known to be good to eat.

 (values (cdr entry) nil)

 ;; not already known -- build a new entry

(let ((database-predication (copy-object-if-necessary self)))

 ;; this is a new one, put it on the list

 (push (cons food database-predication) *known-foods*)

 (values database-predication t)))))

84
Controlling Data and Rule Indexing February 2018

(define-predicate-method (uninsert good-to-eat-data-model) ()

 ;;remove food entry from the list

 (setq *known-foods* (delete food *known-foods* :key #’car)))

(define-predicate-method (fetch good-to-eat-data-model) (continuation)

 ;; retrieve some data about known foods

 (typecase food

 (unbound-logic-variable

 ;; wants to succeed once for each possible food

 (loop for (known-food . predication) in *known-foods*

 doing (funcall continuation predication)))

 (otherwise

 ;; wants to know if something in particular is good to eat

 (let ((entry (assoc food *known-foods*)))

(when entry

 (funcall continuation (cdr entry)))))))

(define-predicate-method (clear good-to-eat-data-model) (clear-database ignore)

 ;; flush all the data about known foods

 (when clear-database

 (setq *known-foods* nil)))

(define-predicate good-to-eat (food)

 (good-to-eat-data-model default-predicate-model)

 :destructure-into-instance-variables)

The only tricky parts are joshua:insert and joshua:fetch. joshua:insert first

checks to see that the food argument is bound. That was one of our simplifying

assumptions. Then it looks to see if it already has a database entry for that food.

If so, the database predication is returned along with the joshua::nil indicating

that the entry was already in the database. If not, the predication is copied if nec-

essary. This will ensure that the predication put in the database is not ephemeral

in any way. The database predication is returned, along with joshua::t to indicate

that the database predication is newly inserted in the database.

The method for joshua:fetch deserves some explanation. The joshua::unbound-

logic-variable check is to distinguish between (ask [good-to-eat suan-la-chow-

show] ...) and (ask [good-to-eat ?x] ...), that is, whether or not the query has

a logic variable in its argument. The former asks a question like "Is this particu-

lar thing good to eat?", while the latter says "For everything you can prove is good

to eat, do ...". So joshua:fetch must check to see what sort of question is being

asked. If the query has a variable food, we must succeed once with each good-to-

eat predication in the database. If the query is about a specific food, we look it up

in the database and succeed if it is there.

Here’s a hypothetical interaction with the program:

85
February 2018 Controlling Data and Rule Indexing

(clear)

known-foods → NIL

(tell [and [good-to-eat suan-la-chow-show]

 [good-to-eat kung-pao-chi-ding]

 [good-to-eat ta-chien-chi-ding]

 [good-to-eat lychee-nuts]])

known-foods → ((LYCHEE-NUTS . [GOOD-TO-EAT LYCHEE-NUTS])

 (TA-CHIEN-CHI-DING . [GOOD-TO-EAT TA-CHIEN-CHI-DING])

 (KUNG-PAO-CHI-DING . [GOOD-TO-EAT KUNG-PAO-CHI-DING])

 (SUAN-LA-CHOW-SHOW . [GOOD-TO-EAT SUAN-LA-CHOW-SHOW]))

(ask [good-to-eat ?] #’say-query :do-backward-rules nil) →
I like to eat LYCHEE-NUTS.

I like to eat TA-CHIEN-CHI-DING.

I like to eat KUNG-PAO-CHI-DING.

I like to eat SUAN-LA-CHOW-SHOW.

(clear)

known-foods → NIL�

So by giving up some generality, we can gain some performance. It is not hard to

use data structures other than association lists. Just replace the list insertion and

lookup functions with ones appropriate to your data structure.

7.1.1. Customizing the Data Index Without Storing Predications

In some cases, you won’t want to store entire predication objects in the database.

For example, you might be using some external database for some predicates.

Joshua provides a different level of the data protocol for customizing such applica-

tions. For such applications, you would provide joshua:tell, joshua:untell,

joshua:ask-data, and joshua:clear methods. Note that some types of predicates re-

quire that information be stored in the database predication. In particular, the for-

ward-chaining rule mechanism stores state information in database predications,

and the system-supplied TMS mixin, ltms:ltms-mixin, stores its support informa-

tion in database predications. So a requirement for using this type of customiza-

tion on predicates is that the predicates be used only in backward chaining. (How-

ever, it is sometimes possible to use the joshua:expand-forward-rule-trigger pro-

tocol function to look for the data during forward rule triggering. See the dictio-

nary entry for this protocol function for examples.)

For an example, we turn to the good-to-eat example introduced in another section.

(See the section "Customizing the Data Index", page 81.)

We’ll make the same assumptions that were made in that example that the

foods in the database are always symbols, never variables. For simplicity we’ll im-

pose a further restriction that all assertions must be stated positively. This

model will not allow (tell [not [good-to-eat yu-shiang-giant-beetle]]).

86
Controlling Data and Rule Indexing February 2018

The joshua:insert, joshua:uninsert, and joshua:fetch methods of that previous

example dealt with database predications. So for this type of customization, we’ll

move to the next higher level of the protocol joshua:tell, joshua:untell, and

joshua:ask-data. Another way to think about why we have to move up a level is

to notice that joshua:tell and joshua:untell will try to joshua:justify and

joshua:unjustify, which need database predications.

Here is the new code:

(define-predicate-method (tell good-to-eat-data-model)

 (truth-value justification)

 (declare (ignore justification))

 ;; tell something about food

 (unless (eql truth-value *true*)

 (error "Only positive assertions are allowed for ~S" self))

 (when (typep food ’unbound-logic-variable)

 (error "You can’t possibly mean that everything is good to eat: ~S" self))

 (pushnew food *known-foods*))

(define-predicate-method (untell good-to-eat-data-model) ()

 ;; remove food name from the list

 (setq *known-foods* (delete food *known-foods*)))

(define-predicate-method (ask-data good-to-eat-data-model)

 (truth-value continuation)

 ;; given the contents of *known-foods*, unify against the query

 ;; and call the continuation

 (unless (eql truth-value *true*)

 (signal ’ji:model-can-only-handle-positive-queries

 :query self

 :model ’good-to-eat-data-model))

 (typecase food

 (unbound-logic-variable

 ;; wants to succeed once for each possible food

 (loop for database-food in *known-foods*

 doing (with-unification

 ;; bind the variable in the query and go on

 (unify food database-food)

 (stack-let ((support

 ‘(,self ,truth-value good-to-eat-data-model)))

 (funcall continuation support)))))

 (otherwise

 ;; wants to know if something in particular is good to eat

 (when (member food *known-foods*)

(stack-let ((support ‘(,self ,truth-value good-to-eat-data-model)))

 (funcall continuation support))))))

87
February 2018 Controlling Data and Rule Indexing

(define-predicate-method (clear good-to-eat-data-model)

 (clear-database ignore)

 ;; flush all the data about known foods

 (when clear-database

 (setq *known-foods* nil)))

(define-predicate good-to-eat (food)

 (good-to-eat-data-model default-predicate-model)

 :destructure-into-instance-variables)

The joshua:tell method is very straightforward after checking our assumptions,

it makes sure the food is on the list. The joshua:untell and joshua:clear methods

are almost identical to our previous example.

The joshua:ask-data method has to do the same positiveness check that

joshua:tell did, but joshua:ask-data should signal the ji:model-can-only-handle-

positive-queries condition if the query isn’t positive. joshua:ask-data does the

same joshua::unbound-logic-variable test that joshua:fetch in the previous exam-

ple did. When the argument is unbound, joshua:ask-data must bind it before call-

ing the continuation. In this case, the derivation provided by the joshua:ask-data

method is just the symbol good-to-eat-data-model, to tell programs what flavor

provided this answer.

From the point of view of the user of joshua:tell and joshua:ask, the behavior of

the customized system is just the same as before, but this version of the program

does not touch the discrimination net. The information that used to go into the

discrimination net is now stored in a different place, namely the value of

known-foods. Note in the following examples that joshua:tell and joshua:ask act

exactly as before, but the value of *known-foods* changes.

(clear)

known-foods → NIL

(tell [and [good-to-eat suan-la-chow-show]

 [good-to-eat kung-pao-chi-ding]

 [good-to-eat ta-chien-chi-ding]

 [good-to-eat lychee-nuts]])

known-foods → (LYCHEE-NUTS TA-CHIEN-CHI-DING KUNG-PAO-CHI-DING SUAN-LA-CHOW-SHOW)

(ask [good-to-eat ?] #’say-query :do-backward-rules nil) →
I like to eat LYCHEE-NUTS.

I like to eat TA-CHIEN-CHI-DING.

I like to eat KUNG-PAO-CHI-DING.

I like to eat SUAN-LA-CHOW-SHOW.

In this case as before, other data structures could easily be substituted for the list.

88
Controlling Data and Rule Indexing February 2018

If the data structure were made just slightly more complicated, negative assertions

could be handled. joshua:tell just needs to remember the current truth value, and

joshua:ask-data needs to succeed only on foods which have the same database

truth value as the query.

7.2. Customizing the Rule Index

Quick Reference: For a description of the default rule-indexing implementation,

see the section "The Joshua Rule Facilities ", page 23. This section disusses the

process of changing the way the system stores, removes, and looks up rule trig-

gers.

A trigger is an object that can be used to invoke a particular rule or question. Ex-

actly what the trigger object is depends on the rule type. For a forward rule, the

triggers are Rete match nodes, and "invoke" means a call to some Rete network

code to start the match process. For a backward rule, the (unique) trigger is a

function that does both the matching and the rule-body execution. For questions, a

trigger is just the name of a function to call; if called with reasonable arguments,

it will ask its question. The default implementation stores trigger objects in a dis-

crimination net.

The impetus for customizing rule indexing is that many systems spend much of

their time looking for applicable rules and questions, as opposed to executing

them. For example, if you joshua:tell the system a fact, in many cases most of the

resulting runtime is spent looking for forward rules, rather than executing them.

If this is the case, a customzied rule-trigger index can help.

There are four operations you can do with rule triggers, namely, adding new trig-

gers, deleting existing triggers, locating the place which a trigger should be stored

in (or removed from), iterating over triggers to find rules or questions that can

execute. If you provide a consistent alternative implementation of the protocol

functions that do these operations, you’ve changed the way your program looks for

rules, and perhaps achieved improved performance.

Let’s consider our food example again, namely the good-to-eat example used in

the section on customized data indexing. see the section "Customizing the Data In-

dex", page 81.

In brief, this example identifies foods that are good to eat, so that the program’s

subject knows what foods to look for when it gets hungry. There might be a num-

ber of backward-chaining rules in the system that have triggers resembling [good-

to-eat ?x] or [good-to-eat suan-la-chow-show]. The problem is that the default

way of storing triggers goes through a very general discrimination net, whereas in

this case, there is only one interesting datum, namely the argument to

good-to-eat. We want to produce a system that, when looking for backward rules

to solve good-to-eat goals, will discriminate only on that argument.

Here’s an example of such an implementation for backward rules (to keep things

simple). First, we define a structure in which to store rule triggers. Since the trig-

ger pattern contains either a logic variable or a symbol, a hash table for symbols

89
February 2018 Controlling Data and Rule Indexing

and a separate list for the variable case will do. That is, we have one place to

store triggers like [good-to-eat suan-la-chow-show], and another for things like

[good-to-eat ?x].

(defvar *good-to-eat-constant-triggers* (make-hash-table :size 10))

(defvar *good-to-eat-variable-triggers* nil)

Next, we want joshua:add-backward-rule-trigger, joshua:delete-backward-rule-

trigger, joshua:locate-backward-rule-trigger, and joshua:map-over-backward-

rule-triggers to use these data structures instead of the defaults.

We need not redefine joshua:add-backward-rule-trigger and joshua:delete-

backward-rule-trigger, because both use a storage location provided by

joshua:locate-backward-rule-trigger. So it is sufficient to define a method for

joshua:locate-backward-rule-trigger and joshua:map-over-backward-rule-

triggers.

We begin by defining our good-to-eat predicate model.

(define-predicate-model good-to-eat-trigger-model () ()

 (:required-instance-variables food))�

Next we define the joshua:locate-backward-rule-trigger method. The code for

this considers two cases.

• If the predication passed to joshua:locate-backward-rule-trigger contains a log-

ic variable, the method calls the continuation on the *good-to-eat-variable-

triggers* list. If the continuation changed the list of triggers, the method up-

dates it.

• If the predication passed to joshua:locate-backward-rule-trigger contains a

constant, the method calls the continuation on the appropriate elements of the

good-to-eat-constant-triggers table. If the continuation changed the list of

triggers, the method updates the table.

90
Controlling Data and Rule Indexing February 2018

(define-predicate-method

 (locate-backward-rule-trigger good-to-eat-backward-trigger-model)

 (truth-value continuation &optional ignore)

 ;; call continuation on list of triggers for backward rules that

 ;; solve good-to-eat goals

 (typecase food

 (unbound-logic-variable

 ;; the argument is an unbound logic variable

 (multiple-value-bind (new-triggers triggers-changed-p canonical-trigger)

 (funcall continuation *good-to-eat-backward-variable-triggers*)

(when triggers-changed-p

 (setq *good-to-eat-backward-variable-triggers* new-triggers))

canonical-trigger))

 (otherwise

 ;; the argument is a constant

 (let ((list-of-triggers

 (gethash food *good-to-eat-backward-constant-triggers*)))

(multiple-value-bind (new-triggers triggers-changed-p canonical-trigger)

 (funcall continuation list-of-triggers)

 (when triggers-changed-p

 (if (null new-triggers)

;; if they’re all undefined, nuke this entry

(remhash food *good-to-eat-backward-constant-triggers*)

(setf (gethash food *good-to-eat-backward-constant-triggers*)

 new-triggers)))

 canonical-trigger)))))

joshua:map-over-backward-rule-triggers must apply the continuation to all appli-

cable backward rule triggers that solve good-to-eat goals. Our method first maps

over the variable trigger list, since all variable triggers must be probed regardless

of whether the goal has a logic variable or a constant in it.

If the goal has a logic variable in it (for example (ask [good-to-eat ?what]...)),

the method must also apply the continuation to all the variable triggers, since any

constant matches the logic variable in the goal.

If the goal has a constant in it (for example (ask [good-to-eat honey] ...)),

joshua:map-over-backward-rule-triggers only needs to call the continuation on

trigger objects with matching constants.

91
February 2018 Controlling Data and Rule Indexing

(define-predicate-method

 (map-over-backward-rule-triggers good-to-eat-backward-trigger-model) (continuation)

 ;; map continuation over triggers of backward rules that

 ;; solve good-to-eat goals

 ;; first do all variable triggers

 (mapc continuation *good-to-eat-backward-variable-triggers*)

 (typecase food

 (unbound-logic-variable

 ;; food is unbound, so have to map over all remaining triggers

 (maphash #’(lambda (key value)

 (ignore key)

 (mapc continuation value))

 good-to-eat-backward-constant-triggers))

 (otherwise

 ;; food is bound, so map over just those triggers that will match

 (mapc continuation

 (gethash food *good-to-eat-backward-constant-triggers*)))))�

The last step is defining a good-to-eat predicate.

(define-predicate good-to-eat (food) (good-to-eat-trigger-model

 good-to-eat-data-model default-predicate-model)

 :destructure-into-instance-variables)�

With these definitions in place, any backward-chaining rules that trigger on good-

to-eat will store their triggers in either *good-to-eat-variable-triggers* or

good-to-eat-constant-triggers. Presumably, searching these data structures is

faster than the general-purpose method Joshua provides by default.

Here are some examples. Assume the following (admittedly silly) rule:

(defrule not-tofuud (:backward)

 IF (progn (format t "~&Not-Tofuud rule: ?FOOD → ~S" ?food) t)

 THEN [good-to-eat ?food])

Before we compile this rule, the list *good-to-eat-variable-triggers* is

joshua::nil. However, after the rule is compiled, this list is bound to something

that looks like:

(#S(JI::BACKWARD-TRIGGER :TRUE-ENTRIES ((NOT-TOFUUD NIL

 [GOOD-TO-EAT #<UNBOUND-LOGIC-VARIABLE ?FOOD 51037342>]))

 :FALSE-ENTRIES NIL))(#<BACKWARD-TRIGGER 14702210>)

that is, it is a list of backward rule triggers that trigger on good-to-eat with a

logic variable argument.

For rules that trigger on good-to-eat with a constant argument, we use an

joshua::eql hash table (it assumes the arguments to good-to-eat can be compared

with joshua::eql). Consider the following (also silly) rule:

(defrule tofuud (:backward)

 IF (progn (format t "~&Tofuud rule.") t)

 THEN [good-to-eat tofu])

92
Controlling Data and Rule Indexing February 2018

Before compilation of this rule, *good-to-eat-constant-triggers* is an empty ta-

ble, that prints something like this:

#<Table 0/0 51004361>

After we compile the rule, however, the table contains one entry, keyed on the

symbol tofu:

 (describe *good-to-eat-constant-triggers*)

#<Table 1/1 51004361> is a table with 1 entry.

Test function for comparing keys = EQL, hash function = CLI::XEQLHASH

Do you want to see the contents of the hash table? (Y or N) Yes.

 TOFU → (#S(JI::BACKWARD-TRIGGER :TRUE-ENTRIES ((TOFUUD NIL [GOOD-TO-EAT TOFU]))

 :FALSE-ENTRIES NIL))

#<Table 1/1 51004361>

Consider how the following query manages to operate:

(ask [good-to-eat ?what] #’say-query)

Not-Tofuud rule: ?FOOD → #<UNBOUND-LOGIC-VARIABLE ?WHAT 50474332>

#<UNBOUND-LOGIC-VARIABLE ?WHAT 50474332> is good to eat.

Tofuud rule.

TOFU is good to eat.

NIL

In processing this query, Joshua avoids the conventional method of looking for rule

triggers, and instead looks in the list *good-to-eat-variable-triggers* and probes

the hash table *good-to-eat-constant-triggers*.

Proper design of the data structures that your program uses for looking up rules

can drastically affect the program’s performance. In this example, we noted that

good-to-eat had only one argument that was either a symbol or a logic variable.

We were able to exploit this restriction to implement a more efficient way to look

up rule triggers than could be provided in a general-purpose implementation.

There is a completely analogous group of methods for a forward chaining imple-

mentation.

7.3. Customizing the Rule Compiler

Quick Reference: For a description of the default implementation, see the section

"The Joshua Rule Compiler", page 26.

The rule compiler can be customized in two ways. First, the trigger patterns of a

forward rule and the actions of a backward rule (i.e. the ������� of a rule) may be

�������� into other structures in a process similar to macro expansion. This al-

lows the If-Part of the rule to present a declarative appearance even when it actu-

ally takes procedural actions. Secondly, the rule compiler can generate specialized

or optimized pattern matchers that take advantage of the trigger indexing tech-

niques used for the patterns.

93
February 2018 Controlling Data and Rule Indexing

The first of these kinds of customizations is controlled by the joshua:expand-

forward-rule-trigger and the joshua:expand-backward-rule-action protocol meth-

ods, the second type is controlled by the joshua:write-forward-rule-full-matcher,

joshua:write-forward-rule-semi-matcher, joshua:positions-forward-rule-matcher-

can-skip and the joshua:write-backward-rule-matcher protocol methods.

Customizing the Expansion of a Forward Rule

The If-part of a forward-chaining rule is eventually translated into a rete

network,See the section "Forward Rule Triggers: the Rete Network", page 27. How

this translation is conducted is controlled by the joshua::expand-forward-rule-

triggers protocol function. This section will explain what this protocol function

does and give examples of how its capabilities can be used to gain advanced capa-

bilities in forward-chaining rules.

The Contract of the Generic Function joshua:expand-forward-rule-trigger

joshua:expand-forward-rule-trigger is called once for each predication included in

the trigger of the rule. Its job is to return a list structure that explains to the

rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:forward)

 If [and [foo1 ?x ?y] :support ?f1

 [not [foo2 ?y ?z]] :support ?f2

]

 Then [foo3 ?x ?y ?z])

joshua:expand-forward-rule-trigger will be called three times (once for the entire

joshua::and and then once for each predication inside the joshua::and).

joshua:expand-forward-rule-trigger takes four arguments: the pattern to expand,

the name of its :support variable (or nil), its truth-value and the entire If-part

(which can be treated as the "context" of the pattern). Thus, the arguments passed

in for these three calls wil be:

[and [foo1 ?x ?y] :support ?f1

 [not [foo2 ?y ?z]] :support ?f2] nil *true* and <the whole If-part>

[foo1 ?x ?y] ?f1 and *true* <the whole If-part>

[foo2 ?y ?z] ?f2 *false* <the whole If-part>�

Note that although we have displayed the patterns as if they were predications,

this is not actually true. joshua:expand-forward-rule-trigger runs at compile time

and manipulates a source-code representation of predications and logic-variables,

see the section "The Source Representaton of Predications and Logic-variables".

joshua:expand-forward-rule-trigger should return a list structure (called a �����

���������������) which must be one of the following forms:

1. (:match ������� ���� �����������). This trigger description informs the rule

compiler that the current trigger should be treated simply as a pattern to be

matched.

94
Controlling Data and Rule Indexing February 2018

• ������� is the predication that represents the pattern to be matched.

• ���� is the logic variable which the rule triggering mechanisms should

bind to the predication that matched this trigger.

• ����������� (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the matching

predication is required to have in order to trigger the rule.�

2. (:and ��������������������) This trigger description informs the rule compiler

that the current pattern is actually a conjunction of patterns all of which

must be matched to trigger the rule. The system-provided default method for

AND predications returns this type of trigger description. The second element

of the trigger description must be a list of trigger descriptions, i.e. lists re-

turned by calling joshua:expand-forward-rule-trigger.

3. (:or ��������������������) This trigger description informs the rule compiler

that the current pattern is actually a disjunction of patterns any of which

must be matched to trigger the rule. The system provided default method for

OR predications returns this type of trigger description. The second element

of the trigger description must be a list of trigger descriptions, i.e. lists re-

turned by calling joshua:expand-forward-rule-trigger.

4. (:procedure ��������������� ����) This trigger description informs the rule

compiler that the current trigger is not a pattern to be matched, but rather a

Lisp expression that appears in the trigger position. Such expressions are exe-

cuted once all proceeding patterns in the rule have been matched. The ex-

pression can act as a filter by returning either joshua::t or joshua::nil.

joshua::t indicates success; in this case the bindings accumulated up to this

point are considered acceptable and rule triggering continues. joshua::nil in-

dicates failure; in this case the bindings are considered unacceptable.

The expression can also act as a generator in which it produces several new

sets of bindings each of which is consistent with the bindings that were in ef-

fect when the rule was triggered. To do this it should bind whatever logic-

variables it wants to and then call joshua:succeed. joshua:succeed takes a

rest-argument; the rule compiler will arrange for this values passed to

joshua:succeed to be bound to the logic-variable which is the third element

of the trigger description.

See the function joshua:succeed, page 232.

5. (:ignore) This trigger description informs the rule compiler that it should ig-

nore this trigger. The are two reasons for using this type of trigger descrip-

tion. The first is to allow a rule to have patterns included in it simply for the

sake of clarity. The second is to include patterns only to specify context.�

95
February 2018 Controlling Data and Rule Indexing

Using joshua:expand-forward-rule-trigger

A Procedural trigger description can be used to implement a mixed-chaining strat-

egy in which a forward-rule trigger invokes backward chaining capabilities. This

would be useful if it is known that a particular type of predication is never actual-

ly asserted but is only deduced by backward chaining rules.

The following rule is how one would implement this mixed-chaining strategy if it

were known that FOO2 predications are only deduced by backward chaining rules:

(define-predicate foo1 (a b))

(define-predicate foo2 (a b))

(define-predicate backward-foo2 (a b))

(define-predicate foo3 (a b c))

(defrule foo (:forward)

 If [and [foo1 ?a ?b]

 (ask [foo2 ?b ?c]

 #’(lambda (ignore) (succeed)))]

 Then [foo3 ?a ?b ?c])

(defrule foo2-backward (:backward)

 If [backward-foo2 ?b ?a]

 Then [foo2 ?a ?b])�

The structure of the rete network for this rule is a simple linear chain consisting

of a match node followed by a procedural node (acting as a generator) as shown in

figure 40.

Figure 30. Graph of the Mixed Chaining Rule Foo

If we execute the following two joshua:tell’s then the rule will be triggered by the

second statement which matches the first pattern of the rule. Execution then pro-

ceeds to the procedural node which chains backward using the rule FOO2-BACKWARD.

This is shown in figure 41.

However this rule can be made more declarative appearing by using

96
Controlling Data and Rule Indexing February 2018

Figure 31. Trace of The Mixed Chaining Rule Foo

joshua:expand-forward-rule-trigger as follows:

(define-predicate-model mixed-chaining-mixin () ())

(define-predicate-method

 (expand-forward-rule-trigger mixed-chaining-mixin)

 (name truth-value ignore)

 (let ((query (if (eql truth-value *true*)

 self

 ‘[not ,self))))

 ‘(:procedure (prog1 nil

(ask ,query

 #’(lambda (ignore)

 (succeed))))

 ,name)))

(define-predicate foo2 (a b)

 (mixed-chaining-mixin default-predicate-model))

(defrule foo (:forward)

 If [and [foo1 ?a ?b]

 [foo2 ?b ?c]]

 Then [foo3 ?a ?b ?c])

(clear)

(tell [backward-foo2 3 2])

(tell [foo1 1 2])

Now the rule FOO appears to simply match two patterns. However, it actually com-

piles into exactly the same rete network as shown in figure 30.

A More Advanced Version of Mixed-chaining in joshua:expand-forward-rule-trigger

Sometimes using joshua:ask in the trigger part of a rule may not be the appropri-

ate way to achieve a mixed chaining strategy. One reason, is that joshua:ask

queries the world for facts that are deducible at that moment. If a new fact ar-

rives later that would have made the goal deducible, joshua:ask will, of course,

97
February 2018 Controlling Data and Rule Indexing

not notice this. However, forward chaining rules should draw conclusions whenever

the data warrants the deduction.

A solution to this problem is to use a more explicit form of reasoning in which

goal directed reasoning is conducted by forward rules which are triggered by ex-

plicit predications stating the existence of a goal.

Here is an alternative mixed chaining scheme which implements backward chain-

ing by explicitly telling show predications. These trigger forward rules which then

work to find a way to satisfy the goal included in the show statement.

For example, the following rule:

(defrule foo2-explicit-goal (:forward)

 If [and [show [foo2 ?a ?b]]

 [backward-foo2 ?b ?a]]

 Then [foo2 ?a ?b])

Will deduce FOO2 anytime that BACKWARD-FOO2 is asserted and there is a SHOW predi-

cation stating that we want this conclusion to be drawn. The rule is more flexible

than a backward rule, since it does not depend on the relative order of posting the

goal and asserting the data necessary to deduce it. (Of course, this rule is also

less efficient than a backward rule).

We can use joshua:expand-forward-rule-trigger just as we did in the previous

section to make the rule FOO use this form of mixed chaining while retaining its

declarative appearance, as follows:

(define-predicate-model mix-chain-mixin ()

 ())

(defvar *inside-alternative-backward-chaining-mixin* nil)

(define-predicate-method

 (expand-forward-rule-trigger mix-chain-mixin)

 (name truth-value context)

 (if *inside-alternative-backward-chaining-mixin*

 ‘(:match ,self ,name ,truth-value)

 (let ((*inside-alternative-backward-chaining-mixin* t))

(let ((query (if (eql truth-value *true*)

 self

 ‘[not ,self))))

 ‘(:and

 ,(expand-forward-rule-trigger

‘(tell [show ,query]) nil *true* context)

 ,(expand-forward-rule-trigger

self name truth-value context))))))

(define-predicate show (predication))

(define-predicate foo2 (a b)

 (mix-chain-mixin default-predicate-model))�

98
Controlling Data and Rule Indexing February 2018

This joshua:expand-forward-rule-trigger method expands the FOO2 pattern of the

rule into two components. The first joshua:tell’s the SHOW statement that triggers

the FOO2-EXPLICIT-GOAL rule. The second is a simple match node that waits for the

FOO2 goal to become true. The joshua:expand-forward-rule-trigger method is

somewhat tricky because it wants to expand the intial [foo2 ...] pattern into

two nodes, one of which joshua:tells [show [foo2 ...]] and the other of which

matches [foo2 ...]. A special variable is bound to prevent an infinite recursion

in the expansion of this pattern.

Figure42shows the Rete net for this rule.

Figure 32. Graph of Mixed Chaining Rule Foo

Notice that the rule contains two match nodes, one for each pattern. The match

node for the FOO1 pattern leads to a procedural node which joshua:tells a [show

[foo2 ...]] predication and then joshua:succeeds. Following this the two paths

merge. If the Foo1 statement is asserted first the rule will assert the SHOW state-

ment which will cause the FOO2-EXPLICIT-GOAL rule to wait for a FOO2-BACKWARD

statement. At which point the FOO2-EXPLICIT-GOAL rule will assert a FOO2 statement

which will match the other trigger pattern of the FOO rule. If the facts are assert-

ed in the other order, the rule will also deduce the desired conclusion, as shown in

figures 43 and�

Using :ignore in joshua:expand-forward-rule-trigger

Here’s an example using the :ignore trigger description:

(defrule adder-forward (:forward)

 If [and [type-of ?a adder]

 [Value-of addend ?a ?value-1]

 [Value-of augend ?a ?value-2]]

 Then ‘[value-of output ?a ,(+ ?value-1 ?value-2)])

A trigger-indexing scheme might be used which guarantees that this rule will only

be triggered by Value-of assertions that describe the values of the ADDEND and AU-

GEND of adders. In such a case the first pattern is required during rule compilation

99
February 2018 Controlling Data and Rule Indexing

Figure 33. Trace of Explicitly Controlled Mixed Chaining

Figure 34. Trace of Explicitly Controlled Mixed Chaining

to inform the joshua:locate-forward-rule-trigger method that it is indexing pat-

terns having to do with adders. However, once such a trigger-indexing scheme is

established the first pattern is actually redundant.

(define-predicate-method

 (expand-forward-rule-trigger type-of-model) (ignore ignore ignore)

 ‘(:ignore))

(define-predicate type-of (object type)

 (type-of-model default-protocol-implementation-model))�

Customizing the Expansion of a Backward Rule

What the Backward Rule-compiler Does to the Actions of a Rule

The backward rule compiler turns the If-part of a rule into a series of nested

joshua:ask’s. For example, the actions of the following rule:

100
Controlling Data and Rule Indexing February 2018

(defrule foobar (:backward)

 If [and [foo1 ?x ?y] :support ?f1 :do-backward-rules nil

 [not [foo2 ?y ?z]] :support ?f2

]

 Then [foo3 ?x ?y ?z])�

are converted into a highly optimized version of the following code:

(ask [foo1 ?x ?y]

 #’(lambda (support2196)

 (unify ?f1 support2196)

 (ask [not [foo2 ?y ?z]]

 #’(lambda (support2197)

 (unify ?f2 #:support2197)

 (let ((ji::rule-support

 (list ji::.goal. ji::.truth-value.

 ’(rule foobar)

support2196 support2197)))

 (funcall ji::.continuation. ji::rule-support))))

 :do-backward-rules nil))�

The backward rule compiler also handles the keyword arguments which can be at-

tached to patterns in the If-part of the rule. See the section "Advanced Features of

Joshua Rules", page 24.

The Contract of the Generic Function joshua:expand-backward-rule-action

The joshua:expand-backward-rule-action protocol function controls how the con-

version is performed.

joshua:expand-backward-rule-action is called once for each predication included

in the If-part of the rule. Its job is to return a list structure that explains to the

rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:backward)

 If [and [foo1 ?x ?y] :support ?f1 :do-backward-rules nil

 [not [foo2 ?y ?z]] :support ?f2

]

 Then [foo3 ?x ?y ?z])

joshua:expand-backward-rule-action will be called three times (once for the en-

tire joshua::and and then once for each predication inside the joshua::and).

joshua:expand-backward-rule-action takes five arguments: the pattern to expand,

the name of its :support variable (or nil), its truth-value, the value of the keyword

arguments attached to this pattern that should be passed onto joshua:ask (e.g.

:do-backward-rules and :do-questions) and the entire If-part (which can be treated

as the "context" of the pattern). Thus, the arguments passed in for these three

calls wil be:

101
February 2018 Controlling Data and Rule Indexing

[and [foo1 ?x ?y] :support ?f1 :do-backward-rules nil

 [not [foo2 ?y ?z]] :support ?f2] nil *true* (t t) <the whole If-part>

[foo1 ?x ?y] ?f1 *true* (nil t) <the whole If part>

[foo2 ?y ?z] ?f2 *false* (t t) <the whole If part>�

Note that although we have displayed the patterns as if they were predications,

this is not actually true. joshua:expand-backward-rule-action runs at compile

time and manipulates a source-code representation of predications and logic-

variables, see the section "The Source Representaton of Predications and Logic-

variables".

joshua:expand-backward-rule-action should return a list structure (called a ���

����������������) which must be one of the following forms:

1. (:match ������� ���� ����������� ask-keyword-args). This action description

informs the rule compiler that the current action should be treated simply as

a pattern to be joshua:ask’ed. This action will compile into an joshua:ask

form whose continuation will perform the actions following this one.

• ������� is the source representation of the predication that should be

joshua:ask’ed. This is normally just the first argument to joshua:expand-

backward-rule-action.

• ���� is the name of a logic variable which should be bound to the query-

support passed by joshua:ask to its continuation; this allows procedural

code in the If-Part of the rule to examine the support for the various ac-

tions.

• ����������� (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the matching

predication is required to have in order to satisfy the joshua:ask.

• The values of the keyword arguments to be passed to joshua:ask. This

should normally be identical to the equivalent argument passed into

joshua:expand-backward-rule-action.

2. (:and �������������������) This action description informs the rule compiler

that the current pattern is actually a conjunction of actions all of which must

be satisfied. The system-provided default method for AND predications re-

turns this type of action description. The second element of the trigger de-

scription must be a list of action descriptions, i.e. lists returned by calling

joshua:expand-backward-rule-action.

3. (:or �������������������) This action description informs the rule compiler

that the current pattern is actually a disjunction of actions any one of which

must be satisfied in order to satify the whole action. The system provided de-

fault method for OR predications returns this type of action description. The

second element of the action description must be a list of action descriptions,

i.e. lists returned by calling joshua:expand-backward-rule-action.

102
Controlling Data and Rule Indexing February 2018

4. (:procedure ��������������� ����) This action description informs the rule

compiler that the current trigger is not a pattern to be joshua:ask’ed but

rather a Lisp expression that appears in the If-part of the backward rule.

Such expressions are executed once all proceeding actions in the rule have

been satisfied. The expression can act as a filter by returning either joshua::t

or joshua::nil. joshua::t indicates success; in this case the bindings accumu-

lated up to this point are considered acceptable and rule execution continues.

joshua::nil indicates failure; in this case the bindings are considered unac-

ceptable.

The expression can also act as a generator in which it produces several new

sets of bindings each of which is consistent with the bindings that were in ef-

fect just before the action began execution. To do this it should bind whatev-

er logic-variables it wants to and then call joshua:succeed. joshua:succeed

takes a rest-argument; the rule compiler will arrange for this value passed to

joshua:succeed to be bound to the logic-variable which is the third element

of the action description.

See the function joshua:succeed, page 232.

5. (:ignore) This action description informs the rule compiler that it should ig-

nore this action. The are two reasons for using this type of action description.

The first is to allow a rule to have actions included in it simply for the sake

of clarity. The second is to include actions only to specify context.�

7.3.1. Customizing the Matchers Generated by the Rule Compiler

When Joshua compiles unifier functions for a pattern of a forward chaining rule,

it actually compiles two procedures: a full unifier and a semi-unifier. (The latter

assumes there are no variables on the data side of the match; when applicable, the

second one is faster.)

In some cases, the joshua:map-over-forward-rule-triggers method will have al-

ready checked some slots against the data before handing it off to the unifier. In

such a case, it would be silly for the unifier procedure to check the same features

that have just been checked by map-over-forward-rule-triggers. The

joshua:positions-forward-rule-matcher-can-skip protocol function is the hook that

lets you advise the rule compiler about such situations. The rule compiler will

then generate a semi-unification matcher that doesn’t bother to check the slots

identified by joshua:positions-forward-rule-matcher-can-skip. (The full unifier

must still check all slots, because of the possibility of variables on the data side.)

In the default implementation, joshua:positions-forward-rule-matcher-can-skip in-

structs the match compiler for forward rules to generate a semi-unification match-

ers that ignores those parts of a predication that contain symbols. This is because

the default trigger indexing scheme, as implemented by (joshua:map-over-

forward-rule-triggers joshua:default-protocol-implementation-model) is a dis-

crimination network that has already discarded candidates with different symbols

in this position before we ever reached the unification question. (Trigger patterns

103
February 2018 Controlling Data and Rule Indexing

such as [good-to-eat honey], [good-to-eat bread], [good-to-eat goat-cheese] dis-

criminate to different nodes.)

Suppose the trigger mapping method you use is the default one, which uses a dis-

crimination net. When you give it a piece of data to find triggers for, it looks in

the discrimination net and comes back with triggers that might unify with it.

"Might unify", in this context, means that it has checked some things that are

cheap to check, and used those to reject candidates that have no hope of unifying.

In particular, the discrimination net checks all positions in a predication that have

symbols, so there’s no need to have the unifier check them again.

Here’s an example. The default trigger indexing scheme uses a discrimination net,

so the semi-matcher (for forward rules) can skip looking at any slots in the predi-

cation that contain symbols. Thus the default implementation of joshua:positions-

forward-rule-matcher-can-skip could have been:

(define-predicate-method (positions-forward-matcher-can-skip predication)

 ()

 (loop for token = (predication-statement self)

 then (cdr token)

while (consp token)

;; needn’t deal with tail variable, since variables

;; can’t ever be skipped anyway

when (symbolp (car token)) collect token))

and thus, if foo uses the default trigger indexing scheme:

(positions-forward-matcher-can-skip [foo a ?x b])

→ ((FOO A ?X B) (A ?X B) (B))

Note that the result returned is a list of tails of the predication.

If you create a customized trigger index, you have to be sure that you either in-

herit the right joshua:positions-forward-rule-matcher-can-skip method, or that

you write a method of your own that is appropriate for your indexing scheme. In

the above example, inheriting the symbol-skipping behavior from joshua:default-

rule-compilation-model was correct. If you don’t provide for the symbol-skipping

behavior, you can run into situations where the unifier gives false matches. For

instance, you could joshua:tell [foo a b] and have a forward rule whose trigger is

[foo a bar] incorrectly fire. Needless to say, this can lead to very subtle and hard-

to-analyze bugs. If you want to be very careful (and perhaps overly pessimistic)

you can instruct the semi-matcher for forward chaining to check everything, by do-

ing the following:

(define-predicate-method

 (positions-forward-matcher-can-skip <your-predicate-model-here>) ()

 nil)

This pessimistic method will ensure your semi-matchers are always correct; some-

times you can do better in terms of performance by considering what your trigger-

indexing scheme has already looked at.

104
Controlling Data and Rule Indexing February 2018

105
February 2018 The Joshua Object Facility

8. The Joshua Object Facility

8.1. Introduction to the Joshua Object Facility

A very large part of what one wants to express about the world is captured by ob-

ject-attribute-value triples. For example:

• The color (attribute) of Fred’s eyes (object) is blue (value);

• My checking account (object) has a balance (attribute) of $514.54 (value);

• The voltage (attribute) at Node-22 (object) is 27.2 (value).

It is often convenient to aggregate all the attributes of a particular object into a

single data-structure. Object-Oriented programming systems such as Flavors (or

the Common Lisp Object System) provide a natural mechanism for aggregating the

various properties of an object into a single representation (e.g. a Flavor instance).

The Joshua Object Modelling facility unifies the object-oriented paradigm of the

Flavors system with the Joshua rule-based paradigm. It does this by using the

Joshua Protocol to map Object-Attribute-Value predications into the Object-oriented

storage of the Flavor System. While the facilities of the Joshua Protocol have al-

ways made this possible, this release provides the capability as a built-in facility.

Fred

Eye-Color

Value: Blue

[Value-of (Eye-Color Fred) Blue]

[Value-of (Hair-Color Fred) Brown]

Hair-Color

Value: Brown

An Object

A Slot

A predication

Value:

Net Worth

$1,000,000

. . .

Figure 35. Predications Being Mapped into an Object Representation�

106
The Joshua Object Facility February 2018

The new facility also provides access to other common facilities of object-oriented

systems. For example, when one TELL’s

[value-of (Fred eye-color) Blue]

the new facility makes it possible to invoke an appropriate method associated with

the class of the object named Fred or to invoke an expression association specifi-

cally with the Fred object.

Finally, the new facility makes it possible to create equality links between proper-

ties of different objects, making it easy to express an idea such as Fred’s eye-color

is the same as Sam’s.

Fred

Value: Blue

Value:

Hair-Color

Eye-Color

Brown

 ...)
(defmethod ((setf Eye-Color) Person) (new-color)

A method associated with the Flavor of Fred

SAM

Value: Blue

Value:

Hair-Color

Eye-Color

Blond

An Equality Link

(Say-that-Sam-is-using-grecian-formula)

An Attached Action

Figure 36. Other Capabilities of the Object Facility�

107
February 2018 The Joshua Object Facility

8.2. Basic Capabilities of the Joshua Object Facility

Objects are represented in the Joshua Object facility as particular types of Flavors.

(Every Joshua Object-Type includes a Flavor called Basic-Object as a component

Flavor). Attributes of Joshua Objects are represented by Slots which are data

structures attached to the Object. The type of a Joshua Object is called its Object-

Type.

Objects and Slots provide a broad range of facilities; however, initially we will look

only at the basic facilities.

Suppose we want to define an Object-Type to represent electrical resistors; this is

done as follows:

(define-object-type resistor

 :slots (current voltage resistance))�

This defines the Resistor Object-Type; any object of this type has three slots. Each

of these has a field containing the actual value of the attribute (e.g. the voltage

across the resistor) and other fields (such as a predication).

Terminal-1 Terminal-2

Current

Voltage

Resistance

Resistor-1

Current

Value: 10

Resistance

Value: 5

Value:

Voltage

50

Figure 37. A Resistor and its Representation as an Object�

An object is created using joshua:make-object:

(Setq Resistor-1 (make-object ’resistor :name ’resistor-1))�

There is an accessor function corresponding to each slot of the object which re-

turns the value of that attribute. Thus, the value of the current through the Resis-

tor-1 can be retrieved as:

(Resistor-1 Current)�

just as if we were retrieving the value of an instance variable. [However, the value

of the Current instance-variable of Resistor-1 is actually the slot data structure;

108
The Joshua Object Facility February 2018

the Current accessor function first fetches the slot and then extracts the value

from that. Later on we will see how to fetch the slot as opposed to the value of

the slot].

The predication joshua:value-of is Joshua’s means for talking about slots and Ob-

jects. This predication takes two arguments, the first of which describes a slot and

the second of which a value. For example,

[value-of (Resistor-1 voltage) 10]�

says that Resistor-1’s voltage is 10 (volts presumably).

Such predications can be used like any other; they can be used in joshua:ask and

joshua:tell. To tell the system that Resistor-2 has a voltage of 5, we would say:

[value-of (Resistor-2 voltage) 5].�

To determine the voltage across Resistor-2, we would might:

(ask [value-of (Resistor-2 voltage) ?voltage]

 #’(lambda (ignore)

(print ?voltage)))�

[Note: the first argument to a joshua:value-of predication can be either an expres-

sion describing a slot as shown in the examples above, or it can be an actual slot.

Since we haven’t yet shown how to fetch a slot, we’ll postpone further mention of

this for a while.]

A second predication used to talk about Joshua objects is joshua:object-type-of.

This is an ju::ask-only predication, it can never be used as an argument to

joshua:tell. joshua:object-type-of takes two arguments, the first of which is an

Object and the second is the name of an Object-Type. Thus,

(ask ‘[Object-Type-Of ,Resistor-2 Resistor]

 #’(lambda (ignore)

 (print ’yes)))�

queries whether Resistor-2 is, in fact, a resistor. While

(ask ‘[Object-Type-Of ,Resistor-2 ?His-type]

 #’(lambda (ignore)

 (print ?His-type)))�

retrieves and prints the Object-Type of Resistor-2.

Finally, Joshua’s rules can use these predications to express inferences that should

be drawn. Continuing with our example of a resistor, we can express Ohm’s law as

follows:

(defrule Ohm (:forward)

 If [and [Object-type-of ?resistor Resistor]

 [value-of (?resistor current) ?I]

 [value-of (?resistor resistance) ?R]]

 Then ‘[value-of (?resistor voltage) ,(* ?I ?R)])�

[Note: there is an important restriction on the use of these predications in rules.

Any rule which includes a joshua:value-of predication must also contain an

109
February 2018 The Joshua Object Facility

joshua:object-type-of predication which describes the object-type of the object

mentioned in the joshua:value-of predication. For questions about joshua:value-of

predications, an joshua:object-type-of predication must be given as the :context

option:

(defquestion Get-Resistor-Current (:backward)

 [value-of (?resistor current) ?value]

 :context [Object-type-of ?resistor Resistor])

Of course, we can also write backward-chaining rules which talk about objects.

The rule above could have been written as:

(defrule Ohm (:backward)

 If [and [Object-type-of ?resistor Resistor]

 [value-of (?resistor current) ?I]

 [value-of (?resistor resistance) ?R]

 (unify ?voltage (* ?I ?R))]

 Then ‘[value-of (?resistor voltage) ?voltage])

8.3. Using Paths to Refer to the Structure of an Object

joshua:value-of predications normally refer to a slot (or an object) using Paths. A

path is simply a list of names which describes how to find an object or a slot. We

have already seen paths in the examples above. For example, in:

[value-of (Resistor-1 voltage) 10]�

where the path (Resistor-1 voltage) describes the voltage slot of Resistor-1.

In general, objects contain other objects (for example, a computer-console has a

screen, a keyboard, and a mouse; A mouse has a left, a middle and a right button).

This leads to longer paths, such as:

(Howies-monitor mouse left-button up-down-state)

which describes the up-down-state attribute of the left-button of the mouse of

Howie’s monitor. We will see how to make such compound objects in a later sec-

tion; until then, these longer paths will not be very important.

Each term in a path describes a subpart or slot of the object described by preced-

ing terms in the path. One might, therefore, wonder what contains the first thing

in a path. The answer is that there is a special, hidden object which is the root of

the part-whole hierarchy; when we make an object it becomes a subpart of this

root. Thus,

(make-object ’resistor :name ’r1)�

110
The Joshua Object Facility February 2018

makes an object whose object-type is Resistor and which is described by the path

(R1).�

Its resistance is described by the path:

(R1 Resistance)

8.4. Type Hierarchy in the Joshua Object Facility

Object-types can include other Object-Types (just as a Flavor can mix in other

Flavors). For example, all resistors, capacitors and inductors are Two Terminal

Devices; all such devices share certain properties (for example, they all have two

terminals, a voltage across them and a current through them). It is a useful (and

modular) to capture the common features in a single type definition which is then

shared by the subordinate types. We can do this as follows:

(define-object-type 2-terminal-device

 :slots (current terminal-1-current terminal-2-current

 voltage terminal-1-voltage terminal-2-voltage))

(define-object-type resistor

 :slots (resistance)

 :included-object-types (2-terminal-device))

(define-object-type capacitor

 :slots (capacitance)

 :included-object-types (2-terminal-device))

(define-object-type capacitor

 :slots (inductance)

 :included-object-types (2-terminal-device))�

Which says that all 2-terminal devices have 2 terminals, of which has a voltage

and a current. There is a voltage across any 2-terminal device and a total current

through any 2-terminal device. Resistors, have all these properties; in addition a

resistor has a resistance; similarly for capacitors and capacitance and inductors

and inductance.

This modularity is particularly useful, because we can take advantage of it in our

rules. We can express the fact that the voltage across any 2-terminal device is the

difference between its two terminal voltages with a simple rule:

111
February 2018 The Joshua Object Facility

Terminal-1

Terminal-2

Current Voltage

Resistor Capacitor Inductor

2-Terminal-Device

InductanceResistance Capacitance

Figure 38. The Object-Type Hierarchy of Two-Terminal Devices�

(defrule 2-terminal-voltage (:forward)

 If [and [Object-type-of ?device 2-terminal-device]

 [value-of (?device terminal-1-voltage) ?t1-voltage]

 [value-of (?device terminal-2-voltage) ?t2-voltage]]

 Then ‘[value-of (?device voltage) ,(- ?t2-voltage ?t1-voltage)])�

This rule, however, will apply to any 2-terminal device (whether it is a resistor,

capacitor or inductor). So if we were to create a resistor and state its two terminal

voltages, this rule would fire:

(make-object ’resistor :name r1)

(tell [value-of (r1 terminal-1-voltage) 0])

(tell [value-of (r1 terminal-2-voltage) 5])�

and deduce the new predication:

[Value-Of (r1 voltage) 5]�

This same rule would also apply to a capacitor, for example:

112
The Joshua Object Facility February 2018

(make-object ’capacitor :name C1)

(tell [value-of (C1 terminal-1-voltage) 0])

(tell [value-of (C1 terminal-2-voltage) 5])�

which would lead to the deduction of:

[Value-Of (C1 voltage) 5]�

Of course, the Ohm’s law rule would apply only to resistors.

Notice that since R1 is both a resistor and a 2-terminal device, there are 2 valid

answers to a query about its Object-Type. Thus, the query:

(ask [Object-Type-Of R1 ?Type]

 #’(lambda (ignore)

 (print ?Type)))�

will print both Resistor and 2-terminal-device. Similary, if we query for all objects

of the 2-terminal-device object-type, as follows:

(ask [Object-Type-Of ?thing 2-terminal-device]

 #’(lambda (ignore)

 (print ?Thing)))�

we will get a listing of all resistors, capacitors and inductors.

8.5. Part-Whole Hierarchy in the Joshua Object Facility

Objects often fall into a second natural hierarchy, that of part inclusion. (See the

section "Using Paths to Refer to the Structure of an Object", page 109.)

For example, a "Widget" factory might have three parts: a warehouse for receiving

incoming material, a widget milling station and a warehouse for storing completed

widgets waiting shipment. Each of these is an object which must, therefore, have

an object-type of its own. The two warehouses are objects of the Warehouse object-

type and the milling station is an object of the Milling-Machine object-type. In ad-

dition, each of these objects plays a particular role within the widget company. No-

tice that, although there are two warehouses, they play different different roles

and, therefore, have different names within the context of a Widget factory.

joshua:define-object-type takes a :parts keyword argument whose value is a list

of pairs of roles and object-types. Thus, we would describe a widget factory, as fol-

lows:

(define-object-type widget-factory

 :parts ((receiving warehouse)

 (production milling-machine)

 (finished-goods warehouse)))�

113
February 2018 The Joshua Object Facility

This says that every widget-factory has one subpart named ��������� which is a

warehouse and another subpart named �������������� which is also a warehouse.

Finally, any Widget-Factory also has a part named ����������, which is a Milling-

Machine.

Notice that we can describe any of these using paths. We can create a widget-

factory, named WF-1 as follows:

(make-object ’widget-factory :name ’WF-1)�

Its three subparts can be refered to with the following paths:

(WF-1 Milling-Machine)

(WF-1 Receiving)

(WF-1 Finished-Goods)�

Assume that an object of type Milling-Machine has a slot named Thing-Being-

Milled. Then the path

(WF-1 Milling-Machine Thing-Being-Milled)�

names the thing currently being milled in the Production part of WF-1.

8.6. Other Capabilities of Slots

Slots support a variety of behaviors other than those explained already. This be-

havior is controlled by keyword arguments attached to the name of the slot in its

Define-Object-Type form. If no keywords are specified (as has been the case so far)

then the default behaviors are assumed.

8.6.1. Initial Values of Slots

The initial value of a slot may be specified by including the :initform keyword ar-

gument in the slot description. The value of this argument is a form; the slot is

initialized to have the value of this form as its contents.

For example,

(define-object-type resistor

 :slots ((resistance :initform 10)))�

specifies that whenever a resistor is created, its resistance should be initialized to

10. This is done by causing the appropriate joshua:tell to happen.

8.6.2. Set Valued and Single Valued Slots

Slots may be either single-valued or set-valued. If a slot is single-valued, then at

any one time it there can only be a single value of the attribute represented by

the slot. For example, the voltage at node-22 can only be a specific voltage at any

time. It would be contradictory to believe both:

114
The Joshua Object Facility February 2018

[value-of (voltage node-22) 10]

[value-of (voltage node-22) 20].�

However, other attributes can be set valued; for example, there might be many

siblings of John. Here it is perfectly possible to believe both of:

[value-of (sibling john) mary]

[value-of (sibling john) mark]�

joshua:define-object-type specifies for each slot whether it is single-valued or set-

valued. Single-valued is the default. The fact that sibling is a set-valued attribute

would be indicated by:

(define-object-type person

 :slots ((sibling :set-valued t)

 ...))�

8.6.3. Slots and Truth Maintenance

Another option in the description of a slot, is whether the information in the slot

should be subject to truth-maintainence or not. (The default is no). If the slot is

subject to truth-maintenance then any predication mentioning it should include the

ltms::ltms-mixin. The provided predicate ltms:value-of includes both slot mod-

elling and LTMS mixins. Suppose that we wanted to reason about Adders as part

of trouble-shooting program which uses Truth-Maintenance techniques (such a pro-

gram is included in the Jericho demo suite). We would define Adder as follows:

(define-object-type adder

 :slot ((status :truth-maintenance t)

 (addend :truth-maintenance t)

 (augend :truth-maintenance t)

 (sum :truth-maintenance t)))�

And we would joshua:tell that the value of the addend of adder-22 is 10 as fol-

lows:

(tell [ltms:value-of (adder-22 addend) 10]).�

[Note: It would be an error to use the predicate Value-of].

8.6.4. Slots and Attached Actions

Another feature supported by slots is the ability to attach a Lisp expression to a

particular slot which is triggered whenever the value is changed. This is specified

by the :attached-actions keyword (the default is no attached actions). If we want-

ed to enable the ability to attach such Lisp expressions to the SUM of adders we

would specify:

115
February 2018 The Joshua Object Facility

(define-object-type adder

 :slot ((status :truth-maintenance t)

 (addend :truth-maintenance t)

 (augend :truth-maintenance t)

 (sum :truth-maintenance t :attached-actions t)))�

This allocates extra space in the SUM slot of every adder to hold the attached lisp

expression. The attached action is simply a Lisp function which is run every time

the slot changes value. To actually attach an action, the function Add-Action is

used:

(add-action ’(adder-22 sum) #’print-pathname-and-value)

(defun print-pathname-and-value (cell current-value predication ignore)

 (if (eql (predication-truth-value predication) *true*)

 (format t "~&The value of ~s is ~s" cell current-value)

 (format t "~&The value of ~s isn’t ~s any more"

 cell current-value)))�

joshua:add-action takes two required arguments and one optional argument. The

first argument is either a path to a slot or an actual slot and the second argument

is the function to attach to that slot. The function is called for side effect; when

invoked, it is passed the following arguments: the slot, the current-value of the

slot, the predication associated with the value of the slot, and the previous truth-

value of the predication. The function is called whenever the slot assumes a new

value or whenever a current value is removed; the truth-value of the predication

argument and the previous truth-value can be used to distinguish the two cases

(as shown above).

The optional argument to joshua:add-action is a "name" for the action. It defaults

to :action. Naming an action allows the user to attach more than one action to a

slot. Individual actions may be removed from a slot by using joshua:remove-

action.

Attached actions can be used for a variety of purposes: For example, they can be

used to implement validity checks on the values inserted in a slot, or they can be

used in set-valued slots to check that the cardinality of the set is within some

bounds.

8.6.5. Invoking Methods Associated with the Object Associated with a Slot

A final capability of slots is the ability to invoke a method associated with the ob-

ject with with the slot is associated whenever the value of the slot changes. [Note:

This is different than an attached-action (see the section "Slots and Attached Ac-

tions", page 114) in that an attached-action is associated with a particular object

while a method is associated with every object of the type.] For example, if we

wanted every Adder to notice the changing of its status attribute, we would indi-

cate this as follows:

116
The Joshua Object Facility February 2018

(define-object-type adder

 :slot ((status :truth-maintenance t :object-notifying t)

 (addend :truth-maintenance t)

 (augend :truth-maintenance t)

 (sum :truth-maintenance t :attached-actions t)))�

When the status attribute of an adder changes, Joshua will call the (SETF STA-

TUS) method of the ADDER flavor. The arguments passed are: the value in the

slot and the predication associated with the slot. Thus, if the :object-notifying op-

tion were specified as above, one would be expected to define a method such as the

following:

(defmethod ((setf status) adder) (current-value current-predication)

 (when (and (eql current-value :broken)

 (eql (predication-truth-value predication) *true*))

 (Sound-the-alarm self)))�

which checks to see that the current state of the adder is :BROKEN and if so,

sounds its alarm.

8.6.6. Equalities Between Slot Values

When an object is decomposed into a sub-part hierarchy, it often happens that

there are connections between certain attributes of the sub-parts. For example, a

"Voltage Divider" is a simple electrical circuit consisting of two connected resis-

tors. The voltage at terminal-1 of one of the two resistors will necessarily be equal

to the voltage at terminal-2 of the other resistor.

There will be similar connections in a factory, where the output of one machine is

the input of another, or in a accounting system where the result of one calculation

is an input to another. joshua:define-object-type provides a means of expressing

such equalities as follows:

(define-object-type voltage-divider

 :slots (voltage current output-voltage terminal-1-voltage terminal-2-voltage)

 :parts ((resistor-1 resistor)

 (resistor-2 resistor))

 :equalities (((resistor-1 current) (resistor-2 current))

((resistor-1 current) (current))

((resistor-1 terminal-2-voltage) (resistor-2 terminal-1-voltage))

((resistor-1 terminal-1-voltage) (terminal-1-voltage))

((resistor-2 terminal-2-voltage) (terminal-2-voltage))))�

which, in effect, specifies the wiring diagram shown in Figure 39.

If two slots are specified to be equal, then any time the value of one of the slots is

determined, the value of the other will automatically be deduced.

117
February 2018 The Joshua Object Facility

Terminal-1

Terminal-2

Current

Voltage

Terminal-1

Terminal-2

Current

Voltage

Resistor-1

Resistor-2

Equality Links

Voltage
Divider’s

Current
Divider’s

Figure 39. Equality Links in a Two Resistor Voltage Divider

8.7. Other Options in Define-Object-Type

A Joshua Object is, in fact, a Flavor Instance. It is often useful to be able to in-

clude in Joshua Objects instance variables which do not hold slots as their values.

Similarly, it is useful to be able to mix a normal flavor into an Object-Type defini-

tion. The syntax of Define-Object-Type supports this, using the :other-instance-

variables and :other-flavors keyword arguments. For example,

118
The Joshua Object Facility February 2018

(Define-Object-Type voltage-divider

 :slots (voltage current output-voltage terminal-1-voltage terminal-2-voltage)

 :parts ((resistor-1 resistor)

 (resistor-2 resistor))

 :other-instance-variables (documentation)

 :other-flavors (electronic-component-with-documentation-mixin)

)

 �

This has the effect of mixing the electronic-component-with-documentation-mixin

flavor into the voltage-dividers flavor. In addition, every instance of the voltage-

divider object-type will have a "documentation" instance variable.

Finally, it is sometimes useful to be able to include some initialization code as part

of the Define-Object-Type form. This can be done using the :initializations key-

word argument. The value of this argument is a list of Lisp forms which are run

after an instance of the type is created. In effect, this code is appended to the the

make-instance method of the Object-Type; thus, self is bound to the created object

while this code executes. For example, the following definition

(define-object-type manufacturing-site

 :slots (production-capacity

 clock

 input-request

 input-request-acknowledge

 (output :attached-actions t))

 :other-instance-variables ((things-being-produced (make-heap)))

 :initializations ((tell ‘[value-of (,self output) NIL]))

)�

initializes the output slot of manufacturing sites to be nil.

8.8. The Predicates Used in the Joshua Object Facility

There are four Predicates used in the Joshua Object facility. Besides Define-

Object-Type, these are the main interfaces to the facility. Each of these predicates

is supplied in two forms: The first mixes in the standard Joshua TMS capabilities

(ltms::ltms-predicate-mixin) while the second omits TMS capabilities (and is based

on joshua:default-predicate-model). The basic capabilities of each of the four

predicates is supplied as a Predicate-Model which can be combined with user sup-

plied Predicate-Models to provide whatever capabilities you need.

The four predicates are:

119
February 2018 The Joshua Object Facility

������� ����������� �������� �����������

Slot Accessing value-of ltms:value-of slot-value-mixin

Part-Whole part-of ltms:part-of part-of-mixin

Object-Type object-type-of ltms:object-type-of type-of-mixin

Equality equated ltms:equated equated-mixin

joshua:part-of and joshua:object-type-of are ask-only predicates; they cannot be

used in joshua:tell. This is because the information they refer to is the unchange-

able information of the part-whole and object-type hierarchies created by

joshua:define-object-type. joshua:value-of is the normal way of accessing the val-

ues of slots; we have seen examples of its use above. joshua:equated can be used

to create equalities not specified by joshua:define-object-type. For example:

(let ((warehouse1 (make-object ’warehouse :name ’warehouse1))

 (factory1 (make-object ’factory-1 :name ’factory1)))

 (tell ‘[equated (warehouse1 output) (factory1 input)]))

connects the output slot of Warehouse1 to the input slot of Factory1.

120
The Joshua Object Facility February 2018

121
February 2018 Joshua Language Dictionary

9. Joshua Language Dictionary

9.1. Dictionary Entries

joshua:act-on-truth-value-change� ���

�����

��������������������A predication

���������-����� The truth value that just changed�

Called whenever the truth-value of ����������� changes from ���������������

to some new truth-value. The new truth-value is available in the predica-

tion by the time act-on-truth-value-change is called. It can be examined us-

ing joshua:predication-truth-value.

This protocol function allows you to take actions that depend on the truth

value of a predication as the truth values change. (You might want to do

that, for example, in advanced uses of modeling.)

When a predication changes truth-value, the TMS may make several other

predications to change their truth-values as well. The TMS is responsible

for first calling joshua:notice-truth-value-change on every changed predi-

cation before this protocol function is invoked. Thus whenever an

joshua:act-on-truth-value-change method is called, it may safely assume

that the world has been updated into a consistent state.

See the sections on "Signalling Truth Value Changes" and joshua:notice-

truth-value-change�

joshua:add-action� ������������������������������������� &optional�������:action�

This function is part of the Joshua object facility. It allows actions, which

are arbitrary functions, to be associated with a slot of a Joshua object. The

function will be called whenever the value of a slot changes.

The function is called for side effect; when invoked, it is passed the follow-

ing arguments: the slot, the current-value of the slot, the predication asso-

ciated with the value of the slot, and the previous truth-value of the predi-

cation. The function is called whenever the slot assumes a new value or

whenever a current value is removed; the truth-value of the predication ar-

gument and the previous truth-value can be used to distinguish the differ-

ent possibilities.

Actions may be removed from slots by using joshua:remove-action.

The optional argument to joshua:add-action is a "name" for the action. It

defaults to :action. Naming an action allows the user to attach more than

one action to a slot.�

122
Joshua Language Dictionary February 2018

joshua:add-backward-question-trigger� ���������������������������������������

������������������������������������

����������� The pattern under which the backward question is to be

indexed.

����������� The truth value under which the pattern is to be in-

dexed.

�������������� The backward question trigger data-structure to be in-

dexed.

������� The context of the backward question. Useful in ad-

vanced modeling applications.

������������� The name of the backward question being indexed.�

Tailoring of backward-question indexing is usually accomplished by provid-

ing methods for the joshua:locate-backward-question-trigger and

joshua:map-over-backward-question-triggers protocol functions. The

joshua:add-backward-question-trigger and joshua:delete-backward-

question-trigger methods provided as Joshua’s defaults call joshua:locate-

backward-question-trigger as a subroutine. All of the interesting tailoring

of their behavior can be obtained by providing a joshua:locate-backward-

question-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what questions are currently indexed where. Even in advanced modeling ap-

plications it is unlikely that you will need to define a method for the

joshua:add-backward-question-trigger protocol function.

See the section "The Joshua Question Indexing Protocol", page 48.�

joshua:add-backward-rule-trigger� ��

������������������������

����������� The pattern under which the backward rule is to be in-

dexed.

����������� The truth value under which the backward rule is to be

indexed.

�������������� The backward rule trigger data-structure to be indexed.

������� The entire ��-part of the rule. Useful in advanced mod-

eling applications.

��������� The name of the rule being indexed.�

Tailoring of backward rule indexing is usually accomplished by providing

methods for the joshua:locate-backward-rule-trigger and joshua:map-

over-backward-rule-triggers protocol functions. The joshua:add-backward-

rule-trigger and joshua:delete-backward-rule-trigger methods provided as

123
February 2018 Joshua Language Dictionary

Joshua’s defaults call joshua:locate-backward-rule-trigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid-

ing a joshua:locate-backward-rule-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli-

cations it is unlikely that you will need to define a method for the

joshua:add-backward-rule-trigger protocol function.

See the section "The Contract of the Trigger Adding Functions", page 38.�

joshua:add-forward-rule-trigger� ��

������������������������

����������� The pattern under which the forward rule is to be in-

dexed.

����������� The truth value under which the pattern is to be in-

dexed.

�������������� The forward rule trigger data-structure to be indexed.

������� The entire ��-part of the rule. Useful in advanced mod-

eling applications.

��������� The name of the rule being indexed.

Tailoring of forward rule indexing is usually accomplished by providing

methods for the joshua:locate-forward-rule-trigger and joshua:map-over-

forward-rule-triggers protocol functions. The joshua:add-forward-rule-

trigger and joshua:delete-forward-rule-trigger methods provided as

Joshua’s defaults call joshua:locate-forward-rule-trigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid-

ing a joshua:locate-forward-rule-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli-

cations it is unlikely that you will need to define a method for the

joshua:add-forward-rule-trigger protocol function.

See the section "The Contract of the Trigger Adding Functions", page 38.

joshua:ask� �������������������������� &key���������������������t������

���������

Queries the virtual database and backward rules and questions.

Note: joshua:ask is a macro, and as such it cannot be used as an argu-

ment to the function funcall.

����� Should be a predication.

124
Joshua Language Dictionary February 2018

������������ Should be a function of one argument, describing what

you want done with the answers to the query.

Note that the argument given to ������������ might be

ephemeral in one of two ways: it could be stack-consed,

and it could contain logic variables whose bindings will

be undone when you exit this frame. Instantiated

queries almost always need to be copied with

joshua:copy-object-if-necessary, because the variable

bindings are ephemeral. See example 6 below.

If, on the other hand, you are collecting database predi-

cations, they are not ephemeral, and you don’t want to

copy them. (Copying a database predication causes loss

of the database information associated with the predi-

cation.)�

Keywords:

:����������������� If this keyword has a non-nil value, backward chaining

rules are checked for solutions. The default is t. Use

:��-��������-����� nil to check out just the database

solution.

:������������ If this keyword has a non-nil value, any questions that

claim to answer ����� are run to solicit more solutions

from the user. The default is nil.�

joshua:ask uses the database, backward rules, and questions to satisfy the

query predication. Each time joshua:ask finds a solution to ����� it calls

the continuation, passing it a list that contains the answer and information

about how the answer was derived.

joshua:ask doesn’t return an interesting value. Normally the continuation

performs some action with each solution. You can collect values in the con-

tinuation, or return a value to some caller of joshua:ask using throw,

return-from, or some similar Lisp form. Such uses of throw and return-

from are like the Prolog cut feature. See examples 6 through 9.

Any logic variables used in ����� can be referred to as though they were

lexical Lisp variables within ������������; joshua:ask establishes a binding

contour for the logic variables. (See example 1 below.) In this sense,

joshua:ask is like let combined with mapc. Like let, joshua:ask establish-

es lexical binding contours for the logic variables in the query. Like mapc,

it iteratively calls the continuation on the answer. For a discussion of scop-

ing rules: See the section "Variables and Scoping in Joshua" in ������

���������������������.

joshua:ask calls the continuation function with a single argument, �����

������������, a list containing information about the solution process. The

list contains the instantiated query, its truth value, and the support for the

query; the form of the support varies, depending on how the query was sat-

isfied.

125
February 2018 Joshua Language Dictionary

Typically you’ll want to deal only with part of the information provided in

���������������� rather than with the entire list. For instance, you might

want to see only the answer, or only the database predication that matched

the answer, or only the support for the answer.

Joshua supplies �������� ��������� to extract various elements of the list in

����������������, making it available to you for interpretation.

In addition, Joshua provides ����������� ��������� that extract some element

of the list in ���������������� and interpret it for you. These functions let

you postpone dealing with the details of ���������������� and accessor

functions until you need them for more advanced work. So before reading

on you might want to skip ahead to the section "Streamlining Typical Con-

tinuation Requests with Convenience Functions" and see if these functions

meet your current needs.

Continuation Argument

���������������� A list of the following form:

• The first element is always the unified query, that is, the query that was

passed to joshua:ask, with appropriate variables instantiated as a side-

effect of unification.

• The second element is the truth value of the query. This corresponds to

the truth value of the matching predication in the database at the time

joshua:ask looked at it.

• The rest of the elements are the support for the instantiated query. The

support can take several forms, depending on how the query was satis-

fied.

° When the query is satisfied by matching a predication in the database,

the support is that database object.

° When the query answer comes from a conjunction (and), the support

is the symbol and, followed by the backward support for each of the

compound predications.

° When the query answer comes from a disjunction (or), the support is

the symbol or, followed by the support for the single predication from

the or that succeeded.

° When the query answer is derived from a backward rule, the support

has the format

((rule rule-name) . rule-support)

where

126
Joshua Language Dictionary February 2018

• ���� is the symbol rule

• ��������� is the name of the rule used to satisfy the query

• ������������ is a list containing (recursively) the backward support

used to satisfy parts of the rule body.

° When the query answer comes from a question, the support is like

that for rules, except that it uses the question name instead of the

rule name.

° When the query answer comes from the predicates joshua:known or

joshua:provable, the support is the respective symbol name

(joshua:known or joshua:provable), followed by the support for the

predication that served as the symbol’s argument.

° When the query originates from an joshua:ask or an joshua:ask-data

method, the support is whatever the writer of that method provided.

See the section "Customizing the Data Index", page 81.

In schematic form, the ���������������� list looks as follows:

The backward-support list:

(<unified query> <truth-value> . <derivation>)

(<(unified) query>)

(<t/f>)

(<derivation>) Possibilities for these elements are:

 (<database predication>)

 (AND <conjunct1 derivation> <conjunct2 derivation> ...)

 (OR <successful disjunct derivation>)

 ((RULE <rule name>) <conjunct1 t/f derivation> <conjunct2 t/f derivation> ...)

 ((QUESTION <question name>) <succeed argument>)

 (KNOWN <derivation>)

 (PROVABLE <derivation>)�

Extracting Parts of the Continuation with Accessor Functions

Joshua provides four accessor functions to extract specific portions of �����

������������. Use these functions if you want to interpret the answer your-

self. Use the convenience functions described below if you want the system

to interpret the information for you.

joshua:ask-query Extracts the instantiated query (the first element) from

����������������. For example:

(ask [...] #’(lambda (backward-suppport)

 (print (ask-query backward-support))))

127
February 2018 Joshua Language Dictionary

joshua:ask-query-truth-value

Extracts the truth value of the instantiated query (the

second element) from ����������������. For example:

(ask [...] #’(lambda (backward-support)

 (print

 (ask-query-truth-value backward-support))))�

joshua:ask-database-predication

Extracts the database object that matched �����. If the

backward support is a rule, displays the rule name (see

example 4). Use this function only when you know the

support is a database object (that is, with :do-

backward-rules nil. For example:

(ask [...]

 #’(lambda (backward-support)

 (print (ask-database-predication backward-support)))

 :do-backward-rules nil)

joshua:ask-derivation

Extracts the support information in ����������������.

Makes fewer assumptions than joshua:ask-database-

predication about where the support came from. For

example:

(ask [...] #’(lambda (backward-support)

 (print (ask-derivation backward-support))))

Streamlining Typical Continuation Requests with Convenience Functions

When an joshua:ask query succeeds, there are some standard things you

might want to do with the answer, such as: printing or formatting the uni-

fied query, operating on the database predication supporting the query, or

interpreting all of the backward support.

Joshua provides five convenience functions that extract an appropriate part

of the answer and interpret it in some specific way. The first four are

joshua:ask continuation functions. The fifth is a special-purpose function

that lets you do database lookup only, and interpret the answer in some

way. joshua:map-over-database-predications uses joshua:ask to search

the database and extract the predication(s) matching its argument pattern.

These functions are:

joshua:print-query Extracts and displays the unified query. For exam-

ple:

(ask [...] #’print-query)�

joshua:say-query Extracts the unified query and displays it in format-

ted form.

128
Joshua Language Dictionary February 2018

joshua:print-query-results

Takes the information in ���������������� and dis-

plays it with annotations.

joshua:graph-query-results

The above in graph form.

joshua:map-over-database-predications

For special cases of the solution process, where you

look only in the database for an answer, extracts all

database predications that unify with a predication

pattern and applies some function to each. For ex-

ample:

(map-over-database-predications [foo ?x] #’untell)

joshua:map-over-database-predications is equiva-

lent to:

(ask query #’(lambda (x) (funcall continuation

 (ask-database-predication x)))

 :do-backward-rules nil)

We use some of the convenience functions in the examples to joshua:ask.

For more on each function, please consult its dictionary entry.

Examples of Using joshua:ask

Let’s define some predicates, enter them into the database, then add a

backward rule and a backward question. The rule determines what is an

eater’s favorite food. The question elicits information to satisfy the rule’s

subgoal.

(define-predicate favorite-meal (eater food))

(define-predicate guzzles (eater food))

(defun eat-it ()

 (clear)

 (tell [and [favorite-meal bears honey]

 [favorite-meal mosquitoes people]

 [favorite-meal spiders flies]

 [favorite-meal monkeys bananas]

 [guzzles ted ice-cream]])

 (cp:execute-command "Show Joshua Database"))

129
February 2018 Joshua Language Dictionary

Show Joshua Database

 True things

 [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES]

 [FAVORITE-MEAL MONKEYS BANANAS]

 [GUZZLES TED ICE-CREAM]

 False things

 None

(defrule not-finicky (:backward)

 if [guzzles ?eater ?food]

 then [favorite-meal ?eater ?food])

(defquestion guzzler? (:backward)

 [guzzles ?eater ?food])

Next we joshua:ask what Joshua knows about everybody’s favorite meals.

Example 1 uses the variables in the unified query to print an English-like

sentence (not fussy about number agreement between subject and verb)

about everybody’s meals. It ignores the ���������������� argument and us-

es a format directive. It looks in the database and rules, but not in ques-

tions.

Example 1.

(ask [favorite-meal ?eater ?food]

 #’(lambda (ignore)

 (format t "~%~S is the preferred food of ~S." ?food ?eater)))

BANANAS is the preferred food of MONKEYS.

FLIES is the preferred food of SPIDERS.

PEOPLE is the preferred food of MOSQUITOES.

HONEY is the preferred food of BEARS.

ICE-CREAM is the preferred food of TED.�

Example 2 prints the instantiated query for everybody’s meals, using the

convenience function, joshua:print-query. It uses the database only, ignor-

ing both rules and questions.

Example 2.

(ask [favorite-meal ?eater ?food] #’print-query :do-backward-rules nil)

 ;print just those in the database

[FAVORITE-MEAL MONKEYS BANANAS]

[FAVORITE-MEAL SPIDERS FLIES]

[FAVORITE-MEAL MOSQUITOES PEOPLE]

[FAVORITE-MEAL BEARS HONEY]�

Example 3 prints the instantiated query for the meals of bears, using the

convenience function, joshua:print-query. It looks in the database and

backward rules, but not in questions.

130
Joshua Language Dictionary February 2018

Example 3.

(ask [favorite-meal bears ?food] #’print-query)

 ;print out bears’ favorite-meal foods

[FAVORITE-MEAL BEARS HONEY]�

Example 4 prints the predication object that satisfied the query for every-

body’s meals using the accessor function joshua:ask-database-predication.

It looks in the database and backward rules, but not in questions. Notice

that when the query is satisfied from a rule, the rule name is printed, not

a predication object. It is best to use joshua:ask-database-predication with

:do-backward-rules nil, that is, when you know the support is only in the

database.

Example 4.

(ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (print (ask-database-predication backward-support))))

[FAVORITE-MEAL MONKEYS BANANAS]

[FAVORITE-MEAL SPIDERS FLIES]

[FAVORITE-MEAL MOSQUITOES PEOPLE]

[FAVORITE-MEAL BEARS HONEY]

(RULE NOT-FINICKY) �

Example 5 prints the instantiated query for everybody’s meals. It uses the

database, backward rules, ��� questions. Note that we supplied just one an-

swer interactively to the question, although we could have supplied more.

Example 5.

(ask [favorite-meal ?eater ?food] #’print-query :do-questions t)

 ;look for backward questions as well

[FAVORITE-MEAL MONKEYS BANANAS]

[FAVORITE-MEAL SPIDERS FLIES]

[FAVORITE-MEAL MOSQUITOES PEOPLE]

[FAVORITE-MEAL BEARS HONEY]

[FAVORITE-MEAL TED ICE-CREAM]

[FAVORITE-MEAL CHRISTOPHER BANANA-PIE]�

Example 6 collects a list of patterns that describe everybody’s meals. It us-

es the database and rules, but not questions. Note the use of joshua:copy-

object-if-necessary. This is because the bindings in the query are undone

131
February 2018 Joshua Language Dictionary

upon exit from the continuation, so we must make a copy in which to pre-

serve them.

Note that the resulting list is ��� a list of things that are in the database,

but rather a list of free-floating predications that are copies of the query. If

you want the latter, use joshua:ask-database-predication with :do-

backward-rules nil and don’t copy it. See example 7.

Example 6.

(defun collect-answers ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (copy-object-if-necessary

 (ask-query backward-support)) answers)))

 answers))

COLLECT-ANSWERS

 (collect-answers)

([FAVORITE-MEAL TED ICE-CREAM] [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES] [FAVORITE-MEAL MONKEYS BANANAS])

Example 7 is identical to example 6, except that here we collect database

predications instead of instantiated queries, and the former don’t need to be

copied. Since we are only looking in the database we specify :do-backward-

rules nil.

(defun collect-answers-database-predications ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (ask-database-predication backward-support)

 answers)

 :do-backward-rules nil))

 answers))

COLLECT-ANSWERS-DATABASE-PREDICATIONS

(collect-answers-database-predications)

([FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES] [FAVORITE-MEAL MONKEYS BANANAS])

Better style for the above example would be:

(collect-answers-database-predications2 ()

 (let ((answers nil))

 (map-over-database-predications [favorite-meal ?eater ?food]

 #’(lambda (db-predication)

(push db-predication answers)))

 answers))

132
Joshua Language Dictionary February 2018

Often you’re interested in whether there �� a solution, but not any ��������

��� solution. Example 8 illustrates the use of return-from in a continuation

to return when the first solution is found.

Example 8.

(defun solution-exists-p ()

 (ask [favorite-meal ?eater ?food]

 #’(lambda (ignore)

 (return-from solution-exists-p t)))

 ;; return nil if nothing succeeded

 nil))

 (solution-exists-p)

T

Example 9 is like the example above, but it returns a copy of the query, in-

stead of a boolean. This is useful if you want to know something about the

solution, in addition to its existence. (However, if you want to use database-

related properties, such as TMS-relation, use joshua:ask-database-

predication and don’t copy it).

Example 9.

(defun first-solution ()

 (block find-a-solution

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (return-from find-a-solution

 (copy-object-if-necessary (ask-query backward-support)))))

 ;; return nil if nothing succeeded

 nil))

 (first-solution)

[FAVORITE-MEAL MONKEYS BANANAS]

Modeling Note:

Chances are that you seldom want to define a method that takes over the

entire functionality of joshua:ask. It’s more likely you want to define a

method for one of the generic functions it calls, such as joshua:fetch,

joshua:ask-data, joshua:ask-rules, joshua:ask-questions, or joshua:map-

over-forward-rule-triggers.

Also, there is a sys:downward-funarg declaration on ������������, so your

implementations of joshua:ask should not use ������������ in other than

stack-like ways.

Related Functions:

joshua:tell

joshua:clear

joshua:copy-object-if-necessary

joshua:map-over-database-predications

133
February 2018 Joshua Language Dictionary

See the section "Querying the Database" in ������ ����� �� ����� ������.

See the section "The Joshua Database Protocol", page 8. See the section

"Customizing the Data Index", page 81.�

joshua:ask-data� ��

����������� A predication to search for.

����������� The truth value being asked about. Must be either

joshua:*true* or joshua:*false*.

������������ A function to be called when the data is found.�

joshua:ask-data is the database part of the joshua:ask protocol. It is an

intermediate level of the protocol, between joshua:ask and joshua:fetch. It

is called by the default joshua:ask method, and the default method for

joshua:ask-data calls joshua:fetch. You will probably not call this function

directly, except when writing joshua:ask methods. More commonly, you

might write your own joshua:ask-data method as a kind of data modeling.

The complete contract of joshua:ask-data is:

• Look in the virtual database for ����������� or anything which unifies

with it.

• Make sure that the current truth value of the entry in the database

matches �����������.

• Unify ���� with a copy of the database predication.

• (Assuming all has gone well so far) build the appropriate backward sup-

port and call ������������ with the backward support.

The backward support for an joshua:ask-data method should be a list of

three elements:

• ����, the (now unified) query predication.

• �����������, the truth value being joshua:asked.

• The derivation. This will usually be the database predication. If there is

no database predication, this should be some other indication of the

derivation of this query succcess. Typically, this would be a symbol indi-

cating the reason for success.

Actually, if your model is storing the database predications as predication

objects, you probably don’t need to write an joshua:ask-data method. Writ-

ing your own joshua:fetch method and using the default joshua:ask-data

method is more convenient. Defining an joshua:ask-data method is usually

done when you don’t want to actually store the predication objects. See the

134
Joshua Language Dictionary February 2018

first version of the good-to-eat model in the section"Customizing the Data

Index" for an example of this.

See the generic function joshua:ask-rules, page 142. See the generic func-

tion joshua:ask-questions, page 140.�

joshua:ask-data-and-questions-only-mixin� ������

This flavor defines an joshua:ask method that only looks in the database

and asks questions (if :do-questions is non-nil), but never tries backward

rules.

The default joshua:ask method looks first in the database, then tries back-

ward rules (if :do-backward-rules is non-nil), then asks questions (if :do-

questions is non-nil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:define-predicate or joshua:define-predicate-model. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi-

cates.

Related Flavors:

joshua:default-ask-model

joshua:ask-data-only-mixin

joshua:ask-rules-only-mixin

joshua:ask-questions-only-mixin

joshua:ask-data-and-rules-only-mixin

joshua:ask-rules-and-questions-only-mixin�

joshua:ask-data-and-rules-only-mixin� ������

This flavor defines an joshua:ask method that only looks in the database

and tries backward rules, but never asks questions.

The default joshua:ask method looks first in the database, then tries back-

ward rules (if :do-backward-rules is non-nil), then asks questions (if :do-

questions is non-nil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:define-predicate or joshua:define-predicate-model. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi-

cates.

Related Flavors:

135
February 2018 Joshua Language Dictionary

joshua:default-ask-model

joshua:ask-data-only-mixin

joshua:ask-rules-only-mixin

joshua:ask-questions-only-mixin

joshua:ask-data-and-questions-only-mixin

joshua:ask-rules-and-questions-only-mixin�

joshua:ask-database-predication� ������������������������

An accessor function for use in an joshua:ask continuation. It extracts the

database predication that matched the query from the continuation argu-

ment, ����������������, that contains information about the satisfied query.

We describe this continuation argument fully in the dictionary entry for

joshua:ask.

Note that if the backward support did not come from the database,

joshua:ask-database-predication gives a bogus answer; in some cases,

such as user-written models, it may even cause a trip to the debugger.

Thus, you should use joshua:ask-database-predication only with :do-

backward-rules nil.

Examples:

We build a library database using joshua:tell statements as well as a for-

ward rule that says the library owns any work authored by Shakespeare.

We also include an LTMS in our predicate definitions so that we can later

apply joshua:explain to the database predications we find.

(define-predicate author-of (work author) (ltms:ltms-predicate-model))

(define-predicate owns-library (work) (ltms:ltms-predicate-model))

(defrule Shakespeare-holdings (:forward)

 if [author-of ?work Shakespeare]

 then [owns-library ?work])

(defun build-author-title-index2 ()

 (clear)

 (tell [and [author-of "King Lear" Shakespeare]

 [author-of "Hedda Gabler" Ibsen]

 [owns-library "Trumpeting Joshua"]

 [author-of "A Doll’s House" Ibsen]])

 (cp:execute-command "Show Joshua Database"))

BUILD-AUTHOR-TITLE-INDEX2

(build-author-title-index2)

True things

 [OWNS-LIBRARY "Trumpeting Joshua"] [AUTHOR-OF "Hedda Gabler" IBSEN]

 [OWNS-LIBRARY "King Lear"] [AUTHOR-OF "King Lear" SHAKESPEARE]

 [AUTHOR-OF "A Doll’s House" IBSEN]

False things

 None�

136
Joshua Language Dictionary February 2018

Now we ask Joshua to find and joshua:explain the database predications

that tell what the library owns.

(ask [owns-library ?work]

 #’(lambda (backward-support)

 (explain (ask-database-predication backward-support))))

[OWNS-LIBRARY "Trumpeting Joshua"] is *True*.

 It’s a :Premise.

[OWNS-LIBRARY "King Lear"] is *True*.

 It’s derived from the rule Shakespear-Holdings, using:

 [AUTHOR-OF "King Lear" SHAKESPEARE]�

Usually you can use the convenience function joshua:map-over-database-

predications instead of joshua:ask-database-predication.

For comparison we use the same library example for both functions.

For more on these and related functions: See the function joshua:ask, page

123.�

joshua:ask-data� �������������������������������of�joshua:default-ask-

model

This is the default joshua:ask-data method. It does something like the fol-

lowing (somewhat sanitized) code:

(define-predicate-method (ask-data default-ask-model)

 (truth-value continuation)

 (fetch self

 #’(lambda (database-predication)

 (when (= truth-value

 (predication-truth-value database-predication))

 ;; the truth value we’re looking for matches the

 ;; database predication

 (with-unification

 ;; if the database predication has variables, copy it

 ;; so the database isn’t side-effected

 (unify self

 (copy-object-if-necessary database-predication))

 ;; the unification succeeded, so call the continuation

 (stack-let ((backward-support ‘(,self

 ,truth-value

 ,database-predication)))

 (funcall continuation backward-support)))))))

joshua:ask-data-only-mixin� ������

This flavor defines an joshua:ask method thatwhich only looks in the

database, and never tries rules or questions.

The default joshua:ask method looks first in the database, then tries back-

ward rules (if :do-backward-rules is non-nil), then asks questions (if :do-

questions is non-nil).

137
February 2018 Joshua Language Dictionary

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:define-predicate or joshua:define-predicate-model. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi-

cates.

Related Flavors:

joshua:default-ask-model

joshua:ask-rules-only-mixin

joshua:ask-questions-only-mixin

joshua:ask-data-and-rules-only-mixin

joshua:ask-data-and-questions-only-mixin

joshua:ask-rules-and-questions-only-mixin�

joshua:ask-derivation� ������������������������

An accessor function for use in an joshua:ask continuation. It extracts the

support information about the satisfied query from the continuation argu-

ment ����������������.

Note that the accessor function joshua:ask-database-predication makes

more assumptions about the support than joshua:ask-derivation does.

Here is a schematic representation of the contents of ����������������.

joshua:ask-derivation extracts only the derivation portion. For more detail

please consult the dictionary entry for joshua:ask.

The backward-support list:

(<unified query> <truth-value> . <derivation>)

(<(unified) query>)

(<t/f>)

(<derivation>) Possibilities for these elements are:

 (<database predication>)

 (AND <conjunct1 derivation> <conjunct2 derivation> ...)

 (OR <successful disjunct derivation>)

 ((RULE <rule name>) <conjunct1 t/f derivation> <conjunct2 t/f derivation> ...)

 ((QUESTION <question name>) <succeed argument>)

 (KNOWN <derivation>)

 (PROVABLE <derivation>)�

Like the other accessor functions, joshua:ask-derivation does not interpret

the information it extracts. Generally you won’t need to use it very often.

Note that the convenience functions joshua:print-query-results and

joshua:graph-query-results, respectively, display and graph an annotated

version of the support information, so that you don’t have to interpret it

yourself.

138
Joshua Language Dictionary February 2018

For comparison we’ll use the same examples to illustrate all three of these

functions.

Examples:

The first example shows the support for a query satisfied by database

lookup the database predication that satisfied the query is printed.

(define-predicate type-of (object type))

(tell [type-of Iliad epic])

Example 1.

(ask [type-of ?book epic]

 #’(lambda (backward-support)

 (print (ask-derivation backward-support))))

([TYPE-OF ILIAD EPIC])

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the definitions.

; Example 2. Query is derived from backward rules

; Define the predicates

(define-predicate edible (object))

(define-predicate is-food (object))

(define-predicate contains (object substance))

(define-predicate sweet (object))

; Define the rules

(defrule food? (:backward)

 if [edible ?object]

 then [is-food ?object])

(defrule sweet? (:backward)

 if [or [contains ?object chocolate]

 [contains ?object sugar]

 [contains ?object honey]]

 then [sweet ?object])

(defrule dessert? (:backward)

 if [and [is-food ?object]

 [sweet ?object]]

 then [type-of ?object dessert])

; tell some sticky facts

(tell [edible chocolate-coated-ants])

(tell [contains chocolate-coated-ants honey])�

Now we joshua:ask what foods qualify as desserts and why. The display is

139
February 2018 Joshua Language Dictionary

a list starting with rule dessert? that satisfied the query; next is the first

subgoal that was satisfied, together with its truth value, and the name of

the rule which satisfied it (rule food?). That rule’s first subgoal is then

listed with its truth value and the database predication that satisfied it,

and so on, through all the backward support.

(ask [type-of ?object dessert]

 #’(lambda (backward-support)

 (print (ask-derivation backward-support))))

((RULE DESSERT?)

 ([IS-FOOD CHOCOLATE-COATED-ANTS] 1 (RULE FOOD?)

 ([EDIBLE CHOCOLATE-COATED-ANTS] 1 [EDIBLE CHOCOLATE-COATED-ANTS]))

 ([SWEET CHOCOLATE-COATED-ANTS] 1 (RULE SWEET?)

 ([CONTAINS CHOCOLATE-COATED-ANTS HONEY] 1

 [CONTAINS CHOCOLATE-COATED-ANTS HONEY])))

For more on these and related functions: See the function joshua:ask, page

123.�

joshua:ask-query� ������������������������

An accessor function for use inside an joshua:ask continuation. It extracts

the instantiated query from the continuation argument ����������������.

���������������� is fully described in the dictionary entry for joshua:ask.

Example:

Here we collect and save all the answers from a query. (See example 6 in

the dictionary entry for joshua:ask.)

(defun collect-answers ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (copy-object-if-necessary

 (ask-query backward-support))

 answers)))

 answers))�

To extract and print out the instantiated query, use the convenience func-

tion joshua:print-query.

For more on these and related functions: See the function joshua:ask, page

123.�

joshua:ask-query-truth-value� ������������������������

An accessor function for use inside an joshua:ask continuation. It extracts

the truth value of the instantiated query from the continuation argument

����������������.

���������������� is fully described in the dictionary entry for joshua:ask.

The truth value is a number, as follows:

140
Joshua Language Dictionary February 2018

0 Truth value of joshua:*unknown*

1 Truth value of joshua:*true*

2 Truth value of joshua:*false*

3 Truth value of joshua:*contradictory*

The joshua:truth-value presentation type translates these numbers into

symbols naming a truth value.

Most of the time you know the query’s truth value from the query pattern

itself, so that you have little need of this function. The truth value infor-

mation is mostly there for system use, to let the system interpret the

query.

Examples:

(define-predicate status-of (object status))

(tell [status-of smoke-alarm off])

; Example 1.

(ask [status-of ?indicator off]

 #’(lambda (backward-support)

 (print (ask-query-truth-value backward-support))))

1

; Example 2. Use truth-value-name to translate the number

(ask [status-of ?indicator off]

 #’(lambda (backward-support)

 (print (truth-value-name (ask-query-truth-value backward-support)))))

TRUE �

For more on this and related functions: See the function joshua:ask, page

123.�

joshua:ask-questions� ��

����������� A predication to be the goal for rules.

����������� The truth value being asked about. Must be either

joshua:*true* or joshua:*false*.

������������ A function to be called when the rule is satisfied.�

joshua:ask-questions is the question-asking part of the joshua:ask proto-

col. It is an intermediate level of the protocol, between joshua:ask and

joshua:map-over-backward-question-triggers. It is called by the default

joshua:ask method, and the default method for joshua:ask-questions calls

joshua:map-over-backward-question-triggers. You will probably not call

this function directly, except when writing joshua:ask methods. Since ques-

tion compilation is not yet completely generic, you probably don’t want to

define your own joshua:ask-questions methods.

141
February 2018 Joshua Language Dictionary

The complete contract of joshua:ask-questions is:

• Look in the question database for questions with a pattern predication

matching ����������� or anything which unifies with it.

• Make sure that ����������� is appropriate. (If the question can be asked

negatively, then either truth value is appropriate. If the question can on-

ly be asked positively, the truth value must be joshua:*true*.)

• Unify ����������� (self in the method) with a copy of the pattern predi-

cation.

• Get the answer to the query in some appropriate way. If the query

should succeed, call the ������������ function.

The backward support for an joshua:ask-questions method should be a list

containing:

• ����������� (self in the method), the (now unified) query predication.

• �����������, the truth value being joshua:asked.

• (question ����), where ���� is the name of the question.

• The derivation. This can be any extra information about how the ques-

tion was answered or why it succeeded.�

joshua:ask-questions-only-mixin� ������

This flavor defines an joshua:ask method that only asks questions (if :do-

questions is non-nil).

The default joshua:ask method looks first in the database, then tries back-

ward rules (if :do-backward-rules is non-nil), then asks questions (if :do-

questions is non-nil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:define-predicate or joshua:define-predicate-model. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi-

cates.

Related Flavors:

142
Joshua Language Dictionary February 2018

joshua:default-ask-model

joshua:ask-data-only-mixin

joshua:ask-rules-only-mixin

joshua:ask-data-and-rules-only-mixin

joshua:ask-data-and-questions-only-mixin

joshua:ask-rules-and-questions-only-mixin�

joshua:ask-rules� ���

����������� A predication to be the goal for rules.

����������� The truth value being asked about. Must be either

joshua:*true* or joshua:*false*.

������������ A function to be called when the rule is satisfied.

������������ If non-nil, allow asking questions in subgoals of the

rule.

joshua:ask-rules is the backward-chaining part of the joshua:ask protocol.

It is an intermediate level of the protocol, between joshua:ask and

joshua:map-over-backward-rule-triggers. It is called by the default

joshua:ask method, and the default method for joshua:ask-rules calls

joshua:map-over-backward-rule-triggers. You will probably not call this

function directly, except when writing joshua:ask methods. Since rule com-

pilation is not yet completely generic, you probably don’t want to define

your own joshua:ask-rules methods.

The complete contract of joshua:ask-rules is:

• Look in the rule database for rules with a �����part matching �����������

or anything which unifies with it.

• Make sure that the truth value of the ����-part matches �����������.

• Unify ����������� (self in the method) with a copy of the �����part.

• joshua:ask the ��-part. In the continuation of the joshua:ask build the

appropriate backward support and call the ������������ of joshua:ask-

rules with the backward support.

The backward support for an joshua:ask-rules method should be a list

containing:

• ����������� (self in the method), the (now unified) query predication.

• �����������, the truth value being joshua:asked.

• (rule ����), where ���� is the name of the rule.

143
February 2018 Joshua Language Dictionary

• The derivation. This will be a list of the support for the ���part.

See the section "Finding Backward Rule Triggers", page 43.�

joshua:ask-rules-and-questions-only-mixin� ������

This flavor defines an joshua:ask method that only tries backward rules (if

:do-backward-rules is non-nil) and asks questions (if :do-questions is

non-nil), but never looks in the database.

The default joshua:ask method looks first in the database, then tries back-

ward rules (if :do-backward-rules is non-nil), then asks questions (if :do-

questions is non-nil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:define-predicate or joshua:define-predicate-model. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi-

cates.

Related Flavors:

joshua:default-ask-model

joshua:ask-data-only-mixin

joshua:ask-rules-only-mixin

joshua:ask-questions-only-mixin

joshua:ask-data-and-rules-only-mixin

joshua:ask-data-and-questions-only-mixin�

joshua:ask-rules-only-mixin� ������

This flavor defines an joshua:ask method that only tries backward rules (if

:do-backward-rules is non-nil).

The default joshua:ask method looks first in the database, then tries back-

ward rules (if :do-backward-rules is non-nil), then asks questions (if :do-

questions is non-nil).

This flavor can be used as a component of a predicate or of a predicate

model to change how joshua:ask is implemented for that predicate or for

predicates of that model. To use it, specify it as a component in

joshua:define-predicate or joshua:define-predicate-model. The flavor is

provided primarily as a means of increasing the performance of joshua:ask

by skipping protocol steps which are not needed for some particular predi-

cates.

Related Flavors:

144
Joshua Language Dictionary February 2018

joshua:default-ask-model

joshua:ask-data-only-mixin

joshua:ask-questions-only-mixin

joshua:ask-data-and-rules-only-mixin

joshua:ask-data-and-questions-only-mixin

joshua:ask-rules-and-questions-only-mixin�

joshua:basic-tms-mixin� ������

This flavor must be included in any TMS model predicate. It does not de-

fine any of the TMS protocol methods itself, but it ensures that TMS predi-

cates support the correct protocol methods.

joshua:clear� ��������&optional�(���������������t)�(����������������nil)

With arguments t t, empties the database and "undoes" all rule definitions.

�������������� Specifies whether or not to clear the database. Default

is t.

��������������� Specifies whether or not to delete all rule definitions.

Default is nil.�

Clearing the database is equivalent to joshua:untelling each fact in the

database.

Note that undefining all rule definitions is a drastic thing to do, as it

clears out ��� rules in your world. Any application depending on these rules

will no longer work. Clear out all rules only if you want a "clean" environ-

ment, for example, if you need to get rid of a runaway rule that you cannot

stop by other means.

Examples:

Show Joshua Database

 True things

 [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES]

 [FAVORITE-MEAL MONKEYS BANANAS]

 False things

 None

(clear)

Show Joshua Database

 True things

 None

 False things

 None

Related Command:

145
February 2018 Joshua Language Dictionary

"Clear Joshua Database Command"

See the section "Removing Predications From the Database" in ������ �����

���������������.

See the section "The Joshua Database Protocol", page 8.

See the section "Customizing the Data Index", page 81.

Clear Joshua Database Command

Clears predications from the Joshua Database.

������������ Which predications to remove from the database. Clear Joshua

Database asks the database for all predications matching those

specified in the ������������ argument and joshua:untells

them from the database. The value of ������������ can also be

All or None.

:����� ����� ������ ���

Whether or not to clear the predications in the database which

match those specified by the ������������ argument, but have

the opposite truth value. This argument defaults to Yes.

:����� Whether to ask you before making changes to the database. By

default, the command stops and asks before removing any pred-

ications or rules.

:�������� ����� If �������� ����� is Yes, the command will undefine all of the

Joshua Rules. This argument defaults to No.

:������� Whether to print information about what the command is do-

ing.

Clear Joshua Database provides a convenient interface to the joshua:untell func-

tion. It asks the database for all predications matching those specified by the ar-

guments, prompts you for confirmation, and joshua:untells each predicate. It also

allows you to undefine all the Joshua rules, resulting in a fresh Joshua environ-

ment.

Note that undefining all rule definitions is a drastic thing to do, as it clears out

��� rules in your world. Any application depending on these rules will no longer

work. Clear out all rules only if you want a "clean" environment, for example, if

you need to get rid of a runaway rule that you cannot stop by other means.

Related Functions:

joshua:clear

joshua:untell

joshua:*contradictory*� ��������

A named constant used by Joshua to denote an interim state of computation

wherein a predication is believed to be both joshua:*true* and

joshua:*false*. When this occurs, Joshua invokes the appropriate Truth

Maintenance System to resolve the contradictory state.

146
Joshua Language Dictionary February 2018

joshua:*contradictory* is not meaningful unless a TMS is present. Howev-

er, not all Truth Maintenance Systems are required to use this value.

Related Topics:

joshua:*true*

joshua:*false*

joshua:*unknown*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values" in ������ ����� �� ����� ������. See the

section "Justification and Truth Maintenance" in ������ ����� �� �����

������.�

joshua:copy-object-if-necessary� ��������������

Copies the ������ handed to it if it contains variables, or is otherwise

ephemeral.

������ Any object, for example, a list, or a predication

Variables in ������ are renamed during copying, so that variables in the

copy differ from variables in the original.

joshua:copy-object-if-necessary is useful for making copies of predications

that may be stack-consed, or whose variables may be temporarily unified.

The latter, for example, is true of variables in the query to joshua:ask.

joshua:copy-object-if-necessary creates a separate copy of its argument in

the heap.

Examples: Here we reuse some of the examples introduced with

joshua:ask. We define some predicates and a rule, then enter some facts

into the database.

(define-predicate favorite-meal (eater food))

(define-predicate guzzles (eater food))

 (clear)

 (tell [and [favorite-meal bears honey]

 [favorite-meal mosquitoes people]

 [favorite-meal spiders flies]

 [favorite-meal monkeys bananas]

 [guzzles ted ice-cream]])

147
February 2018 Joshua Language Dictionary

Show Joshua Database

 True things

 [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES]

 [FAVORITE-MEAL MONKEYS BANANAS]

 [GUZZLES TED ICE-CREAM]

 False things

 None

(defrule not-finicky (:backward)

 if [guzzles ?eater ?food]

 then [favorite-meal ?eater ?food])

Example 1.

;;;If you don’t copy the query, you lose the information!

(defun collect-answers-wrong ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (ask-query backward-support) answers)))

 answers))

COLLECT-ANSWERS-WRONG

 (collect-answers-wrong)

#<Error printing object CONS 42353464>

Example 2.

;;;Using copy-object-if-necessary saves the information

(defun collect-answers ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (copy-object-if-necessary

 (ask-query backward-support)) answers)))

 answers))

COLLECT-ANSWERS

 (collect-answers)

([FAVORITE-MEAL TED ICE-CREAM] [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES] [FAVORITE-MEAL MONKEYS BANANAS])

148
Joshua Language Dictionary February 2018

(defun first-solution ()

 (block find-a-solution

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (return-from find-a-solution

 (copy-object-if-necessary (ask-query backward-support)))))

 ;; return nil if nothing succeeded

 nil))

FIRST-SOLUTION

 (first-solution)

[FAVORITE-MEAL MONKEYS BANANAS]

Related Functions:

joshua:ask�

joshua:database-predication� ���

Database-predication is a subtype of predication that includes only predica-

tions that have been in the database.

����������������� When ����������������� is not nil, the predication is pre-

sented with a truth-value indicator (¬, ?, or ↔, that is,

not, *unknown*, *contradictory*, respectively). By de-

fault the system prints truth-value indicators for all

database predications.

This type is useful when defining commands or handlers that can apply on-

ly to predications that have been in the database. Joshua programs some-

times store extra information on predications as they are put in the

database; TMS justification is one example. When a command depends on

this information being present it should accept a database predication as its

argument rather than just a predication.

database-predication can only accept input from the mouse, as that is the

only way to uniquely identify a database predication.

Related Topic:

joshua:predication�

joshua:default-ask-model� ������

This flavor provides the Joshua default behavior for the joshua:ask proto-

col. It has methods for joshua:ask, joshua:ask-data, joshua:ask-rules, and

joshua:ask-questions.

Related Flavor:

joshua:default-predicate-model�

149
February 2018 Joshua Language Dictionary

joshua:default-predicate-model� ������

This is the default flavor for Joshua predications the one you get when

you don’t specify any model to joshua:define-predicate. It defines all the

default behavior for the Joshua protocol. It does not provide any TMS be-

havior.

This flavor is made up of joshua:discrimination-net-data-mixin and

joshua:default-protocol-implementation-model.

Related topics:

ltms:ltms-predicate-model

joshua:define-predicate�

joshua:default-protocol-implementation-model� ������

This flavor provides the Joshua default behavior for the high-level protocol.

It is composed of joshua:default-rule-compilation-model, joshua:default-

ask-model and joshua:default-tell-model.

Related Function:

joshua:define-predicate-model�

joshua:default-rule-compilation-model� ������

This flavor defines all the default Joshua rule compilation behavior.

Related topics:

joshua:default-protocol-implementation-model

joshua:define-predicate-model�

joshua:default-tell-model� ������

This flavor provides the Joshua default behavior for the joshua:tell proto-

col. It has methods for joshua:tell, joshua:insert, joshua:justify,

joshua:notice-truth-value-change, joshua:unjustify, and joshua:untell.

Related Flavor:

joshua:default-predicate-model�

joshua:define-object-type� ��������� &key��������������������������������

��

������������������������

This macro is part of the Joshua object facility. It is used to define classes

of objects.

���� A symbol which will become the type-name of these ob-

jects.

:slots A list of slot descriptions, where each description is ei-

ther a symbol which will become the slot-name, or a list

consisting of a symbol followed by keyword-value pairs.

Possible keywords are:

150
Joshua Language Dictionary February 2018

:initform Specifies an initial value for the

slot. See the section "Initial Values

of Slots", page 113.

:set-valued Specifies whether the slot is set-

valued. See the section "Set Valued

and Single Valued Slots", page 113.

The value of this argument should

be t to create a set-valued slot; it

defaults to nil if not mentioned.

:truth-maintenance

Specifies whether the slot’s values

are maintained by the truth-

maintenance system. The value of

this argument should be t to create

a truth-maintained slot; it defaults

to nil if not mentioned. See the sec-

tion "Slots and Truth Maintenance",
page 114.

:attached-actions Specifies that the user may wish to

add actions to individual instances

of objects containing this slot. See

the section "Slots and Attached Ac-

tions", page 114.

:object-notifying Specifies that the user intends to

define a setf method on the slot val-

ue of the object type. See the sec-

tion "Invoking Methods Associated

with the Object Associated with a

Slot", page 115.�

(define-object-type random-machine

 :slots (oil-viscosity

 (gears :set-valued t)

 (fuel-volume :attached-actions t

 :truth-maintenance t)

 ...)

 ...)�

:parts A list of part descriptions, where each description is a

list containing a part-name and the type of the part.

:equalities A list of equality descriptions, where each description is

a list of pathnames relative to the object being created.

See the section "Equalities Between Slot Values", page

116.

:initializations A list of forms to evaluate at make-instance time. See

the section "Other Options in Define-Object-Type", page

117.

151
February 2018 Joshua Language Dictionary

:included-object-types

Specifies a list of other Joshua-object-types from which

to inherit. See the section "Type Hierarchy in the

Joshua Object Facility", page 110.

:other-instance-variables

A list of regular flavor instance variables to be included

in the object definition. See the section "Other Options

in Define-Object-Type", page 117.

:other-flavors A list of other flavors to mix in to the object definition.

See the section "Other Options in Define-Object-Type",
page 117.�

joshua:define-predicate� �������������� &optional������������������

�����������’(default-predicate-model)� &body

�������

Defines a predicate for use in building predications.

���� Any symbol that does not conflict with the name of an exist-

ing flavor or presentation type. So, for example, integer,

cons, and array are not good predicate names. In fact, they

can be disastrous. Doing joshua:define-predicate on these

will likely cause problems in both the CL type system and

the presentation system.

���� A list of symbols, similar to Lisp lambda lists. &optional ar-

guments can be defaulted as in Lisp. Note that, unlike Lisp,

&rest arguments can also be defaulted. &rest arguments can

be used in "tail" fashion, as in: [foo A B . ?quux], which

matches all foo predicates with arguments A and B, followed

by anything else. &key, &aux, and other lambda-list keywords

are not supported.

��������������������������

Lists optional models defined with joshua:define-predicate-

model. You can also use any flavor, as long as it doesn’t use

:ordered-instance-variables. The rules of procedure are iden-

tical to those of defflavor.

������� Any option acceptable to defflavor. :constructor is unlikely

to be useful, as joshua:define-predicate already uses it. In

addition, see :destructure-into-instance-variables, below.

There are two ways that you can make the predicate arguments lexically

available to methods. For frequent use, specify the option :destructure-into-

instance-variables in your predicate definition. This keeps the predicate ar-

guments destructured permanently in each predication, taking up more

space but providing faster access. For occasional use you can call the macro

joshua:with-statement-destructured. Since the macro destructures the ar-

152
Joshua Language Dictionary February 2018

guments each time you call it, it is slower, but such predications take up

less space. The latter, for example, is usually appropriate for joshua:say

methods. The former might be more appropriate for inner loops.

Examples:

(define-predicate fruit (a-fruit))

(define-predicate bird (bird) (ltms:ltms-predicate-model))

(define-predicate things-to-pack (traveller &rest objects))

(define-predicate gun (range calibre)

 :destructure-into-instance-variables)

(define-predicate has-disease (patient disease &rest symptoms)

 (:destructure-into-instance-variables disease)) ; partial destructuring

Related Functions:

joshua:undefine-predicate

joshua:make-predication

joshua:predicationp

Related Flavor:

joshua:predication

See the section "Joshua Predications" in ����������������������������.�

joshua:define-predicate-method� ������������������������������ &rest

������������� &body�����

joshua:define-predicate-method defines a particular implementation of a

protocol function for a model.

����������������� A symbol which is the name of a Joshua protocol func-

tion.

������ A symbol which is the name of a Joshua predicate mod-

el.

������� A list of options for the method type. See the special

form defmethod in ��������� ������ ���� ��������

���� ���������� for more information. Most Joshua

predicate methods will not need any �������.

���� The list of arguments to the method.

���� The Lisp code which implements the method.

Since most of the protocol functions implement themselves as methods, this

expands into a defmethod most of the time. However, there are two �������

that necessitate your using joshua:define-predicate-method instead of a

bare defmethod:

153
February 2018 Joshua Language Dictionary

• Some of the protocol functions are ��� methods, so joshua:define-

predicate-method has to expand into something different in those cases.

(For example, some of the methods have to be in your compile environ-

ment, before the predicate/model flavors are around.)

• Some of the protocol functions ��� methods, but use different names or

argument conventions than those that are user-visible. For example,

joshua:define-predicate-method may, for efficiency reasons, decide to

implement a protocol function with lots of keyword arguments as an in-

ternal function with positional arguments.�

Examples:

(define-predicate-method (tell tell-error-model) (&rest ignore)

 (error "~S was built using TELL-ERROR-MODEL, so you can’t TELL it." self))

(define-predicate-method (say hacker) (&optional (stream *standard-output*))

 (with-statement-destructured (name)

 (format stream "~&~S is a hacker." name)))�

Related function:

joshua:undefine-predicate-method

See the special form defmethod in ��������� ������ ���� �����������

����������.�

joshua:define-predicate-model� �����������������������������������

����� &body��������

Defines a flavor which may be used as a model or model component for

predicates.

���� A symbol which is the name of the model being defined.

������������������ A list of the names of instance variables which will

keep some of the state of the predicate.

���������� A list of component flavors or models.

������� Options to be passed on to defflavor.

joshua:define-predicate-model is quite similar to defflavor. joshua:define-

predicate-model forces ���� to be an abstract flavor, and requires

joshua:predication be a flavor component of any instantiable flavor built

on ����.

Related function:

joshua:undefine-predicate-model�

joshua:defquestion� ���������������������������� &rest���������

����������������������� &key������

Defines a question.

154
Joshua Language Dictionary February 2018

���� The name of the question.

����������������� Specifies the direction of chaining the question responds

to. Currently, only :backward chaining questions are

supported.

�������-���������-����

Like joshua:defrule, these are arguments to the control

structure. Currently supported are :importance and

:documentation. Both work as they do in rules: The

former lets you specify the priority in which you want

your questions to run (however, they’ll always run after

rules); the latter lets you add a string to document the

meaning of the question. This string can then be re-

trieved with the Lisp function joshua::documentation.

������� A single predication. The question triggers when this

pattern is matched in an joshua:ask, for :backward

question.�

Keywords:

:���� Any Lisp code. This is for customized versions of

joshua:defquestion.

Backward questions behave like backward chaining rules, except that they

run ����� all backward rules. They treat the user as an extension of the

database, and solicit more solutions from him. (For the basics of rule oper-

ation: See the section "Rules and Inference" in ������ ����� �� �����

������.)

Like rules, questions have a name, a trigger pattern, and a body. Like

rules, questions are a way of generating information.

When you joshua:ask something with :do-questions joshua::t and the

query pattern unifies with ������� in the question, the question body runs.

Questions run only after the database has been searched and all appropriate

backward rules have been triggered.

If you don’t supply the :code keyword, joshua:defquestion supplies a body

for you.

At run time, the query unifies with the question trigger. If there are no

logic no logic variables in the unified query, a Yes or No question is gener-

ated once. The default answer is No. Answering Yes makes the query that

triggered the question succeed. Answering No makes the query fail, which

can mean either that the query is known to be joshua:*false*, or that it is

not known to be joshua:*true*.

If the unified query contains logic variables, the question loops, presenting

iterations of an AVV (Accept Variable Values) menu, each soliciting bind-

ings for those variables.

155
February 2018 Joshua Language Dictionary

Questions can be used to interact with a user, with some other process run-

ning on the machine, or even some other device. For example, a question

could go out over the network and ask some other device to answer a ques-

tion.

Joshua has a default way of asking questions; you can also write your own.

The default version uses either the default joshua:say method to format

������� or a user-defined joshua:say method if available.

Examples:

We define a predicate and then we define a question that triggers on a

predication pattern built from this predicate.

(define-predicate foo (something something-else))

(defquestion question1 (:backward :documentation "This has no apparent use")

 [foo 1 ?x])�

Example 1 is a query with no logic variables in the unified query pattern.

Example 1:

 (ask [foo 1 2] #’print-query :do-questions t)

Is it true that "[FOO 1 2]"? [default No]: Yes

[FOO 1 2]

NIL�

For example 2 we define a joshua:say method, and the question uses that

method.

Example 2:

(define-predicate-method (say foo) (&optional (stream *standard-output*))

 (with-statement-destructured (something something-else) ()

 (format stream "the arguments ~A and ~A are correct"

 something something-else)))

 (ask [foo 1 2] #’print-query :do-questions t)

Is it true that "the arguments 1 and 2 are correct"? [default No]: Yes

[FOO 1 2]

NIL�

Example 3 uses a query with logic variables in the query pattern.

156
Joshua Language Dictionary February 2018

Example 3:

To write your own code to do questions, use the :code keyword. This key-

word takes arguments and a body, as follows:

���� (query truth-value continuation &optional query-context)

���� The ���� of a joshua:defquestion works like Lisp code

in the body of a backward rule. If the value of ���� is

nil, the query that triggered the question fails. If the

value of ���� is non-nil, the query succeeds. Calling the

joshua:succeed function explicitly within the ���� al-

lows the query to succeed many times.�

Within ����, ����� is the query predication given to joshua:ask, after the

query has been unified with the question’s trigger.

If ����������� is joshua:*true*, Joshua is trying to determine whether the

query is known to be true, as opposed to false or unknown. Similarly for a

����������� of joshua:*false* Joshua tries to determine whether the query is

known to be false, as opposed to true or unknown.

The �����-������� argument can almost always be ignored.

���� should do the following:

• If there are no logic variables in the query, decide somehow (perhaps by

asking the user a question) if the query is true. If so, call ������������.

You usually rely on the form (joshua:succeed) to call ������������ for

you.

• If there are logic variables present, solicit sets of bindings for them from

somewhere (for example, the user). For each such set, call ������������

(usually via (joshua:succeed)).�

Examples of custom-written questions:

157
February 2018 Joshua Language Dictionary

First we define the predicates, a joshua:say method, a question, and a

backward rule.

(define-predicate wrote (author book))

(define-predicate understands (reader book))

(define-predicate-method (say understands)

 (&optional (stream *standard-output*))

 (with-statement-destructured (reader book) self

 (format stream "~A understands ~A." reader book))) �

(defquestion writings-of-caesar (:backward) [wrote caesar ?book]

 :code

 ((query truth-value continuation &optional ignore)

 (unless (eql truth-value *true*

 (error "I can only ask positive questions.")))

 (typecase ?book

 (unbound-logic-variable

 ;;asked with ?book unbound

 (loop for prompt = "Tell me something that Caesar wrote: "

 then "Tell me something else Caesar wrote: "

 for answer = (accept

 ’((token-or-type (("No more" . no-more))

 ((string))))

 :prompt prompt :default "De Bello Gallico")

 until (eq answer ’no-more)

 do (with-unification

 (unify ?book answer)

 (succeed))))

 (otherwise

 ;;asked with ?book bound

 (yes-or-no-p "~&Did Caesar write ~A? " ?book))))) �

(defrule writers-understand-their-work (:backward)

 if [wrote ?author ?work]

 then [understands ?author ?work])

Now we joshua:ask the query.

 (ask [understands Caesar ?book] #’say-query :do-questions t)

Tell me something that Caesar wrote: [default "De Bello Gallico"]:

 De Bello Gallico

CAESAR understands De Bello Gallico.

Tell me something else Caesar wrote: [default "De Bello Gallico"]:

 A Canticle for Leibowitz

CAESAR understands A Canticle for Leibowitz.

Tell me something else Caesar wrote: [default "De Bello Gallico"]: No more

NIL

158
Joshua Language Dictionary February 2018

 (ask [understands Caesar "Passion on the Nile"] #’say-query :do-questions t)

Did Caesar write Passion on the Nile? (Yes or No) Yes

CAESAR understands Passion on the Nile.

NIL

 �

Related Functions:

joshua:undefquestion

joshua:ask

joshua:ask-questions

joshua:map-over-backward-question-triggers

joshua:locate-backward-question-trigger�

See the section "Asking the User Questions" in ������ ����� �� �����

������.�

joshua:defrule� ������������������������������������ &rest�������������������

�������������������������������

Defines a forward or backward chaining rule. The ����������������� argu-

ment specifies the direction of the rule.

Forward chaining rules respond to new facts entered with joshua:tell; the

response (that is, the rule body or �����part), can involve deducing addition-

al facts that are automatically added to the database, or it can involve exe-

cuting any Lisp program.

Backward chaining rules respond to a goal entered with joshua:ask by try-

ing to satisfy it; this can involve satisfying a series of successive subgoals,

or any Lisp program. Backward chaining does not automatically add new

facts to the database. See the section "Rules and Inference" in ������ �����

���������������.

��������� Any symbol that uniquely identifies the rule.

����������������� One of the keywords :forward or :backward corre-

sponding, respectively, to a forward rule or a back-

ward rule. Future releases may add more possible con-

trol structures.

���������������������� :importance lets you control the order of rule execu-

tion. :documentation lets you add a string that docu-

ments the meaning of the rule. Future releases may

add more keywords.

:importance takes a ����� argument that can be:

• Numeric; any non-complex number, including +1e∞
or -1e∞ (infinity).

159
February 2018 Joshua Language Dictionary

• A symbol (in which case, the system treats it as a

special variable whose runtime value should be a

number).

• A form; the compiler enwraps it with (lambda () ...)

and compiles it. It should return a number when

called.

The larger the ����� argument, the higher the priori-

ty. Rules with no ����� argument run first, after

which rules with a ����� argument are run in order

from the highest to the lowest �����.

Some expense is associated with ordering using

:importance. In forward chaining rules it causes a

"best-first" search through a heap of rules according

to the value associated with :importance. Backward

chaining only orders the local "best-first" search of

rules at the current choice point.

A more symbolic type of reasoning, or some level of

modeling are usually preferable to the indiscriminate

use of :importance.

�� The symbol joshua::if.

������� Specifies the conditions under which the rule suc-

ceeds. The ���� of the ���part is identical for forward

and backward rules. ������������, the ���parts differ

depending on rule type:

In ������� rules the ���part is the ������� part. It can

be one or more predications, joined by joshua::and or

joshua::or. Lisp forms (called ���������� �����) can

be included in the ���part of forward rules, as well.

See the section "The Joshua Rule Compiler", page 26.

In �������� rules the ���part is the ������ part. It can

be one or more predications as above, as well as any

Lisp construct. These become ��������.

���� The symbol joshua::then.

��������� Specifies the conclusions drawn from the rule. The

���� of the �����part is identical in forward and back-

ward rules. ������������, the �����parts differ depend-

ing on rule type:

In ������� rules the �����part is the ������ part. Can

be one or more predications, joined by joshua::and or

joshua::or, as well as any Lisp construct.

160
Joshua Language Dictionary February 2018

In �������� rules this is the ������� part. Must be a

single (not a compound) predication.�

Note that the �� and ���� clauses can occur in either order. For example,

some programmers prefer to place the �����part of backward rules first, so

that the trigger (procedure head) always comes first. Either of the arrange-

ments shown below is valid.

If [...] Then [...]�

and

Then [...] If [...]�

A rule’s action part (the ����-part of forward rules, and the ���part of back-

ward rules) can specify any suitable action(s), such as adding or retracting

predications, using Lisp code to perform embedded tests or computations,

calling joshua:ask or joshua:tell, interacting with the user, or displaying

messages. When your Lisp code does iterations, call the function

joshua:succeed inside it to let Joshua know that the current set of bind-

ings is correct. Otherwise, Lisp code "succeeds" by returning non-nil. See

examples below.

If the action part of a forward rule contains a predication that is not em-

bedded in Lisp code, this newly deduced fact is automatically added to the

database when the rule executes (a joshua:tell is implicit). Note that such

a predication can be backquoted. If the predication is embedded in Lisp,

however, you must explicitly use a joshua:tell to insert the fact into the

database.

The action part of a backward rule has an implicit joshua:ask around it.

Backward rule action parts add no predications to the database, unless you

explicitly use a joshua:tell to accomplish this.

A backward rule’s trigger part (the �����part) must consist of a single

predication. The trigger can contain logic variables. These variables are

bound by the unifier when the trigger part of the rule is matched against

the query; they are then passed to the action part (the ��-part).

A forward rule’s trigger part (the ��-part) may contain an arbitary number

of predications and Lisp forms. The triggers can contain logic variables. A

forward rule’s triggers behave as follow:

• If the trigger is a predication, it is ��������� when it has been matched

against a predication in the database. The logic variables in the trigger

are bound by the unifier when the trigger part of the rule is matched

against the database predication.

• The trigger may be a Lisp form (we call such triggers ����������

��������). Such a trigger may be satisfied in two ways: If it returns

joshua::t, it is regarded as satisfied. It is also regarded as satisfied each

time it calls joshua:succeed.

161
February 2018 Joshua Language Dictionary

• If a procedural trigger never calls joshua:succeed, but merely returns

joshua::t or joshua::nil, then it acts as a ������ on the previous triggers

(either accepting or rejecting the bindings produced by its predecessors).

• A procedural trigger may also act as a ���������, producing several ac-

ceptable sets of bindings and calling joshua:succeed for each one.

• Logic variables which occur for the first time in a procedural trigger

may be bound by calling joshua:unify. Logic variables that are refer-

enced in a procedural trigger but which occur in an earlier trigger, are

bound to the value established by the earlier trigger during the execution

of the Lisp trigger.

• The logical connective ��� can be used to group the triggers into sub-

groups all of which must be satisfied. The logical connective �� can be

used to group the patterns into subgroups any one of which must be sat-

isfied.

• The trigger part of a forward rule can include the keyword :support fol-

lowed by a logic variable after any trigger pattern. During the execution

of the rule, this logic variable is bound to the predication that matched

the trigger pattern immediately preceding the keyword :support.

• A procedural trigger may provide an argument to joshua:succeed which

should be a ��������������������. If it does so, this predication is treated

as if it had matched a normal trigger of the rule. If there is a :support

keyword following the procedural trigger, then the logic variable follow-

ing it will be bound to the ��������������������.�

Joshua stores and retrieves rules by their triggers. When a new rule is de-

fined, the rule compiler stores the rule’s trigger in a place appropriate to

the rule type. The system finds and executes applicable rules by locating

their triggers; similarly, it deletes unwanted rules by removing their trig-

gers. See the section "The Joshua Rule Indexing Protocol", page 36.

Here are some examples. First, here’s how to use the :documentation key-

word. We use a forward rule as an example, but :documentation works

identically for backward rules.

(define-predicate reads (person how-much))

(define-predicate is-bookworm (person))

(defrule simple (:forward :documentation "Identifies bookworms")

 if [reads ?person constantly]

 then [is-bookworm ?person])�

To retrieve the documentation string of this rule, use the Lisp function

joshua::documentation.

162
Joshua Language Dictionary February 2018

(documentation ’simple)

"Identifies bookworms" �

Here are some examples of forward chaining. This first a simple declarative

rule:

(defrule good-cake (:forward)

 if [and [rises ?cake justright]

 [color ?cake evenly-gold]

 [texture ?cake moist]

 [taste ?cake justright]]

 then [good ?cake])

Next is an example of using the :support keyword to allow the body of the

rule to reference the triggering facts:

(defrule good-cake (:forward)

 if [and [rises ?cake justright] :support ?f1

 [color ?cake evenly-gold] :support ?f2

 [texture ?cake moist] :support ?f3

 [taste ?cake justright] :support ?f4

]

 then [and (Format t "~%The reason I thing that ~s is good is that:"

 ?cake)

 (say ?f1) (say ?f2) (say ?f3) (say ?f4)

 [good ?cake]])

Here we show how a Procedural Trigger can be used as a generator. Once

all triggers before the procedural trigger are matched, it executes and gen-

erates two acceptable bindings for ?color.

(defrule good-cake (:forward)

 if [and [rises ?cake justright]

 [texture ?cake moist]

 (loop for color in ’(evenly-gold nicely-brown)

 do (unify ?color color)

 (succeed))

 [taste ?cake justright]

]

 then [and (format t "~&~s is a good cake with color ~s"

?cake ?color)

 [good ?cake]])

Here is an example of a procedural trigger being used as a filter:

(defrule check-temperature (:forward)

 if [and [temperature-used ?object ?temp]

 (< 325 ?temp 400)] ; example of Lisp used as a filter

 then [correct-temperature-used ?object ?temp])

163
February 2018 Joshua Language Dictionary

(defun check-oven-setting ()

 (clear)

 (tell [temperature-used jelly-roll 375])

 (ask [correct-temperature-used jelly-roll ?temp] #’print-query))

(check-oven-setting)

[CORRECT-TEMPERATURE-USED JELLY-ROLL 375]

NIL

Finally, here is an example using nested ���’s and ��’s:

(defrule deduce-ancestry (:forward)

 if [or [is-parent-of ?old ?young]

 [and [is-ancestor-of ?old ?middle]

 [is-parent-of ?middle ?young]]]

 then [is-ancestor-of ?old ?young])

Here are some examples using backward chaining:

(defrule sailor-alert (:backward)

 if [or [condition-of wind gusting]

 [weather-forecast squalls]]

 then [issue-warning small-craft alert])

;;; Lisp code in action part of backward rule

(define-predicate good-to-read (book))

(defparameter *books* ’(decameron canterbury-tales gargantua-and-pantagruel

 tom-jones catch-22))

(defrule reading-list (:backward)

 if (typecase ?candidate-book

 (unbound-logic-variable

 (loop for book in *books*

 doing (with-unification

 (unify ?candidate-book book)

 (succeed))))

 (otherwise

 (member ?candidate-book *books*)))

 then [good-to-read ?candidate-book])

(ask [good-to-read ?x] #’print-query)

[GOOD-TO-READ DECAMERON]

[GOOD-TO-READ CANTERBURY-TALES]

[GOOD-TO-READ GARGANTUA-AND-PANTAGRUEL]

[GOOD-TO-READ TOM-JONES]

[GOOD-TO-READ CATCH-22]

NIL �

You can inhibit backward chaining rule invocation by passing joshua::nil as

the :do-backward-rules keyword argument to joshua:ask (the default value

is joshua::t). In this case the system does only a database lookup.

164
Joshua Language Dictionary February 2018

You can cause backward question invocation by passing joshua::t as the

:do-questions keyword argument to joshua:ask (the default is joshua::nil).

Advanced Concepts Note:

Six built-in models are available for predicates in joshua:ask goals. These

flavors do subsets of what joshua:ask normally does, by leaving out one

or more of the steps joshua:ask-data, joshua:ask-rules, or joshua:ask-

questions. Thus the models save a certain amount of overhead when their

predicates are used as goals to joshua:ask. The steps that ��� done are

indicated by the names:

• joshua:ask-data-only-mixin

• joshua:ask-rules-only-mixin

• joshua:ask-questions-only-mixin

• joshua:ask-data-and-rules-only-mixin

• joshua:ask-data-and-questions-only-mixin

• joshua:ask-rules-and-questions-only-mixin�

Related Functions:

joshua:undefrule

joshua:tell

joshua:ask

joshua:ask-rules�

See the section "Rules and Inference" in ������ ����� �� ����� ������. See

the section "The Joshua Rule Facilities ", page 23.�

joshua:delete-backward-question-trigger� ���������������������������������������

���������������������

����������� The pattern under which the backward question is in-

dexed.

����������� The truth value of the pattern under which the back-

ward question is indexed.

������������� The name of the question to be deleted.

������� The entire trigger part of the backward question. Use-

ful in advanced modeling applications.

joshua:undefquestion calls this protocol function with the pattern from the

trigger part of a backward question. The function "unindexes" the trigger

data-structure of the backward question which corresponds to the pattern.

After the pattern is "unindexed" the question is no longer accessible.

Tailoring of backward-question indexing is usually accomplished by provid-

ing methods for the joshua:locate-backward-question-trigger and

joshua:map-over-backward-question-triggers protocol functions. The

165
February 2018 Joshua Language Dictionary

joshua:add-backward-question-trigger and joshua:delete-backward-

question-trigger methods provided as Joshua’s defaults call joshua:locate-

backward-question-trigger as a subroutine. All of the interesting tailoring

of their behavior can be obtained by providing a joshua:locate-backward-

question-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what questions are currently indexed where. Even in advanced modeling ap-

plications it is unlikely that you will need to define a method for the

joshua:delete-backward-question-trigger protocol function.

See the section "The Joshua Question Indexing Protocol", page 48.�

joshua:delete-backward-rule-trigger� ���

������������

����������� The pattern under which a backward rule is indexed.

����������� The truth value of the pattern under which the back-

ward rule is indexed.

��������� The name of the rule to be deleted.

������� The entire ���part of the rule. Useful for advanced mod-

eling.�

joshua:undefrule calls this protocol function with the pattern from the

����� part of a backward chaining rule. The function "unindexes" the trig-

ger data-structure of the backward rule which corresponds to the pattern.

After the pattern is "unindexed" the rule is no longer accessible. Tailoring

of backward rule indexing is usually accomplished by providing methods for

the joshua:locate-backward-rule-trigger and joshua:map-over-backward-

rule-triggers protocol functions. The joshua:add-backward-rule-trigger

and joshua:delete-backward-rule-trigger methods provided as Joshua’s de-

faults call joshua:locate-backward-rule-trigger as a subroutine. All of the

interesting tailoring of their behavior can be obtained by providing a

joshua:locate-backward-rule-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli-

cations it is unlikely that you will need to define a method for the

joshua:delete-backward-rule-trigger protocol function.

See the section "The Joshua Rule Indexing Protocol", page 36.�

joshua:delete-forward-rule-trigger� ���

������������

����������� The pattern under which the forward rule is indexed.

166
Joshua Language Dictionary February 2018

����������� The truth value of the pattern under which the forward

rule is indexed.

��������� The name of the rule to be deleted.

������� The entire ���part of the rule. Useful for advanced mod-

eling.

joshua:undefrule calls this protocol function once for each pattern in the If

part of a forward chaining rule. The function "unindexes" the trigger data-

structure of the forward rule which corresponds to the pattern. After each

pattern is "unindexed" the rule is no longer accessible. Tailoring of forward

rule indexing is usually accomplished by providing methods for the

joshua:locate-forward-rule-trigger and joshua:map-over-forward-rule-

triggers protocol functions. The joshua:add-forward-rule-trigger and

joshua:delete-forward-rule-trigger methods provided as Joshua’s defaults

call joshua:locate-forward-rule-trigger as a subroutine. All of the interest-

ing tailoring of their behavior can be obtained by providing a

joshua:locate-forward-rule-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where. Even in advanced modeling appli-

cations it is unlikely that you will need to define a method for the

joshua:delete-forward-rule-trigger protocol function.

See the section "The Joshua Rule Indexing Protocol", page 36.�

joshua:different-objects� �����������������������

Returns nil if the arguments are eql or if either argument is an uninstanti-

ated logic variable (in the latter case the two objects can potentially be

���� to be the same by the unifier). Otherwise, joshua:different-objects

returns t.

������� A Lisp object.

������� A Lisp object.

This function is useful in making rules that weed out inappropriate self-

referential behavior. For example, in a program simulating the behavior of

a monkey that can pick up objects, it is important to ensure that the mon-

key does not try to pick up itself.

This function is often useful in the ���part of rules, or in Lisp code.

(defrule pick-up (:backward)

 if (different-objects ?obj ’monkey)

 then [can-pick-up monkey ?obj])

To invoke this rule, you would type something like:

(ask [can-pick-up monkey wrench] #’print-query)

See the section "Using Joshua Within Lisp Code" in ������ ����� �� �����

������.�

167
February 2018 Joshua Language Dictionary

Disable Joshua Tracing Command

Turns off Joshua tracing.

���� �� ������� The type of tracing to disable. It can be one of forward rules,

backward rules, predications, TMS operations, or all. The type-

of tracing defaults to all.

Disable Joshua Tracing turns off the Joshua tracing facility.

Related Commands:

"Enable Joshua Tracing Command"
"Reset Joshua Tracing Command"�

joshua:discrimination-net-clear� �����������������

joshua:discrimination-net-clear clears all the data out of the discrimina-

tion net whose root is ���������. This function works by lopping off all the

outgoing arcs from ���������. The garbage collector reclaims all the de-

scendants.

joshua:discrimination-net-clear is called by (joshua:clear�

joshua:discrimination-net-data-mixin).

��������� The root node of a discrimination net.

Related Functions:

joshua:discrimination-net-uninsert

joshua:discrimination-net-insert

See the section "The Joshua Database Protocol", page 8.�

joshua:discrimination-net-data-mixin� ������

This flavor provides the Joshua default behavior for storing data predica-

tions in a discrimination net. It has methods for joshua:fetch,

joshua:insert, joshua:uninsert, and joshua:clear.

Related topics:

joshua:default-predicate-model

joshua:discrimination-net-fetch

joshua:discrimination-net-insert

joshua:discrimination-net-uninsert

joshua:discrimination-net-clear�

joshua:discrimination-net-fetch� ���������������������������������������

���������������������������������������

joshua:discrimination-net-fetch searches the discrimination net whose root

is ��������� using ����������� as a pattern, and calls ������������ for each

item in the discrimination net that might unify with �����������.

168
Joshua Language Dictionary February 2018

joshua:discrimination-net-fetch is called by (joshua:fetch�

joshua:discrimination-net-data-mixin). It is the default implementation of

the joshua:fetch generic function for the virtual database. joshua:fetch

does the data retrieval for the Joshua protocol function joshua:ask, which

satisfies backward goals.

��������� The root node of a discrimination net.

����������� A predication to be searched for.

������������ A function of one argument, to be called on each can-

didate the discrimination net finds.�

Related Functions:

joshua:discrimination-net-insert

joshua:discrimination-net-clear

See the section "The Joshua Database Protocol", page 8.�

joshua:discrimination-net-insert� �����������������������������

joshua:discrimination-net-insert takes ����������� and inserts it into the

discrimination net whose root is ���������. It is called by (joshua:insert�

joshua:discrimination-net-data-mixin), the default implementation of the

joshua:insert generic function for the virtual database. joshua:insert is the

first step of the Joshua protocol function joshua:tell, that adds data into

the database.

joshua:discrimination-net-insert adds data to the discrimination net by

side-effecting a leaf node (that is, adding a predication). The appropriate

nodes in the discrimination net are created if necessary.

��������� The root node of a discrimination net.

����������� is a predication to be added to the database.

The discrimination net discriminates fully with two exceptions. Logic vari-

able arguments are not uniquely identified; they discriminate to a node la-

beled ji::*variable*. Similarly, embedded lists discriminate to a node labeled

ji::*embedded-list*. That is, as far as the discrimination net is concerned,

all variables are alike, and all lists are alike.

joshua:discrimination-net-insert does not deal with any justification, for-

ward-rule triggering, or unification issues.

joshua:discrimination-net-insert returns two values:

• The canonical version of ����������� that was stored in the database. If

another predication that is a variant of ����������� already exists in the

database, joshua:discrimination-net-insert returns the older version. See

the function joshua:variant, page 252.

169
February 2018 Joshua Language Dictionary

• A flag that determines whether ����������� was added to the database or

not. This flag is either t if ����������� is newly added, or nil if a variant

was already in the database. Note that this is what joshua:insert is con-

tracted to return; thus, joshua:discrimination-net-insert is one possible

realization of joshua:insert.

Related Functions:

joshua:discrimination-net-uninsert

joshua:discrimination-net-fetch

joshua:discrimination-net-clear

See the section "The Joshua Database Protocol", page 8.�

joshua:discrimination-net-uninsert� �����������������������������

This is the dual to joshua:discrimination-net-insert. It removes �����������

from the discrimination net whose root node is ���������. For example, this

is called by (joshua:uninsert joshua:discrimination-net-data-mixin) to im-

plement the joshua:uninsert generic function for the default data model.

��������� The root of a discrimination net.

����������� The database predication to be removed from the dis-

crimination net. This must be the actual predication ob-

ject from the database, and not a copy.�

Related Functions:

joshua:discrimination-net-insert

joshua:discrimination-net-clear

See the section "The Joshua Database Protocol", page 8.�

Enable Joshua Tracing Command

Turns on Joshua Tracing.

���� �� ������� The type of tracing to enable. You can enable the tracing of

forward rules, backward rules, predications, TMS operations, or

All. Unless otherwise specified (by using the :���� option for

example), tracing is turned on with the same options and trac-

ing events that were in effect the last time you used tracing.

:���� Brings up a menu of detailed tracing options for the ���� ��

������� being enabled. This menu provides a greater degree of

control over exactly what gets traced and when the tracing fa-

cility interacts with the user.

:����� ������ When enabling a particular type of tracing this option allows

you to specify precisely which events will be displayed during

tracing. These can also be set by using the :���� option.

170
Joshua Language Dictionary February 2018

:���� ������ Allows you to specify at which events the tracing facility will

stop and prompt for interaction. These can also be set by using

the :���� option.

The Enable Joshua Tracing command turns on the Joshua tracing tools and allows

you to customize tracing to your particular application or preference. The Joshua

tracing facility is very flexible. You can, for example, trace just forward rules that

are triggered by predications matching a particular pattern:

 Enable Joshua Tracing Forward Rules :Menu Yes

Or, you can even just trace predications built on a particular model:

Enable Joshua Tracing Predications :Menu Yes

The best way to familiarize yourself with this facility is to type Enable Joshua

Tracing All :Menu Yes. This brings up a menu of all the types of Joshua tracing

and the options available for each one. By moving the mouse over each option you

can see the documentation for that option in the mouse documentation line.

Related Commands:

"Disable Joshua Tracing Command"
"Reset Joshua Tracing Command"

See the section "Tracing Predications" in ������ ����� �� ����� ������. See the

section "Tracing Rules" in ����������������������������.

joshua:equated� ���������������������������

This predicate is part of the Joshua object facility. It is used to assert and

query the equality-links between slots of Joshua objects.

Note that where equalities are between attributes of different sub-parts of

the same object, and when those equalities hold for all objects of a certain

type, it may be easier to declare those equalities at the time when the class

of objects is defined by joshua:define-object-type.�

171
February 2018 Joshua Language Dictionary

ltms:equated� ���������������������������

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:equated, except it refers to slots whose values are truth-

maintained. Slots are declared as truth-maintained at the time the class of

objects is defined by joshua:define-object-type.�

joshua:equated-mixin� ������

This flavor-mixin is part of the Joshua object facility. It may be used to add

equality-link behaviour, like that of the default equality predicate

joshua:equated, to predicate models defined by the user.�

joshua:expand-forward-rule-trigger� ��

������������������������

����������� A trigger-pattern of a forward chaining rule.

���������������������

The name (if any) of the logic-variable which should be

bound to the object which matches the pattern.

����������� The truth value of the pattern.

������� The entire If-part of the rule. This can be useful in ad-

vanced modelling applications.�

joshua:expand-forward-rule-trigger is called by the Joshua rule compiler

as the first step of translating the syntax of a forward-chaining rule into

compiled Lisp code.

joshua:expand-forward-rule-trigger is called once for each predication in-

cluded in the trigger of the rule. Its job is to return a list structure that

explains to the rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:forward)

 If [and [foo1 ?x ?y] :support ?f1

 [not [foo2 ?y ?z]] :support ?f2

]

 Then [foo3 ?x ?y ?z])

joshua:expand-forward-rule-trigger will be called three times (once for the

entire joshua::and and then once for each predication inside the

joshua::and). joshua:expand-forward-rule-trigger takes four arguments:

the pattern to expand, the name of its :support variable (or nil), its truth-

value and the entire If-part (which can be treated as the "context" of the

pattern). Thus, the arguments passed in for these three calls wil be:

[and [foo1 ?x ?y] :support ?f1

 [not [foo2 ?y ?z]] :support ?f2] nil *true* and <the whole If-part>

[foo1 ?x ?y] ?f1 and *true* <the whole If-part>

[foo2 ?y ?z] ?f2 *false* <the whole If-part>�

172
Joshua Language Dictionary February 2018

Note that although we have displayed the patterns as if they were predica-

tions, this is not actually true. joshua:expand-forward-rule-trigger runs at

compile time and manipulates a source-code representation of predications

and logic-variables, see the section "The Source Representaton of Predica-

tions and Logic-variables".

joshua:expand-forward-rule-trigger should return a list structure (called a

�������������������) which must be one of the following forms:

1. (:match ������� ���� �����������). This trigger description informs the

rule compiler that the current trigger should be treated simply as a

pattern to be matched.

• ������� is the predication that represents the pattern to be matched.

• ���� is the logic variable which the rule triggering mechanisms

should bind to the predication that matched this trigger.

• ����������� (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the

matching predication is required to have in order to trigger the

rule.�

2. (:and ��������������������) This trigger description informs the rule

compiler that the current pattern is actually a conjunction of patterns

all of which must be matched to trigger the rule. The system-provided

default method for AND predications returns this type of trigger de-

scription. The second element of the trigger description must be a list

of trigger descriptions, i.e. lists returned by calling joshua:expand-

forward-rule-trigger.

3. (:or ��������������������) This trigger description informs the rule

compiler that the current pattern is actually a disjunction of patterns

any of which must be matched to trigger the rule. The system provid-

ed default method for OR predications returns this type of trigger de-

scription. The second element of the trigger description must be a list

of trigger descriptions, i.e. lists returned by calling joshua:expand-

forward-rule-trigger.

4. (:procedure ��������������� ����) This trigger description informs the

rule compiler that the current trigger is not a pattern to be matched,

but rather a Lisp expression that appears in the trigger position. Such

expressions are executed once all proceeding patterns in the rule have

been matched. The expression can act as a filter by returning either

joshua::t or joshua::nil. joshua::t indicates success; in this case the

bindings accumulated up to this point are considered acceptable and

rule triggering continues. joshua::nil indicates failure; in this case the

bindings are considered unacceptable.

173
February 2018 Joshua Language Dictionary

The expression can also act as a generator in which it produces sever-

al new sets of bindings each of which is consistent with the bindings

that were in effect when the rule was triggered. To do this it should

bind whatever logic-variables it wants to and then call

joshua:succeed. joshua:succeed takes a rest-argument; the rule com-

piler will arrange for this values passed to joshua:succeed to be

bound to the logic-variable which is the third element of the trigger

description.

See the function joshua:succeed, page 232.

5. (:ignore) This trigger description informs the rule compiler that it

should ignore this trigger. The are two reasons for using this type of

trigger description. The first is to allow a rule to have patterns includ-

ed in it simply for the sake of clarity. The second is to include pat-

terns only to specify context.�

A Procedural trigger description can be used to implement a mixed-

chaining strategy in which a forward-rule trigger invokes backward chain-

ing capabilities. This would be useful if it is known that a particular type

of predication is never actually asserted but is only deduced by backward

chaining rules.

The following rule is how one would implement this mixed-chaining strate-

gy if it were known that FOO2 predications are only deduced by backward

chaining rules:

(define-predicate foo1 (a b))

(define-predicate foo2 (a b))

(define-predicate backward-foo2 (a b))

(define-predicate foo3 (a b c))

(defrule foo (:forward)

 If [and [foo1 ?a ?b]

 (ask [foo2 ?b ?c]

 #’(lambda (ignore) (succeed)))]

 Then [foo3 ?a ?b ?c])

(defrule foo2-backward (:backward)

 If [backward-foo2 ?b ?a]

 Then [foo2 ?a ?b])�

The structure of the rete network for this rule is a simple linear chain con-

sisting of a match node followed by a procedural node (acting as a genera-

tor) as shown in figure 30.

If we execute the following two joshua:tell’s then the rule will be triggered

by the second statement which matches the first pattern of the rule. Execu-

tion then proceeds to the procedural node which chains backward using the

rule FOO2-BACKWARD. This is shown in figure 31.

174
Joshua Language Dictionary February 2018

Figure 40. Graph of the Mixed Chaining Rule Foo

Figure 41. Trace of The Mixed Chaining Rule Foo

However this rule can be made more declarative appearing by using

joshua:expand-forward-rule-trigger as follows:

(define-predicate-model mixed-chaining-mixin () ())

(define-predicate-method

 (expand-forward-rule-trigger mixed-chaining-mixin)

 (name truth-value ignore)

 (let ((query (if (eql truth-value *true*)

 self

 ‘[not ,self))))

 ‘(:procedure (prog1 nil

(ask ,query

 #’(lambda (ignore)

 (succeed))))

 ,name)))

175
February 2018 Joshua Language Dictionary

(define-predicate foo2 (a b)

 (mixed-chaining-mixin default-predicate-model))

(defrule foo (:forward)

 If [and [foo1 ?a ?b]

 [foo2 ?b ?c]]

 Then [foo3 ?a ?b ?c])

(clear)

(tell [backward-foo2 3 2])

(tell [foo1 1 2])

Now the rule FOO appears to simply match two patterns. However, it actual-

ly compiles into exactly the same rete network as shown in figure 40.

Sometimes using joshua:ask in the trigger part of a rule may not be the

appropriate way to achieve a mixed chaining strategy. One reason, is that

joshua:ask queries the world for facts that are deducible at that moment.

If a new fact arrives later that would have made the goal deducible,

joshua:ask will, of course, not notice this. However, forward chaining rules

should draw conclusions whenever the data warrants the deduction.

A solution to this problem is to use a more explicit form of reasoning in

which goal directed reasoning is conducted by forward rules which are trig-

gered by explicit predications stating the existence of a goal.

Here is an alternative mixed chaining scheme which implements backward

chaining by explicitly telling show predications. These trigger forward rules

which then work to find a way to satisfy the goal included in the show

statement.

For example, the following rule:

(defrule foo2-explicit-goal (:forward)

 If [and [show [foo2 ?a ?b]]

 [backward-foo2 ?b ?a]]

 Then [foo2 ?a ?b])

Will deduce FOO2 anytime that BACKWARD-FOO2 is asserted and there is a SHOW

predication stating that we want this conclusion to be drawn. The rule is

more flexible than a backward rule, since it does not depend on the relative

order of posting the goal and asserting the data necessary to deduce it. (Of

course, this rule is also less efficient than a backward rule).

We can use joshua:expand-forward-rule-trigger just as we did in the pre-

vious section to make the rule FOO use this form of mixed chaining while

retaining its declarative appearance, as follows:

(define-predicate-model mix-chain-mixin ()

 ())

(defvar *inside-alternative-backward-chaining-mixin* nil)

176
Joshua Language Dictionary February 2018

(define-predicate-method

 (expand-forward-rule-trigger mix-chain-mixin)

 (name truth-value context)

 (if *inside-alternative-backward-chaining-mixin*

 ‘(:match ,self ,name ,truth-value)

 (let ((*inside-alternative-backward-chaining-mixin* t))

(let ((query (if (eql truth-value *true*)

 self

 ‘[not ,self))))

 ‘(:and

 ,(expand-forward-rule-trigger

‘(tell [show ,query]) nil *true* context)

 ,(expand-forward-rule-trigger

self name truth-value context))))))

(define-predicate show (predication))

(define-predicate foo2 (a b)

 (mix-chain-mixin default-predicate-model))�

This joshua:expand-forward-rule-trigger method expands the FOO2 pattern

of the rule into two components. The first joshua:tell’s the SHOW statement

that triggers the FOO2-EXPLICIT-GOAL rule. The second is a simple match

node that waits for the FOO2 goal to become true. The joshua:expand-

forward-rule-trigger method is somewhat tricky because it wants to expand

the intial [foo2 ...] pattern into two nodes, one of which joshua:tells

[show [foo2 ...]] and the other of which matches [foo2 ...]. A special

variable is bound to prevent an infinite recursion in the expansion of this

pattern.

Figure32shows the Rete net for this rule.

Figure 42. Graph of Mixed Chaining Rule Foo

177
February 2018 Joshua Language Dictionary

Notice that the rule contains two match nodes, one for each pattern. The

match node for the FOO1 pattern leads to a procedural node which

joshua:tells a [show [foo2 ...]] predication and then joshua:succeeds.

Following this the two paths merge. If the Foo1 statement is asserted first

the rule will assert the SHOW statement which will cause the FOO2-EXPLICIT-

GOAL rule to wait for a FOO2-BACKWARD statement. At which point the FOO2-

EXPLICIT-GOAL rule will assert a FOO2 statement which will match the other

trigger pattern of the FOO rule. If the facts are asserted in the other order,

the rule will also deduce the desired conclusion, as shown in figures 33 and�

Figure 43. Trace of Explicitly Controlled Mixed Chaining

Figure 44. Trace of Explicitly Controlled Mixed Chaining

Here’s an example using the :ignore trigger description:

(defrule adder-forward (:forward)

 If [and [type-of ?a adder]

 [Value-of addend ?a ?value-1]

 [Value-of augend ?a ?value-2]]

 Then ‘[value-of output ?a ,(+ ?value-1 ?value-2)])

A trigger-indexing scheme might be used which guarantees that this rule

will only be triggered by Value-of assertions that describe the values of the

ADDEND and AUGEND of adders. In such a case the first pattern is required

during rule compilation to inform the joshua:locate-forward-rule-trigger

method that it is indexing patterns having to do with adders. However,

178
Joshua Language Dictionary February 2018

once such a trigger-indexing scheme is established the first pattern is actu-

ally redundant.

(define-predicate-method

 (expand-forward-rule-trigger type-of-model) (ignore ignore ignore)

 ‘(:ignore))

(define-predicate type-of (object type)

 (type-of-model default-protocol-implementation-model))�

See the section "The Joshua Rule Compiler", page 26.

joshua:expand-backward-rule-action ��������������������������������������

�������������������������������������

����������������

����������� An action of a backward chaining rule (i.e. part of the

If-part)

���� The name (if any) of the logic-variable which should be

bound to the backward support of this query.

����������� The truth value of the pattern.

�������������� Keyword arguments to joshua:ask which should be in-

cluded with this query.

������� The entire If-part of the rule, which can be regarded as

the context of this query.�

joshua:expand-backward-rule-action is called by the Joshua rule compiler

as the first step of translating the syntax of a backward-chaining rule into

compiled Lisp code.

What the Backward Rule-compiler Does to the Actions of a Rule

The backward rule compiler turns the If-part of a rule into a series of nest-

ed joshua:ask’s. For example, the actions of the following rule:

(defrule foobar (:backward)

 If [and [foo1 ?x ?y] :support ?f1 :do-backward-rules nil

 [not [foo2 ?y ?z]] :support ?f2

]

 Then [foo3 ?x ?y ?z])�

are converted into a highly optimized version of the following code:

179
February 2018 Joshua Language Dictionary

(ask [foo1 ?x ?y]

 #’(lambda (support2196)

 (unify ?f1 support2196)

 (ask [not [foo2 ?y ?z]]

 #’(lambda (support2197)

 (unify ?f2 #:support2197)

 (let ((ji::rule-support

 (list ji::.goal. ji::.truth-value.

 ’(rule foobar)

support2196 support2197)))

 (funcall ji::.continuation. ji::rule-support))))

 :do-backward-rules nil))�

The backward rule compiler also handles the keyword arguments which can

be attached to patterns in the If-part of the rule. See the section "Advanced

Features of Joshua Rules", page 24.

The Contract of the Generic Function joshua:expand-backward-rule-action

The joshua:expand-backward-rule-action protocol function controls how

the conversion is performed.

joshua:expand-backward-rule-action is called once for each predication in-

cluded in the If-part of the rule. Its job is to return a list structure that

explains to the rule compiler how to process the pattern.

For example in the following rule:

(defrule foobar (:backward)

 If [and [foo1 ?x ?y] :support ?f1 :do-backward-rules nil

 [not [foo2 ?y ?z]] :support ?f2

]

 Then [foo3 ?x ?y ?z])

joshua:expand-backward-rule-action will be called three times (once for

the entire joshua::and and then once for each predication inside the

joshua::and). joshua:expand-backward-rule-action takes five arguments:

the pattern to expand, the name of its :support variable (or nil), its truth-

value, the value of the keyword arguments attached to this pattern that

should be passed onto joshua:ask (e.g. :do-backward-rules and :do-

questions) and the entire If-part (which can be treated as the "context" of

the pattern). Thus, the arguments passed in for these three calls wil be:

[and [foo1 ?x ?y] :support ?f1 :do-backward-rules nil

 [not [foo2 ?y ?z]] :support ?f2] nil *true* (t t) <the whole If-part>

[foo1 ?x ?y] ?f1 *true* (nil t) <the whole If part>

[foo2 ?y ?z] ?f2 *false* (t t) <the whole If part>

Note that although we have displayed the patterns as if they were predica-

tions, this is not actually true. joshua:expand-backward-rule-action runs

at compile time and manipulates a source-code representation of predica-

tions and logic-variables, see the section "The Source Representaton of

Predications and Logic-variables".

180
Joshua Language Dictionary February 2018

joshua:expand-backward-rule-action should return a list structure (called

a ������������������) which must be one of the following forms:

1. (:match ������� ���� ����������� ask-keyword-args). This action de-

scription informs the rule compiler that the current action should be

treated simply as a pattern to be joshua:ask’ed. This action will com-

pile into an joshua:ask form whose continuation will perform the ac-

tions following this one.

• ������� is the source representation of the predication that should be

joshua:ask’ed. This is normally just the first argument to

joshua:expand-backward-rule-action.

• ���� is the name of a logic variable which should be bound to the

query-support passed by joshua:ask to its continuation; this allows

procedural code in the If-Part of the rule to examine the support for

the various actions.

• ����������� (which in the current implementation should be either

joshua:*true* or joshua:*false*) is the truth value which the

matching predication is required to have in order to satisfy the

joshua:ask.

• The values of the keyword arguments to be passed to joshua:ask.

This should normally be identical to the equivalent argument passed

into joshua:expand-backward-rule-action.

2. (:and �������������������) This action description informs the rule com-

piler that the current pattern is actually a conjunction of actions all of

which must be satisfied. The system-provided default method for AND

predications returns this type of action description. The second ele-

ment of the trigger description must be a list of action descriptions,

i.e. lists returned by calling joshua:expand-backward-rule-action.

3. (:or �������������������) This action description informs the rule com-

piler that the current pattern is actually a disjunction of actions any

one of which must be satisfied in order to satify the whole action. The

system provided default method for OR predications returns this type

of action description. The second element of the action description

must be a list of action descriptions, i.e. lists returned by calling

joshua:expand-backward-rule-action.

4. (:procedure ��������������� ����) This action description informs the

rule compiler that the current trigger is not a pattern to be

joshua:ask’ed but rather a Lisp expression that appears in the If-part

of the backward rule. Such expressions are executed once all proceed-

ing actions in the rule have been satisfied. The expression can act as

a filter by returning either joshua::t or joshua::nil. joshua::t indi-

181
February 2018 Joshua Language Dictionary

cates success; in this case the bindings accumulated up to this point

are considered acceptable and rule execution continues. joshua::nil in-

dicates failure; in this case the bindings are considered unacceptable.

The expression can also act as a generator in which it produces sever-

al new sets of bindings each of which is consistent with the bindings

that were in effect just before the action began execution. To do this

it should bind whatever logic-variables it wants to and then call

joshua:succeed. joshua:succeed takes a rest-argument; the rule com-

piler will arrange for this value passed to joshua:succeed to be bound

to the logic-variable which is the third element of the action descrip-

tion.

See the function joshua:succeed, page 232.

5. (:ignore) This action description informs the rule compiler that it

should ignore this action. The are two reasons for using this type of

action description. The first is to allow a rule to have actions included

in it simply for the sake of clarity. The second is to include actions

only to specify context.�

Explain Predication Command

Traces the chain of TMS justifications for �������������������� through rules to

primitive support (premises and assumptions).

��������������������A predication object that is in the database. Must be the actual

database object, and not a copy of it.

����� Specifies how many layers deep into the explanation to go be-

fore cutting off.

This is a command interface to Joshua’s joshua:explain function.

joshua:explain� ���������������������������� &optional��������������

standard-output�

Traces the chain of TMS justifications for �������������������� through

rules to primitive support (premises and assumptions).

��������������������A predication object that is in the database. Must be

the actual database object, and not a copy of it.

����� Specifies how many layers deep into the explanation to

go before cutting off.

������ Specifies a stream to which to display the output.

In general, joshua:explain is useful only if �������������������� is built on

some model that supports the TMS protocol.

Examples:

182
Joshua Language Dictionary February 2018

(define-predicate higher-in-food-chain (eater lower-in-food-chain)

 (ltms:ltms-predicate-model))

(define-predicate favorite-meal (eater food) (ltms:ltms-predicate-model))

; A good example of how to implement transitive relations

(defrule basic-food-chain (:forward)

 if [favorite-meal ?eater ?eatee]

 then [higher-in-food-chain ?eater ?eatee])

(defrule transitive-food-chain (:forward)

 if [and [favorite-meal ?eater ?eatee]

 [higher-in-food-chain ?eatee ?food]]

 then [higher-in-food-chain ?eater ?food])

(defun meals ()

 (clear)

 (tell [and [favorite-meal red-herring worm]

 [favorite-meal worm algae]])

 (tell [favorite-meal Miss-Marple red-herring] :justification :assumption)

 (cp:execute-command "Show Joshua Database"))

(meals)

True things

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE RED-HERRING]

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE WORM]

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE ALGAE]

 [HIGHER-IN-FOOD-CHAIN WORM ALGAE]

 [HIGHER-IN-FOOD-CHAIN RED-HERRING ALGAE]

 [HIGHER-IN-FOOD-CHAIN RED-HERRING WORM]

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING]

 [FAVORITE-MEAL WORM ALGAE]

 [FAVORITE-MEAL RED-HERRING WORM]

False things

 None

183
February 2018 Joshua Language Dictionary

(ask [higher-in-food-chain Miss-Marple ?food]

 #’(lambda (backward-support)

 (explain (ask-database-predication backward-support))))

[HIGHER-IN-FOOD-CHAIN MISS-MARPLE RED-HERRING] is true

 It was derived from rule BASIC-FOOD-CHAIN

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING] is true

 It is an :ASSUMPTION

[HIGHER-IN-FOOD-CHAIN MISS-MARPLE WORM] is true

 It was derived from rule TRANSITIVE-FOOD-CHAIN

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING] is true

 It is an :ASSUMPTION

 [HIGHER-IN-FOOD-CHAIN RED-HERRING WORM] is true

 It was derived from rule BASIC-FOOD-CHAIN

 [FAVORITE-MEAL RED-HERRING WORM] is true

 It is a :PREMISE

[HIGHER-IN-FOOD-CHAIN MISS-MARPLE ALGAE] is true

 It was derived from rule TRANSITIVE-FOOD-CHAIN

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING] is true

 It is an :ASSUMPTION

 [HIGHER-IN-FOOD-CHAIN RED-HERRING ALGAE] is true

 It was derived from rule TRANSITIVE-FOOD-CHAIN

 [FAVORITE-MEAL RED-HERRING WORM] is true

 It is a :PREMISE

 [HIGHER-IN-FOOD-CHAIN WORM ALGAE] is true

 It was derived from rule BASIC-FOOD-CHAIN

 [FAVORITE-MEAL WORM ALGAE] is true

 It is a :PREMISE

Related Functions:

joshua:graph-tms-support

See the section "Explaining Program Beliefs" in ������ ����� �� �����

������.�

joshua:*false*� ��������

A named constant used by Joshua to denote a truth value of false. You can

compare truth values using eql.

Related Topics:

joshua:*true*

joshua:*unknown*

joshua:*contradictory*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values" in ����������������������������.�

184
Joshua Language Dictionary February 2018

joshua:fetch� ��������������������������������

The dual to joshua:insert, joshua:fetch is the first phase of joshua:ask. It

takes ����������� and searches for it in the virtual database. It calls �������

������ for each occurrence of something in the database that might unify

with �����������. It is the responsibility of joshua:ask-data to do the unifi-

cation, if that is the programmer’s intent.

Note that joshua:fetch is required to call its continuation on objects that

are actually in the database, not reconstructed copies. See joshua:ask-data

for more discussion of this issue.

����������� A pattern to search for. joshua:fetch must call ��������

����� on a superset of the predications in the database

that unify with �����������.

������������ A function of one argument that joshua:fetch calls on

each candidate.�

For some examples: See the function joshua:insert, page 189.

See the section "The Joshua Rule Indexing Protocol", page 36.�

Graph Forward Rule Triggers Command

Graphs the forward rule Rete network.

��������������������

Graph the Rete network for which forward rules.

������������������������

Whether to include the rules which share match or merge

nodes with the specified rules. This defaults to Yes.

������������ Draw the graph in which direction: vertical or horizontal.

������������������� Where to display the information.

Graph Forward Rule Triggers displays the graph of the forward rule Rete network

for one or more rules. It is useful for determining the extent of node sharing be-

tween forward rules. The graph also includes a number for each node, indicating

the number of environments currently held by that node. This can give you a

rough measure of how much work is being done at each point in the network. See

the section "Forward Rule Triggers: the Rete Network", page 27.
joshua:graph-discrimination-net� �����������������

joshua:graph-discrimination-net displays the discrimination net as a hori-

zontal tree with the root on the leftmost side and the leaf nodes on the far

right.

��������� The root node of a discrimination net, usually from

the variable ji:*data-discrimination-net*.�

185
February 2018 Joshua Language Dictionary

The different predications that discriminate to a single node are displayed

individually in the leaf node.

See figure 9, for an example.

See the section "Organization of the Default Discrimination Net", page 17.�

joshua:graph-query-results� ������������������������ &key��������������

:vertical�����������*standard-output*�

A convenience function for use in an joshua:ask continuation.

joshua:graph-query-results draws a graph of the support information in

����������������, that is, the successful query, and the reasons it succeed-

ed.

���������������� is fully described in the dictionary entry for joshua:ask.

joshua:graph-query-results both extracts and interprets the information

for you.

���������������� A support argument passed by joshua:ask to a continu-

ation.

:����������� Specifies the graph orientation. Default is vertical.

:������ The stream on which the graph is output. Default is

standard-output.

The convenience function joshua:print-query-results prints the same infor-

mation as joshua:graph-query-results.

The accessor function joshua:ask-derivation extracts all the support for a

satisfied query but without interpreting it. For the sake of comparison we’ll

use the same examples to illustrate all three of these functions.

Examples: First, a query satisfied from the database. The graph shows the

database predication that matched the query.

(define-predicate edible (object))

(define-predicate is-food (object))

(define-predicate contains (object substance))

(define-predicate sweet (object))

(define-predicate type-of (object type))

(tell [edible chocolate-coated-ants])

(tell [contains chocolate-coated-ants honey])

�

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

186
Joshua Language Dictionary February 2018

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the rule definitions.

(defrule food? (:backward)

 if [edible ?object]

 then [is-food ?object])

(defrule sweet? (:backward)

 if [or [contains ?object chocolate]

 [contains ?object sugar]

 [contains ?object honey]]

 then [sweet ?object])

(defrule dessert? (:backward)

 if [and [is-food ?object]

 [sweet ?object]]

 then [type-of ?object dessert])�

Now we joshua:ask what foods qualify as desserts and why. In the graph,

ovals denote queries that were ��� satisfied directly by the database. Rect-

angles denote queries that were satisfied by the database.

The top of the graph shows the satisfied goal, and names the rule that sat-

isfied it. The rest of the graph shows successive subgoals and how each

was satisfied.

Since backward chaining stops when it finds database predications, the bot-

tom leaves of the graph tree are queries that were satisfied by the

database. Hence they are rectangles, whereas intermediate nodes are ovals.

The arrows move in the ������� (logical conclusion) direction.

Here’s an extension to the previous example, to show how the graph dis-

plays truth values of joshua:*false*. We add a rule to eliminate first

course choices: the rule says that things that are liquid and are not

desserts are not a main course.

(define-predicate is-consistency-of (food consistency))

187
February 2018 Joshua Language Dictionary

(defrule soup? (:backward)

 if [and [not [type-of ?food dessert]]

 [is-consistency-of ?food liquid]]

 then [not [type-of ?food main-course]])

(tell [not [type-of chicken-broth dessert]])

(tell [is-consistency-of chicken-broth liquid])�

The graph displays the satisfied query prefixed by [not ...]. The database

predication matching the query appears without the prefix, just as it would

in the database display. The label above it indicates that its truth value is

joshua:*false*. (Predications with a truth value of joshua:*true* are not

labelled as such in the graph Database heading.)

Related Functions:

joshua:ask

joshua:print-query-results�

See the section "Querying the Database" in ������ ����� �� ����� ������.

See the section "Explaining Backward Chaining Support" in ������ ����� ��

������������.�

joshua:graph-tms-support� ��������&rest�������������

Displays a graph of the TMS support for ������������, that is, of the depen-

dency information which a Truth Maintenance System stores in the

database along with ������������. The graph traces the support chain

through the dependency records created by forward rules (or other callers

of joshua:justify such as the the :justification keyword argument to

joshua:tell) to the underlying primitive support (assumptions and premis-

es). (Backward chaining support is not graphed, since the rule result is not

stored in the database. For that, you probably want joshua:graph-query-

results.)

Example:

(define-predicate dreams-in (language dreamer) (ltms:ltms-predicate-model))

(define-predicate counts-in (language person) (ltms:ltms-predicate-model))

(define-predicate native-speaker-of (language speaker)

 (ltms:ltms-predicate-model))

188
Joshua Language Dictionary February 2018

(defrule native-speaker? (:forward)

 if [and [dreams-in ?language ?person]

 [counts-in ?language ?person]]

 then [native-speaker-of ?language ?person])

(tell [dreams-in Spanish Violet] :justification :assumption)

(tell [counts-in Spanish Violet])

Show Joshua Database (matching pattern [default All])

 [native-speaker-of ?x ?y] (opposite truth-value too? [default Yes]) Yes

True things

 [NATIVE-SPEAKER-OF SPANISH VIOLET]

False things

 None

You must give joshua:graph-tms-support the actual predication object that

resides in the database, rather than a copy of it. In our example we re-

trieve the predication object by clicking the mouse over it in the database

display.

Since the support graph traces the support for facts that are in the

database, all nodes are rectangles. (Compare the display of joshua:graph-

query-results.) The top of the graph tree shows the predication whose sup-

port we want to know about. We see that this predication was derived from

a forward rule, which in turn was derived from some predications. The bot-

tom leaves of the graph tree show primitive support (premise or assump-

tion) denoting the end of the forward chaining process. The arrows point in

the ������� (logical conclusion) direction.

Here’s an example showing the support graph for a predication whose truth

value is joshua:*false*.

(define-predicate has-ticket (claimant)(ltms:ltms-predicate-model))

(define-predicate admissible (claimant)(ltms:ltms-predicate-model))

189
February 2018 Joshua Language Dictionary

(defrule no-free-lunch (:forward)

 if [not [has-ticket ?x]]

 then [not [admissible ?x]])

(tell [not [has-ticket Jane]])�

Predications with a truth value of joshua:*false* appear with an indication

that they are false.

See the section "Explaining Program Beliefs" in ������ ����� �� �����

������.�

joshua:insert� �������������������

This is the first step used by tell. It takes ����������� and puts it into the

virtual database. It does not deal with any justification or forward rule-

triggering issues. joshua:insert returns two values:

1. The canonical version of ����������� that is stored in the database.

(That can be distinct from ����������� if another predication that is a

joshua:variant of ����������� has previously been joshua:inserted.

The one already in the database is returned.) See the function

joshua:variant, page 252.

2. A flag that indicates whether ����������� was already in the database.

If the predication is was not in the database then this value should be

t, (indicating that an insertion did, in fact, take place).�

joshua:insert and joshua:fetch are probably methods you will want to de-

fine often in your data models, as they control the way your predications

are stored. See the example developed in the section "Customizing the Data

Index".�

190
Joshua Language Dictionary February 2018

joshua:justify� ������������������������������ &optional���������������

�������������������������������������

Sets the truth-value of things that go into the database and gives a TMS

the information necessary for maintaining dependencies. For predications

that implement a TMS, joshua:justify is the protocol function that builds

and installs the justification.

���������� The predication being justified.

����������� Should be one of joshua:*true*, joshua:*false*,

joshua:*unknown*, or joshua:*contradictory*. If the

justification is active, then the conclusion will assume

this truth-value.

�������� An informative term. If the justification is being used

to record the actions of a rule, then it is conventional

to provide the name of the rule as the mnemonic. Justi-

fications built by the rule-compiler follow this conven-

tion. Some TMS’s may use the mnemonic to distinguish

specially understood types of justifications such as

premises.

������������ A list of database predications, all of which must have

truth-value joshua:*true* for the justification to be ac-

tive.

������������� A list of database predications, all of which must have

truth-value joshua:*false* for the justification to be ac-

tive.

�������-������� A list of database predications, all of which must have

truth-value joshua:*unknown* for the justification to

be active. Some TMS’s (e.g. the LTMS) may require

this argument to nil.�

If all the predications in the set of true-support have truth-value

joshua:*true*, all the predications in the false-support have truth-value

joshua:*false* and all the predications in the unknown-support have truth-

value joshua:*unknown*, then the justification is considered to be ������.

An active justification causes the conclusion to assume its desired truth-

value.

Examples:

Suppose you want to find all the is-exiled-from statements in your

database and add a new justification to them. For example, your database

might contain:

(define-predicate is-exiled-from (person place) (ltms:ltms-predicate-model))

(tell [is-exiled-from Prospero Padua])

(tell [is-exiled-from Henry-James US])

191
February 2018 Joshua Language Dictionary

 Show Joshua Database (matching pattern [default All]) All

True things

 [IS-EXILED-FROM HENRY-JAMES US]

 [IS-EXILED-FROM PROSPERO PADUA]

False things

 None

 (justify ������������������������������� *true* :assumption)

NIL

 (explain �������������������������������)

[IS-EXILED-FROM HENRY-JAMES US] is true

 It is a :PREMISE

NIL

 (unjustify �������������������������������)

NIL

 (explain �������������������������������)

[IS-EXILED-FROM HENRY-JAMES US] is true

 It is an :ASSUMPTION

NIL�

and you want to add an :assumption justification to each of those. You

would use joshua:justify and joshua:ask as follows:

(ask [is-exiled-from ? ?]

 #’(lambda (backward-support)

 (justify (ask-database-predication backward-support)

 (ask-query-truth-value backward-support)

 :assumption))

 :do-backward-rules nil)

Related Functions:

joshua:unjustify

See the section "Justification and Truth Maintenance" in ������ ����� ��

������������. See the section "The Truth Maintenance Protocol", page 54.�

joshua:known� ���������������������������

This modal operator checks if ����������� is known to be either

joshua:*true* or joshua:*false*.

����������� A Joshua predication pattern to match.�

The query: (ask [known [foo ?x]] #’ ...)

Succeeds when: either [foo ?x] or [not [foo ?x]] succeed

If successful, joshua:known calls the continuation on the instantiated

query.

192
Joshua Language Dictionary February 2018

Examples:

We use the predicate shape-of and the statements about shapes that we

used to illustrate the predicate joshua:provable. Here they are.

(define-predicate shape-of (object shape))

(tell [and [shape-of door oval]

 [not [shape-of leaf pointed]]])

[AND [SHAPE-OF DOOR OVAL] [NOT [SHAPE-OF LEAF POINTED]]]

 Show Joshua Database

True things

 [SHAPE-OF DOOR OVAL]

False things

 [SHAPE-OF LEAF POINTED]]�

The database contains one statement about shapes that is joshua:*true*

and one that is joshua:*false*. joshua:known succeeds in each case, re-

turning the instantiated query. Note that there is no indication of truth

value in the instantiated query. That is because when we ask if something

is joshua:known, we are interested only in the existence of an answer, not

in its particular truth value. (���������������� for the joshua:ask does in-

dicate what the truth value of the instantiated query was.)

 (ask [known [shape-of ?object ?shape]] #’print-query)

[KNOWN [SHAPE-OF DOOR OVAL]]

[KNOWN [SHAPE-OF LEAF POINTED]] ; argument was actually false

A more interesting question is to ask whether a predication is ��� known to

Joshua.

The query: (ask [not [known [foo ?x]]] #’ ...)

Succeeds when: [foo ?x] and [not [foo ?x]] both fail

Examples:

; The proposition is not in the database or in rules

 (ask [not [known [shape-of nose pointed]]] #’print-query)

�����[KNOWN [SHAPE-OF NOSE POINTED]]�

joshua:known can also be used in backward rules. The goal of the very in-

considerate rule in the next example is to select a dancing partner. The

rule filters out those whose ability at ?activity is unknown, keeping those

who are good or bad.

(define-predicate need-a-partner (activity))

(define-predicate is-good-at (activity person))

(define-predicate use-as-partner (person activity))

193
February 2018 Joshua Language Dictionary

(defrule two-left-feet-will-do (:backward)

 if [and [need-a-partner ?activity]

 [known [is-good-at ?activity ?person]]]

 then [use-as-partner ?person ?activity])

(defun test-known ()

 (clear)

 (tell [and [need-a-partner dancing]

 [is-good-at dancing Tom]

 [not [is-good-at dancing Fred]]])

 ’Done.)

(test-known)

DONE.

 (ask [use-as-partner ?person ?activity] #’print-query)

[USE-AS-PARTNER TOM DANCING]

[USE-AS-PARTNER FRED DANCING]

The goal of the rule in the next example is to hire an applicant if his/her

qualifications are excellent, even if nothing is known about the applicant’s

experience level.

(define-predicate has-qualifications (person qualifications))

(define-predicate previous-experience (person experience))

(define-predicate hire-candidate (name))

(tell [and [has-qualifications Fred poor]

 [has-qualifications Joan excellent]])

[AND [HAS-QUALIFICATIONS FRED POOR] [HAS-QUALIFICATIONS JOAN EXCELLENT]]

(defrule inexperience-no-obstacle (:backward)

 if [and [has-qualifications ?applicant excellent]

 [not [known [previous-experience ?applicant ?how-much]]]]

 then [hire-candidate ?applicant])

(ask [hire-candidate Fred] #’print-query)

(ask [hire-candidate ?applicant] #’print-query)

[HIRE-CANDIDATE JOAN]

Related Predicate:

joshua:provable�

194
Joshua Language Dictionary February 2018

joshua:locate-backward-question-trigger� ���������������������������������������

����������������������������������

����������� A pattern under which to index a backward question.

����������� The truth value of the pattern under which the ques-

tion should be indexed.

������������ A function passed in which can determine whether a

new question trigger is necessary.

������� Useful in advanced modeling applications.

������������� The name of the backward-question being indexed.�

Tailoring of backward-question indexing is usually accomplished by provid-

ing methods for the joshua:locate-backward-question-trigger and

joshua:map-over-backward-question-triggers protocol functions. The

joshua:add-backward-question-trigger and joshua:delete-backward-

question-trigger methods provided as Joshua’s defaults call joshua:locate-

backward-question-trigger as a subroutine. All of the interesting tailoring

of their behavior can be obtained by providing a joshua:locate-backward-

question-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what questions are currently indexed where. The joshua:locate-backward-

question-trigger method is responsible for managing the data structures

used to index backward question triggers. Each backward chaining question

has a unique trigger structure, indexed by the pattern (and its truth value)

of the question. Just as joshua:insert maps variant predications to a

unique location in a data index, joshua:locate-backward-question-trigger

locates the unique place in a question index where Joshua stores a back-

ward chaining question’s trigger structure.

To accomplish this, the joshua:locate-backward-question-trigger method is

required to follow a rather complicated pattern of behavior. This pattern is

divided into four parts:

1. Using ����������� and ����������� it should determine where the trig-

ger should be stored. This location should contain either joshua::nil or

a list of backward question triggers (we’ll call this the �����������).

2. ������������ should be called with the ������� ��� as an argument. It

will return three values:

a. A ��� ������� ��� which includes a backward question trigger da-

ta-structure corresponding to ����������� and ����������� (the pat-

tern under which this trigger is indexed).

b. A ���� indicating whether a new trigger data-stucture was added

to the ������� ���. If this value is joshua::t then ������� ��� did not

195
February 2018 Joshua Language Dictionary

already contain a backward question trigger data-structure for

����������� with truth value �����������.

c. The ��������� ������� which is the unique backward question trig-

ger for this question.

3. If the value of ���� is joshua::t, then joshua:locate-backward-

question-trigger should update its index so that the location which

used to contain ������� ��� will now contain ��� ������� ���. During this

step joshua:locate-backward-question-trigger may take whatever ac-

tions it likes to optimize the question index.

4. The method should return ��������� ������� as its value.

The reason for this complicated pattern of behavior is as follows:

joshua:locate-backward-question-trigger is used as a subroutine of both

joshua:add-backward-question-trigger and joshua:delete-backward-

question-trigger. Knowledge of how to index a pattern is localized in the

joshua:locate-backward-question-trigger methods, while the knowledge of

the internal structure of the backward trigger data-structures is localized in

joshua:add-backward-question-trigger and joshua:delete-backward-

question-trigger. These two higher levels routines call joshua:locate-

backward-question-trigger passing to it ������������, a function which un-

derstands how to manipulate sets of backward question trigger data-

structures.

������������ adds (or deletes) a backward question trigger data-structure

for the current question (if necessary) and returns enough information so

that joshua:locate-backward-question-trigger will know what actions were

taken.

joshua:locate-backward-question-trigger should return ��������� ������� as

its value so the question’s debugging information can point to the actual

data structure corresponding to its trigger patterns.

As an example, consider the following method which indexes backward

question triggers on the property list of the predicate in the pattern.

 (define-predicate-model predicate-backward-question-indexing () ())

196
Joshua Language Dictionary February 2018

(define-predicate-method

 (locate-backward-question-trigger predicate-question-indexing)

 (truth-value continuation ignore ignore)

 ;; This is part one, locate the current trigger set

 (let ((old-triggers (get (predication-predicate self)

 ’backward-question-triggers)))

 ;; part two, call the continuation

 (multiple-value-bind (new-triggers changed-p node)

(funcall continuation old-triggers)

 ;; part three, update the index with new triggers, if something changed

 (when changed-p

(setf (get (predication-predicate self)

 ’backward-question-triggers) new-triggers))

 ;; part four, return the canonical backward question trigger

 node)))

;;; This map method finds the triggers stored by the previous guy.

(define-predicate-method

 (map-over-backward-question-triggers predicate-question-indexing)

 (continuation)

 ;; how to collect all backward triggers that might be interested in me

 (declare (sys:downward-funarg continuation)) ;backward reference

 (loop for rete-node in (get (predication-predicate self)

 ’backward-question-triggers)

doing (funcall continuation Rete-node)))�

The ������� argument is provided to allow the joshua:locate-backward-

question-trigger method to use a context sensitive indexing technique.

See the section "The Joshua Question Indexing Protocol", page 48.�

joshua:locate-backward-rule-trigger� ��

���������������������������

����������� A pattern under which to index a backward rule.

����������� The truth value of the pattern under which the rule

should be indexed.

������������ A function passed in which can determine whether a

new rule trigger is necessary.

������� The entire ��-part of the rule. Useful in advanced mod-

eling applications. ���������

The name of the backward rule being indexed.�

Tailoring of backward rule indexing is usually accomplished by providing

methods for the joshua:locate-backward-rule-trigger and joshua:map-

over-backward-rule-triggers protocol functions. The joshua:add-backward-

rule-trigger and joshua:delete-backward-rule-trigger methods provided as

197
February 2018 Joshua Language Dictionary

Joshua’s defaults call joshua:locate-backward-rule-trigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid-

ing a joshua:locate-backward-rule-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where.

The joshua:locate-backward-rule-trigger method is responsible for manag-

ing the data structures used to index backward rule triggers. Each back-

ward chaining rule has a unique trigger structure, indexed by the pattern

(and its truth value) of the ����-part of the rule. Just as joshua:insert

maps variant predications to a unique location in a data index,

joshua:locate-backward-rule-trigger locates the unique place in a rule in-

dex where Joshua stores a backward chaining rule’s trigger structure.

To accomplish this, the joshua:locate-backward-rule-trigger method is re-

quired to follow a rather complicated pattern of behavior. This pattern is

divided into four parts:

1. Using ����������� and ����������� it should determine where the trig-

ger should be stored. This location should contain either joshua::nil or

a list of backward rule triggers (we’ll call this the �����������).

2. ������������ should be called with the ������� ��� as an argument. It

will return three values:

a. A ��� ������� ��� which includes a backward rule trigger data-

structure corresponding to ����������� and ����������� (the pattern

under which this trigger is indexed).

b. A ���� indicating whether a new trigger data-stucture was added

to the ������� ���. If this value is joshua::t then ������� ��� did not

already contain a backward rule trigger data-structure for ������

������ with truth value �����������.

c. The ��������� ������� which is the unique backward rule trigger

for this rule.

3. If the value of ���� is joshua::t, then joshua:locate-backward-rule-

trigger should update its index so that the location which used to con-

tain ������� ��� will now contain ��� ������� ���. During this step

joshua:locate-backward-rule-trigger may take whatever actions it

likes to optimize the rule index.

4. It should return ��������� ������� as its value.

The reason for this complicated pattern of behavior is as follows:

joshua:locate-backward-rule-trigger is used as a subroutine of both

joshua:add-backward-rule-trigger and joshua:delete-backward-rule-

198
Joshua Language Dictionary February 2018

trigger. Knowledge of how to index a pattern is localized in the

joshua:locate-backward-rule-trigger methods, while the knowledge of the

internal structure of the backward trigger data-structures is localized in

joshua:add-backward-rule-trigger and joshua:delete-backward-rule-

trigger. These two higher levels routines call joshua:locate-backward-rule-

trigger passing to it ������������, a function which understands how to ma-

nipulate sets of backward rule trigger data-structures.

������������ adds (or deletes) a backward rule trigger data-structure for

the current rule (if necessary) and returns enough information so that

joshua:locate-backward-rule-trigger will know what actions were taken.

joshua:locate-backward-rule-trigger should return ��������� ������� as its

value so the rule’s debugging information can point to the actual data

structure corresponding to its trigger patterns.

As an example, consider the following method which indexes backward rule

triggers on the property list of the predicate in the pattern.

(define-predicate-model predicate-backward-rule-indexing () ())

(define-predicate-method (locate-backward-rule-trigger predicate-rule-indexing)

 (truth-value continuation ignore ignore)

 ;; This is part one, locate the current trigger set

 (let ((old-triggers (get (predication-predicate self) ’backward-rule-triggers)))

 ;; part two, call the continuation

 (multiple-value-bind (new-triggers changed-p node)

(funcall continuation old-triggers)

 ;; part three, update the index with new triggers, if something changed

 (when changed-p

(setf (get (predication-predicate self) ’backward-rule-triggers) new-triggers))

 ;; part four, return the canonical backward rule trigger

 node)))

;;; This map method finds the triggers stored by the previous guy.

(define-predicate-method (map-over-backward-rule-triggers predicate-rule-indexing)

 (continuation)

 ;; how to collect all backward triggers that might be interested in me

 (declare (sys:downward-funarg continuation)) ;backward reference

 (loop for rete-node in (get (predication-predicate self) ’backward-rule-triggers)

doing (funcall continuation Rete-node)))

The ������� argument is provided to allow the joshua:locate-backward-

rule-trigger method to use a context sensitive indexing technique. For ex-

ample, consider the following backward rule which describes the behavior of

an adder:

199
February 2018 Joshua Language Dictionary

(defrule adder-behavior (:backward)

 If [and

 [type-of ?a adder]

 [status-of ?a working]

 [value-of input-1 ?a ?input-1]

 [value-of input-2 ?a ?input-2]

 (unify ?sum (+ ?input-1 ?input-2))]

 Then [value-of output ?a ?sum])

It might be appropriate to use an ��������������� set of data structures to

manage the indexing of this rule’s trigger data structures. In such a

scheme, there is one object representing the class of all adders and an addi-

tional object for each specific adder being reasoned about. The triggers for

the rule should be attached to the object representing the class of all ad-

ders, since this is information shared by all the individual adders. Consider

what happens when joshua:locate-backward-rule-trigger is called to index

this rule under the pattern [value-of output ?a ?sum]. It should attach the

corresponding trigger data-structure to the SUM slot of the object represent-

ing the class of all adders. However, it cannot determine this without know-

ing that this is a rule about adders and that information is contained in the

pattern [type-of ?a adder]. It is for this reason that the entire ��-part of the

rule is passed into joshua:locate-backward-rule-trigger

See the section "The Joshua Rule Indexing Protocol", page 36.�

joshua:locate-forward-rule-trigger� ���

������������������������

����������� A pattern under which to index a forward rule trigger.

����������� The truth value under which the rule should be in-

dexed.

������������ A function passed in which can determine whether a

new rule trigger is necessary.

������� The entire ��-part of the rule. Useful in advanced mod-

eling applications.

��������� The name of the rule being indexed.�

Tailoring of forward rule indexing is usually accomplished by providing

methods for the joshua:locate-forward-rule-trigger and joshua:map-over-

forward-rule-triggers protocol functions. The joshua:add-forward-rule-

trigger and joshua:delete-forward-rule-trigger methods provided as

Joshua’s defaults call joshua:locate-forward-rule-trigger as a subroutine.

All of the interesting tailoring of their behavior can be obtained by provid-

ing a joshua:locate-forward-rule-trigger method.

However, it might be useful in some applications to provide :before or

:after methods for the add and delete methods, for example to keep track of

what rules are currently indexed where.

200
Joshua Language Dictionary February 2018

The joshua:locate-forward-rule-trigger method is responsible for managing

the data structures used to index forward rule triggers. (In Joshua forward

rule triggers serve the role of match nodes in a ���� �������). In general,

Joshua tries to share forward rule triggers as much as possible. If the same

pattern appears in the �� part of two forward chaining rules, Joshua tries

to use the same forward rule trigger for both occurances of the pattern.

(By the pattern we mean two predications which are joshua:variants of

each other and which have the same truth value.) Thus just as

joshua:insert is should map variant predications to the same location in a

data model, joshua:locate-forward-rule-trigger should map joshua:variant

patterns to the same location in a rule index.

To accomplish this, the joshua:locate-forward-rule-trigger method is re-

quired to follow a rather complicated pattern of behavior. This pattern is

divided into four parts:

1. Using ����������� and ����������� it should determine where the trig-

ger should be stored. This location should contain either joshua::nil or

a list of forward rule triggers (we’ll call this the �����������).

2. ������������ should be called with the ������� ��� as an argument. It

will return 3 values:

a. A ��� ������� ��� which includes a forward rule trigger data-

structure corresponding to ����������� and ����������� (the pattern

under which this trigger is indexed).

b. A ���� indicating whether a new trigger data-stucture was added

to the ������� ���. If this value is joshua::t then ������� ��� did not

already contain a forward rule trigger data-structure for ��������

���� with truth value �����������.

c. The ��������� ������� which is the unique forward rule trigger da-

ta-structure which for the pattern ����������� with truth value

�����������.

3. If the value of ���� is joshua::t, then joshua:locate-forward-rule-

trigger should update its index so that the location which used to con-

tain ������� ��� will now contain ��� ������� ���. During this step

joshua:locate-forward-rule-trigger may take whatever actions it likes

to optimize the rule index.

4. The method should return ��������� ������� as its value.

The reason for this complicated pattern of behavior is as follows:

joshua:locate-forward-rule-trigger is used as a subroutine of both

joshua:add-forward-rule-trigger and joshua:delete-forward-rule-trigger.

Knowledge of how to index a pattern is localized in the joshua:locate-

forward-rule-trigger methods, while the knowledge of the internal struc-

201
February 2018 Joshua Language Dictionary

ture of the forward trigger data-structures is localized in joshua:add-

forward-rule-trigger and joshua:delete-forward-rule-trigger. These two

higher levels routines call joshua:locate-forward-rule-trigger passing to it

������������, a function which understands how to manipulate sets of for-

ward rule trigger data-structures.

������������ adds (or deletes) a forward rule trigger data-structure for the

current rule (if necessary) and returns enough information so that

joshua:locate-forward-rule-trigger will know what actions were taken.

joshua:locate-forward-rule-trigger should return ��������� ������� as its

value so the rule’s debugging information can point to the actual data

structure corresponding to its trigger patterns.

As an example, consider the following method which indexes forward rule

triggers on the property list of the predicate in the pattern.

(define-predicate-model predicate-forward-rule-indexing () ())

(define-predicate-method (locate-forward-rule-trigger predicate-rule-indexing)

 (truth-value continuation ignore ignore)

 ;; This is part one, locate the current trigger set

 (let ((old-triggers (get (predication-predicate self) ’forward-rule-triggers)))

 ;; part two, call the continuation

 (multiple-value-bind (new-triggers changed-p node)

(funcall continuation old-triggers)

 ;; part three, update the index with new triggers, if something changed

 (when changed-p

(setf (get (predication-predicate self) ’forward-rule-triggers) new-triggers))

 ;; part four, return the canonical forward rule trigger

 node)))

;;; This map method finds the triggers stored by the previous guy.

(define-predicate-method (map-over-forward-rule-triggers predicate-rule-indexing)

 (continuation)

 ;; how to collect all forward triggers that might be interested in me

 (declare (sys:downward-funarg continuation)) ;forward reference

 (loop for rete-node in (get (predication-predicate self) ’forward-rule-triggers)

doing (funcall continuation Rete-node)))�

The ������� argument is provided to allow the joshua:locate-forward-rule-

trigger method to use a context sensitive indexing technique. For example,

consider the following forward rule which describes the behavior of an ad-

der:

202
Joshua Language Dictionary February 2018

(defrule adder-behavior (:forward)

 If [and

 [type-of ?a adder]

 [status-of ?a working]

 [value-of input-1 ?a ?input-1]

 [value-of input-2 ?a ?input-2]]

 Then ‘[value-of output ?a ,(+ ?input-1 ?input-2)])

It might be appropriate to use an ��������������� set of data structures to

manage the indexing of this rule’s trigger data structures. In such a

scheme, there is one object representing the class of all adders and an addi-

tional object for each specific adder being reasoned about. The triggers for

the rule should be attached to the object representing the class of all ad-

ders, since this is information shared by all the individual adders. Notice,

however, that joshua:locate-forward-rule-trigger is called once for each

trigger pattern. Consider what happens when it is called with [value-of in-

put-1 ?a ?input-1] as its argument. It should attach the corresponding

trigger data-structure to the input-1 slot of the object representing the

class of all adders. However, it cannot determine this without knowing that

this is a rule about adders and that information is contained in the pattern

[type-of ?a adder]. It is for this reason that the entire ��-part of the rule is

passed into joshua:locate-forward-rule-trigger.

There is a strong similarity between the role played by joshua:locate-

forward-rule-trigger and that played by the combination of joshua:insert

and joshua:uninsert. joshua:locate-forward-rule-trigger manages the in-

dexing (and unindexing) of forward rules. joshua:insert manages the index-

ing of facts and joshua:uninsert manages the unindexing of facts. There is

also a lack of symmetry in that there are two distinct methods for facts

and only one method for rules. The decision to modularlize the two process-

es differently was based on efficiency consideration. Facts are added and re-

moved much more frequently than rules; thus, it was felt that a slight loss

of modularity would be tolerable to achieve higher performance while in-

serting (and removing) facts.

See the section "The Joshua Rule Indexing Protocol", page 36. See the sec-

tion "Customizing the Rule Index", page 88.�

joshua:logic-variable-name� ����������������������

Returns the symbol which is the name of logic-variable.

��������������

An unbound logic variable.�

For example:

(typecase x

 (unbound-logic-variable (logic-variable-name x))

 (otherwise x))�

203
February 2018 Joshua Language Dictionary

joshua:logic-variable-maker-p� ������������

���� An s-expression.�

A predicate of one argument. It returns joshua::t if the argument is a log-

ic-variable-maker and joshua::nil otherwise.

(setq x (read))?A�

yields:

(ji::logic-variable-maker |?A|)�

and

(logic-variable-maker-p x)�

yields:

T�

joshua:logic-variable-maker-name� ����������������

���maker A logic-variable-maker s-expression.�

This returns the name of the logic-variable-maker. For example:

 (read)?L �

yields:

(JI::LOGIC-VARIABLE-MAKER |?L|)�

and

 (logic-variable-maker-name (JI::LOGIC-VARIABLE-MAKER |?L|))�

yields

|?L|�

ltms:ltms-mixin� ������

This flavor provides the Joshua LTMS methods. Since it defines only TMS

protocol methods, it must be combined with some model which defines the

other protocol methods.

Related topics:

ltms:ltms-predicate-model

joshua:basic-tms-mixin

joshua:define-predicate-model

joshua:define-predicate�

204
Joshua Language Dictionary February 2018

ltms:ltms-predicate-model� ������

This flavor combines the Joshua LTMS behavior with the default predicate

behavior. It is composed of ltms:ltms-mixin and joshua:default-predicate-

model.

Related functions:

joshua:define-predicate-model

joshua:define-predicate�

joshua:make-predication� ����������������� &optional�����

Construct a predication out of the specified ��������� (in the optional ����

supplied). The newly constructed predication is ��� entered in the database,

unless you combine joshua:make-predication with joshua:tell.

You should seldom need to know about this, as the [] syntax is used in

Joshua contexts as a reader macro for joshua:make-predication.

��������� A list whose first element is the name of a (defined)

predicate. The rest of the list elements are the argu-

ments to the predicate.

���� Storage area to cons in�

Examples:

(define-predicate shape-of (object shape))

(make-predication ’(shape-of window round))

[SHAPE-OF WINDOW ROUND] ; this is not in the database

(tell (make-predication ’(shape-of window round)))

[SHAPE-OF WINDOW ROUND] ; new predication added to the database

T

joshua:make-predication is useful for constructing Joshua predications

from data generated within Lisp code. (Still, backquoting [] expressions

should suffice most of the time.)

Related Functions:

joshua:define-predicate

See the section "Predications and Predicates" in ������ ����� �� �����

������.�

joshua:make-object� ������������������� &key������

This function instantiates Joshua objects.�

joshua:map-over-database-predications� ������������������������������

����

A convenience macro for joshua:ask. Use it whenever you want to find an

answer to a query in the database without using rules or questions.

205
February 2018 Joshua Language Dictionary

joshua:map-over-database-predications finds all database predications that

unify with ������������������� and applies �������� to each.

������������������� A pattern to match against database predications.

�������� Specifies the operation to do on each database predica-

tion that unifies with predication-pattern. Should be a

function of one argument.�

(map-over-database-predications <predication> <continuation>) is equiva-

lent to:

(ask [foo ?x]

 #’(lambda (support)

 (funcall <cont>

 (ask-database-predication support)))

 :do-backward-rules nil) �

Example:

We’ll build an author-title index for a library, using joshua:tell statements.

We’ll include an LTMS in our predicate definitions, so that we can later

get joshua:explain to tell us about some database predications.

(define-predicate author-of (work author) (ltms:ltms-predicate-model))

(defun build-author-title-index1 ()

 (clear)

 (tell [and [author-of "The Interpretation of Dreams" Freud]

 [author-of "Hedda Gabler" Ibsen]

 [author-of "Totem and Taboo" Freud]

 [author-of "A Doll’s House" Ibsen]])

 (cp:execute-command "Show Joshua Database"))

BUILD-AUTHOR-TITLE-INDEX1

(build-author-title-index1)

True things

 [AUTHOR-OF "A Doll’s House" IBSEN]

 [AUTHOR-OF "Totem and Taboo" FREUD]

 [AUTHOR-OF "Hedda Gabler" IBSEN]

 [AUTHOR-OF "The Interpretation of Dreams" FREUD]

False things

 None�

The first example looks in the library database and removes from it all of

Freud’s books (perhaps for rebinding due to overuse). We use joshua:map-

over-database-predications to get our hands on the actual predication ob-

jects so that we can remove them.

To allow easy replacement of this information we’ll joshua:unjustify the

facts rather than actually removing them with joshua:untell. The truth

value of each of these facts becomes joshua:*unknown*, even though they

206
Joshua Language Dictionary February 2018

physically remain in the system.

(defun away-with-sigmund ()

 (map-over-database-predications [author-of ?work Freud] #’unjustify)

 (cp:execute-command "Show Joshua Database"))

AWAY-WITH-SIGMUND

(away-with-SIGMUND)

True things

 [AUTHOR-OF "A Doll’s House" IBSEN]

 [AUTHOR-OF "Hedda Gabler" IBSEN]

False things

 None�

Let’s add a forward rule that says the library owns any work that was au-

thored by Shakespeare, and then build another database.

(define-predicate owns-library (work) (ltms:ltms-predicate-model))

(defrule Shakespeare-holdings (:forward)

 if [author-of ?work Shakespeare]

 then [owns-library ?work])

(defun build-author-title-index2 ()

 (clear)

 (tell [and [author-of "King Lear" Shakespeare]

 [author-of "Hedda Gabler" Ibsen]

 [owns-library "Trumpeting Joshua"]

 [author-of "A Doll’s House" Ibsen]])

 (cp:execute-command "Show Joshua Database"))

BUILD-AUTHOR-TITLE-INDEX2

(build-author-title-index2)

True things

 [OWNS-LIBRARY "Trumpeting Joshua"] [AUTHOR-OF "Hedda Gabler" IBSEN]

 [OWNS-LIBRARY "King Lear"] [AUTHOR-OF "King Lear" SHAKESPEARE]

 [AUTHOR-OF "A Doll’s House" IBSEN]

False things

 None

We can now ask Joshua to joshua:explain the database predications about

works the library owns.

(map-over-database-predications [owns-library ?work] #’explain)

[OWNS-LIBRARY "Trumpeting Joshua"] is true

 It is a :PREMISE

[OWNS-LIBRARY "King Lear"] is true

 It was derived from rule SHAKESPEARE-HOLDINGS

 [AUTHOR-OF "King Lear" SHAKESPEARE] is true

 It is a :PREMISE�

207
February 2018 Joshua Language Dictionary

Here’s an example showing the display when the database predication has a

truth value of joshua:*false*. The predication displays without indicating

its truth value; that information is supplied by the accompanying explana-

tion.

(tell [not [owns-library "Everyday Sanskrit"]])

¬[OWNS-LIBRARY "Everyday Sanskrit"]

T

(map-over-database-predications [not [owns-library ?work]] #’explain)

[OWNS-LIBRARY "Everyday Sanskrit"] is false

 It is a :PREMISE�

The accessor function joshua:ask-database-predication can also be used to

extract database predications from the backward support supplied to the

joshua:ask continuation. Most of the time joshua:map-over-database-

predications probably serves just as well, and it is easier to use. For com-

parison we are using the same examples to illustrate both functions.

Related Functions:

joshua:ask

See the section "Querying the Database" in ����������������������������.�

joshua:map-over-backward-question-triggers� �����������������������������������

������

����������� Is the query being joshua:asked.

������������ Is a function of one argument. The argument passed to

this function should be a backward-question-trigger.�

joshua:map-over-backward-question-triggers is the Joshua protocol func-

tion is responsible for finding backward-questions capable of satisfying a

query given to joshua:ask. It searches the question index to find a set of

backward-question triggers whose patterns might unify with �����������

(����������� is the query given to joshua:ask). joshua:map-over-backward-

question-triggers calls ������������ once for each backward-question-trigger

found, thereby invoking the question.

joshua:map-over-backward-question-triggers is implemented by protocol

methods (either the system supplied default or a user defined method im-

plementing a special question-indexing model). To make such methods easi-

er to write, all the knowledge of how to actually invoke a backward ques-

tion is packaged in the ������������ function which is passed into

joshua:map-over-backward-question-triggers by the joshua:ask-questions

protocol function.

joshua:map-over-backward-question-triggers is the dual protocol function

to joshua:locate-backward-question-trigger. Both of these functions are

used to manipulate the question-index. joshua:locate-backward-question-

trigger is responsible for inserting and deleting backward-question-triggers

208
Joshua Language Dictionary February 2018

while joshua:map-over-backward-question-triggers is responsible for look-

ing up question-triggers in response to a query.

Related Function:

joshua:locate-backward-question-trigger

See the section "The Joshua Question Indexing Protocol", page 48.�

joshua:map-over-backward-rule-triggers� �������������������������������������

����

����������� Is the query being joshua:asked.

������������ Is a function of one argument. The argument passed to

this function should be a backward-chaining rule-

trigger.�

joshua:map-over-backward-rule-triggers is the Joshua protocol function

which is responsible for finding backward-chaining rules capable of satisfy-

ing a query given to joshua:ask. It searches the rule index to find a set of

backward-chaining rule triggers whose patterns might unify with ��������

���� (����������� is the query given to joshua:ask). joshua:map-over-

backward-rule-triggers calls ������������ once for each backward-chaining

rule-trigger found, thereby invoking the rule.

joshua:map-over-backward-rule-triggers is implemented by protocol meth-

ods (either the system supplied default or a user defined method imple-

menting a special rule-indexing model). To make such methods easier to

write, all the knowledge of how to actually invoke a backward chaining rule

is packaged in the ������������ function which is passed into joshua:map-

over-backward-rule-triggers by the joshua:ask-rules protocol function.

joshua:map-over-backward-rule-triggers is the dual protocol function to

joshua:locate-backward-rule-trigger. Both of these functions are used to

manipulate the rule-index. joshua:locate-backward-rule-trigger is responsi-

ble for inserting and deleting backward-chaining rule-triggers while

joshua:map-over-backward-rule-triggers is responsible for looking up rule-

triggers in response to a query. See the generic function joshua:locate-

backward-rule-trigger, page 196. See the section "The Joshua Rule Index-

ing Protocol", page 36. See the section "Customizing the Rule Index", page

88.�

joshua:map-over-forward-rule-triggers� ��

����������� Is the fact being inserted into the database by

joshua:tell.

������������ Is a function of one argument. The argument given to

this function must be a forward rule trigger.�

joshua:map-over-forward-rule-triggers is the Joshua protocol function

which is responsible for finding forward-chaining rules which should be

209
February 2018 Joshua Language Dictionary

triggered in response to the new ����������� being added to the virtual

database by joshua:tell. It searches the rule index to find a set of forward-

chaining rule triggers whose patterns might unify with ����������� (��������

���� is the fact being inserted into the database by joshua:tell).

joshua:map-over-forward-rule-triggers calls ������������ once for each for-

ward-chaining rule-trigger found, thereby invoking the rule.

joshua:map-over-forward-rule-triggers is implemented by protocol methods

(either the system supplied default or a user defined method implementing

a special rule-indexing model). To make such methods easier to write, all

the knowledge of how to actually invoke a forward chaining rule is pack-

aged in the ������������ function which is passed into joshua:map-over-

forward-rule-triggers by the default joshua:tell method.

joshua:map-over-forward-rule-triggers is the dual protocol function to

joshua:locate-forward-rule-trigger. Both of these functions are used to ma-

nipulate the rule-index. joshua:locate-forward-rule-trigger is responsible

for inserting and deleting forward-chaining rule-triggers while joshua:map-

over-forward-rule-triggers is responsible for looking up rule-triggers in re-

sponse to a query. See the generic function joshua:locate-forward-rule-

trigger, page 199. See the section "The Joshua Rule Indexing Protocol",
page 36. See the section "Customizing the Rule Index", page 88.�

joshua:map-over-object-hierarchy� �����������������������������������

��������������

Maps a function over an object and all its parts, recursively descending the

part hierarchy. If the optional argument �������������� is not supplied then

the function will be applied to all objects. If �������������� is supplied, then

only the piece of the part hierarchy starting from that object will be

mapped over.�

joshua:map-over-slots-in-object-hierarchy� ������������������������������

���������������������

This function is a utility provided as part of the Joshua object facility. It

combines the operations provided by joshua:map-over-object-hierarchy and

joshua:map-over-slots-of-object. It applies a function to all the slots of an

object and its parts. When the optional argument �������������� is not sup-

plied then the function will be applied to all objects.

Note that the function is applied to the slot itself, and not to the value of

the slot. If the value of the slot is desired, use joshua:slot-current-value to

get it.�

joshua:map-over-slots-of-object� ��������������������������������

This function is a utility provided as part of the Joshua object facility. It

maps a function over all the slots of an object.

Note that the function is applied to the slot itself, and not to the value of

the slot. If the value of the slot is desired, use joshua:slot-current-value to

get it.

210
Joshua Language Dictionary February 2018

ji:model-cant-handle-query� ������

This flavor is the base flavor for conditions that are signalled by

joshua:ask-data and joshua:fetch to indicate that they have been passed a

query which is more general than they can handle.

The Joshua Database Protocol allows you to structure your data in ways

that are appropriate for your application; sometimes this involves trading

off generality for performance. For example, if a significant portion of your

data consists of object-attribute-value triples (such as the ����� of the �����

is ����), then you might want to use an object-oriented representation (such

as joshua::flavor instances) to store this data. However, using this repre-

sentation makes it awkward or slow to respond to a query that asks for ev-

ery object with a specific property, such as:

[has-eye-color ?who blue]

An implementation of joshua:ask-data or joshua:fetch would ideally an-

swer such a query even if it did so slowly. However, such queries may be of

such little value to an application that a developer decides not to waste ef-

fort on implementing a method that can respond to the query.

It is important, however, that joshua:fetch and joshua:ask-data methods

do not cause errors when faced with a query that they do not wish to han-

dle. One reason for this is that the command Show Joshua Database may

post such a query even if the application never makes such queries on its

own.

The contract of joshua:ask-data and joshua:fetch requires these methods

to joshua::signal a specific condition when they decline to handle a query.

The base flavor for such condition objects is ji:model-cant-handle-query. A

second condition flavor (built on this base flavor) is called ji:model-can-

only-handle-positive-queries which (as the name suggests) should be used

if the implementation is presented with a negated query, but only expects

queries which are not negated.

The following is an example of how to use these conditions:

(define-predicate-method (ask-data object-model)

 (truth-value continuation)

 (unless (eql truth-value *true*)

 (signal ’ji:model-can-only-handle-positive-queries

 :query self

 :model ’port-direction-model))

 (with-statement-destructured (object value) ()

 (typecase object

 (unbound-logic-variable

(signal ’ji:model-cant-handle-query

:model ’port-direction-model

:query self))

 (otherwise < whatever you really want to do >))))�

211
February 2018 Joshua Language Dictionary

ji:model-only-handles-positive-queries� ������

This flavor is the flavor of condition objects that are signalled by

joshua:ask-data and joshua:fetch to indicate that they have been passed a

negated query when they only handle non-negated queries.

The Joshua Database Protocol allows you to structure your data in ways

that are appropriate for your application; sometimes this involves trading

off generality for performance. For example, if a significant portion of your

data consists of object-attribute-value triples (such as the ����� of the �����

is ����), then you might want to use an object-oriented representation (such

as joshua::flavor instances) to store this data. However, using this repre-

sentation makes it awkward or slow to respond to a query that asks for ev-

ery object with a specific property, such as:

[has-eye-color ?who blue]

An implementation of joshua:ask-data or joshua:fetch would ideally an-

swer such a query even if it did so slowly. However, such queries may be of

such little value to an application that a developer decides not to waste ef-

fort on implementing a method that can respond to the query.

It is important, however, that joshua:fetch and joshua:ask-data methods

do not cause errors when faced with a query that they do not wish to han-

dle. One reason for this is that the command Show Joshua Database may

post such a query even if the application never makes such queries on its

own.

The contract of joshua:ask-data and joshua:fetch requires these methods

to joshua::signal a specific condition when they decline to handle a query.

The base flavor for such condition objects is ji:model-cant-handle-query. A

second condition flavor (built on this base flavor) is called ji:model-can-

only-handle-positive-queries which (as the name suggests) should be used

if the implementation is presented with a negated query, but only expects

queries which are not negated.

The following is an example of how to use these conditions:

(define-predicate-method (ask-data object-model)

 (truth-value continuation)

 (unless (eql truth-value *true*)

 (signal ’ji:model-can-only-handle-positive-queries

 :query self

 :model ’port-direction-model))

 (with-statement-destructured (object value) ()

 (typecase object

 (unbound-logic-variable

(signal ’ji:model-cant-handle-query

:model ’port-direction-model

:query self))

 (otherwise < whatever you really want to do >))))�

212
Joshua Language Dictionary February 2018

joshua:negate-truth-value� ��������������������&optional�(����������

joshua:*unknown*)

Negates a numeric �����������. That is, joshua:negate-truth-value turns

joshua:*true* into joshua:*false* and vice-versa.

�����������

An integer truth value, which must be one of joshua:*true*,

joshua:*false*, or joshua:*unknown*.

����������

The value to return if ����������� is joshua:*unknown*.

Related Presentation Type:

joshua:truth-value

See the section "Truth Values" in ����������������������������.�

joshua:no-variables-in-data-mixin� ������

This is a predicate model which may be mixed into the definition of any

predicate.

For example,

(define-predicate sick-with (person disease)

 (no-variables-in-data-mixin default-predicate-model))�

If one attempts to joshua:tell such a predication and if the predication con-

tains unbound logic-variables, the an error is signalled. For example:

(tell [sick-with ?x cholera])

Error: Trying to TELL [SICK-WITH ?X CHOLERA]

 which contains logic-variables�

Therefore, the system can safely assume that any database predication of

type joshua:no-variables-in-data-mixin contains only explicit data.

All the predicates used by "The Joshua Object Facility" include joshua:no-

variables-in-data-mixin so most rules that refer only to data within the ob-

ject facility will be optimized automatically. These predicates are:

• joshua:part-of-mixin

• joshua:part-of-mixin

• joshua:value-of

• ltms:value-of

• joshua:object-type-of

• ltms:object-type-of

213
February 2018 Joshua Language Dictionary

• joshua:equated

• ltms:equated�

joshua:nontrivial-tms-p� ���������������������������

Returns either t or nil to indicate whether ����������� is based on a flavor

(e.g. ltms:ltms-mixin) that supports a TMS. A return value of t means that

����������� does contain TMS information.

See the section "The Truth Maintenance Protocol", page 54.�

joshua:notice-truth-value-change� ���������������������������������������

�����

Called whenever the truth-value of ����������� changes from ���������������

to some new truth-value.

��������������������A predication

���������-����� The truth value that just changed

The new truth-value is available in the predication by the time notice-truth-

value-change is called. It can be examined using joshua:predication-truth-

value.

This protocol function allows you to update data structures that depend on

the truth value of a predication as the truth values change. (You might

want to do that, for example, in advanced uses of modeling.)

See the sections on "Signalling Truth Value Changes" and joshua:act-on-

truth-value-change

joshua:object-type-of� ���������������������������

This predicate is part of the Joshua object facility. It is used to query the

Joshua object type hierarchy. It is nearly always the predicate of the first

predication in the triggers of a rule that refers to objects.

joshua:object-type-of is an ask-only predicate. A predication with

joshua:object-type-of as its predicate cannot be an argument to

joshua:tell.

joshua:object-type-of is built using joshua:type-of-mixin.�

ltms:object-type-of� ���������������������������

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:object-type-of. Because rules whose triggers are all TMS

predications may appear cleaner or more uniform than rules which mix

TMS and non-TMS predications, ltms:object-type-of is supplied so that

rules employing other TMS predications may refer to type relationships and

keep their uniform appearance.

214
Joshua Language Dictionary February 2018

joshua:part-of� ���

This predicate is part of the Joshua object facility. It is used to query the

Joshua part hierarchy about part relationships. joshua:part-of is an ask-

only predicate; it cannot be used in joshua:tell.

joshua:part-of is built using joshua:part-of-mixin.�

ltms:part-of� ���

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:part-of. Because rules whose triggers are all TMS predi-

cations may appear cleaner or more uniform than rules which mix TMS

and non-TMS predications, ltms:part-of is supplied so that rules employing

other TMS predications may refer to part relationships and keep their uni-

form appearance.

ltms:part-of is built using joshua:part-of-mixin.�

joshua:part-of-mixin� ������

This flavor-mixin is part of the Joshua object facility. It may be used to add

part-whole behaviour, like that of the default part-whole predicate

joshua:part-of, to predicate models defined by the user.

joshua:part-of-mixin inherits from joshua:tell-error-model and

joshua:ask-data-only-mixin.

joshua:positions-forward-rule-matcher-can-skip� ����������������������������

rule-trigger The source representation of a forward rule trigger. See

the section "The Source Representaton of Predications

and Logic-variables".�

The protocol function joshua:positions-forward-rule-matcher-can-skip is

used to improve the efficiency of the match function generated by the for-

ward rule compiler. It informs the rule compiler that it need not emit

checking code for certain positions in the pattern �����������, allowing the

rule compiler to generate a shorter and more efficient matcher. The posi-

tions that can be skipped are exactly those which can be guaranteed to

have been checked by the rule indexer. joshua:positions-forward-rule-

matcher-can-skip returns a list of the positions that can be skipped by the

match compiler.

For example, suppose that we are using a forward-rule indexing scheme in

which the trigger for each pattern of the rule is stored on the property-list

of the predicate symbol of the pattern.

(define-predicate-model predicate-forward-rule-indexing () ())

215
February 2018 Joshua Language Dictionary

(define-predicate-method (locate-forward-rule-trigger predicate-rule-indexing)

 (truth-value continuation ignore ignore)

 ;; This is part one, locate the current trigger set

 (let ((old-triggers (get (predication-predicate self) ’forward-rule-triggers)))

 ;; part two, call the continuation

 (multiple-value-bind (new-triggers changed-p node)

(funcall continuation old-triggers)

 ;; part three, update the index with new triggers, if something changed

 (when changed-p

(setf (get (predication-predicate self) ’forward-rule-triggers) new-triggers))

 ;; part four, return the canonical forward rule trigger

 node)))

;;; This map method finds the triggers stored by the previous guy.

(define-predicate-method (map-over-forward-rule-triggers predicate-rule-indexing)

 (continuation)

 ;; how to collect all forward triggers that might be interested in me

 (declare (sys:downward-funarg continuation)) ;forward reference

 (loop for rete-node in (get (predication-predicate self) ’forward-rule-triggers)

doing (funcall continuation Rete-node)))�

When we joshua:tell a predication whose predicate is that same as that in

�����������, the joshua:map-over-forward-rule-triggers method will only

retrieve triggers for patterns which have this same predicate. The continu-

ation called by joshua:map-over-forward-rule-triggers will then call the

matcher generated by the forward-rule compiler. Clearly this matching

function need not check that the first symbol in ����������� matches the

first symbol in predication just joshua:inserted by joshua:tell, since the

joshua:map-over-forward-rule-triggers has just done so.

The return value of joshua:positions-forward-rule-matcher-can-skip is a

list of ��������� that can be skipped by the match compiler. The list of �����

����� consists of sublists of �����������; the joshua::car of each of these

sublists is a token for which the matcher need generate no code. For exam-

ple, if we use an indexing scheme which guarantees that every symbol in a

pattern is checked by the indexer, then the joshua:positions-forward-rule-

matcher-can-skip method should return a list of every sublist of the pat-

tern which begins with a symbol:

[Foobar a ?x b c ?y] →

((foobar a ?x b c ?y)

 (a ?x b c ?y)

 (b c ?y)

 (c ?y))�

The default method for the joshua:positions-forward-rule-matcher-can-

skip protocol function skips every symbol in the pattern, since the default

216
Joshua Language Dictionary February 2018

indexer uses every symbol in the pattern. If you create an indexing scheme

of your own which does not check every symbol then you must provide a

method for this protocol function or your forward rules may get incorrectly

compiled. Here is the method that should be provided with the example

above:

(define-predicate-method

 (predicate-forward-rule-indexing positions-forward-rule-matcher-can-skip) ()

 (list (predication-statement self)))

joshua:predication� ������

The non-instantiable base flavor for all predications in Joshua. It is mixed

into new predications via joshua:define-predicate.

You can test for this flavor by using typep or joshua:predicationp (into

which typep is optimized).

Related Presentation Types:

joshua:predication

joshua:database-predication�

joshua:predication� �����������������

The type for accepting or presenting a Joshua predication. When used to

accept a predication from the user, this presentation type will parse the in-

put and create a new instance of the predication. If the predication is en-

tered by using the mouse, the parser will return the predication that the

user selected. That is, it will not create a new copy of the predication. This

presentation type is convenient for reading in predications, as it confirms

that the predicate is defined and the arguments are correct, and reprompts

until the input is a valid predication.

Example:

(accept ’predication)

Enter a predication: [jericho:good-to-eat bananas]

[JERICHO:GOOD-TO-EAT BANANAS]

PREDICATION�

joshua:predication-maker-p� ������������

���� An s-expression.�

A predicate of one argument. It returns joshua::t if the argument is a

predication-maker and joshua::nil otherwise.

For example:

(setq x (read))[Foobar ?x a]�

yields:

(ji::predication-maker

 ’(foobar (ji::logic-variable-maker |?x|) a))�

217
February 2018 Joshua Language Dictionary

and

(predication-maker-p

 (ji::predication-maker

 ’(foobar (ji::logic-variable-maker |?x|) a)))�

yields:

T�

joshua:predication-maker-predicate� ������������

���� A predication-maker s-expression.�

This returns the predicate of a predication-maker form.

For example,

(read)[Foobar a b]�

yields:

(JI::PREDICATION-MAKER ’(FOOBAR A B))�

and

(predication-maker-predicate

 (JI::PREDICATION-MAKER ’(FOOBAR A B)))�

yields:

FOOBAR�

joshua:predication-maker-statement� ������������

���� A Predication-Maker list.�

This returns the "statement" part of the predication-maker list structure.

For example,

(read)[foobar a b]

yields:

(JI::PREDICATION-MAKER ’(FOOBAR A B))�

and

(predication-maker-statement

 (JI::PREDICATION-MAKER ’(FOOBAR A B)))�

yields:

218
Joshua Language Dictionary February 2018

(FOOBAR A B)�

Similarly,

(read) ‘[foobar ,a b]

-> (JI::PREDICATION-MAKER ‘(FOOBAR ,A B))

(predication-maker-statement *)

-> (FOOBAR (#:|,| . A) B)�

joshua:predicationp� ��������������

Checks whether ������ is a Joshua predication, that is, whether the object is

built on the base flavor joshua:predication. joshua:predication is the root

of the Joshua model tree.

joshua:predicationp returns t if the object is a Joshua predication, other-

wise nil.

������ An object in the Lisp world.

Examples:

 (define-predicate valid-word (word language))

 (tell [valid-word incarnadine English])

[VALID-WORD INCARNADINE ENGLISH]

T

 (predicationp ��������������������������������)

 ; click on object returned by tell

(PREDICATION FLAVOR:VANILLA)

 (ask [valid-word incarnadine ?language]

 #’(lambda (backward-support)

 (when (predicationp (ask-database-predication backward-support))

 (print (ask-database-predication backward-support)))))

[VALID-WORD INCARNADINE ENGLISH] �

You can use typep to do the same test as joshua:predicationp. In fact, the

compiler optimizes the form:

(typep x ’predication)

into the form:

(predicationp x)

For example:

219
February 2018 Joshua Language Dictionary

 (ask [valid-word incarnadine ?language]

 #’(lambda (backward-support)

 (when (typep (ask-database-predication backward-support)

’predication)

 (print (ask-database-predication backward-support)))))

[VALID-WORD INCARNADINE ENGLISH]

Related Functions:

joshua:predication

typep�

joshua:predication-predicate� �������������������

Returns the predicate symbol of �����������.

����������� Any predication.

Related Function:

joshua:predication-statement�

joshua:predication-statement� �������������������

Returns the list corresponding to the statement of �����������. The first el-

ement of the list is the predicate symbol. The rest of the list contains the

arguments.

����������� Any predication.

For example:

(define-predicate employee (name social-security-number department))

(predication-statement [employee "John Doe" 345267791 shipping])

(EMPLOYEE "John Doe" 345267791 SHIPPING)

(predication-statement [not [employee "Eve" 2 gardening]])

(NOT [EMPLOYEE "Eve" 2 GARDENING])

Related Functions:

joshua:make-predication

joshua:predication-predicate�

joshua:predication-truth-value� �������������������

Returns the numeric truth value of �����������.

����������� A Joshua predication.

Since truth value is a property of the database, the truth value of a predi-

cation not in the database is not defined. In general it will be

joshua:*unknown*.

220
Joshua Language Dictionary February 2018

Checking the truth value of a predication is done using joshua:ask. The

joshua:tell protocol or TMS protocol is used to set or change the truth

value. joshua:predication-truth-value should only be used in modeling

methods that implement those protocols.

Related Topics:

joshua:tell

joshua:ask

joshua:*true*

joshua:*false*

joshua:*unknown*

joshua:*contradictory*

joshua:truth-value

See the section "Truth Values" in ����������������������������.�

joshua:prefetch-forward-rule-matches� �����������������������������������

������

����������� The pattern to be matched.

������� The entire ��-part of the rule. Useful in advanced mod-

eling applications. The default implementation ignores

this argument, but rule compilation, where the way to

compile one trigger depends on what other triggers are

present, uses the context.

������������ A function passed in which can determine whether a

new rule trigger is necessary.

Takes a predication, a context, and a continuation and applies the continua-

tion to all database predications that match the predication argument, with-

out regard to truth value.

Its general use is for when rules are defined after some facts have already

been entered into the database with joshua:tell. Newly installed rules may

wish to trigger from those facts.

It is fairly rare that a user, even doing modelling, will need to define this

method. The default definition, which may be inherited from

joshua:default-protocol-implementation-model, simply uses the predica-

tion’s joshua:ask-data method; the user will only need to define

joshua:prefetch-forward-rule-matches if they do not define an joshua:ask-

data method.�

joshua:print-query� ������������������������ &optional��������

standard-output�

A convenience function for use in an joshua:ask continuation.

joshua:print-query displays the joshua:ask query with its variables in-

stantiated.

221
February 2018 Joshua Language Dictionary

���������������� The backward support supplied to the joshua:ask con-

tinuation.

������ A stream to which to output the information. Defaults

to *standard-output*.

Examples:

(define-predicate type-of (object type))

(tell [type-of Iliad epic])

(ask [type-of ?book epic] #’print-query)

[TYPE-OF ILIAD EPIC]

If you want to use the instantiated query in ways other than printing it, ex-

tract it yourself using the accessor function joshua:ask-query.

Related Functions:

joshua:ask

joshua:graph-query-results

joshua:print-query-results

joshua:say-query

See the section "Querying the Database" in ����������������������������.�

joshua:print-query-results� ������������������������ &key���������

standard-output������������#’prin1�
A convenience function for use in an joshua:ask continuation.

joshua:print-query-results displays and interprets the support information

in the joshua:ask continuation argument, ����������������; that is, it tells

you what queries succeeded, and why.

��������-������� A list containing the satisfied query and information

about its support.

������ A stream to which to output the information. Default is

standard-output.

������� A function of two arguments, like prin1, that is used to

print elements of the support. prin1 is the default, but

another reasonable value to give is joshua:say.

Use joshua:graph-query-results to see a graph of the information provided

by joshua:print-query-results.

The accessor function joshua:ask-derivation extracts the support portion of

���������������� but does not interpret the information.

For comparison, we use the same examples to illustrate all three functions.

Examples:

222
Joshua Language Dictionary February 2018

The first example shows a query satisfied by database lookup. Both the in-

stantiated query and its support (here the matching database predication)

are printed.

(define-predicate type-of (object type))

(tell [type-of Iliad epic])

(ask [type-of ?book epic] #’print-query-results)

[TYPE-OF ILIAD EPIC] succeeded: [TYPE-OF ILIAD EPIC] was TRUE in the database

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the definitions.

(define-predicate edible (object))

(define-predicate is-food (object))

(define-predicate contains (object substance))

(define-predicate sweet (object))

(defrule food? (:backward)

 if [edible ?object]

 then [is-food ?object])

(defrule sweet? (:backward)

 if [or [contains ?object chocolate]

 [contains ?object sugar]

 [contains ?object honey]]

 then [sweet ?object])

(defrule dessert? (:backward)

 if [and [is-food ?object]

 [sweet ?object]]

 then [type-of ?object dessert])

;tell some sticky facts

(tell [edible chocolate-coated-ants])

(tell [contains chocolate-coated-ants honey])�

Now we joshua:ask what foods qualify as desserts and why. A single food,

chocolate-covered-ants, succeeded. The display shows the instantiated

query, explaining why it succeeded: support is traced backward from rule

dessert? that satisfied the query, through the support used to satisfy parts

of the rule body.

223
February 2018 Joshua Language Dictionary

 (ask [type-of ?object dessert] #’print-query-results)

[TYPE-OF CHOCOLATE-COATED-ANTS DESSERT] succeeded

 It was derived from rule DESSERT?

 [IS-FOOD CHOCOLATE-COATED-ANTS] succeeded

 It was derived from rule FOOD?

 [EDIBLE CHOCOLATE-COATED-ANTS] succeeded

 [EDIBLE CHOCOLATE-COATED-ANTS] was true in the database

 [SWEET CHOCOLATE-COATED-ANTS] succeeded

 It was derived from rule SWEET?

 [CONTAINS CHOCOLATE-COATED-ANTS HONEY] succeeded

 [CONTAINS CHOCOLATE-COATED-ANTS HONEY] was true in the database

Related Functions:

joshua:ask

joshua:graph-query-results

joshua:print-query

joshua:say-query

See the section "Querying the Database" in ������ ����� �� ����� ������.

See the section "Explaining Backward Chaining Support" in ������ ����� ��

������������.�

joshua:provable� ���������������������������

Checks if ����������� is known to be joshua:*true*, (or if it is known to be

joshua:*false*, if [not ...] is wrapped around it.)

This is a modal operator. [provable ...] and [not [provable ...]] corre-

spond to the "box" and "diamond" operators of some modal logics.

����������� A Joshua predication pattern to match.

The query: (ask [provable [foo ?x]] #’ ...)

Succeeds when: [foo ?x] would succeed

The query: (ask [provable [not [foo ?x]] #’ ...)

Succeeds when: [not [foo ?x]] would succeed

If successful, joshua:provable calls the continuation on the instantiated

query.

Examples:

Let’s define a predicate, shape-of, joshua:tell some statements about the

shape of objects, and then display the database.

(define-predicate shape-of (object shape))

(tell [and [shape-of door oval]

 [not [shape-of leaf pointed]]])

[AND [SHAPE-OF DOOR OVAL] [NOT [SHAPE-OF LEAF POINTED]]]

224
Joshua Language Dictionary February 2018

 Show Joshua Database

True things

 [SHAPE-OF DOOR OVAL]

False things

 [SHAPE-OF LEAF POINTED]]�

Now we can check which statements about shapes are joshua:*true*, and

which are joshua:*false*.

;; Check if the proposition is joshua:*true*

(ask [provable [shape-of door oval]] #’print-query)

[PROVABLE [SHAPE-OF DOOR OVAL]]

;; Comparing provable to known

(ask [provable [shape-of leaf pointed]] #’print-query)

 ;this fails

(ask [known [shape-of leaf pointed]] #’print-query)

[KNOWN [SHAPE-OF LEAF POINTED]]

;; Check if the proposition is joshua:*false*

 (ask [provable [not [shape-of�leaf�pointed]]] #’print-query)

[PROVABLE [NOT [SHAPE-OF LEAF POINTED]]]

 (ask [provable [not [shape-of ?object ?shape]]] #’print-query)

[PROVABLE [NOT [SHAPE-OF LEAF POINTED]]]

;; Comparing provable to known

(ask [provable [not [shape-of door oval]]] #’print-query)

 ;this fails

(ask [known [not [shape-of door oval]]] #’print-query)

[KNOWN [NOT [SHAPE-OF DOOR OVAL]]]�

It is more interesting to ask if something is ��� provable.

The query: (ask [not [provable [foo ?x]]] #’ ...)

Succeeds when: [foo ?x] would have failed�

;; Check if we don’t know the proposition to be joshua:*true*

 (ask [not [provable [shape-of starfish round]]] #’print-query)

�����[PROVABLE [SHAPE-OF STARFISH ROUND]]�

;; Check if we don’t know the proposition to be joshua:*false*

 (ask [not [provable [not [shape-of hill conical]]]] #’print-query)

�����[PROVABLE [NOT [SHAPE-OF HILL CONICAL]]]�

joshua:provable can also be used in backward rules.

Related Predicate:

joshua:known�

225
February 2018 Joshua Language Dictionary

Reset Joshua Tracing Command

Resets the tracing options to the original defaults.

��������������� Which type of tracing to reset. The possible types are forward

rules, backward rules, predications, TMS operations and All.

��������������� Whether to reset the traced and stepped events for the ���� ��

��������as well.

The Reset Joshua Tracing command sets the Joshua tracing options back to their

initial defaults. This command is useful if you have been selectively tracing rules

or predications and would like to go back to tracing all rules or all predications.

The ������� ������ option comes in handy when you have been tracing or stepping

particular events and would like to go back to just tracing the default events. This

command does not disable or enable tracing, it just affects which things are

traced.

Related Commands:

"Enable Joshua Tracing Command"
"Disable Joshua Tracing Command"�

joshua:remove-action� �����������������������������&optional�������:action�

This function is part of the Joshua object facility. It allows actions, which

were added to slots using joshua:add-action, to be removed from those

slots.�

~\\say\\ ����������� ����������������

A format directive that makes it easy to combine the use of joshua:say

with other kinds of formatted output. It takes one format-argument, the

predication to be joshua:say’d to the output stream.

Examples:

(format t "~&The registry of deeds says that ~\\say\\."

[frobozz Prospero 1616 remote-island])�

This would print the following sentence:

The registry of deeds says that PROSPERO was an owner of a frobozz

in 1616 at REMOTE-ISLAND.�

You can also use ~\\say\\ in other places format strings are used, for in-

stance prompt-and-accept:

(prompt-and-accept ’integer "For what values of ~S is it true that ~\\say\\?"

 ?x [Riemann-zeta 3 ?x])�

Related Functions:

joshua:say

See the section "Formatting Predications: the SAY Method" in ������ ����� �� ���

����������.

226
Joshua Language Dictionary February 2018

joshua:say� ������������������� &optional���������*standard-output*�

Prints out ����������� on ������, possibly in a way other than prin1 would.

This is good for printing the meaning of a predication in natural language,

as opposed to the predicate calculus notation in which programs are writ-

ten. However, you needn’t restrict your thinking about joshua:say to just

natural language. For example, joshua:say could present a predication as a

piece of graphics; see examples below. Judicious use of joshua:say methods

can make it easier to generate user interfaces.

It usually doesn’t matter what value the implementations of joshua:say re-

turn, since joshua:say is usually done for side-effect. The exception is that

if ������ is explicitly supplied as nil, the implementations should do what

format would do, that is, return a string if possible. (Graphical joshua:say

methods can’t do this.)

Examples:

(define-predicate frobozz (who when where) ()

 :destructure-into-instance-variables)

(define-predicate-method (say frobozz) (&optional (stream *standard-output*))

 (format stream "~S was an owner of a frobozz in ~S at ~S." who when where))

(say [frobozz Prospero 1616 remote-island])

prints the sentence:

PROSPERO was an owner of a frobozz in 1616 at REMOTE-ISLAND.

An example using graphics would be:

(define-predicate-method (say frobozz) (&optional (stream *standard-output*))

 (dw:with-output-as-presentation

 (:stream stream :object self :type (type-of self))

 (format-graph-from-root (list who (list where) (list when))

 #’(lambda (x s) (prin1 (car x) s))

 #’cdr

 :stream stream)))�

The joshua:say method now draws a graph representing Prospero’s rela-

tionship to his property and the time at which he owned it.

Related Functions:

"~\\Say\\"

See the section "Formatting Predications: the SAY Method" in ������ �����

���������������.�

227
February 2018 Joshua Language Dictionary

joshua:say� ������&optional���������*standard-output*��of

joshua:predication

The default implementation of joshua:say; It just prints ����������� in the

same way prin1 would, that is, using the bracket syntax. Its purpose is to

make sure all predications support the say operation, even if only in a triv-

ial fashion.�

joshua:say-query� ������������������������ &optional���������*standard-

output*�

A convenience function for use in an joshua:ask continuation. joshua:say-

query displays the instantiated query using a user-defined joshua:say

method if available, or the default joshua:say method. The latter simply

prints the instantiated query.

���������������� The support supplied to the joshua:ask continuation.

������ A stream to which to output the information. The de-

fault is *standard-output*.

Examples:

;; say-query with default say method

(define-predicate loves (person object))

(tell [loves Bob chocolate])

(ask [loves Bob ?x] #’say-query)

 [LOVES BOB CHOCOLATE]

;; say-query with user-defined say method

(define-predicate type-of (object type))

(define-predicate-method (say type-of) (&optional (stream *standard-output*))

 (with-statement-destructured (object type) ()

 (format stream

 "~% The ~A is an example of the ~A literary form." object type)))

(tell [type-of Iliad epic])

[TYPE-OF ILIAD EPIC]

(ask [type-of ?book epic] #’say-query)

 The ILIAD is an example of the EPIC literary form.

To use the instantiated query in some other way rather than joshua:saying

it, extract it from the continuation argument using the accessor function

joshua:ask-query, and interpret the information.

Related Functions:

228
Joshua Language Dictionary February 2018

joshua:ask

joshua:graph-query-results

joshua:print-query

joshua:print-query-results

See the section "Querying the Database" in ����������������������������.�

Show Joshua Database Command

Displays the contents of the Database, or a subset of the contents matching a cer-

tain pattern.

�������� ������� Specifies the predication patterns to display. The default is the

entire database.

The display groups predications under the headings True and False, for predica-

tions with a truth value of joshua:*true* and joshua:*false*, respectively.

When specifying a pattern you can further limit the display to patterns with either

truth value.

Examples:

 Show Joshua Database (matching pattern [default All]) All

True things ; indication of truth value is in the heading

 [DREAMS-IN SPANISH LUCINDA] [NATIVE-SPEAKER-OF SPANISH LUCINDA]

 [DREAMS-IN SUMERIAN DR-PARCHMENT] [NATIVE-SPEAKER-OF GERMAN DR-PARCHMENT]

 [COUNTS-IN SPANISH LUCINDA]

False things

 [COUNTS-IN GERMAN HENRY] ; indication of truth value is in the heading

 Show Joshua Database (matching pattern [default All]) [dreams-in ?x ?y]

 (opposite truth-value too? [default Yes]) Yes

True things

 [DREAMS-IN SPANISH LUCINDA]

 [DREAMS-IN SUMERIAN DR-PARCHMENT]

False things

 None

 �

See the section "Entering and Displaying Predications in the Database" in ������

���������������������.

Show Joshua Predicates Command

Shows the currently defined Joshua predicates.

:������� ������ Whether to include predicates that are used as base flavors for

building other predicates in the output.

:�������� Show only predicates whose names contain a substring or sub-

strings.

229
February 2018 Joshua Language Dictionary

:������ ����������� Where to display the information.

:�������� Only show predicates in the specified package or packages.

Supply a value of All to see all the currently defined Joshua

predicates. Unless you otherwise specify the package, you see

only the predicates defined in the current package.

:������ ��������� �������

Whether to include predicates that are inherited by the pack-

ages specified in :��������.

:������ Show only the predicates that are defined in a particular sys-

tem.

The Show Joshua Predicates command provides a convenient tool for browsing

through all the predicates defined in the current world. The output is a table of

predicate names and arguments. There are a number of mouse behaviors defined

for the predicate names that this command displays. These can be seen by mous-

ing right on the name.

Show Joshua Predicates :Packages TME

TME:ABNORMAL (WHO FOR-WHAT) TME:LOVES (LOVER LOVEE)

TME:BIRD (BOID) TME:ONE-PER-ROW-OR-COL (R-OR-C INDEX)

TME:FLY (BOID) TME:PENGUIN (BOID)

IS-EXAMPLE-OF (NAME TYPE) PROVABLE (PROPOSITION)

TME:JEALOUS (WHO) TME:QUEEN (ROW COL)

TME:KILLS (KILLER VICTIM) TME:TRAGEDY (EVENT)

KNOWN (PROPOSITION)�

Related Commands:

"Show Joshua Rules Command"
"Show Joshua Tracing Command"

Show Joshua Rules Command

Displays the currently defined rules.

:��������� �� Show rules with one or more triggers that unify with the spec-

ified predication.

:�������� Show rules with names containing one or more substrings.

:������ ����������� Where to display the output from this command.

:�������� Show the rules defined in which package or packages. This de-

faults to the current package.

:������ ��������� �������

Include rules that are inherited by ��������.

:������ Show only the rules defined in a particular system.

:���� Show only backward or forward rules. By default the command

shows both backward and forward rules.�

230
Joshua Language Dictionary February 2018

The Show Joshua Rules command provides a tool for browsing through all the

Joshua rules. It displays a table of all the rules satisfying the given arguments.

Mousing middle on a rule name displays the most recent definition of that rule.

Example:

Show Joshua Rules :Triggered By [tme:loves ? ?] :Packages All

Forward Rules:

JEALOUSY LOVE-IN-IDLENESS ONLY-ONE-LOVE QUALITY-NOT-QUANTITY

UNREQUITED-LOVE

The above example lists all of the rules that could be triggered by a predication of

the form [tme:loves ? ?].

Related Commands:

"Show Joshua Predicates Command"
"Show Joshua Tracing Command"

Show Joshua Tracing Command

Shows information about Joshua tracing.

������� ������� Which type of tracing to describe. It can be one of forward

rules, backward rules, predications, TMS operations, or all.

:������ ����������� Where to display the output from this command.

The Show Joshua Tracing command describes the current state of Joshua tracing,

saying whether each ���� �� ������� is on or off. For each active ���� �� �������,

Show Joshua Tracing prints out information about the current options and traced

events.

Example:

Show Joshua Tracing (type of tracing) All

231
February 2018 Joshua Language Dictionary

Related Commands:

"Show Joshua Rules Command"
"Show Joshua Predicates Command"�

Show Rule Definition Command

Shows the latest definition of a Joshua rule.

���� Show the definition of which rule or rules.

:���� This argument controls the behavior of the command when the

desired rule definition is not currently in an editor buffer. If

you enter Yes, the command loads the definition into an editor

buffer. If you enter No, it does not. The value of ���� defaults

to Query, meaning the command should ask you before loading

any file into the editor.

:������ ����������� Where to display the output from this command.

The Show Rule Definition command allows you to see the definition of a Joshua

rule in a Lisp Listener without having to enter the editor. When the rule defini-

tion can be found in the editor the command displays the latest version. Other-

wise, depending on the value of ����, the command offers to read in the latest

definition from the file containing the rule definition.

Example:

Show Rule Definition JEALOUSY

Rule Jealousy:

(defrule jealousy (:forward :importance 3)

 IF [and [jealous ?x]

 [loves ?x ?y]

 [loves ?z ?y]

 (different-objects ?x ?z)]

 THEN [kills ?x ?z])

joshua:slot-current-predication� ��������������������

This function is part of the Joshua object facility. It finds the predication

expressing the current object-attribute-value triple represented by the slot.�

joshua:slot-current-value� ��������������������

This function is part of the Joshua object facility. It finds the current value

of a slot.

Note that the meaning of this value may be dependent upon the type of a

slot: for instance in the case of set-valued slots, the value may be a list

representing the set.�

joshua:slot-my-object� ��������������������

This function is part of the Joshua object facility. Given a slot, it finds the

object that owns that slot.�

232
Joshua Language Dictionary February 2018

joshua:slot-value-mixin� ������

This flavor-mixin is part of the Joshua object facility. It may be used to add

slot-value behaviour, like that of the default slot-value predicate

joshua:value-of, to predicate models defined by the user.�

joshua:succeed� ��������&optional��������

Joshua is a success-continuation-passing language. In most places, calling

the continuation means "go ahead with the rest of the computation". Based

on context, the form joshua:succeed finds the continuation and calls it ac-

cordingly.

You can use joshua:succeed within Lisp code embedded in:

• The ���part of rules (in Lisp code in forward rules, and in multiply-

succeeding Lisp forms of backward rules)

• The body of a joshua:defquestion�

It makes no sense to call joshua:succeed elsewhere.

The optional ������� argument allows the Lisp code to specify the deriva-

tion information for the query.

Example:

(define-predicate good-to-read (book))

(defparameter *books* ’(decameron canterbury-tales gargantua-and-pantagruel

 tom-jones catch-22))

(defrule reading-list (:backward)

 if (typecase ?candidate-book

 (unbound-logic-variable

 (loop for book in *books*

 doing (with-unification

 (unify ?candidate-book book)

 (succeed ’Humor-101-reading-list))))

 (otherwise

 (when (member ?candidate-book *books*)

 (succeed (succeed ’Humor-101-reading-list)))))

 then [good-to-read ?candidate-book])

233
February 2018 Joshua Language Dictionary

(ask [good-to-read ?x] #’print-query-results)

[GOOD-TO-READ DECAMERON] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ CANTERBURY-TALES] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ GARGANTUA-AND-PANTAGRUEL] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ TOM-JONES] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ CATCH-22] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

Related Functions:

joshua:unify

joshua:with-unification�

joshua:support� ���������������������������� &optional�������

Examines the TMS justification structures currently supporting belief in

��������������������, tracing them back to primitively justified predications

(i.e. to those whose support does not depend on any other predications). Re-

turns a list of the primitive support (assumptions and premises). ������, if

provided, is a predicate to be applied to the support. Only those elements of

the primitive support which satisfy the predicate are collected.

�������������������� A predication object that is in the database. Must be

the actual database object, and not a copy of it.

������ If ������ is not supplied the value default to nil which

means that all the primitive support should be col-

lected and returned. Otherwise, ������ should be a

function of one argument that returns non-nil on the

support you want. (For example, you might want to

look at just the assumption support of ���������

�����������.) When the �������������������� argument

is based on a TMS, this function is passed a justifica-

tion as its argument. It may examine the justification

using joshua:destructure-justification.�

Examples:

Prospero, curious about his daughter’s relationship with Caliban, might do:

234
Joshua Language Dictionary February 2018

(ask [is-friend-of Miranda ?]

 #’(lambda (backward-support)

 (format t "~&The support for ~S is ~S."

 (ask-database-predication backward-support)

 (support (ask-database-predication backward-support))))

 :do-backward-rules nil)�

If he wanted to see just the assumptions underlying it, he would do:

(ask [is-friend-of Miranda ?]

 #’(lambda (backward-support)

 (format t "~&The support for ~S is ~S."

 (ask-database-predication backward-support)

 (support (ask-database-predication backward-support)

 #’(lambda (justification)

 (multiple-value-bind (ignore mnemonic)

 (eq mnemonic :assumption))))))

 :do-backward-rules nil)�

See the section "The Truth Maintenance Protocol", page 54.�

joshua:support� ������&optional��������of�joshua:default-protocol-

implementation-model

This is the default implementation the the joshua:support protocol func-

tion. It returns nil. Predications that do provide a TMS should be based on

joshua:basic-tms-mixin, which defines a joshua:support method that pro-

vides real information.�

joshua:support� ������&optional��������of�joshua:basic-tms-mixin

This is the default implementation of the joshua:support protocol function

for all models that implement a TMS. Any TMS implementation may use

this method simply by mixing in the joshua:basic-tms-mixin flavor. If the

TMS implementor needs to provide functionality not provided by this

method, that can be done by providing a method for joshua:support with

the model that implements the new TMS. Most users will never need to

know about this.�

joshua:tell� ������������������� &key���������������

Puts a predication into the virtual database.

Note: joshua:tell is a macro, and as such it cannot be used as an argument

to the function funcall.

����������� should be thought of as a pattern argument, not as the actual

data in the database. If something already exists in the database that is a

joshua:variant of �����������, the returned (canonical) value will not be eq

to �����������. Thus joshua:tell serves as an interner for �����������, that

is, it gives you the canonical copy in the database, creating it if necessary.

If ����������� is not already in the database, the returned values are ������

������ and the symbol t.

235
February 2018 Joshua Language Dictionary

If something already exists in the database that is a joshua:variant of

�����������, ����������� is not put into the database, since that would be

duplication. Instead, the canonical version found in the database is re-

turned, along with the symbol nil.

������������� can be one of the following:

• nil, in which case a default justification is used. If the joshua:tell occurs

outside a rule, the default justification is :premise. If the joshua:tell is

inside a rule, the default justification includes the rule name and the

current support set.

• A symbol. A justification which is a symbol means that the truth-value

of ����������� does not depend on that of any other predication; we say

that ����������� has a ��������� �������������, in such a case. One primi-

tive justification is specially treated by the LTMS provide with Joshua,

namely :premise. :premise justifications will never be removed by the

LTMS without querying the user. Other primitive justifications are treat-

ed as assumptions that can be removed by the LTMS if necessary to re-

solve a contradiction.

• A List of Four fields. These are identical to the arguments to the

Joshua protocol function joshua:justify, namely a ��������, ������������,

������������� and ���������������. These fields are used (or discarded)

by whatever TMS is present.�

The database into which ����������� is put depends on the data model of its

predicate. The default is the discrimination net.

Examples:

(tell [is-magician Prospero])

(tell [not [is-magician Caliban])

(tell [is-daughter-of Miranda Prospero])

(tell [is-servant-of Caliban Prospero] :justification :premise)

(tell [is-friend-of Miranda Caliban] :justification :assumption)

 ;later retracted!

(tell ‘[is-exiled-from Prospero ,(find-exile-country ’Prospero)])

Note:

Chances are that you seldom want to define a method that takes over the

entire functionality of joshua:tell. It’s more likely that you would want to

define a method for one of the generic functions it calls, such as�

joshua:insert, joshua:justify, or joshua:map-over-forward-rule-triggers.

Related Functions:

236
Joshua Language Dictionary February 2018

joshua:untell

joshua:clear

joshua:ask

joshua:justify

See the section "Entering and Displaying Predications in the Database" in

����������������������������.

See the section "The Joshua Database Protocol", page 8.

See the section "Customizing the Data Index", page 81.

See the section "Truth Maintenance Facilities", page 53.�

joshua:tms-bits� ���������������������������

����������� Any predication

Predications contain a word of flag bits for use by internals of the system.

Several of these flags are reserved for use by TMS implementors. This

function retrieves these bits from a predication. The meaning of the field of

bits returned is defined by the specific TMS.

See the section "The Truth Maintenance Protocol", page 54.�

joshua:tms-contradiction� ������

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables. Joshua provides a default handler for this condition which examines

the primitive support underlying the contradiction.

If the primitive support of the contradiction contains non-premises, then the

default handler offers the user the opportunity to retract one or more of

these. This will continue until the contradiction is resolved. If the primitive

support of the contradiction contains a single non-premise, then the default

handler automatically retracts that predication without interacting with the

user.

The default handler can be overridden by using condition-bind to bind the

joshua:tms-contradiction condition.

If the primitive support contains only premises then the situation is regard-

ed as more serious since premises are not supposed to be retraced by a

TMS automatically. In this case the default handler signals a ���� �������

������� condition. See the generic function joshua:tms-contradiction-hard-

contradiction-flavor, page 237. The hard contradiction condition is handled

by a default handler which offers the user the opportunity to retract a

member of the premise support of the contradiction.

237
February 2018 Joshua Language Dictionary

This default handler can be overridden by using condition-bind to bind the

joshua:tms-hard-contradiction condition.

Specific TMS’s may provide their own contradiction conditions by defining a

flavor which mixes in the joshua:tms-contradiction flavor.

Users may also develop a more elaborate contradiction signalling mecha-

nism by defining conditions of their own which mix in the joshua:tms-

contradiction flavor. Specific condition handlers for these conditions may

also be defined, allowing a fine-grained control of the backtracking process.

See the section "Signalling Conditions" in ��������� ������ ���� ��������

���� ����������. See the section "Signalling Contradictions and Managing

Backtracking", page 57.�

joshua:tms-contradiction-contradictory-predication� ��������������������

�������������

����������������� A condition object built on the flavor joshua:tms-

contradiction. �

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables. This generic function accesses an instance variable which contains

the predication which initiated backtracking. A TMS may choose not to pro-

vide any information in this field if it detects the contradiction a part of a

global process which does not allow the contradiction to be isolated to an

individual predication.

See the section "Signalling Contradictions and Managing Backtracking",
page 57.�

joshua:tms-contradiction-hard-contradiction-flavor� ��������������������

�������������

����������������� A condition object built on the flavor joshua:tms-

contradiction.

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables. This generic function returns the name of the hard contradiction fla-

vor associated with �����������������. This is the condition which should be

signalled if the current contradiction includes only premises in its primitive

support. See the flavor joshua:tms-hard-contradiction, page 239. See the

section "Signalling Contradictions and Managing Backtracking", page 57.�

238
Joshua Language Dictionary February 2018

joshua:tms-contradiction-justification� ���������������������������������

����������������� A condition object built on the flavor joshua:tms-

contradiction. �

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables.

This generic function accesses an instance variable which contains the jus-

tification that initiated backtracking. If a specific predication initiated

backtracking, then this function returns the justification of that predication.

See the generic function joshua:tms-contradiction-contradictory-

predication, page 237. However, a TMS (e.g. Joshua’s LTMS) may detect

the contradiction as part of a global process which localizes the contradic-

tion not to a predication but to a justification which cannot be satisfied. In

such a case, this generic function returns the unsatisfiable justification, but

the generic function joshua:tms-contradiction-contradictory-predication

returns nil.

See the section "Signalling Contradictions and Managing Backtracking",
page 57.�

joshua:tms-contradiction-non-premises� ���������������������������������

����������������� A condition object built on the flavor joshua:tms-

contradiction.�

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables. This generic function accesses an instance variable which contains a

subset of the primitive-support underlying a contradiction. The subset in-

cludes all elements of the primitive-support which the TMS regards as re-

tractable, that is, everything except the premises.

See the section "Signalling Contradictions and Managing Backtracking",
page 57.�

joshua:tms-contradiction-premises� ���������������������������������

����������������� A condition object built on the flavor joshua:tms-

contradiction.�

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

239
February 2018 Joshua Language Dictionary

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables. This generic function accesses an instance variable which contains a

subset of the primitive-support underlying a contradiction. The subset in-

cludes all elements of the primitive-support which the TMS regards as not

retractable, that is, the premises.

See the section "Signalling Contradictions and Managing Backtracking",
page 57.�

joshua:tms-contradiction-support� ���������������������������������

����������������� A condition object built on the flavor joshua:tms-

contradiction.�

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables. This generic function accesses the instance variable which contains

all the primitive support underlying a contradiction.

See the section "Signalling Contradictions and Managing Backtracking",
page 57.�

joshua:tms-hard-contradiction� ������

This flavor is the base flavor upon which to build condition objects for

���� ��������������. A hard contradiction is signalled when there is a con-

tradiction whose primitive support includes only premises (i.e. primitive

support which the TMS is not free to retract automatically).

A TMS initiates backtracking in Joshua by signalling a condition which is

based upon the joshua:tms-contradiction flavor. Instances of this flavor in-

clude several instance variables containing information useful to the default

condition handler or to any handler which attempts to conduct intelligent

backtracking. There are accessors defined for each of these instance vari-

ables.

A hard contradiction condition is not normally signalled directly by a TMS

or a user’s program. They should instead signal a condition built upon

joshua:tms-contradiction. The default handler for this condition will, in

turn, signal a hard contradiction if there are only premises in the primitive

support. To do this, the handler needs to know the name of the hard con-

tradiction flavor corresponding to the contradiction condition signalled; this

information is provided by the generic function ju::hard-contradiction-

flavor which must be implemented by any flavor built upon joshua:tms-

contradiction.

240
Joshua Language Dictionary February 2018

See the section "Signalling Contradictions and Managing Backtracking",
page 57.�

joshua:*true*� ��������

A named constant used by Joshua to denote a truth value of true. You can

compare truth values using eql.

Related Topics:

joshua:*false*

joshua:*unknown*

joshua:*contradictory*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values" in ����������������������������.�

joshua:truth-value� �����������������

This type provides a convenient way to accept and present truth values. It

will parse the truth-value name and return the integer value for that truth-

value. When presenting truth-values it will present the numeric truth value

as one of true, false, unknown, or contradictory.

Examples:

(accept ’truth-value)

Enter a truth value: true

1

TRUTH-VALUE

(present 2 ’truth-value)false

#<DW::DISPLAYED-PRESENTATION 2 JOSHUA:TRUTH-VALUE 513174521>�

Related Function:

joshua:predication-truth-value�

joshua:type-of-mixin� ������

This flavor-mixin is part of the Joshua object facility. It may be used to add

object-type behaviour, like that of the default object-type predicate

joshua:object-type-of, to predicate models defined by the user.

joshua:type-of-mixin inherits from joshua:tell-error-model and

joshua:ask-data-only-mixin.

joshua:undefine-predicate� ���������

"Undoes" a predicate definition. Predications built with this definition re-

main in the world, but an attempt to do almost anything to them results in

an error.

Example:

(define-predicate fruit (a-fruit))

(undefine-predicate ’fruit)

241
February 2018 Joshua Language Dictionary

You can perform the same operation from the Zmacs editor. Place your cur-

sor on the predicate definition to be removed and use the command ���

Kill Definition. The system asks for confirmation in the minibuffer; then it

offers you the options of removing the definition from the editor buffer it-

self, and of inserting the joshua:undefine-predicate command into the edi-

tor buffer.

Example:

1. Interaction During m-X Kill Definition

2. Zmacs Buffer After Completion of m-X Kill Definition

Related Functions:

joshua:define-predicate

"Zmacs Command: Kill Definition"�

joshua:undefine-predicate-method� �������������������

Removes the method defined for ����������� from the world.

����������� A Joshua protocol method specifier of the form �������

������������������� &rest���������.

The editor command m-X Kill Definition is an easy way to remove a predi-

cate method for a method defined in an editor buffer.

Related function:

joshua:define-predicate-method�

242
Joshua Language Dictionary February 2018

joshua:undefine-predicate-model� ������������

Removes the predicate named ���� from the world.

���� The name of a predicate model.

The editor command ��� Kill Definition is an easy way to remove a predi-

cate model for a model defined in an editor buffer.

Related function:

joshua:define-predicate-model�

joshua:undefquestion� ������������

Removes a question definition from the system.

���� The name of the question

(define-predicate foo (something something-else))

(defquestion question1 (:backward) [foo 1 ?x])

 (ask [foo 1 2] #’print-query :do-questions t)

Is it true that "[FOO 1 2]"? [default No]: Yes

[FOO 1 2]

 (undefquestion ’question1)

QUESTION1

 (ask [foo 1 2] #’print-query :do-questions t)

To kill a question definition from a Zmacs buffer, use the command ���

Kill Definition. For a sample interaction with the command: See the macro

joshua:undefine-predicate, page 240.

Related Functions:

joshua:defquestion

"Zmacs Command: Kill Definition"

See the section "Asking the User Questions" in ������ ����� �� �����

������.�

joshua:undefrule� �����������������

Removes a rule definition so that the rule cannot execute.

You can also remove a rule from a Zmacs buffer with ��� Kill Definition.

For a sample interaction with the command: See the macro

joshua:undefine-predicate, page 240.

��������� The name of the rule to be removed.�

Examples:

243
February 2018 Joshua Language Dictionary

(defrule parched (:forward)

 if [condition-of plant-soil dry]

 then [needs plant-soil water])

(undefrule ’parched)

Modeling Note:

joshua:undefrule calls one of the generic functions joshua:delete-

forward-rule-trigger or joshua:delete-backward-rule-trigger which re-

moves the rule’s trigger from its storage place, so that it is no longer

found by the trigger locating and trigger mapping functions.

See the section "The Contract of the Trigger Deleting Functions", page

38.�

Related Functions:

joshua:defrule

joshua:clear

"Clear Joshua Database Command"
"Zmacs Command: Kill Definition"

See the section "Rules and Inference" in ����������������������������.�

joshua:unify� �����������������������

If ������� and ������� unify, does so, while side-effecting any logic variables

for the duration of the unification.

������� A pattern in Joshua, that is, a predication containing

other predications, lists, symbols, numbers, or logic

variables.

������� Another pattern.�

Pattern matching underlies the inferencing process. In forward chaining,

Joshua matches rule trigger patterns with database predications. In back-

ward chaining, it matches goals with database predications and with rule

and question trigger patterns.

Two patterns containing no logic variables ����� if they are structurally

equivalent (if they "look the same").

Two patterns containing logic variables ����� when one can substitute val-

ues for the variables so that both patterns become structurally equivalent.

The process of doing so is called �����������.

joshua:unify is useful for assigning values to logic variables within Lisp

code in rule bodies. If the expressions are unifiable, the appropriate substi-

tutions are made and rule execution continues.

If the expressions are not unifiable, rule execution fails. "Fails" means that

it throws to the nearest (dynamically) containing joshua:with-unification

clause.

244
Joshua Language Dictionary February 2018

Always wrap the macro joshua:with-unification around joshua:unify (or

calls to functions that call joshua:unify) to establish the scope within

which the substitutions remain in effect.

The Joshua unifier does what is called an ����� �����, that is, prevents the

formation of certain circular structures by refusing to unify a logic variable

with a structure in which it occurs. For example, if you tried to unify ?x

with [f ?x], you would get something whose printed representation would

look (partially) like this:

[f [f [f [f [f [f ...�

This is exactly the same thing that happens when you make certain conses

point at themselves you get circular lists.

To see how this might happen, consider example 3 below.

Examples:

Example 1:

(define-predicate yearly-salary (employee salary))

(define-predicate balance-due (person balance))

(define-predicate deny-credit (person))

(defrule test-1 (:forward)

 if [and [balance-due ?applicant ?balance]

 [yearly-salary ?applicant ?salary]

 (unify ?cash-flow (- ?salary ?balance))

 (≤ ?cash-flow ?balance)]
 then [and [deny-credit ?applicant]

 (format t "~% Sorry, ~S, your cash-flow of ~S is insufficient."

 ?applicant ?cash-flow)])

(defun test-it ()

 (clear)

 (tell [yearly-salary Fred 20000])

 (tell [balance-due Fred 15000])

 (tell [yearly-salary George 200000])

 (tell [balance-due George 15000])

 ’done-testing)

TEST-IT

(test-it)

Sorry, FRED, your cash flow of 5000 is insufficient.

DONE-TESTING

245
February 2018 Joshua Language Dictionary

 Show Joshua Database

True things

 [BALANCE-DUE FRED 15000]

 [YEARLY-SALARY FRED 20000]

 [YEARLY-SALARY GEORGE 200000]

 [BALANCE-DUE GEORGE 15000]

 [DENY-CREDIT FRED] ;Inference added to database

False things

 None

Example 2:

(with-unbound-logic-variables (x)

 (let ((p1 ‘[foo ,x])

 (p2 [foo 1]))

 (with-unification

 (unify p1 p2)

 ; If p1 and p2 don’t unify, the next

 ; expression is not executed

 (format t "~&The value of x is ~s." x))))

The value of x is 1.

NIL �

Example 3 shows a case where the occur-check feature makes the unifica-

tion fail.

Example 3:

(define-predicate f (arg))

(define-predicate g (arg1 arg2))

(defun test-occur ()

 (with-unbound-logic-variables (x y)

 (with-unification

 (unify ‘[g ,x ,x] ‘[g ,y [f ,y]])

 ;; if you get here, print Y and return

 (format t "~&You blew it. Y is now circular: ~S" y)

 (return-from test-occur :loser))

 ;; if you got here, the unification failed

 :occur-check-forbids))

(test-occur)

:OCCUR-CHECK-FORBIDS �

This function attempts to unify [g ?x ?x] with [g ?y [f ?y]]. If it unifies,

the function prints an abusive message and returns the symbol :loser. If

the unification fails, it returns the symbol :occur-check-forbids.

Let’s follow the unification and see what happens:

246
Joshua Language Dictionary February 2018

• The predicates in both places are g, so the unifier goes on to inspect the

arguments.

• The first argument on the left is ?x and the first on the right is ?y. The

unifier unifies ?y and ?x, which we can write as the equation ?x = ?y.

• The next argument on the left is ?x and the next on the right is [f ?y].

Thus the unifier attempts to enforce the equation ?x = [f ?y].�

We thus have the two equations ?x = ?y and ?x = [f ?y]. Combining them,

we have the single equation ?y = [f ?y], whose only solution is to unify ?y

to a structure containing itself, that is, a predication that structurally re-

sembles a circular list: [f [f [f [f The unifier forbids this and fails.

When the unifier fails, it throws to the nearest containing joshua:with-

unification. Thus the function above returns :occur-check-forbids.

(test-occur) -> :occur-check-forbids

Why should Joshua attempt to avoid creating such circular structures,

though? (The check does have a cost in performance, which is why most

versions of Prolog won’t do it.) The answer is that if it were permitted,

certain incorrect inferences could be made. Here’s an example. Suppose we

have a predicate is-parent-of, which takes two people as arguments:

(define-predicate has-parent (kid parent))�

This means that parent is a parent of kid. We can then make the (unsur-

prising) statement that every person has a parent:

∀x ∃y : has-parent(x, y)�

or, in quantifier-free language,

[has-parent ?x (p ?x)]�

where p is the Skolem function for the existential variable y. (You can

think of it as a notation for finding the parent of its argument.)

Now try to unify the above statement with [has-parent ?z ?z]. In the ab-

sence of the occur check, we get the equations:

?z = ?x

and

?z = (p ?x)�

(This would end up with ?x = (p ?x) = (p (p (p (p ...). Now substitute for

the arguments in [p ?z ?z] using those equations, to get:

[has-parent (p ?x) ?x]�

which is just the original statement with the arguments reversed. ����� ��

�������. It is not justifiable to infer that has-parent is a symmetric predi-

cate. (Indeed, it is not, since no one is his own parent!) Thus, to be sound,

Joshua must forbid occur-check-type matches.

247
February 2018 Joshua Language Dictionary

Related Functions:

joshua:with-unification

joshua:succeed

See the section "Pattern Matching in Joshua: Unification" in ������ �����

���������������.�

joshua:uninsert� ������������������������������������

joshua:uninsert removes a single �������������������� that joshua:insert

had previously stored in the database. joshua:uninsert is a subroutine of

joshua:untell; other subroutines called by joshua:uninsert handle other as-

pects of removing up all vestiges of �������������������� from the Joshua

world.

Note that joshua:uninsert does not "search" for predications that match its

argument as joshua:ask does. joshua:uninsert only removes its "argument"
from the database, usually testing with eq.

See the section "The Joshua Database Protocol", page 8.�

joshua:unjustify� ������������������������������������ &optional��������������

Removes a justification from a predication in the database. For example, if

you joshua:tell ����������� and then later change your mind about it, you

can use joshua:unjustify to remove ������������� from the possible supports.

This does not automatically remove all support for ��������������������, as

there might be other justifications for it as well.

��������������������A predication object that is in the database. Must be

the actual database object, and not a copy of it.

������������� Specifies the justification to be removed. If �������������

is not supplied, implementations of joshua:unjustify

should default it to the justification currently being

used to support ��������������������.�

In general, joshua:unjustify is useful only if �������������������� is built

on some model that supports the TMS protocol.

In the default (non-TMS) Joshua model, joshua:unjustify just sets the

truth-value of its argument to joshua:*unknown*.

Examples:

When Prospero is reconciled to his countrymen, he will cast the following

spell:

(map-over-database-predications [is-exiled-from Prospero ?] #’unjustify)

�

(map-over-database-predications [is-exiled-from Miranda ?] #’unjustify)

�

(map-over-database-predications [is-friend-of Miranda Caliban] #’unjustify)�

joshua:unjustify and joshua:untell work in similar fashion, but with very

248
Joshua Language Dictionary February 2018

different results. See the generic function joshua:untell, page 248.

joshua:unjustify keeps the unjustified fact in the database. If the fact is

later given again to joshua:tell, it is not considered as a new predication,

but rather as a variant of an existing one, and no forward rules are run.

joshua:untell, on the other hand, actually removes the fact from the

database, freeing up storage, and causing the database to lose previous

knowledge of it; if the fact is later given to joshua:tell again, it is consid-

ered as a new fact, and forward rules are rerun.

Related Functions:

joshua:untell

joshua:uninsert

See the section "Revising Program Beliefs" in ����������������������������.

See the section "Retracting Predications with joshua:unjustify" in ������

���������������������.�

joshua:unjustify� ������&optional���������������of�ltms:ltms-mixin

The joshua:unjustify method for the LTMS. It removes an LTMS format

justification (i.e. a clause) from �����������. ������������� defaults to the cur-

rent justification. See the theory of the LTMS for details.�

joshua:*unknown*� ��������

A named constant used by Joshua to denote a truth value of

joshua:*unknown*. You can compare truth values using eql.

A predication is joshua:*unknown* when there is no valid reason that sup-

ports it. The predication may or may not remain in the database, but is

conceptually "not seen" until its truth value changes to joshua:*true* or

joshua:*false*.

Related Topics:

joshua:*true*

joshua:*false*

joshua:*contradictory*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values" in ����������������������������.�

joshua:untell� ������������������������������������

Removes a single predication from the database, clearing up storage space.

(This function is a dual of joshua:tell, which ���� a predication to the

database.)

��������������������A predication. Must be the actual predication object

that is in the database, not a copy of it.

joshua:untell first calls joshua:unjustify to make the fact no longer be-

249
February 2018 Joshua Language Dictionary

lieved (joshua:*unknown*), clears some internal caches, then calls

joshua:uninsert to remove the fact from the database. The surgical proper-

ties of joshua:untell in actually removing the predication as opposed to on-

ly removing its justification have two effects:

1. Some storage may become garbage-collectible. This can lower the vir-

tual-memory requirements of your program. Of course, you pay for it

by doing the extra work of joshua:uninsert.

2. The predication is no longer in the database. This means that if you

re-joshua:tell it, joshua:tell returns a second value of T, denoting it

has never seen this predication before; in consequence, joshua:tell will

also run forward rules. again.

(If, on the other hand, you merely joshua:unjustify the predication, then

joshua:tell it once again, joshua:tell returns a second value of nil, denot-

ing the predication already existed in the database; joshua:tell does not run

forward rules when an existing predication is retold.) However, if a TMS is

present, the consequences of running those rules will be brought back in.

Examples:

(define-predicate has-eye-color (creature color))

(tell [and [has-eye-color cat green]

 [has-eye-color rat black]])

 Show Joshua Database

True things

 [HAS-EYE-COLOR CAT GREEN]

 [HAS-EYE-COLOR RAT BLACK]

False things

 None

;; untell a predication by clicking left on it in the database display

 (untell �������������������������)

NIL�

 Show Joshua Database (matching pattern [default All]) All

True things

 [HAS-EYE-COLOR RAT BLACK]

False things

 None

250
Joshua Language Dictionary February 2018

;; untell using the predication object returned as the query support

 (ask [has-eye-color rat black]

 #’(lambda (backward-support)

 (untell (ask-database-predication backward-support)))

 :do-backward-rules nil)

 Show Joshua Database (matching pattern [default All]) All

True things

 None

False things

 None�

Note that in the last example above you probably should have used

(map-over-database-predications [has-eye-color rat black] #’untell)

Compare the following examples to see the difference between

joshua:untell and joshua:unjustify.

(define-predicate is-uncle-of (uncle niece-or-nephew) (ltms:ltms-predicate-model))

(define-predicate is-nephew-of (nephew uncle) (ltms:ltms-predicate-model))

(defrule notice-uncles (:forward)

 if [is-uncle-of ?uncle ?nephew]

 then [and (format t "~&I note that ~A is the uncle of ~A." ?uncle ?nephew)

 [is-nephew-of ?nephew ?uncle]))

First we’ll joshua:tell an avuncular fact, joshua:untell it, and then

re-joshua:tell it. After the first joshua:tell the fact fires the forward rule.

After the second joshua:tell the forward rule fires again, since joshua:tell

sees the predication as T.

(setq canonicalized-uncle-fact (tell [is-uncle-of Judah Manasseh]))

I note that JUDAH is the uncle of MANASSEH.

[IS-UNCLE-OF JUDAH MANASSEH]

T

Show Joshua Database

True things

 [IS-UNCLE-OF JUDAH MANASSEH]

 [IS-NEPHEW-OF MANASSEH JUDAH]

False things

 None

(untell canonicalized-uncle-fact)

251
February 2018 Joshua Language Dictionary

Show Joshua Database

True things

 None

False things

 None

(tell [is-uncle-of Judah Manasseh]) ; this fires the rule again!

I note that JUDAH is the uncle of MANASSEH.

[IS-UNCLE-OF JUDAH MANASSEH]

T�

Now we’ll use a variation of this example.

We start with the fact we just entered in the database above and which

fired the forward rule. Now we joshua:unjustify the fact and then

joshua:tell it again.

After the joshua:unjustify, the fact changes its truth value from

joshua:*true* to joshua:*unknown*, ��� ������� �� ��� ��������. When we

joshua:tell the fact once again, its truth value changes from

joshua:*unknown* to joshua:*true*, but joshua:tell already knows about

the fact, and no forward rules fire. Note, however, that the TMS brings the

is-nephew-of deduction back in. We can tell it does so without re-executing

the rule, since the side-effect (the format message) in the rule-body did not

recur.

Show Joshua Database

 True things

[IS-UNCLE-OF JUDAH MANASSEH]

[IS-NEPHEW-OF MANASSEH JUDAH]

 False things

None

 (unjustify ����������������������������)

NIL

Show Joshua Database

 True things

None

 False things

None

(tell [is-uncle-of Judah Manasseh])

 ; tell knows this fact is old, and it doesn’t rerun the forward rule

[IS-UNCLE-OF JUDAH MANASSEH]

NIL

252
Joshua Language Dictionary February 2018

Show Joshua Database

 True things

[IS-UNCLE-OF JUDAH MANASSEH]

[IS-NEPHEW-OF MANASSEH JUDAH]

 False things

None�

In sum, joshua:unjustify and joshua:untell do similar things, but with sig-

nificant differences. If you want to change your mind about believing a fact

but reserve your right to return to that fact later, you probably want to use

joshua:unjustify. If, on the other hand:

• You just did a scratch calculation and want to flush it now that you have

the answer, or

• You want the storage back, or

• You don’t intend to come back and raise the issue of re-running rules.

you probably want to use joshua:untell.

Related Functions:

joshua:tell

joshua:unjustify

"Clear Joshua Database Command"�

See the section "Removing Predications From the Database" in ������ �����

���������������.

See the section "The Joshua Database Protocol", page 8.

See the section "Customizing the Data Index", page 81.

joshua:value-of� ��������������������������

This predicate is part of the Joshua object facility. It is used to assert and

query the value of attributes of Joshua objects.

Values of the attributes of Joshua objects are maintained in data-structures

called slots. The first argument to this predication must be either a slot or

a path-name describing a slot.See the section "Using Paths to Refer to the

Structure of an Object", page 109.�

ltms:value-of� ��������������������������

This predicate is part of the Joshua object facility. It is used in the same

manner as joshua:value-of, except it refers to slots whose values are truth-

maintained. Slots are declared as truth-maintained at the time the class of

objects is defined by joshua:define-object-type.�

joshua:variant� �����������������������

253
February 2018 Joshua Language Dictionary

Two predications that differ ���� �� ��� ����� of the logic variables they

contain are equivalent, and are said to be �������� of each other.

The function joshua:variant checks whether two objects are �������� of

each other. If they are, it returns t, otherwise nil.

When joshua:tell has to add a predication to the database it uses

joshua:variant to determine if the predication is already there.

������� A predication

������� Another predication�

"Variant" means there is a �������� of variables that makes one variable

look like the other. For example:

(define-predicate foo (object))

(variant [foo 1 ?x] [foo 1 ?y])

T ; you can rename ?x → ?y.

(variant [father ?x ?y] [father ?a ?b])

T�

joshua:variant should not be confused with joshua:unify. The latter tries

to see if two objects can be ���� �� �� the same. joshua:variant checks if

they ��� the same. It doesn’t ever ��� logic variables, but merely looks for a

renaming. joshua:variant is based on the notion that it should not matter

what the names of logic variables are, so long as the structures are the

same. This is a much stronger condition than joshua:unify. Thus, every

pair that satisfies joshua:variant also satisfies joshua:unify, but not vice

versa.

 (variant [foo 1 ?x] [foo 1 bar])

NIL ; these unify, but are not variants

 ; variables cannot be renamed

 (variant [father ?x ?x] [father ?a ?b])

NIL

joshua:variant also works on other structures such as lists.

Examples:

 (variant ’a ’a)

T

 (variant ’([foo baz] [foo bar]) ’([foo baz] [foo bar]))

T

See the section "Variables and Scoping in Joshua" in ������ ����� �� �����

������.�

254
Joshua Language Dictionary February 2018

joshua:with-atomic-action� �����&body�����

Sometimes it is useful to be able to suspend forward rule triggering until

the execution of a block of code has completed. The code might contain a

number of joshua:tell’s and joshua:untell’s intermixed in such a way that

the changes to the database are not coherent until the entire block of code

has finished executing.

If the code is contained inside a joshua:with-atomic-action form, then no

forward rule will be triggered until all of the code has executed. Further-

more, the rules that will be triggered are those whose trigger patterns are

satisfied at the time that the code completes. Even if there was an interme-

diate point in the execution when a rule’s trigger pattern was satisfied the

rule will only run if there is a valid set of matching assertions at the time

���� has finished executing.

For example:

(defrule Test-Atomicity (:forward)

 If [and [P ?x ?y]

 [Q ?y]]

 Then (Print ’Foobar))

(tell [P 1 2])

(with-atomic-action

 (tell [Q 2])

 (Untell [P 1 2]))

In this case the rule Test-Atomicity will never trigger, even though in the

middle of executing the with-atomic-action form it had a valid triggering

set consisting of

[P 1 2]

[Q 2]�

In this specific case the code is simple enough that one could simply have

placed the joshua:untell before the joshua:tell. However, often the situa-

tions which require this form of control over rule invocation are also the

ones that are complex enough that reordering the code to gain the right ef-

fect is too complicated.

With-Atomic-Action provides a simple means for treating the entire dynamic

extent of a block of code as a single transaction to which the rule trigger-

ing mechanims react.

joshua:with-predication-maker-destructured� �������������������������

������&body�����

������� An arglist suitable for destructuring-bind

predication-maker A predication-maker s-expression

255
February 2018 Joshua Language Dictionary

���� A body of code to execute.�

This Macro is analogous to joshua:with-statement-destructured, but oper-

ates on predication-makers, rather than predications. It destructures the

"statement" part of the predication-maker into the variables in the arglist

and then executes the body in this environment. For example,

(read) [Foobar 1 ?x]�

yields

(JI::PREDICATION-MAKER

 ’(FOOBAR 1 (JI::LOGIC-VARIABLE-MAKER |?X|)))�

and

(with-predication-maker-destructured (a b)

 (JI::PREDICATION-MAKER

 ’(FOOBAR 1 (JI::LOGIC-VARIABLE-MAKER |?X|)))

 (print a)

 (print b))

would print:

1

and

(JI::LOGIC-VARIABLE-MAKER |?X|) �

joshua:with-statement-destructured� ������������������������ &body

����

Provides access to the ������� of �����������. Wrap this macro around a ����

of code within methods in which you want to refer to the arguments of a

predication that are not already in instance variables. (This macro works

outside of methods, too.)

������� The argument list of the specified �����������. This can

be anything suitable for destructuring-bind.

����������� A Joshua predication.

For example, inside a joshua:say method for the predication foo:

(define-predicate enough-already (number-of servings food))

(define-predicate-method (say enough-already)

 (&optional (stream *standard-output*))

 (with-statement-destructured (how-many servings food) self

 (format stream "~% You’ve just had ~A ~A of ~A. Hadn’t you better quit?"

 how-many servings food)))

256
Joshua Language Dictionary February 2018

(say [enough-already 5 platters pickled-pigs-feet])

You’ve just had 5 PLATTERS of PICKLED-PIGS-FEET. Hadn’t you better quit?

NIL

Related Functions:

joshua:define-predicate�

joshua:with-unbound-logic-variables� �������������������&body�����

This macro provides a way to generate a set of logic variables for use in

code. Each (Lisp) variable within the ������������� is bound within the scope

of the macro to a distinct, non-unified logic variable within the ���� of the

macro. In essence a Lisp variable in ������������� has as its Lisp value a log-

ic variable, for the duration of ����.

�������������

Is a list of variables

���� Is any lisp form

Example:

The predicate presidential-candidate is defined in the following example.

The macro is used to temporarily set ������� to be a logic variable. Then

two predications are compared to see if they unify with one another. Unifi-

cation occurs in this case so the format statement prints the value of ����

����.

(define-predicate presidential-candidate (somone))

(with-unbound-logic-variables (anybody)

 (with-unification

 (unify ‘[presidential-candidate ,anybody] [presidential-candidate Abe])

 (format t "~&The value of anybody is ~s." anybody))))

The value of anybody is ABE.

NIL

joshua:with-unification� �����&body�����

Establishes the scope within which substitutions specified by the

joshua:unify function take effect. This temporary unifying mechanism is

useful within Lisp code in the body of Joshua rules, since it lets the pro-

grammer try out a variety of different matching options.

Whenever unification fails, joshua:unify goes to the end of the dynamically

innermost joshua:with-unification and undoes all the bindings established

so far.

Thus, joshua:with-unification establishes both of the following:

257
February 2018 Joshua Language Dictionary

• The scope of unifications done in its body

• A place to be thrown to if a unification in its body fails

Examples:

(define-predicate candidate-word (a-word))

(define-predicate is-computer-jargon (some-word))

(defvar *computer-jargon* ’(foo bar baz quux))

(defrule jargon-finder (:backward)

 IF (typecase ?candidate-word

 (unbound-logic-variable

(loop for word in *computer-jargon*

 doing (with-unification

(unify ?candidate-word word)

(succeed))))

 (otherwise

(member ?candidate-word *computer-jargon*)))

 THEN [is-computer-jargon ?candidate-word])

(ask [is-computer-jargon ?x] #’print-query)

[IS-COMPUTER-JARGON FOO]

[IS-COMPUTER-JARGON BAR]

[IS-COMPUTER-JARGON BAZ]

[IS-COMPUTER-JARGON QUUX]

Related Function:

joshua:unify

See the section "Pattern Matching in Joshua: Unification" in ������ �����

���������������.

joshua:write-backward-rule-matcher� ��

���

������������ The source representation of a backward rule trigger.

See the section "The Source Representaton of Predica-

tions and Logic-variables".

�������������������� The names of the logic variables which occur in this

pattern.

����������� The compiler environment. This is needed in case this

generic function needs to use a code-walker or other-

wise expand macros in a specific compiler environment.

���������������������

The name of the variable by which the matcher code

should refer to the predication it is matching.

258
Joshua Language Dictionary February 2018

Return Values:

���� A code fragment to perform the match. ��������

A set of bindings that the rule compiler should wrap

around the matching code. �����������������

Whether this code uses the data stack.�

This protocol function is used to generate the matcher code corresponding

to the trigger pattern of a backward rule. For example in the rule:

(defrule foobar (:backward)

 If [bar ?y ?z]

 Then [foo ?x ?y]) �

This method will be called, with the following arguments:

(JI::PREDICATION-MAKER

 ’(FOO (JI::LOGIC-VARIABLE-MAKER |?X|)

(JI::LOGIC-VARIABLE-MAKER |?Y|)))

 (|?X| |?Z| |?Y|)

<the environment>

JI::.GOAL.

Notice that the first argument is not a predication [foo ?x ?y] but its source

representation, see the section "The Source Representaton of Predications

and Logic-variables".

The backward rule compiler turns the trigger pattern of the rule (i.e. its

Then-Part) into a code fragment which tests whether the query being posed

unifies with the rule’s trigger pattern. The If-part of the rule is trans-

formed into a nested series of joshua:ask’s which attempt to find matches

to the patterns in the If-part that are consistent with the bindings produced

by matching the trigger (and which are mutually consistent). The transfor-

mation of the If-part is controlled by the joshua:expand-backward-rule-

action protocol function. This protocol function controls the generation of

the matching code corresponding to the trigger.

The rule compiler combines the results of these two protocol functions into

a single function which performs the trigger unification and the

joshua:ask’s. Primarily it adds code to create bindings for the logic vari-

ables and to build the queries corresponding to each pattern in the If-part.

The rule compiler attempts to make this function as efficient as possible by

using the system stacks to hold most of the data.

The joshua:write-backward-rule-matcher function returns three values:

The first is a code fragment (which must be a single form) which performs

the unifications necessary.

For example, the default method for this protocol function returns the fol-

lowing code fragment:

259
February 2018 Joshua Language Dictionary

(JI::UNIFY-PREDICATION JI::.GOAL. PRED-1382)�

Which checks that the query (i.e. JI::.GOAL.) matches the trigger pattern

PRED-1382. You might wonder what PRED-1382 is; that information is con-

tained in the second return value:

However, the second value specifies a set of bindings that the rule compiler

should wrap around the generate code:

((FORM-1383 ‘(FOO ,|?X| ,|?Y|))

 (PRED-1382 (make-predication FORM-1383 :STACK)))

Which builds PRED-1382 on the stack. The third return value is joshua::t

indicating that this code will need to use the data stack.

In most cases, you will not use this method if it forces you to resort to

such arcane devices.

For the above pattern, a different set of return values could have been:

(let ((statement (predication-statement .goal.)))

 (unify (pop statement) ’foo)

 (unify (pop statement) |?X|)

 (unify (pop statement) |?Y|))

NIL

NIL

Which takes advantage of the fact that FOO predications have a fixed num-

ber of arguments. Thus if the query’s predicate is FOO (the first thing

checked), there will be exactly two other arguments and we need not check

for the goal being either too long or too short.

Notice that in the code generated the logic variables in the pattern are re-

ferred to by their name (i.e. as LISP variables). �

joshua:write-forward-rule-full-matcher� ���������������������������������������

�������������������������

rule-trigger The source representation of a forward rule trigger. See

the section "The Source Representaton of Predications

and Logic-variables".

�����������������������

The name of the variable by which the matcher code

should refer to the predication it is matching.

����������� The compiler environment. This is needed in case this

generic function needs to use a code-walker or other-

wise expand macros in a specific compiler environment.�

260
Joshua Language Dictionary February 2018

This protocol function is used to generate the unification code correspond-

ing to a specific forward-rule trigger pattern. For example in the rule:

(defrule foobar (:forward)

 If [and [foo ?x ?y]

 [bar ?y ?z]]

 Then <body>)

This method will be called twice, with the following arguments for the first

call:

(JI::PREDICATION-MAKER ’(FOO (JI::LOGIC-VARIABLE-MAKER |?X|)

 (JI::LOGIC-VARIABLE-MAKER |?Y|)))

JI::PREDICATION-TO-MATCH

<the environment>

Notice that the first argument is not a predication [foo ?x ?y] but its source

representation, see the section "The Source Representaton of Predications

and Logic-variables".

The rule compiler produces two matchers corresponding to each trigger-

pattern: The first performs unification and is invoked when the data being

asserted contains logic variables; the second is invoked when the data con-

tains no logic variables. This second matcher can be considerably more effi-

cient than the first. Most predications asserted in the Joshua data base do

not contain logic-variables, so it is useful to check for this case and use the

more efficient matcher when possible.

The return value of this generic function is a code fragment (in particular

a single form) which performs the unifications necessary to check that the

rule’s trigger pattern matches the data. The default method for this proto-

col function returns the following value:

(JI::UNIFY-PREDICATION (JI::PREDICATION-MAKER

 ’(FOO

 (JI::LOGIC-VARIABLE-MAKER

 |?X|)

 (JI::LOGIC-VARIABLE-MAKER

 |?Y|)))

 JI::PREDICATION-TO-MATCH)�

The rule compiler assembles this code into the complete matcher function

by adding code that correctly interfaces this unification code with the rest

of the rete network code.�

261
February 2018 Joshua Language Dictionary

joshua:write-forward-rule-semi-matcher� ���������������������������������������

�������������������������

rule-trigger The source representation of a forward rule trigger. See

the section "The Source Representaton of Predications

and Logic-variables".

�����������������������

The name of the variable by which the matcher code

should refer to the predication it is matching.

����������� The compiler environment. This is needed in case this

generic function needs to use a code-walker or other-

wise expand macros in a specific compiler environment.

This protocol function is used to generate the matcher code corresponding

to a specific forward-rule trigger pattern. For example in the rule:

(defrule foobar (:forward)

 If [and [foo ?x ?y]

 [bar ?y ?z]]

 Then <body>) �

This method will be called twice, with the following arguments for the first

call:

(JI::PREDICATION-MAKER ’(FOO (JI::LOGIC-VARIABLE-MAKER |?X|)

 (JI::LOGIC-VARIABLE-MAKER |?Y|)))

JI::PREDICATION-TO-MATCH

<the environment>�

Notice that the first argument is not a predication [foo ?x ?y] but its source

representation, see the section "The Source Representaton of Predications

and Logic-variables".

The rule compiler produces two matchers corresponding to each trigger-

pattern: The first performs unification and is invoked when the data being

asserted contains logic variables; the second is invoked when the data con-

tains no logic variables. This second matcher can be considerably more effi-

cient than the first. Most predications asserted in the Joshua data base do

not contain logic-variables, so it is useful to check for this case and use the

more efficient matcher when possible.

This protocol function is used to generate the more efficient matcher.

The return value of this generic function is a code fragment (in particular

a single form) which performs the semi-match.

This generated code fragment must check that the rule’s trigger pattern

matches the data. It also is responsible for producing variable bindings. Se-

mi matchers do not need to use logic variables and unification (this is one

reason they can be more efficient). Instead, the rule matcher creates a Lisp

262
Joshua Language Dictionary February 2018

variable corresonding to each logic-variable in the pattern. The semi-

matcher is responsible for assigning a value to each of these variables and

for checking that the assignments are consistent.

For example, the default method for this protocol function returns the fol-

lowing code fragment:

(LET ((THING-1306 (CDR (PREDICATION-STATEMENT JI::PREDICATION-TO-MATCH))))

 (AND (CONSP THING-1306)

 (PROGN (SETQ |?X| (CAR THING-1306)) T)

 (LET ((THING-1307 (CDR THING-1306)))

 (AND (CONSP THING-1307)

(PROGN (SETQ |?Y| (CAR THING-1307)) T)

(NULL (CDR THING-1307))))))

Notice that this code fragment returns joshua::t if the mactch succeeds

and joshua::nil otherwise.

Also notice that this code fragment never checked whether the predicate of

the predication being matched is the same as the predicate of the rule

trigger. This is because the default data indexer has already guaranteed

this and therefore the match generator knows that it need not emit code to

perform this check; see the generic function joshua:positions-forward-rule-

matcher-can-skip, page 214.

The rule compiler assembles this code into a complete matcher function by

adding code that correctly interfaces to the rest of the rete network code.

It is possible to write protocol methods for this function which extend the

matcher’s syntax (e.g. by performing inline procedural checks as part of the

match) and lead to increased efficiency. A good starting place for this is

the default method provided with Joshua.

263
February 2018 Index

�

Index

Advanced Features of Joshua Rules, 24
A More Advanced Version of Mixed-chaining in

joshua:expand-forward-rule-trigger
96

Basic Capabilities of the Joshua Object Facility,
107

Choosing Joshua Metering Types, 77
Clause Justification Structures, 65
Clear Joshua Database Command, 145
Compiling the Action Part of a Forward Rule, 27
conflict-resolution, 35, 254
Continuation Argument, 125
Controlling Choices in the LTMS, 67
Controlling Data and Rule Indexing, 79
Controlling Question Invocation, 47
Controlling Rule Invocation, 35
Customizing the Data Index, 81
Customizing the Data Index Without Storing

Predications, 85
Customizing the Expansion of a Backward Rule, 99
Customizing the Expansion of a Forward Rule, 93
Customizing the Joshua Protocol, 5
Customizing the Matchers Generated by the Rule

Compiler, 102
Customizing the Rule Compiler, 92
Customizing the Rule Index, 88
Dictionary Entries, 121
Difference between joshua:untell and

joshua:unjustify, 248
Disable Joshua Tracing Command, 167
Displaying the database contents, 228
Enable Joshua Tracing Command, 169
Equalities Between Slot Values, 116
Examples of Using joshua:ask, 128
Explain Predication Command, 181
Extracting Parts of the Continuation with Accessor

Functions, 126
Finding Backward Question Triggers, 50
Finding Backward Rule Triggers, 43
Finding Forward Rule Triggers, 41
Forward Rule Triggers: the Rete Network, 27

264
Index February 2018

Graph Forward Rule Triggers Command, 184
Initial Values of Slots, 113
Introduction to the Joshua Object Facility, 105
Invoking Methods Associated with the Object

Associated with a Slot, 115
ji:model-cant-handle-query flavor, 210
ji:model-only-handles-positive-queries flavor,

211
joshua:*contradictory* variable, 145
joshua:*false* variable, 183
joshua:*true* variable, 240
joshua:*unknown* variable, 248
joshua:act-on-truth-value-change generic

function, 121
joshua:add-action generic function, 121
joshua:add-backward-question-trigger generic

function, 122
joshua:add-backward-rule-trigger generic

function, 122
joshua:add-forward-rule-trigger generic function,

123
joshua:ask function, 123
joshua:ask-data generic function, 133
joshua:ask-data method of joshua:default-ask-

model, 136
joshua:ask-data-and-questions-only-mixin

flavor, 134
joshua:ask-data-and-rules-only-mixin flavor, 134
joshua:ask-database-predication function, 135
joshua:ask-data-only-mixin flavor, 136
joshua:ask-derivation function, 137
Joshua Ask Metering, 75
joshua:ask-query function, 139
joshua:ask-query-truth-value function, 139
joshua:ask-questions generic function, 140
joshua:ask-questions-only-mixin flavor, 141
joshua:ask-rules generic function, 142
joshua:ask-rules-and-questions-only-mixin

flavor, 143
joshua:ask-rules-only-mixin flavor, 143
joshua:basic-tms-mixin flavor, 144
joshua:clear function, 144
joshua:copy-object-if-necessary function, 146
joshua:database-predication presentation type,

148
joshua:default-ask-model flavor, 148
joshua:default-predicate-model flavor, 149

265
February 2018 Index

joshua:default-protocol-implementation-model
flavor, 149

joshua:default-rule-compilation-model flavor,
149

joshua:default-tell-model flavor, 149
joshua:define-object-type macro, 149
joshua:define-predicate macro, 151
joshua:define-predicate-method macro, 152
joshua:define-predicate-model macro, 153
joshua:defquestion macro, 153
joshua:defrule function, 158
joshua:delete-backward-question-trigger

generic function, 164
joshua:delete-backward-rule-trigger generic

function, 165
joshua:delete-forward-rule-trigger generic

function, 165
joshua:different-objects function, 166
joshua:discrimination-net-clear function, 167
joshua:discrimination-net-data-mixin flavor, 167
joshua:discrimination-net-fetch function, 167
joshua:discrimination-net-insert function, 168
joshua:discrimination-net-uninsert function, 169
joshua:equated joshua predicate, 170
joshua:equated-mixin flavor, 171
joshua:expand-backward-rule-action joshua

protocol method, 178
joshua:expand-forward-rule-trigger generic

function, 171
joshua:explain function, 181
joshua:fetch function, 184
joshua:graph-discrimination-net function, 184
joshua:graph-query-results function, 185
joshua:graph-tms-support function, 187
joshua:insert function, 189
joshua:justify function, 190
joshua:known joshua predicate, 191
Joshua Language Dictionary, 121
joshua:locate-backward-question-trigger

generic function, 194
joshua:locate-backward-rule-trigger generic

function, 196
joshua:locate-forward-rule-trigger generic

function, 199
joshua:logic-variable-maker-name function, 203
joshua:logic-variable-maker-p function, 203
joshua:logic-variable-name function, 202
joshua:make-object function, 204

266
Index February 2018

joshua:make-predication function, 204
joshua:map-over-backward-question-triggers

generic function, 207
joshua:map-over-backward-rule-triggers generic

function, 208
joshua:map-over-database-predications macro,

204
joshua:map-over-forward-rule-triggers generic

function, 208
joshua:map-over-object-hierarchy function, 209
joshua:map-over-slots-in-object-hierarchy

function, 209
joshua:map-over-slots-of-object function, 209
Joshua Merge Metering, 76
Joshua Metering, 73
Joshua Metering Types, 73
joshua:negate-truth-value function, 212
joshua:nontrivial-tms-p generic function, 213
joshua:notice-truth-value-change function, 213
joshua:no-variables-in-data-mixin flavor, 212
joshua:object-type-of joshua predicate, 213
joshua:part-of joshua predicate, 214
joshua:part-of-mixin flavor, 214
joshua:positions-forward-rule-matcher-can-skip

generic function, 214
joshua:predication flavor, 216
joshua:predication presentation type, 216
joshua:predication-maker-p function, 216
joshua:predication-maker-predicate function,

217
joshua:predication-maker-statement function,

217
joshua:predicationp function, 218
joshua:predication-predicate function, 219
joshua:predication-statement function, 219
joshua:predication-truth-value function, 219
joshua:prefetch-forward-rule-matches function,

220
joshua:print-query function, 220
joshua:print-query-results function, 221
joshua:provable joshua predicate, 223
joshua:remove-action generic function, 225
joshua:say function, 226
joshua:say method of joshua:predication, 227
joshua:say-query function, 227
Joshua’s Default Database: the Discrimination Net,

16

267
February 2018 Index

joshua:slot-current-predication generic function,
231

joshua:slot-current-value generic function, 231
joshua:slot-my-object generic function, 231
joshua:slot-value-mixin flavor, 232
joshua:succeed function, 232
joshua:support function, 233
joshua:support method of joshua:basic-tms-

mixin, 234
joshua:support method of joshua:default-

protocol-implementation-model,
234

joshua:tell function, 234
Joshua Tell Metering, 73
joshua:tms-bits generic function, 236
joshua:tms-contradiction flavor, 236
joshua:tms-contradiction-contradictory-

predication generic function, 237
joshua:tms-contradiction-hard-contradiction-

flavor generic function, 237
joshua:tms-contradiction-justification generic

function, 238
joshua:tms-contradiction-non-premises generic

function, 238
joshua:tms-contradiction-premises generic

function, 238
joshua:tms-contradiction-support generic

function, 239
joshua:tms-hard-contradiction flavor, 239
joshua:truth-value presentation type, 240
joshua:type-of-mixin flavor, 240
joshua:undefine-predicate macro, 240
joshua:undefine-predicate-method function, 241
joshua:undefine-predicate-model function, 242
joshua:undefquestion function, 242
joshua:undefrule function, 242
joshua:unify function, 243
joshua:uninsert generic function, 247
joshua:unjustify generic function, 247
joshua:unjustify method of ltms:ltms-mixin, 248
joshua:untell generic function, 248
joshua:value-of joshua predicate, 252
joshua:variant function, 252
joshua:with-atomic-action, 35
joshua:with-atomic-action macro, 254
joshua:with-predication-maker-destructured

macro, 254
joshua:with-statement-destructured macro, 255

268
Index February 2018

joshua:with-unbound-logic-variables macro, 256
joshua:with-unification macro, 256
joshua:write-backward-rule-matcher generic

function, 257
joshua:write-forward-rule-full-matcher generic

function, 259
joshua:write-forward-rule-semi-matcher generic

function, 261
ltms:equated joshua predicate, 171
ltms:ltms-mixin flavor, 203
ltms:ltms-predicate-model flavor, 204
ltms:object-type-of joshua predicate, 213
ltms:part-of joshua predicate, 214
ltms:value-of joshua predicate, 252
Nogoods in the LTMS, 66
Notifying the LTMS of Contradictions, 70
occur-check done by unifier, 243
Ordering Rule Execution, 35
Organization of the Default Discrimination Net, 17
Other Capabilities of Slots, 113
Other Options in Define-Object-Type, 117
Overview of Advanced Joshua Concepts, 1
Part-Whole Hierarchy in the Joshua Object Facility,

112
Predications as Instances, 7
Reset Joshua Tracing Command, 225
Set Valued and Single Valued Slots, 113
Show Joshua Database Command, 228
Show Joshua Predicates Command, 228
Show Joshua Rules Command, 229
Show Joshua Tracing Command, 230
Show Rule Definition Command, 231
Signalling a Condition When joshua:ask-data or

joshua:fetch Can’t Handle a Query,
12

Signalling Contradictions and Managing
Backtracking, 57

Signalling Truth Value Changes, 63
Slots and Attached Actions, 114
Slots and Truth Maintenance, 114
Storing and Retrieving Knowledge in Joshua: the

Virtual Database, 7
Streamlining Typical Continuation Requests with

Convenience Functions, 127
The Backward Rule Compiler, 33
The Contract of a Joshua TMS Justification, 55
The Contract of joshua:add-backward-question-

trigger, 48

269
February 2018 Index

The Contract of joshua:delete-backward-
question-trigger, 48

The Contract of joshua:locate-backward-
question-trigger, 49

The Contract of joshua:map-over-backward-
question-triggers, 50

The Contract of the Generic Function
joshua:clear, 14

The Contract of the Generic Function
joshua:expand-backward-rule-
action, 100, 179

The Contract of the Generic Function
joshua:expand-forward-rule-trigger
93

The Contract of the Generic Function
joshua:insert, 9

The Contract of the Generic Function
joshua:uninsert, 14

The Contract of the Generic Functions joshua:ask-
data and joshua:fetch, 10

The Contract of the Joshua TMS Protocol
Functions, 54

The Contract of the Trigger Adding Functions, 38
The Contract of the Trigger Deleting Functions, 38
The Contract of the Trigger Locating Functions, 39
The Contract of the Trigger Mapping Functions, 41
The Default Implementation of the Protocol, 2
The Forward Rule Compiler, 27
The Funtions of a Truth Maintenance System, 53
The Joshua Database Protocol, 8
The Joshua LTMS, 65
The Joshua Object Facility, 105
The Joshua Protocol of Inference, 2
The Joshua Question Facilities, 47
The Joshua Question Indexing Protocol, 48
The Joshua Rule Compiler, 26
The Joshua Rule Facilities
, 23
The Joshua Rule Indexing Protocol, 36
The Predicates Used in the Joshua Object Facility,

118
The Truth Maintenance Protocol, 54
TMS Utility Routines, 56
Truth Maintenance Facilities, 53
Type Hierarchy in the Joshua Object Facility, 110
Types of Truth Maintenance Systems, 54
Using :ignore in joshua:expand-forward-rule-

trigger, 98

270
Index February 2018

Using joshua:expand-forward-rule-trigger, 95
Using Paths to Refer to the Structure of an Object,

109
Using TMS Conditions: a Balance Beam Example,

58
weeding out self-referential behavior, 166
What is a Virtual Database?, 7
What the Backward Rule-compiler Does to the

Actions of a Rule, 99, 178

