
iii
February 2018 Table of Contents

Table of Contents

Page

I 3USING THE TOP-LEVEL USER INTERFACE PROGRAMMING

FACILITIES

1 5Overview of User Interface Programming Facilities

1.1 8User Interface Concepts

1.1.1 8User Interaction Paradigm

1.2 13The Facilities

1.2.1 14Program Frameworks

1.2.2 17Presentation Substrate

2 21Using Presentation Types

2.1 21The Presentation Type System: an Overview

2.1.1 24How Presentation Types Relate to Common Lisp Types

2.1.2 25How to Specify a Presentation Type

2.2 28Predefined Presentation Types

2.3 32Using Presentation Types for Output

2.4 34Using Presentation Types for Input

2.4.1 34Accepting Single Objects

2.4.2 36Accepting Multiple Objects

2.5 39Table of Top-level Presentation Type Facilities

3 43Managing the Command Processor

3.1 43Introduction to the Command Processor

3.2 45Defining and Installing Commands

3.3 59Managing Command Tables

3.4 60System Command Tables

3.4.1 61Command Table "Colon Full Command"
3.4.2 61Command Table "Standard Scrolling"
3.4.3 61Command Table "Standard Arguments"
3.4.4 62Command Table "Unshifted Arguments"
3.4.5 62Command Table "Marked Text"
3.4.6 63Command Table "Input Editor Compatibility"
3.4.7 63Command Table "Global"
3.4.8 63Command Table "User"

3.5 63Accelerating Commands

3.6 64Executing Commands from within a Program

3.7 65Getting Input to Your Program From the Command Loop

3.8 66Table of Basic Command Facilities

iv
Table of Contents February 2018

4 69Presenting Formatted Output

4.1 69Introduction to Output Formatting

4.2 70Naming Conventions for Program Output Macros

4.3 70Basic Facilities for Program Output

4.3.1 71Formatting Text

4.3.2 73Formatting Textual Lists

4.3.3 73Formatting Tables

4.3.4 76Formatting Graphs

4.4 78Using the Formatted Output Facilities: Programming Hints

4.4.1 78Nesting Formatted Output

4.4.2 81Filling Output Inside Table Cells

4.4.3 82Graphic Output within Tables

4.4.4 84Controlling Location and Other Aspects of Output

4.4.5 86Output Formatting Spacing Parameters

4.4.6 88Out-of-Order Evaluation

4.4.7 89Variable Snapshotting

4.4.8 92Cursor Position and Formatting Output Macros

4.5 92Table of Program Output Facilities

5 97Defining Your Own Program Framework

5.1 97Introduction to Program Frameworks

5.1.1 98The Top-Level Command Loop

5.1.2 99Program Panes

5.1.3 99Program State Variables

5.2 100The dw:define-program-framework Macro

5.3 113Using Frame-Up

5.3.1 113Getting Started

5.3.2 114Frame-Up Commands

5.3.3 122Zmacs Commands for Frame-Up

5.4 123Defining Commands within Your Own Framework

5.4.1 123The Command-Definition Macro

5.4.2 124Command Errors

5.4.3 125Single-Key Accelerators

5.4.4 125Menu Commands

5.4.5 125Menu Subcommands

5.4.6 125Getting Your Own Program Interactor to Read Lisp Forms

5.4.7 126Setting up a Non-Echoing Command Loop

5.5 127Accessing Program Frame Objects

5.6 127Adding the Help-Program to Your Framework

5.7 130A Program-Framework Extended Example

5.8 136Table of Program Framework Facilities

6 139Creating Graphic Output

6.1 140Text as Graphics

6.2 140Mixing Graphics and Text

6.3 142Basic Graphic Output Facilities

v
February 2018 Table of Contents

6.3.1 142Coordinate System Facilities

6.3.2 149Drawing Functions

6.3.3 167Other Basic Facilities for Graphic Output

6.3.4 169Choosing the Best Graphic Output Technique for Your

Application

6.4 171Advanced Graphic Output Facilities

6.4.1 171Advanced Transformation Facilities

6.4.2 176Graphics Drivers

6.4.3 177Texturing

6.4.4 177Other Advanced Facilities for Graphic Output

6.5 178Table of Graphics Facilities

II 183AUGMENTING THE TOP-LEVEL TOOLS: EXTENDING USER

INTERFACE FEATURES

7 185Defining Your Own Presentation Types

7.1 185Introduction: More Presentation-Type Concepts

7.1.1 185Why Define Your Own Presentation Types

7.1.2 187Type Inheritance

7.1.3 189Input Context Matching

7.1.4 190The Recursive Behavior of Accept

7.2 191The define-presentation-type Macro

7.3 208Miscellaneous Presentation Facilities

7.4 209Using User-Extendable Data Types as Presentation Types

7.5 210Writing a Parser

7.5.1 210General Approach to Parser Writing

7.5.2 211Writing a Parser That Recursively Calls Accept

7.5.3 213Writing a Parser That Calls accept Several Times

7.5.4 215Parsing Objects for Which There is No Character

Representation

7.5.5 216Returning Values from a Parser

7.6 217Writing a Printer

7.7 218Table of Facilities for Defining Presentation Types

8 221Programming the Mouse: Writing Mouse Handlers

8.1 221Mouse Handler Concepts

8.1.1 221Mouse Sensitivity

8.1.2 222Mouse Handlers

8.1.3 222Presentation Type Matching for Mouse Handlers

8.1.4 224Nested Input Contexts

8.1.5 225Nested Presentations

8.1.6 227Mouse Gestures

8.1.7 228Actions Versus Translations

8.2 229The Facilities

8.2.1 229Mouse Handler Facilities

8.2.2 254Presentation Input Context Facilities

vi
Table of Contents February 2018

8.2.3 254Presentation Input Blip Facilities

8.2.4 255Mouse Gesture Interface Facilities

8.3 255Suggestions and Examples

8.3.1 255Some Efficiency Caveats for Mouse Handlers

8.3.2 256Handlers on the Same Mouse Chord

8.3.3 257Writing a Translator From a Blank Area

8.3.4 258Doing Typein or Typeout From an Action

8.3.5 258Making Your Own Click-Right Menu

8.3.6 259Refining Sensitivity

8.3.7 260Resolving Conflicts Among Mouse Handlers

8.3.8 261Editor Mouse Commands

8.3.9 261Rubberbanding

8.4 263Exploring Presentation Types and Presentations

8.4.1 264Mouse-Click Facilities for Looking at Handlers

8.4.2 264CP Commands to Show Presentation Types and Handlers

8.4.3 265Presentation Inspector

9 281Displaying Output: Replay, Redisplay, and Formatting

9.1 281How Redisplay Works

9.2 283Creating Replayable Output

9.3 285Redisplaying with dw:accepting-values Forms

9.4 290Snapshotting Variables

9.5 292Doing Incremental Redisplay

9.5.1 295Incremental Redisplay of Nested Structures

9.5.2 298Incremental Redisplay of Tables

9.5.3 300Incremental Redisplay of Graphs

9.5.4 302Incremental Redisplay of Graphics

9.6 304Writing Formatted Output Macros

9.7 304Table of Replay and Redisplay Facilities

10 307Managing Your Program Frame

10.1 307Invoking an Application Program

10.2 312The Top-Level Loop

10.2.1 312Modifying the Default Top-Level Function

10.2.2 313Writing a Non-Echoing Command Loop

10.2.3 314Implementing a Timeout At Command Level

10.2.4 316Handling Asynchronous Window System Events

10.3 317Commands and Command Menus

10.3.1 317How Command Menus Work

10.3.2 320Using Single-Character Accelerators

10.3.3 321Sharing State among Program Commands

10.3.4 322Maintaining State with Accept-Values Panes

10.3.5 324Incorporating Accept-Values Keyboard Commands Into

Programs

10.4 325Window Layout

10.4.1 325A Program Frame with More Than One Configuration

vii
February 2018 Table of Contents

10.5 327Table of Advanced Facilities for Program Frames

III 331SUBSTRATE FACILITIES

11 333Using the Window System

11.1 333Introduction to Using the Window System

11.2 333Concepts

11.2.1 333Purpose of the Window System

11.2.2 334Windows

11.2.3 335Hierarchy of Windows

11.2.4 336Pixels and Bit-Save Arrays

11.2.5 337Screen Arrays and Exposure

11.2.6 340Window Exposure and Output

11.2.7 342Temporary Windows

11.2.8 344The Screen Manager

11.2.9 347Window Graying

11.2.10 349Windows and Processes

11.2.11 349Activities and Window Selection

11.2.12 351Window Status

11.3 352Window Flavors and Messages

11.3.1 352Overview of Window Flavors and Messages

11.3.2 354Getting a Window to Use

11.3.3 356Character Output to Windows

11.3.4 361Graphic Output to Windows

11.3.5 363Notifications and Progress Indicators

11.3.6 367Input from Windows

11.3.7 370TV Fonts

11.3.8 373Blinkers

11.3.9 375Mouse Input

11.3.10 380The Keyboard

11.3.11 381Window Sizes and Positions

11.3.12 384Window Margins, Borders, and Labels

11.3.13 385Text Scroll Windows

11.3.14 393Typeout Windows

11.3.15 393Scrolling Windows

11.3.16 393Frames

11.4 415Window Substrate Facilities

11.4.1 417Mouse-Blinker Characters

12 419Window System Choice Facilities

12.1 419The Choice Facilities

12.1.1 419Overview of the Choice Facilities

12.1.2 421Standard and Customizable Facilities

12.1.3 421Choice Facilities Use the Flavor System

12.1.4 422The User’s Process and the Mouse Process

12.2 422Introduction to the Menu Facilities

viii
Table of Contents February 2018

12.2.1 423Components of a Menu

12.2.2 423Menu Items

12.2.3 424The Form of a Menu Item

12.2.4 427Choosing and Executing

12.3 428The Geometry of a Menu

12.3.1 429Geometry Init-plist Options

12.3.2 429Geometry Messages

12.3.3 429Geometry Example 1: A Multicolumned menu

12.3.4 430Geometry Example 2: Retrieving Geometry Information

12.4 431Momentary and Pop-up Menus

12.4.1 431The Standard Momentary Menu Interface

12.4.2 432Standard Momentary Menu Example

12.4.3 432The tv:mouse-y-or-n-p Facility

12.4.4 432Basic and Mixin Pop-up and Momentary Menus

12.4.5 432Instantiable Pop-up and Momentary Menus

12.4.6 433Useful tv:menu Init-plist Options

12.4.7 433Useful tv:menu Messages

12.4.8 433tv:momentary-menu Example 1: Simple Momentary Menu

12.4.9 434tv:momentary-menu Example 2: Item List as Init-plist

Option

12.4.10 434tv:momentary-menu Example 3: Centered Label and Use

of General List Items

12.4.11 435tv:momentary-menu Example 4: Using the Mouse

Buttons

12.4.12 436tv:pop-up-menu Example

12.5 438Command Menus

12.5.1 438Menu Items and Menu Values

12.5.2 438Command Blips

12.5.3 439Responsibilities of Your Program

12.5.4 439Command Menu Mixins

12.5.5 439Instantiable Command Menus

12.5.6 439tv:command-menu Init-plist Options

12.5.7 440tv:command-menu Messages

12.5.8 440tv:command-menu Example

12.6 442Dynamic Item List Menus

12.6.1 443Dynamic Item List Mixins

12.6.2 443Instantiable Dynamic Item List Menus

12.6.3 443Init-plist Option for Dynamic Menus

12.6.4 443Messages to Dynamic Menus

12.6.5 443Dynamic Menu Example

12.6.6 444Adding an Item to the System Menu

12.7 445Multiple Menus

12.7.1 445Multiple Menu Mixins

12.7.2 446Instantiable Multiple Menus

12.7.3 446tv:multiple-menu-mixin Init-plist Options

12.7.4 446tv:multiple-menu-mixin Messages

ix
February 2018 Table of Contents

12.7.5 447tv:momentary-multiple-menu Example

12.8 449The Multiple Menu Choose Facility

12.8.1 449The Standard Multiple Menu Choose Function

12.8.2 449tv:multiple-menu-choose Example

12.8.3 450Multiple Menu Choose Mixin and Resource

12.8.4 450Instantiable Multiple Menu Choose Flavors

12.8.5 450tv:multiple-menu-choose-menu Example

12.9 451The Multiple Choice Facility

12.9.1 453The Standard Multiple Choice Function

12.9.2 453tv:multiple-choose Menu Example

12.9.3 454The Basic Multiple Choice Flavor

12.9.4 454Instantiable Multiple Choice Menu Flavors

12.9.5 454tv:multiple-choice Menu Messages

12.9.6 454tv:multiple-choice Example

12.10 455The Choose Variable Values Facility

12.10.1 455Variables and Types

12.10.2 457Predefined tv:choose-variable-values Variable Types

12.10.3 461The Standard Choose Variable Values Function

12.10.4 461tv:choose-variable-values Examples

12.10.5 463The User Option Facility

12.10.6 464User Options Example

12.10.7 465Defining Choose Variable Values Types

12.10.8 466Type Decoding Message

12.10.9 466tv:choose-variable-values Type Definition Example

12.10.10 466Defining a Choose Variable Values Window

12.10.11 467The Basic Choose Variable Values Flavor

12.10.12 468tv:basic-choose-variable-values Init-plist Options

12.10.13 468tv:choose-variable-values-window Messages

12.10.14 469tv:choose-variable-values-window Example

12.11 470The Mouse-Sensitive Items Facility

12.11.1 471Attributes of a Mouse-sensitive Item

12.11.2 472Associating Actions with Mouse-sensitive Items

12.11.3 473tv:basic-mouse-sensitive-items Init-plist Options

12.11.4 473tv:basic-mouse-sensitive-items Messages and Functions

12.11.5 474tv:basic-mouse-sensitive-items Example

12.11.6 476Mouse-Sensitive Areas Example

12.12 477The Margin Choice Facility

12.12.1 477The tv:margin-choice-mixin Flavor

12.12.2 477tv:margin-choice-mixin Init-plist Option

12.12.3 478tv:margin-choice-mixin Messages

12.12.4 478tv:margin-choice-mixin Example

12.13 480The Flavor Network of tv:menu

12.14 482Init-plist Options for tv:menu

12.15 483Messages Accepted by tv:menu

13 485Scroll Windows

x
Table of Contents February 2018

13.1 485Introduction to Scroll Windows

13.2 486Basics of Scroll Windows

13.3 487Constructing Items

13.3.1 487Constructing Line Items

13.3.2 493Constructing List Items

13.4 494Virtual List Maintenance

14 495Interactive Streams

14.1 495Introduction to Interactive Streams

14.2 496Input Functions for Interactive Streams

14.3 496Messages for Input from Interactive Streams

14.4 497Intercepted Characters

14.5 497Interactive-Stream Operations for Asynchronous Characters

14.6 498Interactive Streams and Mouse-Sensitive Items

14.7 498The Input Editor Program Interface

14.7.1 498How the Input Editor Works

14.7.2 500Invoking the Input Editor

14.7.3 501Input Editor Options

14.7.4 503Displaying Prompts in the Input Editor

14.7.5 504Displaying Help Messages in the Input Editor

14.7.6 504Examples of Use of the Input Editor

14.7.7 508Input Editor Messages to Interactive Streams

14.8 508Querying the User

15 509Digital Audio Facilities

15.1 509Introduction to the Digital Audio Facilities

15.2 509Setting the Console Volume

15.3 509Microcode Support for the Digital Audio Facilities

15.3.1 509The Audio Microtask

15.3.2 510Sample Format

15.3.3 511Audio Command Format

15.3.4 513The Polyphony Feature

15.3.5 515Simple Tone Generation with sys:%beep and sys:%slide

15.3.6 515Notes on Wired Structures

15.4 517Lisp Primitives for the Digital Audio Facilities

15.4.1 517Functions, Variables, and Macros for Digital Audio

15.4.2 517Digital Audio Parameters

15.4.3 517Testing for the Existence of Audio

15.4.4 517The Audio Wrapping Form

15.4.5 518Building Audio Command Lists

15.4.6 518Storing Samples

15.4.7 519Looping Through Audio Command Lists

15.4.8 519Synchronization Flags

15.4.9 519Starting and Stopping the Audio Microtask

15.4.10 519Conversions Between Sample Formats

15.4.11 520Conversions for the Polyphony Feature

xi
February 2018 Table of Contents

15.4.12 520Computing Polyphonic Increments

15.5 520Examples of Using the Audio Facilities

15.5.1 520Sine Wave Example

15.5.2 522Sawtooth Wave Example

15.5.3 522Square Wave Example

15.5.4 523Beep Example

15.5.5 524Non-real-time Synthesis Example

15.5.6 525Playing Large Pieces Example

15.5.7 528Polyphony Example

16 533Dates and Times

16.1 533Representation of Dates and Times

16.2 534Getting and Setting the Time

16.2.1 534The 3600-family Calendar Clock

16.2.2 534Elapsed Time in Seconds

16.2.3 534Elapsed Time in Internal Time Units

16.3 535Printing Dates and Times

16.4 536Reading Dates and Times

16.5 537Reading and Printing Time Intervals

16.6 537Time Conversions

16.7 538Internal Time Functions

17 541Zwei Internals

17.1 541Introduction to Zwei Internals

17.2 541Stream facility for editor buffers

17.2.1 541The zwei:with-editor-stream macro

17.2.2 541The zwei:open-editor-stream function

17.2.3 542Keyword Options

17.3 544Making Standalone Editor Windows

xii
List of Figures February 2018

�

List of Figures

Page

1 7A typical Frame-Up display

2 61A sampling of system command tables

3 131The initial Frame-Up display.

4 132Frame-Up with display options set

5 133The Notepad Frame, initial appearance

6 144The user coordinate system

7 144The device coordinate system of a dynamic window

8 145Device coordinate system, window scrolled vertically and horizontally

9 146Display of user drawing with no transformation

10 147Use of graphics:with-room-for-graphics

11 148Use of nested graphics transformation macros

12 151Bezier curves and their control points

13 152Cubic splines and their control points

14 153Hermite cubic splines

15 156Decision rule for allocating pixels

16 173Changes effected by single coordinate transforms

17 174Changes effected by sequential coordinate transforms

18 186A collection of hierarchically related presentation types for a simple

graphic editor

19 188Presentation type subset/superset representations

20 190Matching betweem input context and a presentation type by a

translating handler

21 224Mouse handler applicability

22 423System menu.

23 424Components of a menu.

24 430Adjusting a menu’s column geometry. (a) One column (b) Three columns

25 431Simple menu from which geometry information is obtained.

26 433Momentary menu example.

27 436Pop-up menu example.

28 440Command menu example.

29 442Select menu, an example of a dynamic item list menu.

30 444Dynamic menu example.

31 445Hardcopy multiple menu.

32 447Momentary multiple menu.

33 449Multiple menu choose facility in Zmail.

34 449A standard multiple-menu-choose menu.

35 451Momentary multiple-menu-choose menu.

36 452Multiple choice facility in the Zmacs menu.

37 453Multiple choice menu example.

38 456Choose-variable-values window accessed via the System menu.

xiii
February 2018 List of Figures

39 461Choose-variable-values example 1.

40 461Choose-variable-values example 2: better formatting.

41 462Choose-variable-values window: grocery store example.

42 464User options window example.

43 469Example of making a choose-variable-values menu.

44 471Mouse-sensitive items.

45 474Mouse-sensitive items example.

46 474Result of selecting a mouse-sensitive item.

47 476Mouse-sensitive areas example.

48 478Example of a margin choice facility added to a window.

1
February 2018

Preface to Programming the User Interface

The information contained in this volume and its companion, the Symbolics User

Interface Dictionary, includes everything the programmer needs to write a user in-

terface for an application program. This includes information on:

• Creating, modifying, and controlling windows

• Obtaining user input from the keyboard and mouse

• Formatting tables, tree graphs, and other graphics output

• Using the Command Processor facility

The current volume is organized in an overview and three sections. The first sec-

tion, Part 1, presents a set of top-level tools for interface programming. It explains

how to use these tools to accomplish the two essential functions of an interface
presenting output and obtaining input. This section documents completely the two

top-level macros, cp:define-command and dw:define-program-framework.

Part 2 explains how to build on and modify the basic structures created by the

high-level tools in order to accomplish more complicated tasks. This section com-

pletely documents the four presentation-related defining macros, define-

presentation-type, define-presentation-translator, define-presentation-to-

command-translator, and define-presentation-action.

Part 3 discusses the organization of the Symbolics user interface substrates and

how the system works, including information on low-level details. Most of this in-

formation is unnecessary unless you want to modify the behavior of some top- or

middle-level facility. The purpose of this last section is to enable you to choose

among a variety of means for achieving a particular end, given the overall goals of

the application program.

���� ��������� ���������� contains definitions of all the Lisp objects that constitute

the user interface system, except for the major top-level defining macros included

in the first volume. It has three parts: a dictionary of user-interface functions,

macros, variables, and flavors; a dictionary of predefined presentation types; and a

graphics dictionary.

2
February 2018

3
February 2018

PART I.

USING THE TOP-LEVEL USER INTERFACE
 PROGRAMMING FACILITIES

4
February 2018

5
February 2018 Overview of User Interface Programming Facilities

1. Overview of User Interface Programming Facilities

Historically, the user interface component has often turned out to be the largest

part of any large-sized system. The part of the program devoted to problem solving

was often overshadowed by the part that took care of presenting data, reading re-

sponses, and handling mouse input and menu display. With Genera, this no longer

needs to be the case.

In Genera, Symbolics offers a set of tools that allow the programmer to perform

these interfacing tasks easily, by embedding standard Symbolics user interface fea-

tures directly in application software. This set of tools forms a ��������� layer upon

which programmers can build the interface for their users. This substrate in-

cludes:

• A generic read/interpret/redisplay command loop that works for any interactive

system.

• A mechanism for presenting many different types of data on the screen and hav-

ing the system "remember" the objects and their semantics (that is, their cur-

rent program-defined meaning) so that the user can access them from the dis-

plays using the mouse.

• A means of dividing up screen real estate into a programmer-controlled program

frame, allowing the programmer to specify relative or absolute sizes of the divi-

sions, the types of display, and so forth.

• An interactive layout design program that aids in the construction of these pro-

gram frames.

The existence of this substrate means that, ������� doing any low-level program-

ming, you can take advantage of such Symbolics system features as:

• User-input prompts

• Error checking of commands and their arguments

• Mouse-sensitive output

• Windows

• Menus

• Table formatting

• Screen layout

• Scrolling

6
Overview of User Interface Programming Facilities February 2018

• Graphics

Specifically, the Symbolics Genera user interface management system provides the

following facilities for constructing user interfaces to application programs.

• The Command Processor facility includes the means to

° build generic read/interpret/display command loops that work for any interac-

tive system

° read and parse commands,

° manage command tables, and

° define and install command accelerators, which allow users to enter com-

mands by pressing a single key.�

These last two features allow you to register commands and their single-key ac-

celerators in tables that facilitate command lookup. These tables can be orga-

nized into a hierarchy so that one table can inherit commands or accelerators

from other tables.

• The Frame-Up layout designer and the program framework definition facili-

ties are tools that you can use to construct a custom-tailored window configura-

tion and program command loop for an application. The interactive layout de-

signer makes it easy to set up several window panes, size them, and specify

their types and options by displaying a mock-up of the window geometry as

shown in Figure 1.

It also allows you to set up and initialize the application’s state variables. The

program framework definition lets you specify the set of commands and the

command loop in which the user interacts with the program.

• Output facilities, including the Showcase display facilities, are built on the pre-

sentation and Dynamic Window substrates. They allow you to control the format

of displayed data, including character styles, list, table and graph formatting,

progress indicators, and graphical presentations. Commands and displayed data

can be retained in the output history, can be ��������������� in appropriate con-

texts, and their redisplay can be controlled in several ways.

• User input facilities, also built on the presentation and Dynamic Window sub-

strates, include a choice of functions that make it easy to acquire input from

users in any of several ways: from the keyboard, from mouse clicks on automati-

cally mouse-sensitive output, or selection from a variety of types of menus. All

modes of interaction are available to the user simultaneously; there is no need

for either the user or the application programmer to choose a particular style of

interaction at any time.

7
February 2018 Overview of User Interface Programming Facilities

Figure 1. A typical Frame-Up display�

• The presentation substrate is the basis for all output and user input facilities,

including the Command Processor and the query and menu facilities. The pre-

sentation type system, an extension of the Common Lisp type system, centralizes

the responsibility for parsing and printing data. It allows programs to �������

output and ������ input in a variety of ways.

• The Dynamic Window substrate allows you to create and use windows that are

horizontally and vertically scrollable and that retain history of their output. The

characters or graphics displayed and their location on the window, along with

the semantic content of the display that is, the object’s type within a given

context are remembered and used so that presented objects are usable as pro-

gram input and mouse-sensitive according to the current input context.

• The graphics substrate comprises a collection of functions and macros that let

the user create all sorts of graphic images, manipulate them within interactive

streams, and use these images as �������������, that is, as context-dependently

mouse-sensitive output and input for commands and functions.

The simplest interface to an application program is just the Lisp Listener itself. If

you are writing a small program that requires no input from the user and perhaps

writes to a file or just displays its results once with no need for formatting, sav-

ing, modifying, or redisplaying, then you do not need to use any of the user inter-

face facilities. Your user has to type in a Lisp form to execute your program and

that is all.

8
Overview of User Interface Programming Facilities February 2018

At the other extreme, you can write an interactive application program that incor-

porates all of the sophisticated features of the most complicated system facility, in-

cluding scrollable windows, sub-windows, and text areas, mouse-sensitive text or

graphics, menus of all sorts static, pop-up, scrollable, multiple-choice auto-

matically self-updating displays, all sorts of mouse-invoked commands, automatic

window reconfiguration, and many other features. The Graphics Editor, Document

Examiner, and Display Debugger program incorporate several of these features.

The Symbolics user interface facilities allow you to incorporate these features us-

ing high-level functions, without having to understand the details of mouse and

window programming.

The remaining sections of this chapter introduce the concepts and terminology of

user interface programming and describe the user interface and the facilities for

programming it in a bit more detail. They also direct you to the appropriate manu-

al sections.

1.1. User Interface Concepts

1.1.1. User Interaction Paradigm

The user interfaces you can build using the Symbolics user interface substrates

support a style of program interaction very different from conventional user inter-

faces. This interaction style affords the user a variety of modes: typed in com-

mands, menu-selection, mouse activated commands using highlighted text or graph-

ics all can be available at the same time so a preferred mode can be selected.

Central to the interaction paradigm is a command processor based entirely on the

user interface substrates. The Genera Command Processor manages the user inter-

face aspects of all commands. It is similar to the executive or shell of other oper-

ating systems. The Command Processor automatically provides command name

completion and help strings, as well as a sophisticated defaulting mechanism.

Top-level control for a program is provided by its ������� ����. Most programs’

command loops involve the same set of steps:

1. Read a command.

2. Execute the command.

3. Update the display. This may include the redisplay of any modified data

structures.�

The part of the loop that reads the command builds and then parses a complete

"sentence," the command.

Command sentences generally include:

Verbs Specifying the action to be performed (for example, Show File)

9
February 2018 Overview of User Interface Programming Facilities

Nouns The objects on which the specified action is to be performed

(for example, a pathname argument to the Show File com-

mand)

Modifiers Specializations introduced via optional, typically keyword, argu-

ments

Here is an example. In this case, the user has entered the entire command from

the keyboard.

Show Directory (files [default Q:>jones>*.*.newest]) ������

Q:>jones>*.*.newest ������

(keywords) :Since (a universal time in the past or a null value)

 "8/01/87 00:00:00" ����������

Here is another example, starting with the output produced by the command of the

previous example.

Q:>jones>*.*.newest

2920 free, 363880/366800 used (99%, 5 partitions) (LMFS records, 1 = 4544. 8-bit bytes)

 babyl.text.2344 71 316725(8) ! 08/07/87 09:52:33 (08/07/87)

 mail.text.1 19 83691(8) ! 08/07/87 11:45:13 (08/07/87) Mail-Server

90 blocks in 2 files

Show File Q:>Jones>mail.text.1

In the case above, nothing was entered from the keyboard. Instead, the user moved

the mouse over the line beginning mail.text.1 and the system surrounded that

line with a box. At the same time the mouse documentation line displayed "Mouse-

L: Show File (file) Q:>Jones>mail.text; ..." When the user clicked the left mouse

button, the system displayed the Show File command and then executed it. So, in

this example, the noun has been presented previously and the verb is called upon

it.

Users can construct command sentences from keyboard input, mouse input, or a

mixture of the two. Mouse handling with respect to the Command Processor is

synchronous: mouse and keyboard input can be interleaved in the construction of a

command sentence. Thus, for example, if the user types in the Show File com-

mand, the pathname argument can be supplied by clicking on a pathname that a

previously executed command has caused to be presented as output.

Here is a final very brief example that illustrates how easy it can be, using top-

level and intermediate-level facilities, to make commands available as graphic ob-

jects.

;;Function to present a circle that represents a number:

(defun present-number-as-circle (number)

 (graphics:with-room-for-graphics (t (* number 2))

 (dw:with-output-as-presentation (:object number :type ’integer)

 (graphics:draw-circle number number number))))

10
Overview of User Interface Programming Facilities February 2018

;;Draw a handy set of these circles:

(loop for i from 2 to 6 do (present-number-as-circle i))

;;Define a CP command that takes a number as its argument:

(cp:define-command (com-beep-n-times :command-table ’user) ((number ’integer))

 (loop repeat number do (beep)))

;;Translator that executes command when user selects eligible argument:

(define-presentation-to-command-translator number-to-beeps (integer)

 (number)

 ‘(com-beep-n-times ,number))�

Try evaluating this code and then click the left mouse button over one of the cir-

cles produced.

To summarize: a Genera user can access a program’s command set using various

mixes of form filling, arbitrary operation-operand (verb-noun) order, graphics, and

text. This is true whether the commands are system commands or ones the pro-

grammer creates for an application program.

The Presentation System

The presentation substrate is the basis for the higher-level user interface program-

ming tools: the Command Processor, and the input and output facilities. The inter-

face-oriented data typing of this substrate, based on ������������� described next,

forms the framework for behavioral consistency across all types of interactions.

The substrate affords access to system "hooks" for mouse-sensitive display, context-

sensitive input parsing, error checking, prompting, and the like.

1.1.1.1. Presentations
The Genera SemantiCue enhanced interaction system is based on the concept of

presentations. These are the user-visible representations of the target objects for

interactive commands they are what you see on the screen, either entered by

the user or output by the system or by an application. The important thing about

such an object is that it has a ������������ ����. Presentation types are the means

of organizing the way data is collected from and returned to the user.

Presentations, Presentation Objects, and Presentation Types

Each time output is done to a dynamic window, one or more presentations are cre-

ated and saved in the window’s history. The presentations record:

• The underlying object, which is the object that was displayed

• The presentation type, which tells how the object is to be classified or interpret-

ed

• Various other data of use internally by the presentation system, such as the lo-

cation and size of the presentation in the window, relationship to other presen-

tations, and so on

11
February 2018 Overview of User Interface Programming Facilities

The presentation type of a presentation classifies it according to its extrinsic (pro-

grammer-defined) meaning and moreover, describes the translation between the

object’s internal representation and its printed representation. It is this classifica-

tion and translation that gives you context-dependent mouse sensitivity practically

"for free." This is due to the way in which data types can be overloaded with dif-

ferent user semantics in different situations.

For example, you can have a presentation type called ����� ������� and one called

������� �������. These differ from one another because their displays are visibly

different. You can, however, display the same object as either one of these presen-

tation types; the data representing the object internally would be the same in ei-

ther case. The presentation type does not matter in any way to a compiler or

arithmetic processor, but it does make a difference to, say, the function that is

looking for a particular type of operand for some command. Moreover, you can as-

sign yet another presentation type to the same object in some other context for

example, the presentation type ��������� ���������� if you wish to associate with

the object a different meaning to the user. In this last case, you are using the pre-

sentation type to reflect user semantics.

The presentation type system associates interactive procedures with type specifiers.

An extension of the Common Lisp type system, it allows specification of not only

what constitutes an object of a type but also how that kind of object is to be dis-

played (the type’s �������) and how to parse user input in looking for the object

(the type’s ������). The relationship between Common Lisp types and the presenta-

tion type system is described in the chapter in Part 1 that introduces the use of

presentation types: See the section "Using Presentation Types", page 21.

1.1.1.2. Presentation Functions
Two complementary functions use presentation types: present and accept. These

basic functions are used by all the other user interface facilities such as the Com-

mand Processor. present and accept convert between what the user types or sees

on the display and what the system stores internally. This is analogous to what

print and read do.

Given an object and a presentation type, present looks up the printer

function for that presentation type and makes a presentation.

accept takes a presentation type as an argument and lets the user enter

an object of that type either by typing at the keyboard or by clicking

with the mouse on some appropriately sensitive object.

An object that has been displayed as some presentation type by present is auto-

matically eligible as an argument of that type to accept.

The high-level input and output facilities built on the presentation substrate allow

you to write your own functions to present and accept data. Lists of the specific

tasks you can accomplish with these are included in the descriptions of those fa-

cilities. See the section "Using Presentation Types", page 21.You can use the pre-

sentation substrate directly to accomplish tasks not performed by the higher-level

facilities. See the section "Defining Your Own Presentation Types", page 185. See

12
Overview of User Interface Programming Facilities February 2018

the section "Programming the Mouse: Writing Mouse Handlers", page 221.

Actions and Translations

The behavior associated with accepting an object originally displayed (presented)

by some earlier output function and using it as a command operand is a special

case of a general facility known as �����������. For certain pairs of input context

(that is, what is being accepted) and presentation type of the presentation, the sys-

tem has a set of translation procedures. These procedures take the object in the

presentation and return an operand suitable for the requested operation. The user

selects from among the possible procedures by the use of specific "mouse gestures"
 such as holding down the ����� key and pressing the middle mouse button
which are associated with the translator.

For example, you could write a translator that would translate from a user’s name,

which has presentation type net:user, to that user’s init file, which has the type

pathname. Then, when the Command Processor is prompting for a filename for a

Hardcopy File command, a user could click a mouse button on some net:user user

object (which the system displays as the user’s name) and hardcopy that user’s init

file.

One special kind of translator does not actually return an object from accept, but

instead associates some kind of side effect with the input-context/output-

presentation pair. This side effect is some action that helps the user in the process

of finding an operand for input. (For example, if the user is expected to input a

filename, a useful side effect would be to list the files in a directory when the

user clicks on that directory name.) This special kind of translator is called an ���

����.

Mouse Sensitivity

To say that a displayed item on the screen is ��������������� means that pushing a

mouse button while the mouse cursor is pointing at it has some defined meaning:

it will cause an action or indicate a choice. The window system usually indicates

this sensitivity by highlighting the item (that is by drawing a rectangular box

around its representation). Every displayed output on a window is potentially

mouse-sensitive.

Making mouse-sensitive displays using Genera tools is easy and safe, in contrast to

the same task in pre-Genera software releases. You no longer need to learn the in-

nermost details of the window system to do mouse-sensitive output. A single kind

of window, namely a ������� window (the associated flavor is dw:dynamic-

window or dw:dynamic-window-pane), remembers all of the following for each

item of output:

1. The location of the item on the window

2. What object the item represents

13
February 2018 Overview of User Interface Programming Facilities

3. What kind of item it is (that is, its presentation type), including display-

related options, such as the number base, whether a list was displayed as

code, a property list or data, and the like

Which presentations are mouse-sensitive at any given time depends upon two

things:

1. The input context. If you are using accept, for example, only those presenta-

tions that are of the type you are accepting (or can be translated into that

type) are mouse-sensitive.

2. Whether any modifier keys are held down. "Modifier keys" include not only

the ����� key, but also �������� ����� ������ �����, or any combination of

these.�

Dynamic Windows remember all the output ever done on a window until the user

enters the Clear Output History command. This includes output that has been

scrolled off the top of the window. Dynamic Windows can be scrolled forward and

back, as well as left and right (if any of the output has been written beyond the

right-hand edge of the window). Any output presented with the appropriate type,

even if it is not visible in the window, can become mouse-sensitive if you scroll

the window back to it and put the mouse cursor over it, it will be highlighted.

Ways to display output so that it will be mouse-sensitive in the correct context and

ways to make use of this output are discussed in the chapters on the Command

Processor and on presentation types.

See the section "Managing the Command Processor", page 43.
See the section "Using Presentation Types", page 21.
See the section "Defining Your Own Presentation Types", page 185.

Note: You can still program the mouse at the lowest level if it is really necessary.

See the section "Programming the Mouse: Writing Mouse Handlers", page 221.

1.2. The Facilities

Command Processor Facilities

The core of the Command Processor facilities, which are built on the presentation

and Dynamic Windows substrates, is the cp:define-command macro. Another very

similar macro, dw:define-program-command, is included in the program frame-

work definition facilities. Both of these macros allow you to define commands that

the user can enter making use of system-provided features, such as prompting,

help, completion, and the like. The commands you define are installed in a com-

mand table that you specify. The difference between the two macros is that com-

mands defined with dw:define-program-command have access to program state

variables and can be easily added to your program’s menus, unlike those defined

with cp:define-command.

14
Overview of User Interface Programming Facilities February 2018

To find out all you need to know about building your own CP commands and using

them from within your programs, see the section "Managing the Command Proces-

sor", page 43. To find out how to define commands within your own program

framework and how to build and manage your own command loops, see the section

"Defining Commands within Your Own Framework", page 123.

1.2.1. Program Frameworks

Most interactive programs consist of an "infinite" loop that repeatedly cycles be-

tween command reading, command execution, and display update. Examples of such

programs are the Lisp Listener, the editor program Zmacs, and the mail reading

program Zmail. Other programs, which have a similar sort of infinite loop but very

different interaction styles, are the Graphic Editor and the Frame-Up Layout De-

signer.

A ������� ��������� organizes such an interactive program. It contains the fol-

lowing four related items:

• A window-layout declaration, specifying the division of the screen into panes

• A set of window display definitions, specifying type and characteristics for each

pane

• A command loop as described above

• A set of commands

Symbolics’ program framework facilities include a set of tools that enable you to

define this organization. The centerpiece of these facilities is the macro dw:define-

program-framework. This macro creates a flavor of program for the framework.

It has a great many options, including ones that let you:

• Specify redisplay information for several window panes

• Specify how panes are to be arranged on the screen geometrically

• Define a command-defining macro for the program

• Specify state variables for the program

• Specify how to select the program

These are the types of panes you can specify:

:interactor Accepts forms or CP commands and displays output, like a

Lisp Listener

:display Displays (possibly mouse-sensitive) output only, like the main

pane in the file system editor

15
February 2018 Overview of User Interface Programming Facilities

:title Displays a fixed title, like the title pane in the Flavor Examin-

er

:command-menu Presents a fixed set of mouse-sensitive commands, like the

middle pane in a Zmail window

:accept-values Presents an accept-values type of menu, usually for selecting

values of program state variables

:listener A window that accepts forms or commands but does not display

output

The redisplay options for a pane specify whether, when, and how the contents of

the pane should be updated.

The Frame-Up Layout Designer lets you build a dw:define-program-framework

macro interactively to help you write the code that specifies your program

framework, you can call up a special window and configure your application win-

dow using menus. Once you have generated your program-framework defining

macro, you can edit it to refine and augment the results. All of this is explained in

the introductory chapter in Part 1. See the section "Defining Your Own Program

Framework", page 97.

To find out how to create commands for your own application program framework,

see the section "Defining Commands within Your Own Framework", page 123.

Other chapters, in Part 2, present information about low-level facilities for adjust-

ing the user interface within your own program framework. For example:

See the section "Managing Your Program Frame", page 307.

See the section "Programming the Mouse: Writing Mouse Handlers", page 221.

See the section "Displaying Output: Replay, Redisplay, and Formatting", page 281.

Output Facilities

The top-level facilities for displaying output, collectively referred to as Showcase

are described in Part 1. See the section "Using Presentation Types", page 21.

Depending on how much control you want over the presentation type of a display,

you have three options for facilities with which to present output:

1. Use any printing operation like print or format. This presents output as a

simple default presentation type. When you use print, for example, on an ob-

ject, that object is presented with the presentation type sys:expression.

2. Use present or present-to-string to specify the exact presentation type you

wish to use. You might use this, for example, if you have an object that �� an

integer but ���������� a universal time. In general, present is used for invok-

ing the printer function associated by your program with a presentation type

on the object you are displaying.

16
Overview of User Interface Programming Facilities February 2018

3. Use the macro dw:with-output-as-presentation to specify both the presenta-

tion type and the manner in which the data is to be presented on the screen.

All output drawn on the screen inside this form becomes part of the presen-

tation. You can use this to incorporate graphics into your presentation.

However you choose to present your output, you also have control over the charac-

ter style used to display it, as well as over other aspects, such as underlining, ab-

breviating, filling, and indenting. See the sections "Formatting Text" and "Format-

ting Textual Lists".

If the object you want to display in your output is a list or sequence, there are fa-

cilities to help you format it. In particular, a number of functions and macros

make construction, arrangement, and labeling of tables very easy. See the section

"Formatting Tables", page 73. Genera provides two functions and two macros that

allow you to display data structures such as trees and lattices graphically. See the

section "Formatting Graphs", page 76. Remember that any output you do, whether

displayed in a nicely formatted table or in a graphical tree structure, has the po-

tential to be selected by the user for input, and it has the potential for being auto-

matically updated if the displayed data changes.

Input Facilities

The top-level facilities for obtaining user input, collectively referred to as Seman-

tiCue are described in Part 1. See the section "Using Presentation Types", page 21.

Just as there are three ways to present output, depending on how much control

you want to have over its appearance and underlying type, there are three ways to

accept input:

1. Presentation-based input operation, for example, read, can accept its input in

the form of mouse clicks on sensitive items (as well as in the form of

keystrokes from the keyboard). The Command Processor also accepts both

whole commands and single arguments to those commands from the mouse;

thus previously entered commands and other output are often sensitive while

the Command Processor is waiting for you to type a command.

2. The function accept is used to control this behavior more precisely. You can

specify not only the presentation type, but also data arguments (to restrict

the range of the allowed input) and presentation arguments (to affect aspects

of input interaction, such as number base). accept is especially powerful in-

side a dw:accepting-values form, where several calls to accept become a sin-

gle ���� of choices. Related to accept, and used in similar situations, are the

functions prompt-and-accept and accept-from-string.

3. The macro dw:with-presentation-input-context allows you to control exactly

what input is sensitive while performing any arbitrary input operations. This

is the most flexible input control you can use: inside the macro’s body, you

specify what the keyboard-reading operation is, and also what to do when a

mouse operation is performed.

17
February 2018 Overview of User Interface Programming Facilities

There are additional facilities for accepting single objects from menus
dw:menu-choose and dw:menu-choose-from-set and for accepting multiple ob-

jects dw:accept-values, dw:accept-variable-values, and dw:accepting-values.

Several chapters in Part 2 explain how to use the advanced facilities of SemantiC-

ue: See the section "Defining Your Own Presentation Types", page 185. See the

section "Managing Your Program Frame", page 307. See the section "Programming

the Mouse: Writing Mouse Handlers", page 221.

1.2.2. Presentation Substrate

Two chapters in this manual discuss the presentation-related facilities in more de-

tail and explain how to use them.

An introductory chapter in Part 1 explains how to make use of them. See the sec-

tion "Using Presentation Types", page 21.

A more advanced chapter in Part 2 explains presentation types in detail and shows

you how to use the facilities of the substrate to:

• Define your own presentation types

• Declare and use specialized presentation input context

• Create and use translating mouse handlers

• Dissect presentations and manipulate presentation-type arguments

See the section "Defining Your Own Presentation Types", page 185.

Window Substrate

The ������ system is the second major source of user interface substrate facili-

ties, after the presentation system. A window can be ������ or �������. Output to

static windows is relative to an unchanging set of window coordinates: once a stat-

ic window is full, it must be cleared entirely or partially before new output can be

done without overwriting previous output. Dynamic Windows, on the other hand,

are scrollable in both the vertical and horizontal dimensions; they have a definite

origin (0, 0), but an indefinite length and width. Scrollability is a basic feature of

Dynamic Windows and does not require the explicit use of special procedures as in

the case of static windows.

Associated with the scrollability of Dynamic Windows are the concepts of ������

������� and ��������. You do not have to clear a Dynamic Window to avoid over-

writing previous output. New output, unless specifically directed otherwise, is ap-

pended to the bottom of the window’s history, that is, at the end of all previous

output to the window. The window is automatically scrolled so that the current

viewport the visible portion of the window shows the new output. Scrolling

backwards through the history makes previous output viewable.

18
Overview of User Interface Programming Facilities February 2018

With the use of presentation types for doing output to a Dynamic Window, not on-

ly is the previous output retained and viewable, but its semantic content is also

remembered. That is, links to the objects represented by displayed presentations

are maintained so that the objects themselves remain accessible and usable as cur-

rent program input. This capability is central to the SemantiCue input system. In

the appropriate input context (established by your program), the displayed presen-

tations are automatically mouse-sensitive. Automatic mouse-sensitivity is another

point where Dynamic Windows depart from static windows; with a static window,

mouse sensitivity must be provided through explicit procedures associated with

output operations.

The window substrate contains all the facilities for creating and controlling win-

dows, both dynamic and static. This includes control of window and window pane

sizes, window pane labels, margins, margin labels, borders, scrollability, scroll bars,

end-of-page modes, exposure and activation, blinkers, character styles, graying, and

notification handling. It also includes control of the mouse.

See the section "Using the Window System", page 333.

Higher-level aspects of window programming are covered in part 2: See the section

"Defining Your Own Program Framework", page 97. See the section "Programming

the Mouse: Writing Mouse Handlers", page 221.

The Graphics Substrate

The graphics substrate contains the following facilities:

• Basic drawing functions for all sorts of graphics objects, such as lines, polygons,

arcs, circles, splines, and the like, together with drawing options such as tex-

ture, filling, thickness.

• Coordinate system facilities for scaling and rotating output.

• Graphics presentation facilities that let you use graphics objects as presenta-

tions.

• Low-level facilities that let you use graphic drawing and encoding primitives.

The graphics substrate is �������. This means that there is a uniform interface for

accessing the different facilities provided by different graphical output devices.

The graphical output devices supported in Genera are:

• The standard bitmap screen and its color analogues

• The LGP2/LGP3 laser printer

• Raster arrays intended for copying to the screen at some later time

To say that the substrate is generic does not mean that all programs written for

one device using the substrate will run on all devices. In particular, there is no

19
February 2018 Overview of User Interface Programming Facilities

guarantee that every function will degenerate cleanly when the functionality re-

quested of it does not exist. Every attempt has been made to do this where it is

practical and reasonable. For instance:

• Using the :color option on a black and white screen produces a stipple pattern

approximating the intensity of the desired color.

• Drawing with the :opaque nil option on the LGP2/LGP3 draws special images

to simulate this, even though the PostScript imaging model does not normally

support color mixing.�

In other cases, the limitations of the device are just too great.

• The LGP2/LGP3 is not capable of drawing in :alu :flip, because it does not nec-

essarily retain a complete image of the current partially drawn page.

• Graphics sent to character-only devices, for example, with-output-to-string or

ASCII terminals, is not simulated by a clever use of *, +, |, -, / and \.

If you have any concerns about the compatibility of the drawing options you are

using with the devices you need to output onto, you should check the correspond-

ing dictionary entries.

Use of the graphics substrate is documented in Part 2. See the section "Creating

Graphic Output", page 139.

20
Overview of User Interface Programming Facilities February 2018

21
February 2018 Using Presentation Types

2. Using Presentation Types

The purpose of this chapter is to introduce the general concept of the presentation

type system in just enough detail so that the reader will be able to make use of

the predefined types in the course of using the top-level user interface program-

ming facilities. Information on how to create new types is presented elsewhere in

this manual. See the section "Defining Your Own Presentation Types", page 185.

Recall from the introductory chapter of this volume (see the section "Overview of

User Interface Programming Facilities", page 5.) that the basis of all the facilities

for providing and obtaining user information are the functions accept and present,

which require presentation types for the objects that they are reading or display-

ing. All the higher-level user interface facilities, such as the command processor,

use these two functions to obtain their operands and display their output. For this

reason, whenever you use these facilities to write code to obtain input from the

user or to display output that might be subsequently read back in, you need to

supply the appropriate presentation type information.

2.1. The Presentation Type System: an Overview

What a Presentation Type Is

A presentation type, like a Common Lisp data type, is a (possibly infinite) set of

Lisp objects together with information on how objects in the set are to be printed

and parsed. These sets constitute categories of objects acceptable as arguments for

the user interface functions accept and present or for higher-level interface func-

tions built upon those. A presentation type indicates something of the semantics of

the members of the set. For example, a list may be just a list, or it may be a

sys:form, that is, a piece of program to be evaluated.

Every structure, flavor, and Common Lisp data type is also a presentation type.

The result of a call to the present function is called a ��������� ������������, or,

simply, a ������������. A presentation can be thought of as comprising the object

itself and the presentation type.

A presentation type is itself a Lisp object, and the set of all presentation types is a

presentation type, called dw:presentation-type. For more detailed information on

the nature and structure of presentation-type objects: See the section "Defining

Your Own Presentation Types", page 185.

The predicate dw:presentation-type-p can be used to ask whether a given object

is a presentation type. Presentation types are arranged in a partial ordering de-

fined by a subset relationship; this relationship can be investigated using the

dw:presentation-subtypep function.

A presentation type specifier can be either a symbol or a list. A symbol denotes a

presentation type that has no arguments. A presentation type specifier that is a

list is arranged as ((name . data-arguments) presentation-arguments). Its parts

are:

22
Using Presentation Types February 2018

• The ����

The name is a symbol that names the presentation type. This name may come

predefined by the system, or be defined by the user.

• The ��������������

The data arguments further distinguish which objects are being described by

the type. They always denote a subset of the objects that would be denoted with-

out the data arguments. For example, when asking for an integer, you can ask

for an integer in a certain range by giving data arguments to the integer pre-

sentation type.

• The �������������and ����������������� ���������

The presentation and meta-presentation arguments do not distinguish between

objects. Instead, they control how the objects are presented to or accepted from

the user. For example, a presentation argument to the integer presentation type

specifies the base in which an integer should be printed or read. Meta-

presentation arguments to presentation types are arguments that are directly

understood by accept or present. They are not dependent on the parser or

printer of any particular presentation type, and can therefore be used as argu-

ments to any type.

At present, a single meta-presentation argument is available, :description. Us-

ing this keyword option, you can control the prompt created by accept for solic-

iting input of a given type. This allows you to make the prompt more appropri-

ate to the current conceptual context. For example, instead of just asking for a

integer, you could do something like:

(accept ’((integer) :description "the number of copies")) ==>

Enter the number of copies: 5

5

((INTEGER) :DESCRIPTION "the number of copies")

The syntax for distinguishing the different parts of a presentation type and exam-

ples are presented in a later section. See the section "How to Specify a Presenta-

tion Type", page 25.

What Presentation Types Are For

Presentation types are for use with the functions accept and present, which are

the means of obtaining input from or displaying output for the user. They are also

used by mouse handlers, which are additional facilities for letting the user manipu-

late objects. (See the section "Programming the Mouse: Writing Mouse Handlers",
page 221.) It is the specification of presentation types for these facilities that

makes possible advanced features such as context-dependent mouse sensitivity
including the mouse documentation line automatic completion, an automatic de-

faulting mechanism, and the like.

23
February 2018 Using Presentation Types

The Genera presentation type system is an extension of the Common Lisp (CL)

type system. Common Lisp allows the programmer to specify data types for vari-

ables and to extend the type system’s primitive data types by adding new types

based on those primitive types. This typing system can be used to arrange for effi-

cient storage allocation by the compiler’s code generator. In addition, the typing

information arranges for the proper type-specific procedure to get called, given an

overloaded operator such as a Symbolics Common Lisp (SCL) generic function like

+. The current CL typing system, however, is not useful for differentiating among

different types of operands to be supplied by the user interactively mainly be-

cause it lacks arguments to control presentation independent of arguments to con-

trol set membership and it lacks a way to create subtypes that are purely seman-

tic.

The Genera presentation type system takes the CL typing system several steps far-

ther by adding the capability of associating one or more of the following features

with a presentation type:

• a history of objects previously accepted as instances of the type,

• a specialized parsing function for recognizing an object of the type,

• a display function for an object of the type, including, for example, possible dis-

play as a graphics object,

• an allowance for user specification of different ways of displaying an object of

the type that is, of different ���������,

• functions to be used for determining whether this type is a subtype of some oth-

er type, and

• specification of various options concerning how the object is to be described by

the system for the user and how it might appear in various kinds of menus.

Because the functions accept and present use these features, higher-level facilities

can easily implement things like input parsing and mouse sensitivity. For example,

any CP command that produces output can call present, specifying the presenta-

tion types of the objects to be displayed. A subsequent CP command that requires

input calls accept, also specifying a presentation type. When the type of a dis-

played object matches the one required, the system makes the object’s display

mouse-sensitive and, if the user clicks the mouse over it, supplies the object to the

command. This automatic mouse sensitivity comes about because there is an iden-

tity translator for every presentation type that translates from a presentation of

that type to the object itself as acceptable input in the given context.

Mouse sensitivity and translators form an advanced topic that is covered else-

where. (See the section "Programming the Mouse: Writing Mouse Handlers", page

221.) For now, you can simply view the mouse sensitivity provided by accept

/present type matching as automatic.

24
Using Presentation Types February 2018

When implementing an applications system, you can define and use your own pre-

sentation types according to the meanings assigned to objects in your system. In

an accounting program, for example, this may mean a dollar amount, and be read

with exactly two digits after the decimal point. In a numerologist’s program, it is

just a number represented in binary; it can be displayed in hexadecimal, octal, or

binary. If both systems are displaying output on the screen at once, the numbers

from the numerology program are not sensitive in the context of commands issued

within the accounting program, even though they both use numbers: the numerolo-

gist was not working with dollar amounts.

Presentation types distinguish the different ���� of a Lisp type whether a num-

ber, a list, a flavor instance, or something else for the external user. Not only

does this differentiation appear in the syntax used to express it, but it allows Se-

mantiCue to make appropriate quantities available for selection with the mouse

(via mouse sensitivity), without also making inappropriate ones available.

2.1.1. How Presentation Types Relate to Common Lisp Types

The presentation type system subsumes the CL type system: any CL type is also a

presentation type. Because the presentation type that corresponds to a given CL

type has the additional properties described above, it is much more useful as an

object specifier.

A few specific examples can illustrate some of the benefits of this system.

Consider the CL type string. The CL system "knows" how to test for strings. You

can supply an argument to the type specifier to indicate the size (length) of the

string. You can define new types using string with its type specifier and one or

more of not, and or or, using the CL deftype special form.

The ������������ ���� string, on the other hand, allows you to specify additionally a

list of characters that serve as delimiters during parsing of the string by the

accept function. More importantly, the string presentation type supports a type

history: when ������� �������� is invoked, the system offers the most recently

accepted string as the default.

An important difference between CL types and presentation types is the fact that

there can be presentation subtypes that are defined by semantic specialization, that

is, specialization according to the use the members of the type is put to. An exam-

ple is the presentation type symbol-name, which is equivalent to, but not the

same as, the presentation type string. This means the following things:

• symbol-name and string are equivalent types: every presentation that is a

member of one is a member of the other.

• symbol-name inherits the input history of string, but string history does not

include strings entered as symbol names.

• When accept is invoked specifying either symbol-name or string, objects pre-

sented as objects of either type are mouse sensitive.

25
February 2018 Using Presentation Types

The difference between the two types is in their input histories and in the fact

that symbol names are parsed differently from strings.

Another example is the presentation type fs:directory-pathname, which is a spe-

cialization of pathname. In this case, fs:directory-pathname is a proper subset of

pathname: objects presented as directory pathnames will be acceptable to (with

mouse sensitivity) calls for pathnames, but not ����������.

2.1.2. How to Specify a Presentation Type

The syntax for a presentation type specifier is one of:

����������������������

A symbol defined either by the programmer or the system to

name a presentation type

((���������������������� [������������������� ...])

[��

��������������������� ����������������� ...]

[������������������������� ���������������������])

A list of lists, where the items in square brackets are optional.

The first item in the outer list is itself a list, which contains

the name of the type and zero or more data arguments. This

inner list is similar (in many cases identical) to a CL type

specifier. The remaining items in the outer list are keyword-

value pairs of presentation and meta-presentation arguments.

(�����������������������[����������������������������� ...])

A list in which the first item is the presentation type and the

remaining items are data arguments.

Keep in mind that data arguments always serve to �������� (except in the case of

or) the set of objects included in the type, never to expand the set. Presentation

arguments never do any such restriction they only control how an object should

be presented or accepted. Presentation arguments are always keyword arguments.

Note that whenever you need to specify presentation arguments, you ���� use the

double set of parentheses. They distinguish unequivocally between data arguments

and presentation arguments. You can omit the outer parentheses when you do not

need to supply any presentation arguments for the presentation type. You can omit

both sets of parentheses when you have neither data nor presentation arguments.

Consider the integer type. You can control the printed representation of an integer

by specifying its base:

(accept ’((integer 0 100) :base 16)) ==>

Enter a hexadecimal integer greater than or equal to 0

and less than or equal to 64: e

14

((INTEGER 0 100) :BASE 16)

:base is a presentation argument. Internally a 14 is still returned, but externally it

is displayed as an e.

26
Using Presentation Types February 2018

It is important to note that use of a presentation type with no data arguments al-

ways refers to the entire set of objects of that type. For example, if you have de-

fined a flavor named ship with an instance variable tonnage, then ship always

refers to the entire set of ships. Data arguments can only restrict that set, not ex-

tend it. Thus, if you additionally define a data argument named tonnage for the

presentation type ship, then (ship :tonnage 50000) is always a subtype of ship; it

can never include anything not in ship. See the section "Type Inheritance", page

187.

Here is a set of examples that cover most of the possible variations of presentation

type specifier syntax. The examples make use of the basic presentation in-

put/output functions accept and present, which are described in detail, after the

predefined presentation types have been introduced. The presentation types used in

these examples are all predefined in Genera.

Simple Predefined Types

(present 4 ’integer)

(present "abcd" ’string)

(present t ’boolean)

(present (net:find-object-named :network "CHAOS") ’sys:expression)

Any of the presentation types in the examples above can be expressed alternately

using parentheses, as

(present 4 ’((integer)))

or

(present 4 ’(integer))

and so forth.

Using Data Arguments

(accept ’(string 5)) =>

Enter a string 5 characters long [default "right"]: abcde

"abcde"

(STRING 5)

Note that, when using present, you must not mislead the system about the object

you are presenting. No checking is currently done to make sure that the object you

present satisfies the requirements for the type. For example, if you enter (present

"left" ’(string 5)), "left" would be accepted as a (string 5) type. This would

cause anomalous behavior later on.

Other examples:

(accept ’(member harpo chico groucho))

(accept ’(dw:member-sequence (descartes sartre sinatra)))

27
February 2018 Using Presentation Types

(accept ’(type-or-string net:host))

(present :all ’(token-or-type (("None" . :none)

 ("All" . :all))

 (member Abel Baker Charlie)))

(accept ’((integer (2) (9)))) ;The parens around the arguments

 ;indicate exclusive limits

The predefined types member, dw:member-sequence, type-or-string and token-

or-type are all defined in the "Dictionary of Predefined Presentation Types".

Using Presentation Arguments

(present (+ 7 5) ’((sys:expression) :base 8 :radix t))

(present 1420088400 ’((time:universal-time) :timezone -1))

Many other presentation type arguments have to do only with how items are

parsed for accept. There are more examples shown as part of that function’s defi-

nition.

Compound Types

(accept ’(and integer (satisfies oddp)))

alternatively:

(accept ’((and ((integer)) ((satisfies oddp)))))

(accept ’((and ((number)) ((not integer)))))

All Types of Arguments

(accept ’((dw:member-sequence ("a" "e" "i" "o" "u"))

 :description "a vowel"))

=>Enter a vowel:

(accept ’((alist-member :alist (("Number 1" . first)

 ("Number 2" . second)))

 :convert-spaces-to-dashes t))

=>Enter Number-1 or Number-2: Number-1

28
Using Presentation Types February 2018

(cp:define-command (com-draw-rectangle :command-table ’user)

 (&key

 (alu ’(dw:member-sequence (:draw :erase :flip))

 :default :draw)

 (thickness ’((integer 1 10) :description "Width, pixels")

 :default 1)

 (dashed ’boolean :default t)

 (dash-pattern ’((sequence integer) :echo-space nil)

 :default ’(5 5)))

 (graphics:with-room-for-graphics (t 100)

 (graphics:draw-rectangle 0 100 100 0 :alu alu

 :thickness thickness :filled nil

 :dashed dashed

 :dash-pattern dash-pattern)))

2.2. Predefined Presentation Types

The Genera SemantiCue system includes a large number of predefined presenta-

tion types. Your programs can use these to specify argument types for your own

user interface functions in many cases, thus avoiding the need to define your own

presentation types.

Because many of the predefined types are defined for internal system use, only a

small proportion of them are of interest to the applications programmer. The Com-

mon Lisp types hash-table and compiled-function, for example, do not normally

occur in end-user-visible places.

In this section, we list the predefined types likely to be used by application pro-

grammers. Some, like integer, string, and boolean, are encountered frequently in

all kinds of programs. Many others, like sys:code-fragment and net:network, are

more specialized in their uses.

In any case, all of the types included here are also documented as individual dic-

tionary entries. See the section "Dictionary of Predefined Presentation Types" in

���� ��������� ����������. Also, many of them are defined in the file sys:dynamic-

windows;standard-presentation-types.lisp, where you can look for models when

defining your own types. The dictionary entry for each type notes whether it is one

of those included in this file.

There are three categories of documented types:

• Common Lisp Presentation Types (a subset of SCL types)

• Other Symbolics Common Lisp Presentation Types (besides CL types)

• Other Presentation Types

The category "Other Presentation Types" includes potentially useful types exported

29
February 2018 Using Presentation Types

from packages other than Symbolics Common Lisp; most of them are in the spe-

cialized-use category.

Common Lisp Presentation Types

and package

character pathname

integer satisfies

keyword sequence

member string

not symbol

null symbol-name

number t

or

When you use one of the Common Lisp types as a presentation type, you must

specify it using the correct syntax. See the section "How to Specify a Presentation

Type", page 25. Note that t is the supertype of all other types. The type t has no

parser of its own, however, so you can not use it with accept.

Also note the compound types and and or. These provide a way of extending the

type system by combining types. Another Common Lisp type, satisfies, is usually

used within compound types based on and.

Here is an example showing how to accept only odd integers:

(accept ’(and integer (satisfies oddp))) ==>

Enter an integer satisfying ODDP: 53

53

(AND INTEGER (SATISFIES ODDP))

Calling present with objects as or types is not useful; these are useful only for

accept. Several extensions via the or type are already among the predefined Sym-

bolics Common Lisp types, listed below. In general, you should call present with

the most specific type available.

Other Symbolics Common Lisp Presentation Types

alist-member inverted-boolean

boolean null-or-type

character-face-or-style sequence-enumerated

character-style subset

character-style-for-device token-or-type

instance type-or-string

Three of the compound types mentioned above, null-or-type, token-or-type, and

30
Using Presentation Types February 2018

type-or-string, are compound types. sequence-enumerated is also a compound

type, one for accepting or presenting a sequence of objects, each of a specified pre-

sentation type. Using alist-member to accept an object is similar to using a menu;

the object is represented by a user-visible string different from its internal repre-

sentation. subset provides a way of accepting or presenting zero or more objects in

a set.

The instance presentation type is typical of the many Common Lisp types (like

hash-table and compiled-function, mentioned at the beginning of this section) un-

likely to be useful in many situations. For one thing, you cannot type the name of

an instance at an accept function; it either has to be entered via a mouse click on

a previously presented instance object, or through accept’s default mechanism. It

is documented as a dictionary entry merely as an example of such types. You

should not ordinarily need it.

The remaining presentation types, listed below, provide potentially useful I/O capa-

bilities, spread across a broad spectrum of system software and functionality. We

encourage you to study this list, and the corresponding dictionary entries, for types

of use in your applications. Only four of these types are discussed here,

sys:expression, sys:form, sys:code-fragment and dw:no-type.

Other Presentation Types

cp:command si:input-editor

dw:accept-values-sample

dw:member-sequence sct:system

dw:no-type sct:system-version

dw:out-of-band-character sys:code-fragment

dw:raw-text sys:expression

fs:directory-pathname sys:font

fs:wildcard-pathname sys:form

net:host sys:flavor-name

net:local-host sys:function-spec

net:namespace sys:generic-function-name

net:namespace-class sys:stack-frame

net:network time:time-interval

neti:local-network time:time-interval-60ths

net:object time:timezone

sys:printer time:universal-time

neti:protocol-name dw:dynamic-window

neti:site tv:window

31
February 2018 Using Presentation Types

net:user zwei:buffer

Certain presentation types are standins for a hierarchy of more specific presenta-

tion types determined by the type of the object presented. Handler matching and

mouse sensitivity use the more specific type. These standin presentation types are

sys:expression, sys:form, and sys:code-fragment. We mentioned earlier that the

number of presentation types is large, including all structures, flavors, and a vari-

ety of little-used (for program I/O) Common Lisp types. The standin types are the

links between these types and the presentation system.

To consider one case, sys:expression is a supertype of all Common Lisp types (ex-

cept t), and is the type from which they inherit their printer and parser functions

when these are not otherwise defined for them. The instance type, for example,

inherits from sys:expression and, through instance, so do all flavors. (The undoc-

umented structure presentation type plays an analogous role for all structures.)

All values printed by the Lisp Listener are sys:expression presentations. For pur-

poses of mouse sensitivity, however, handlers whose ���������������������� is a su-

pertype of the actual type of the value are considered, as well as handlers whose

���������������������� is a supertype of sys:expression. Specifically, the result of

(present 5 ’sys:expression) will be treated by mouse handlers as though it were

the type fixnum, and (present 5 ’sys:form) will be treated as though it were (and

form fixnum).

sys:expression can provide any of its subtypes with a type history as well as a

printer and parser. Some of the Common Lisp presentation types listed in an earli-

er table make use of sys:expression’s type history, for example. This is true of the

integer presentation type. Through the number presentation type, to which it and

all other numeric types are subtype, it has access to the history of sys:expression

objects previously accepted.

The expression history is the source of default values offered when types inherit-

ing this history are accepting objects. When used by integer, the expression histo-

ry is "pruned" of non-integer objects; an appropriate default value can thereby be

offered. Other types with access to the expression history benefit from a similar

pruning process.

dw:no-type, as its name might suggest, is not really a presentation type. Rather,

it is a type for use by mouse handlers that are intended to be active only over

blank areas of a window, not over presentations.

All presentation types listed in the tables in this section are documented in a sepa-

rate dictionary. See the section "Dictionary of Predefined Presentation Types" in

�������������������������.

32
Using Presentation Types February 2018

2.3. Using Presentation Types for Output

The reason for using presentation functions for doing program output is so that

the objects presented will be acceptable to input functions. Suppose, for example,

you present an object as a microcode version number. When a command that takes

a microcode version number as an argument is issued or when a mouse translation

function is "looking for" such a thing, the system will make that object mouse sen-

sitive and the parsers in question will accept the object as input.

A presentation includes not only the display itself, but also the object presented

and its presentation type. When presentations are output to Dynamic Windows, the

object and presentation type are "remembered" that is, the object and type of

the display at a particular set of window coordinates are recorded in the window’s

������ �������. Because this information remains available, previously presented ob-

jects are themselves available for mouse input to functions for accepting objects.

There is an extensive collection of facilities for generating output, which can be

textual or graphical and which can make use of the presentation system or not.

See the section "Presenting Formatted Output", page 69.

SemantiCue provides three top-level facilities for presentating output: present,

present-to-string, and dw:with-output-as-presentation. present is the basic func-

tion for outputting presentation objects. present-to-string is a special-purpose

function intended to present an object as an output string in such a way that it

can subsequently be accepted as input. dw:with-output-as-presentation is a pow-

erful macro that you can use to control the appearance of the output object. If ap-

propriate in your application, you can use this macro to present a string as a

graphic display, for example, and still have the string object be available for pro-

gram input via the mouse.

The Showcase display facilities include a variety of top-level functions and macros

for generating formatted and redisplayable output. These are described in later

chapters, "Presenting Formatted Output" and "Displaying Output: Replay, Redis-

play, and Formatting".

The present Function

The present function does not determine the exact form that the output takes,

that is, its printed representation. This is determined by the presentation type that

you specify. The definition of the presentation type includes a printer function

specifying the details of the output display. The following examples show presenta-

tions of inverted-boolean and character-style:

(present t ’(inverted-boolean)) ==> No

#<DW::DISPLAYED-PRESENTATION T (INVERTED-BOOLEAN) 507772242>

(present

 (si:parse-character-style

 ’(:swiss :bold :large))) ==> SWISS.BOLD.LARGE

#<DW::DISPLAYED-PRESENTATION #<CHARACTER-... CHARACTER-STYLE 507774656>

You have the option of defining your own presentation type, with its own printer

33
February 2018 Using Presentation Types

function, but many, like the two example types above, have already been defined

for you. (For a list of predefined types, see the section "Predefined Presentation

Types", page 28. Reference documentation for each listed type is included in a user

interface dictionary. See the section "Dictionary of Predefined Presentation Types"
in �������������������������.)

The present-to-string Function

The present-to-string function converts an object of a specified presentation type

into a string. It has options that allow you to specify a string to hold the output,

an index into the string, and whether or not the object should be presented so that

it can be parsed later by accept. Example:

(setq output-string

 (present-to-string

’(si:com-show-file (#P"V:>birch>lispm-init.lisp.newest"))

’cp:command :acceptably t)) ==>

"Show File V:>birch>lispm-init.lisp.newest"

Note that the presentation type of the result is sys:expression, not string and not

cp:command. You cannot use (accept ’cp:command) to use it as input. Instead,

use:

(accept-from-string ’cp:command output-string) ==>

(SI:COM-SHOW-FILE (#P"V:>birch>lispm-init.lisp.newest"))

((CP:COMMAND :COMMAND-TABLE #<CP::COMMAND-TABLE User 410016565>))

The dw:with-output-as-presentation Macro

If you wish to output a presentation but want to specify exactly how you want it to

look, the dw:with-output-as-presentation macro provides such a capability. It uses

your code to create the display rather than the printer belonging to the specified

presentation type. The following function of two arguments presents the first ar-

gument, ������, with presentation type ���� as a pair of overlapping circles.

(:single-box t is specified here so that the graphical objects produced together

form a single presentation.)

(defun present-object-of-type

 (object type &optional (stream *standard-output*))

 (dw:with-output-as-presentation

 (:single-box t :stream stream :type type :object object)

 (graphics:with-room-for-graphics (t 50)

 (graphics:draw-circle 50 20 25)

 (graphics:draw-circle 70 20 25))))

Try calling this function with "ABC" as the first argument and ’string as the sec-

ond. Then, do (accept ’string) and click on the graphic. You will see that a per-

fectly normal string object is returned, despite its unorthodox presentation. (A sep-

arate graphics facility is provided for creating graphic presentations. See the func-

tion graphics:with-output-as-graphics-presentation in ���� ��������� ����������.

Its functionality is the same as that of dw:with-output-as-presentation.)

dw:with-output-as-presentation is usually used for outputting text for example,

to make stack frames, which have no particular representation, mouse-sensitive in

the debugger.

34
Using Presentation Types February 2018

2.4. Using Presentation Types for Input

2.4.1. Accepting Single Objects

These are the facilities for accepting single objects:

• accept

• prompt-and-accept

• accept-from-string

• dw:menu-choose

• dw:menu-choose-from-set

The primary facility for accepting input of presentations is the Symbolics Common

Lisp function accept. Presentations can be accepted via keyboard or mouse input.

Characters typed in at the keyboard in response to an accept prompt are parsed,

and the presentation they represent is returned to the calling function. Alterna-

tively, if a presentation of the type specified by the accept call has previously

been displayed, the user can click on it with the mouse and accept returns it di-

rectly (that is, no parsing is required).

Examples:

(accept ’(string) ==>

Enter a string: abracadabra

"abracadabra"

STRING

(accept ’string) ==>

Enter a string [default abracadabra]: �����������

"abracadabra"

STRING

In the first accept function, "abracadabra" was typed at the keyboard. In the sec-

ond accept, the user clicked on the keyboard-entered string of the first function.

In both cases, the string object was returned.

Typically, not just any kind of object is acceptable as input. Only an object of the

presentation type specified in the current accept function can be input. The

accept function establishes the current ����� �������. For example, if the call to

accept specified an integer presentation type, only a typed in or a displayed inte-

ger would be acceptable. Numbers displayed as integer presentations would, in this

input context, be mouse-sensitive, but those displayed as part of some other kind of

presentation, for example, a file pathname, would not. Thus, accept controls the

input context and thereby the mouse sensitivity of displayed presentations.

A mouse gesture on a presentation of a type different from the input context may

cause translation to an acceptable object. For example, you could make a presenta-

35
February 2018 Using Presentation Types

tion of a file pathname translate to an integer say, its length if you want. It

is very common to translate to a command that operates on a presented object.

We say above that the range of acceptable input is, typically, restricted. How re-

stricted is strictly up to you, the programmer. Using compound presentation types

like and and or, and other predefined or specially devised presentation types gives

you a high degree of flexibility and control over the input context. Consider the

following example:

(accept ’(or (integer 1 4)

 (dw:member-sequence

 ("one" "two" "three" "four")))) ==>

Enter an integer greater than or equal to 1 and

less than or equal to 4 or one, two, three, or four: three

"three"

(DW:MEMBER-SEQUENCE ("one" "two" "three" "four"))

(accept ’(or (integer 1 4)

 (dw:member-sequence

 ("one" "two" "three" "four")))) ==>

Enter an integer greater than or equal to 1 and

less than or equal to 4 or one, two, three, or four: 4

4

(INTEGER 1 4)

The particular combination of types used above might not have any practical use,

but it does begin to illustrate what the possibilities are. Notice that accept took

care of devising a prompt. You could override this if you wanted to, but in most

cases it comes up with something reasonable. Notice that accept returns two val-

ues: the object and its presentation type.

The parser used by accept for parsing strings into presentation objects is not part

of the accept function itself. Rather, each presentation type has its own, type-

specific parser that accept calls to parse objects of that type. The parser function

is included in the form that defines a presentation type. You may write your own

presentation types, including the parsers (and printers) that go with them, but a

sizeable set of types has already been defined for you. See the section "Predefined

Presentation Types", page 28. Each type is documented in a user interface dictio-

nary. See the section "Dictionary of Predefined Presentation Types" in ���� ������

���������������. See the section "The Recursive Behavior of Accept", page 190.

Ancillary functions for accepting single objects include prompt-and-accept and

accept-from-string. The first is the presentation-system equivalent of prompt-and-

read. It is similar to accept, taking the same keyword options, but differs in its

letting you use the format function to generate the input prompt. accept-from-

string is the presentation-system equivalent of read-from-string.

Two accept-based menu facilities are included among the facilities for accepting

single objects. The dw:menu-choose function is a menu-generating facility for use

with Dynamic Windows. It displays a list of choices in a conventional menu format

and returns the value associated (in your code) with the selected choice. For ex-

36
Using Presentation Types February 2018

ample,

(dw:menu-choose ’(("Prize" :value 440

 :documentation "Color television")

 ("Alternate Prize" :value 450

 :documentation "Video cassette recorder")))

dw:menu-choose differs from the second listed menu facility, dw:menu-choose-

from-set, in its ability to create menus of items in the "general list" form. (See

the section "The Form of a Menu Item", page 424.) dw:menu-choose-from-set is

intended primarily for creating menus from a simple list of objects. Compare this

example with that above.

(setq item-list ’(Size Weight))

(dw:menu-choose-from-set item-list ’sys:expression)

When considering menus for your applications, bear in mind that a dynamic win-

dow with displayed presentations can be regarded as menus of input possibilities.

You may not need to construct a menu in the strict sense of dw:menu-choose to

provide your users with the convenience that mouse acceleration of data entry

provides.

2.4.2. Accepting Multiple Objects

Facilities for accepting multiple objects:

• dw:accept-values

• dw:accept-variable-values

• dw:accepting-values�

The function dw:accept-values is similar to accept. It differs in that it accepts a

series of objects from the input stream, not just one object, and also in that the

mechanism by which the user makes a choice is different. The presentation type of

each input object is specified independently. In the following example, an integer

and a pathname object are sought:

(dw:accept-values ’((integer :prompt "Half-life"

 :default 24000)

 (pathname :prompt "Log file"))

:prompt "Atomic experiment") ==>

Atomic experiment

Half-life: 24000

Log file: Y:>curie>atom-data.log

����� aborts, ��� uses these values ==>

24000

#P"Y:>CURIE>atom-data.log"

The dw:accept-variable-values function is like dw:accept-values, but instead of

returning a series of the user-entered values, it assigns these values to a set of

special variables. It does this as the values are entered, not after the function re-

37
February 2018 Using Presentation Types

turns. You have the option of constraining user choices for certain variables to a

predefined set. dw:accept-variable-values is used primarily for compatibility with

the older user::choose-variable-values function. Example:

(setq some-variables ’((*desk* "Desk Style" symbol)

 (*chair* "Chair Style" symbol)

 (*size* :enter-type number)))

(dw:accept-variable-values some-variables)

dw:accepting-values is a macro that takes all calls to accept within its body and

puts the prompts into a single, multiple-prompt display like the one shown in the

example above. It is the most versatile of the three and the one recommended for

general use. One of its big advantages over the previous functions is that the mul-

tiple-prompt display can be modified at runtime, in response to values entered by

your user to earlier prompts in the display. In other words, the values you solicit

from your users can change "on the fly", at runtime, depending on the values al-

ready received. The following is a simple example:

(defun return-host-or-printer ()

 (fresh-line)

 (let (choice

 (stream *query-io*))

 (dw:accepting-values (stream :own-window t)

 (setq choice (accept ’(member host printer)

:default ’printer

:stream stream

:prompt "Send file to host or printer?"))

 (case choice

 (host (accept ’neti:host :stream stream))

 (printer (accept ’sys:printer :stream stream))))))

For other examples, see the file sys:examples;accepting-values.lisp. For informa-

tion on how end users interact with multiple-accept menus: See the section "Using

the Mouse and the Keyboard on Menus" in �������������������.

2.4.2.1. Distinguishing Queries When Accepting Multiple Values
When you are using a dw:accepting-values-like function, you must provide some

means for the system to be able to tell which question is which. The system needs

this in order to know when a question has appeared or been removed conditionally.

Here is an example of what goes wrong if you do not supply distinguishing infor-

mation:

������

(dw:accepting-values ()

 (loop for i from 1 to 10

collect (accept ’integer)))

When you run the example, you will notice that, no matter which entry you click

on, the input is accepted only for the last item and that the new value goes into

them all.

38
Using Presentation Types February 2018

The usual means of distinguishing one query from the others is by its prompt. It

is always good practice to give different queries different prompts so that the user

(as well as the system) can tell them apart. If the queries do not have unique

prompts, use the :query-identifier option to accept to distinguish them. Identity

will be based on equal. Here are examples illustrating each option.

������

(dw:accepting-values ()

 (loop for i from 1 to 10

collect (accept ’integer

 :prompt (format nil "Number #~D" i))))

or

(dw:accepting-values ()

 (loop for i from 1 to 10

collect (accept ’integer :query-identifier i)))

Of the two examples above, the first is preferable because it supplies more infor-

mation to the user. This next example shows a valid case of the use of identical

prompts here, for the subfield queries.

(dw:accepting-values ()

 (loop for i from 1 to 5

collect (let ((num (accept ’integer

 :prompt (format nil "Number #~D" i))))

 (list num

(when (oddp num)

 (accept ’boolean

 :query-identifier (list :subfield i)

:prompt " Subfield for that"))))))

2.4.2.2. Complex Formatting of Accepting-Values Queries
Normally, dw:accepting-values puts each question on a separate line, by following

the printing of the default with a terpri. You can suppress this, or use those ad-

vanced formatting facilities that work properly with incremental redisplay to get a

more complex layout. Non-keyboard queries can be given different graphical for-

mats.

When more than one query appears on the same horizontal line, entering from the

keyboard may erase several values, which will be redisplayed after the new value

has been entered.

Give the :newline-after-query nil option to those accepts within the

dw:accepting-values that you do not want to be followed by a newline. You may

need to explicitly put in some terpris after the last query and before the end/abort

questions. Keep in mind the redisplay requirements on non-query output that you

may also wish to mix in. See the section "Displaying Output: Replay, Redisplay,

and Formatting", page 281.

Example�

39
February 2018 Using Presentation Types

��������������������������������������

�������������������������

�������������������

������������������

����������������������������������

���������������������

���

��

������������������

���

���

��

�����������������������������

������������������������

���������������������������������������

��������������������������������

For additional examples of formatting accepting values queries: See the section

"Redisplaying with dw:accepting-values Forms", page 285.

2.5. Table of Top-level Presentation Type Facilities

present ������ &optional ������������������ (type-of dw::object)� &key ��������

standard-output� ����������� ����������� t� ����������������� ����� ��������� ��������

���� dw::*present-checks-type*� ����������� ��������������������������� t� ��������

�������������������t��

Outputs ������ to ������ as a presentation of type �����������������.

present-to-string ������ &optional ������������������ (type-of dw::object)� &key

������� ������ ����������� ����������������� ��������������� dw:presentation-type�

�������������dw::*present-checks-type*�

Outputs ������, a presentation object of type ����������������� to ������ or returns

an new string.

dw:with-output-as-presentation �&key ������� ������� ����� ����� ��������� ��������

���� dw::*present-checks-type*� ����������� ��������������������������� t� ��������

�������������������t�������������������������� &body�����

Outputs ������, a presentation object of type ����, to ������ in a manner specified

by ����, which is code that generates some type of output display.

accept ����������������� &key �������� *query-io*� �������� :enter-type� ���������

���� :normal� ��������������� dw:presentation-type� ����������������� ������������

���������������� ����������� ���������������������� ����������������� t� ��������� t� ������

������������ ’dw::unless-default-is-nil� �������������� dw::original-type� ����������

������� dw::prompt� ���������������� �������� ����������������� dw::*accept-active*�

�������������������������������� ����������������� �������������� #’dw::presentation-type-

find-parser� ����������������� ��������������������������������� t� ���������������������

t���������������������:inline��

Reads a printed representation of a Lisp object of type ����������������� from

������.

40
Using Presentation Types February 2018

prompt-and-accept ������������������������� &optional ������������� &rest �������

����

Reads a printed representation of a Lisp object of type ����������������� from

������, using the format function to create the prompt.

accept-from-string ����������������� ������ &rest ���� &key ������ ������� 0� ����

&allow-other-keys

Reads a printed representation of a Lisp object of type ����������������� from

������.

dw:menu-choose ��������� &key ������� �������� ������������������ �������� �������

���� ’(:mouse)� ��������������������������� ���������� (tv:mouse-default-superior)�

���������� t� ���������� dw::*default-menu-center-p*� ����������������� ’(:jess :roman

:large)� ������������� t� ������������� dw::momentary-p� �������������� ������

����������

Constructs a menu from a list of items and returns the value associated with the

selected item.

dw:menu-choose-from-set ���� ����������������� &key �������� ������� ��������

����������� ’(:mouse)� ���������� (tv:mouse-default-superior)� ��������������������

������� ���������� t� ���������� dw::*default-menu-center-p*� �����������������

’(:jess :roman :large)� ������������� t� ������������� dw::momentary-p� ������

�������������������������

Constructs a menu from the objects contained in ���� of type ����������������� and

returns the selected object.

dw:accept-values ������������ &key ������� ����������� ’(:mouse)� ��������

query-io� ����������� ������������� dw::own-window� ������������������������

����������

Reads a series of printed representations of Lisp objects, each of which is of the

type specified in the list ������������, from ������ and returns one value for each

object read.

dw:accept-variable-values ��������� &key �������� "choose variable values"�

����������� ’(:mouse)� ��������� t� �������� *query-io*� ����������� �������������

dw::own-window������������������������������������

Reads a series of printed representations of Lisp objects from ������ and assigns

the values read to the elements of ���������.

dw:accepting-values �&optional ������� ’*query-io*� &key ����������� ����������

���������� (not dw::own-window)� ������������� dw::own-window� ������� "multiple

accept"� ����������� ’(:mouse)� ���������������������������������� ���������������������

���� ������������������������ ��������������������������������� t� ������������������

:inline�� &body�����

Causes all calls to accept within ���� to appear in a single, dw:accept-variable-

values like menu that can be modified dynamically.

dw:accept-values-command-button �&optional ������� *standard-output*� &key

������������������������������ ������������� ����������������� ���������� �������������

t���������������#’eql��������� &body������������������

Used within dw:accepting-values form, this function displays ������ on ������

and creates an area, the "button," wherein when a mouse button is clicked the ����

�������������� are evaluated.

41
February 2018 Using Presentation Types

dw:accept-values-fixed-line ������ &optional���������*query-io*�

Used within a dw:accepting-values form, this function displays ������ on ������.

For an example: dw:accept-values-command-button.

dw:accept-values-display-exit-boxes &key �������� �������� *query-io*� �������

:top-level�

Used within dw:accepting-values form, displays the exit boxes "����� aborts, ���

uses these values" on ������.

dw:accept-values-for-defaults ������������

Runs ������������ with a stream argument, causing calls to accept to return their

defaults.

dw:accept-values-into-list ������������ &key ������� ����������� ’(:mouse)�

�������� *query-io*� ����������� ������������� dw::own-window� ������������������

����������������

Performs the same operation as dw:accept-values, but returns a list rather than

multiple values.

42
Using Presentation Types February 2018

43
February 2018 Managing the Command Processor

3. Managing the Command Processor

This chapter introduces the Command Processor (CP) and explains how to:

• Create and install your own CP commands

• Manage command tables

• Execute CP commands from within your programs

• Get input into your program from a CP command loop

The Command Processor is the top-level function run in all Lisp Listener windows.

In writing your own CP commands, you are adding your own features to the exist-

ing Symbolics system. To go beyond this to create your own windows and create

commands to work within your own framework you should use the program

framework facilities, rather than those described in this chapter. The program

framework facilities include, among many other things, a command-defining macro

that is very similar to the macro that is central to this chapter, cp:define-

command.

You should study the information contained in this chapter about defining com-

mands, since most of it applies both to CP commands and to application-program

commands; for information on application-specific command definition, see the sec-

tion "Defining Commands within Your Own Framework", page 123. (Application-

program commands are defined by program-framework-supplied macros and are dif-

ferent in several ways from CP commands.)

There is additional information in Part 2 of this manual that explains how to use

some of the more advanced features of the Command Processor, such as translat-

ing mouse handlers. See the section "Programming the Mouse: Writing Mouse

Handlers", page 221.

The sections that follow assume familiarity with user interface terminology. To re-

fresh yourself on this topic, see the section "User Interface Concepts", page 8.

3.1. Introduction to the Command Processor

The Command Processor parses user input, executes commands, and then updates

the screen display. A common command processing mechanism manages all com-

mands, including those that cannot be entered with the mouse, and those that

would be difficult or impossible to enter without some mouse-sensitive items to ac-

celerate them (for example, graphic presentations). This mechanism supplies the

same ����, ����� �������������, and ���������� facilities to your own program

commands that it supplies to system commands. The Command Processor recog-

nizes commands entered in one of the following ways:

44
Managing the Command Processor February 2018

• �� ������ ��� ������� ���� �� ��� ��������� The system software automatically

parses the typed input. In particular, since the system has access to a �������

����� that lists all possibly relevant commands, it can perform command comple-

tion, and it can respond to a request for help by displaying (mouse-sensitively)

all the possible commands. It can also provide prompts and help messages on

request.

• ����� � ���������� ������� ������������ A command definition can specify that

when the user presses a particular key the command is executed. A list of sin-

gle-key command accelerators is kept in the same command table as the com-

mand names.

• ����� � ����������� ����� �������� Once a CP command has been defined, you

can write a presentation-to-command translator to make the command available

on a mouse gesture. (See the section "Mouse Handler Facilities", page 229.) You

do not need to do anything special in defining the command for this to work.

(Presentations of the type cp:command have a system-supplied translator that

invokes the presentation’s associated command when the user clicks Left on the

presentation.)

• �������� ��� ������� ���� � ������ ����. The use of pop-up menus for user

input is discussed in another section. (See the section "Using Menus" in ������

������ �����.) Again, you do not need to do anything special in defining the

command for these to work.

• �������� ��� ������� ���� � ������� ����� Command menus are an option

of the program framework definition facility. They display a collection of presen-

tations that invoke commands when the user clicks the mouse on one. Note:

Command menus are not actually a CP feature; they are available only within

application program frameworks.

When a command is recognized, the command’s parsing function, which the com-

mand definition sets up, will:

1. Generate a prompt for the argument(s)

2. Make defaults available

3. Cause previously displayed objects of the required types to be mouse-sensitive

4. Make help available

The Command Processor uses accept to read arguments from the user. This is

why, when you define a command you must specify the presentation types of the

arguments. The Command Processor also displays, upon request, a list of possible

modifiers to the command and accepts those from the user in a similar way.

45
February 2018 Managing the Command Processor

When the command is finally complete and has been entered, the processor exe-

cutes it and then performs redisplay in the application framework. As part of the

accepting and redisplay process, the system software (specifically, the interactive

stream for input and display) saves each object that is presented or accepted.

These objects, or �������������, become available as arguments for subsequent

commands. They remain so until the user specifically deletes (kills) the output

history. The types of the objects and their locations on the screen are saved along

with them so the system software can automatically handle their context-dependent

mouse sensitivity.

The Command Processor is built upon the presentation type substrate. This is

why, in describing it we keep referring to things like presentations, presentation

types, accepting, presenting, translating, and the like. It is the intent, nevertheless,

of this introductory chapter, to introduce the reader only to the highest-level as-

pects of command definition, as far as that is possible. Reference to the details of

the presentation substrate will become inevitable, however, as soon as you want to

make use of any of the more advanced facilities, such as translating mouse han-

dlers or your own parsers for presentation types.

3.2. Defining and Installing Commands

What a CP Command Is

These are examples of system CP commands:

�����������

��������������������������������

�������������������������

To the user, a CP command is input that invokes an operation.

Functionally, a CP command consists of two items: a parsing function that recog-

nizes the command when the user issues it and accepts arguments and an execu-

tion function that accomplishes the action the command calls for. The parsing

function is generated automatically by the defining macro cp:define-command.

You supply the execution function directly in the body of the macro.

Defined as a Lisp object, a CP command is a presentation object, or more simply, a

presentation. That is to say, it is a user-visible representation of some object in

this case, an object of presentation type cp:command. You can use the Presenta-

tion Inspector to find out more about this particular type of displayed presentation.

See the section "Presentation Inspector", page 265.

The cp:define-command Macro

A single macro, cp:define-command, allows you to create a new Command Proces-

sor command, specify what it is to do, and specify how to help the user enter it. If

you are creating commands within your own program framework, you should be

using a very similar macro, dw:define-program-command, which is documented

elsewhere. See the section "Defining Commands within Your Own Framework",
page 123.

46
Managing the Command Processor February 2018

Using just the basic facilities of cp:define-command, you can define a command

with:

• An optional user-visible name and the name of the Lisp function.

• An optional command table to put it in.

• A function implementing the body of the command.

• Two optional keywords specifying (1) if it should give the user an output-

destination option and (2) whether it returns any values.

• Arguments (possibly none).

• An optional list of arguments for the implementing function. (This option is only

for use by other top-level facilities, such as dw:define-program-framework.)

In the command definition, you must specify the presentation type of each argu-

ment. This sets up the input-context mechanism for the command: the presentation

type determines how user input should be parsed to extract the argument. The

syntax for specification of a presentation type is an extensive topic in its own right

and is explained elsewhere. See the section "How to Specify a Presentation Type",
page 25. See the section "Defining Your Own Presentation Types", page 185. Each

argument can have its own set of options. These options are incorporated into the

parsing function the macro creates to control documentation, prompting, and de-

faulting. They are:

• Documentation option: a help string

• Prompting options:

° a prompt

° the prompt mode (display literally or transform)

° a Boolean specifying "do [not] display the default"

• Default options:

° the default

° the default’s presentation type for use when the type being read is not de-

terminate as, for example, with�������������������������������������.

° a Boolean specifying "the default is [not] provided"

• Options for keyword arguments:

47
February 2018 Managing the Command Processor

° a default value supplied only if the user enters the keyword and does not sup-

ply a value

° a user-visible keyword name

• Other options

° a Boolean specifying "do [not] require confirmation for this argument"

° a predicate, evaluated at command time, to make reading of the argument op-

tional

It might be instructive here to compare the cp:define-command macro with the

defun special form. Both forms create a named object that specifies an action to

be performed on a given list of arguments (ignoring, of course, the whole issue of

whether and how arguments are evaluated). Both functions and commands can

have positional arguments and keyword arguments and both are stored in an inter-

nal table. Any of the arguments of either type of object can be defaulted if so

specified by the definition. Here the similarities end.

Unlike function arguments, CP command arguments have defined types, which

must be specified when the command is defined. CP commands cannot have option-

al positional arguments or &rest arguments. All CP arguments must be explicitly

listed in the defining macro, though when the command is invoked the user does

not necessarily have to enter each argument.

Also, the syntax for keywords is quite different. In defun, an argument list looks

like this:

��

In cp:define-command it looks like this:

���

���

From this we can see that the overall argument list syntax is similar; it is the

syntax of the individual arguments that is different.

The next two sections present the detailed definition of the cp:define-command

macro and a collection of examples that illustrate the use of all the options.

cp:define-command� �����������������������������������&body�����

Defines a Command Processor command.

���������������� Either the symbol to be used as the command name or

a list whose first element is the name symbol and suc-

ceeding elements are alternating keyword-value pairs.

The name symbol gets defined as a Lisp function. Com-

mands are defined as functions and so share the func-

tion-name namespace. To distinguish command names

from other kinds of names, we recommend that the pre-

fix ���� be used; the user-visible command name will

not include the prefix.

48
Managing the Command Processor February 2018

These are the keywords that may be included in the

���������������� list:

:name Specifies the string serving as the user-visible

command name. The default name is the result of

calling string-capitalize-words on the print name

of the symbol that is the first element of the

���������������� list; if the name begins with the

substring "com-", that substring is omitted.

This option is useful for controlling capitalization

within command names.

Example:

�������������������

��������������������������������

���

Without the :name option, completion would result

in "Convert Files To Vc File".

:command-table

Specifies the command table, or a symbol/string

naming the command table, into which the com-

mand is to be installed. For example, to install a

command into the "Global" command table, you

could supply "������", ’������, or the form

���������������������� ��������. The first syntax

 that is, a string is preferred.

This option is evaluated. If not supplied, the com-

mand is not installed in a command table; to in-

stall the command subsequently, use the function

cp:install-commands. Example:

�������������������

���

������������������������

Or, alternatively:

�������������������

��

������������������������

For more information on command tables, see the

section "Managing Command Tables", page 59.�

:comtab This is a synonym for the :command-table option

to cp:define-command. Use of :command-table is

preferred. :comtab results in a warning from the

compiler.�

49
February 2018 Managing the Command Processor

:provide-output-destination-keyword

Boolean option specifying whether to provide the

:output-destination modifier. The default is t; this

allows the user of the command to redirect the

output of the command to a place other than the

window.

To override the default action (if, for example,

your command does not produce any useful output

or you are using the :explicit-arglist option), speci-

fy a value of nil for this option. Example:

�������������������

��������������������

����������������������������

��

������������������������

creates a parser function for the command that

does not make use of an output-destination argu-

ment.

Many system commands provide the ������� ������

������ option. To get an idea of how this works,

try, for example:

��

��

���

�������������������������������������

When the user supplies a value for :output-

destination, the system binds *standard-output*

to that value. This means that output done to

standard-output either explicitly or implicitly
as with ������ ������ or ������� � ������ will

be redirected, but output to other streams, such as

terminal-io, *query-io*, *error-output*, or user-

created streams not connected to *standard-

output* will not be redirected.

:values Boolean option specifying whether the command re-

turns values; the default is nil.

(Note that even if this option is nil, the values re-

turned by executing the command are stored in

cp:*last-command-values*.)

A CP command does not return any values unless

you specify the :values option to be t. Thus in the

following example, if ������� � had not been in-

cluded, ���� ���� would have displayed ������ ���

���� and returned no values, in spite of the last

50
Managing the Command Processor February 2018

line of the definition.

(cp:define-command

 (com-show-test :command-table "User" :values t)

 (&key (format ’(member :one :two :three))

 :default :one)

 (format t "~&Format was ~S.~%" format)

 (values 1 2))

:explicit-arglist

This option is intended only for use by other top-

level macros, such as dw:define-program-

framework. It specifies explicitly the argument list

of the function implementing the body of the com-

mand. By default, the argument list of this func-

tion corresponds to the arguments specified as ar-

guments to the command.

Use of this option is ��� recommended: either list

all the arguments specifically in the command

definition’s argument specification or use

dw:define-program-framework to set up a frame-

work in which needed variables are defined. This

example is included to point out an interaction be-

tween :explicit-arglist and :provide-output-

destination-keyword:

(cp:define-command

 (com-test-args

:command-table "user"

:provide-output-destination-keyword nil

 ;Required unless

 ;output-destination

 ;is in explicit arglist

:explicit-arglist (&optional from-pathname

 &key (to-pathname

 from-pathname

 to-pathname-p)))

 ((from-pathname ’pathname)

 &key

 (to-pathname ’pathname :default from-pathname))

 (format t "~A ~A ~S~%"

 from-pathname to-pathname to-pathname-p))

If you need to have an output destination, you can

use something like:

51
February 2018 Managing the Command Processor

:explicit-arglist (&optional from-pathname

 &key (to-pathname from-pathname to-pathname-p)

 ((:output-destination cp::.output-destination.))

 &allow-other-keys)

��������� The list of command arguments. Each element of the

list is itself a list of the form (�������� �������������

������������) where �������� is the name of the argu-

ment; ����������������� is the presentation-type of the

argument; and ������� are keyword options to the argu-

ment. Note that ����������������� is evaluated, and

should typically be quoted; for example, ’pathname or

’(integer 0 10).

If you need to specify arguments whose types do not

correspond to any of the predefined presentation types

(see the section "Predefined Presentation Types", page

28), you must first define the presentation types you

will use. The procedure for defining presentation types

is described in Part 2 (see the section "Defining Your

Own Presentation Types", page 185). The examples pre-

sented in this chapter make use of predefined types on-

ly.

These are the keywords that can be included in the ar-

gument specification list:

:prompt Specifies either a string to be used as a prompt for

the argument or a form which when evaluated re-

turns such a string. If a default argument is dis-

played, the prompt appears before the default. This

is the same as the :prompt argument to accept,

which function cp:define-command intrinsically

makes use of. See the section "The Recursive Be-

havior of Accept", page 190. The prompt specified

is always displayed for a positional argument, but

only for a keyword argument if the keyword has

been entered. An example of a form rather than a

string is something like the second prompt here:

(cp:define-command (com-hardcopy-record-file)

 ((file ’pathname :prompt "record file")

 (printer ’printer :prompt

 (format nil "~A printer" (send file :canonical-type))))

:prompt-mode

Specifies either the :normal or :raw mode for

52
Managing the Command Processor February 2018

prompts. If :normal, the prompt you supplied using

the :prompt option (or the default prompt) is

transformed into a prompt suitable for a command

line it is enclosed in parentheses, the default is

appended, and so on. If :raw, your prompt is used

without transformation. We recommend that you

avoid using :raw in order to keep user interfaces

uniform throughout the system. The default is

:normal. This is the same as the :prompt-mode

argument to accept, which function cp:define-

command intrinsically makes use of. See the sec-

tion "The Recursive Behavior of Accept", page 190.

Keep in mind that the whole command is being ac-

cepted and hence each argument is within a recur-

sive call. Define and issue the following command

and notice, when you type spaces, the differences

between the prompt displays.

(cp:define-command

 (com-draw-circle :name "Draw a Circle"

 :command-table ’global)

 ((x ’(integer 50 100)

 :documentation "x-coordinate of center"

 :prompt "Center x"

 :default 50)

 (y ’(integer 50 100)

 :documentation "y-coordinate of center"

 :prompt "Center y"

 :default 50)

 (radius ’(integer 0 50)

 :documentation "Radius "

 :prompt "Radius "

 :prompt-mode :raw

 :default 100))

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle x y radius)))

:default Specifies the default value for the argument.

If no default is specified, the current default
taken from the presentation history for the pre-

sentation type of the argument is used. (Access to

the current default for a presentation type is avail-

able through dw:presentation-type-default.) This

is the same as the :default argument to accept,

which function cp:define-command intrinsically

makes use of. See the section "The Recursive Be-

havior of Accept", page 190.�

53
February 2018 Managing the Command Processor

:default-type

Specifies the default presentation type of the object

accepted as an argument value.

This option is useful only when used in conjunction

with the :default option. When the type of the ar-

gument being read is ambiguous for example, if

you are using an or presentation type specifying

the :default-type option tells the Command Proces-

sor how to present the given default; that is, which

presentation-type printer to use. This is the same

as the :default-type argument to accept, which

function cp:define-command intrinsically makes

use of. See the section "The Recursive Behavior of

Accept", page 190. Example:

(number-or-string ’(or integer string)

 :default 3 :default-type ’integer)

:provide-default

Specifies whether a default is provided for the ar-

gument. "Providing" a default means that a default

value will be provided automatically by the system

(either from a history or from the :default or

:mentioned-default argument) if the user types a

�����, ���, or ������ when a value is requested.

If a default is not "provided," then the user must

explicitly enter a suitable value. This is the same

as the :provide-default argument to accept, which

function cp:define-command intrinsically makes

use of. See the section "The Recursive Behavior of

Accept", page 190.

Usually you do not need to supply the :provide-

default option. This is because the value of

:provide-default is dw::unless-default-is-nil, which

causes the following behavior:

If the presentation type being requested is any oth-

er type, then a default is provided unless the de-

fault value is nil this makes it easy for an ap-

plication program to force the user to input a val-

ue the first time the program is run, but provide a

default value thereafter, as for example,

(defvar *default-pathname* nil)

54
Managing the Command Processor February 2018

;The nil forces the user to enter a value

;the first time.

(cp:define-command (com-crunch-file :command-table ’user)

 ((path ’pathname :default *default-pathname*))

 (setq *default-pathname* path)

 ...)

If the presentation type being requested is

boolean, then a default is always provided.

You need to supply the :provide-default option in

these cases:

If you want to demand a "Yes" or "No" input

rather than supplying a default, specify :provide-

default nil.

If you have a presentation type that includes nil as

a valid value, for example, null-or-type, then you

need to supply :provide-default with a suitable

boolean value to get the behavior you want.

It is acceptable to specify :provide-default t even

when :default is not supplied and there is no suit-

able object available from history. In such a case,

the behavior is the same as if :provide-default nil

had been specified.

:display-default

Specifies whether the default is printed in the

prompt. The default value for this option is t. If no

default is provided, (see :provide-default) then no

default is displayed, regardless of this option. This

is the same as the :display-default argument to

accept, which function cp:define-command intrin-

sically makes use of.See the section "The Recursive

Behavior of Accept", page 190.

Example:

(cp:define-command

 (com-display-default-example :command-table ’user)

 ((argument ’boolean :default nil

 :display-default nil))

 (print argument))

:documentation

Specifies a string to use as the help message for

the argument. The message is displayed if, after

55
February 2018 Managing the Command Processor

typing the command name and any preceding posi-

tional arguments, the user presses the ���� key.

Use this option to supplement the information au-

tomatically displayed for the user by the parser,

which puts together a prompt based on the presen-

tation type of the argument and other options such

as :prompt. For example, in the definition of the

Edit Definition command, the first item in the ar-

guments list is:

(name ’function-spec

 :display-default nil :confirm t :prompt "name"

 :documentation

"Name of something (e.g., a function) whose definition to edit")

Note that the documentation string, unlike the

prompt string, is not automatically displayed: the

user has to press the ���� key to get it.

:when Specifies a form containing a predicate to be evalu-

ated at command-line reading time. This option

provides simple control over what arguments the

command line reads; if the predicate returns nil,

the argument is not read. The predicate can refer

to any positional arguments already read. If you re-

quire finer control over the reading of arguments

you can use the middle-level macro cp:define-

command-and-parser.

Example:

(cp:define-command (com-when-example :command-table "user")

 ((type ’(member integer any)

 :default ’integer)

 (number ’integer :when (eq type ’integer)))

 (format t "~S ~S" type number))

This command only reads the ������ argument

when the ���� argument is integer.

:mentioned-default

For keyword arguments only: specifies a form to be

evaluated and used as the default value for the ar-

gument, but only if the user types the argument

name.

The form can refer to parameters defined for any

positional arguments (but not keyword arguments)

specified prior to this argument specification. At

56
Managing the Command Processor February 2018

the time the form is evaluated, these parameters

are bound to the values of arguments already ac-

cepted.

The default value used depends on what combina-

tion of :default and :mentioned-default options is

supplied:

Both Use the value of :mentioned-default if

the user types the name of the argu-

ment; otherwise, use the value of

:default.

:mentioned-default only

If the user types the argument name, use

the value of :mentioned-default; other-

wise, the default is nil.

:default only

Use the value of :default.

Neither If the user does not type the argument

name, the default is nil. If the user types

the name, if the type has no presentation

history, the argument has no default and

the user has to supply a value; if there

is a history, then the last value supplied

is the default.�

Note especially how the two argument default op-

tions interact for keywords. There are times when

you do want different values for them. For exam-

ple:

(cp:define-command

 (com-print-herald :command-table "User")

 (&key

 (detailed ’boolean

:default nil

:mentioned-default t

:documentation

"Whether to print version information in full detail"))

 (print-herald :verbose detailed))

The user can type "Print Herald" followed by ���

���� for a brief display or "Print Herald :d" ���

���� for details pressing "y" is not necessary.

:name For keyword arguments only: specifies a string

serving as the user-visible name of the argument.

57
February 2018 Managing the Command Processor

Without this option, the user-visible name is the

result of applying string-capitalize-words to the

argument name. The :name option is useful when

string-capitalize-words does not provide a satisfac-

tory capitalization or when for some reason you

want the user-visible name to be different from the

argument name. Example:

(cp:define-command (com-key-name

 :command-table ’user)

 (&key (arg1 ’(integer 1 10)

 :name "Copies"

 :default 1

 :prompt "Number of copies (1-10)"))

 (print arg1))

Immediately after definition, typing "Key Name :C"
followed by a space displays

Key Name (keywords) :Copies (Number of copies (1-10)) [default 1])

:confirm Boolean option specifying whether the argument

requires confirmation by the user; the default is

nil.

When :confirm t is specified, if the command line

is terminated before the argument has been read,

the prompt for the argument is printed (as well as

the prompts and defaults for all unread arguments

before this one on the command line), and the user

must again terminate the command line.

This mechanism ensures that the user is aware

that the argument is being specified automatically,

and that the default value, if available, is dis-

played. This is especially useful when a command

is invoked from a command menu because it stops

instant activation with the default. (All destructive

system commands, for example, Delete File, use

:confirm t for their critical arguments.)

Example:

(cp:define-command

 (com-confirm-example :command-table ’user)

 ((right ’boolean :prompt "right" :default t)

 (proper ’boolean :prompt "proper" :confirm t))

 (if (and right proper) (print "ok")))

58
Managing the Command Processor February 2018

cp:define-command Examples

No command options, no arguments

(cp:define-command com-issue-greeting () (print "Hello!"))

defines a command but does not install it in any command table. (If you type this

at a Lisp listener and then try entering Issue Greeting, you will be told that no

such command exists.) Note that the command name stands alone and that the ar-

gument list is empty. You can install this command immediately after entering it

with

(cp:install-commands ’user ’(com-issue-greeting))

Extended Example: Most Command and Argument Options

(cp:define-command (com-augmented-create-fep-file

 :name "Create FEP File"

 :command-table ’global

 :provide-output-destination-keyword nil

 :values t)

 ((file-name

 ’fs:fep-pathname

 :default (fs:make-pathname

 :host "FEP" :directory :root

 :name "temporary" :type "temp")

 :prompt "FEP file"

 :confirm t

 :documentation "FEP file to create")

 (size

 ’cl:integer

 :prompt "Enter size in blocks - "

 :default 100

 :prompt-mode :raw

 :confirm t

 :documentation "Size of the new fep file in blocks")

 (zero-out

 ’boolean

 :default nil

 :prompt "Zero out?"

 :documentation "Fill the new file with zeros?"

 :when (< size 10))

 &key

 (unit-no

 ’boolean

 :name "Unit Number"

 :prompt "Request unit?"

 :documentation "Do you want the file’s unit number?"

 :default nil

59
February 2018 Managing the Command Processor

 :mentioned-default t))�

 (condition-case (error)

 (with-open-file (fep-file file-name :direction :block)

 (send fep-file :allocate size :zero-p zero-out)

 (if unit-no

 (values (send (send fep-file :file-access-path) :unit))

 (values)))

 (fs:fep-no-more-room

 (format *error-output*

 "There is not enough room in ~A for a ~D block file."

 (send file-name :host) size))

 (error (send error :report error-output))))

3.3. Managing Command Tables

A ������� ����� is an object of flavor cp:command-table that identifies a set of

commands that are permissible in some context. The flavor has instance variables,

most of which are specified by a corresponding cp:make-command-table init op-

tion:

name The command table name, a string.

inherit-from A list of command tables from which this table inherits com-

mands and accelerators.

command-table-delims

A list of the characters delimiting commands.

kbd-accelerator-table

A structure that holds an accelerator-table object and a set of

keyword/value pairs describing the accelerator table. (The init

option, :kbd-accelerator-p, is a Boolean specifying whether to

create such a list, and the option :accelerator-case-matters

specfies whether the single-key accelerators are case-sensitive.)

menu-accelerator-table

For a command table associated with a program framework

that has a command menu, this is a list of command-menu

handlers. For ordinary CP command tables, this is nil.

command-aarray Each element of this array is a pair consisting of the name of

a command (a string) and the command’s function.

The init option :command-table-size specifies an estimated initial size for the

command table, and the option :if-exists specifies what to do if a command table

with the specified name already exists.

When a command loop reads a command, it checks it against the set of permissi-

ble commands, as determined by the command table that is the value of the

:command-table option to the reading function. In the Lisp Listener, for example,

the reading function uses the "Global" command table.

60
Managing the Command Processor February 2018

Command tables can be arranged in a hierarchy, so that subordinate command

tables inherit commands from their superiors. The set of permissible commands for

a command table includes the commands in that command table and the commands

in all superior command tables.

The variable cp:*command-table* is bound to the current command table in Lisp

Listeners and break loops. (This is also the default command table for the lower-

level functions, cp:read-command and cp:read-command-or-form.) The value of

this variable is normally the "User" command table. The "User" command table in-

herits from "Global" command table, so when you type "help" to the CP prompt in

a Lisp Listener, all of the commands in both of these tables are listed as available.

When you define a command, you can specify that it should be available in the

"User" or "Global" table, or in an application-specific table, using the :command-

table option to cp:define-command. You can also use the cp:install-commands

function to install one or more commands in a command table that you specify. To

remove a command, you can use cp:command-table-delete-command-name or

cp:command-table-delete-command-symbol.

The Command Processor maintains a global registry of all command tables. You

find a command table by using the function cp:find-command-table, which returns

a command table object when given the name of the table as a symbol or string.

You can use the function cp:command-in-command-table-p to find out whether a

command is available to a particular table, that is, whether it is in the table or in

a table from which it inherits.

Use cp:make-command-table to create a command table, and cp:delete-command-

table to delete one.

Example of creating a command table:

(cp:make-command-table "Local"

 :if-exists :update-options

 :inherit-from ’("user")

 :command-table-size 10

 :kbd-accelerator-p nil)

For more information about command tables within application programs, see the

section "Commands and Command Menus", page 317.

3.4. System Command Tables

Many activities in Genera have their own command tables. Others have commands

that they inherit from globally defined system command tables, while others have

both. Figure 2 illustrates how a sampling of command tables from the various fa-

cilities inherit their commands.

Application programs that you write will have their own command tables, which

you can arrange to have inherit from any other command table you specify. This

section describes the system command tables that you may find especially useful.

61
February 2018 Managing the Command Processor

Colon Full CommandStandard ScrollingStandard ArgumentsUnshifted Arguments

User

Global

Notifications

Presentation Inspector

accept-values-pane

accept-values-pane-with-keyboard-commands

Namespace-editor

accept-values

Figure 2. A sampling of system command tables

3.4.1. Command Table "Colon Full Command"

The "Colon Full Command" command table contains only the three keyboard accel-

erators:

: cp:read-full-command

Meta-X cp:read-full-command

Control-Meta-Y cp:yank-and-read-full-command

Since these commands are often desirable in application programs, this command

table is offered as an option in the Frame-Up facility.

3.4.2. Command Table "Standard Scrolling"

The "Standard Scrolling" command table contains the four keyboard accelerators:

Scroll scroll-window-forward-y-command-accelerator

Meta-Scroll scroll-window-backward-y-command-accelerator

Super-Scroll scroll-window-forward-x-command-accelerator

Super-Meta-Scroll scroll-window-backward-x-command-accelerator

It also contains the Scroll Window command and also �������- versions for any

typeout window. These scroll the "user" application window.

3.4.3. Command Table "Standard Arguments"

The "Standard Arguments" command table contains the set of shifted (that is,

those pressed while ������� or ���� are held down) standard arguments available

for accelerated keyboard commands. These are used, for example, with commands

in the text editor. Your program’s command table can inherit from this one so that

these arguments can be used. See the function cp:define-command-accelerator in

62
Managing the Command Processor February 2018

�������������������������.

Control-Minus-sign sign-argument-command

Meta-Minus-sign sign-argument-command

Control-Meta-Minus-sign sign-argument-command

Control-0 digit-argument-command

 through

Control-9 digit-argument-command

Meta-0 digit-argument-command

 through

Meta-9 digit-argument-command

Control-Meta-0 digit-argument-command

 through

Control-Meta-9 digit-argument-command

Control-Infinity infinity-argument-command

Meta-Infinity infinity-argument-command

Control-Meta-Infinity infinity-argument-command

Control-U control-u-argument-command

3.4.4. Command Table "Unshifted Arguments"

The "Unshifted Arguments" table contains the set of unshifted (that is, those un-

modified by ������� or ����) standard arguments available for accelerated key-

board commands. These are used, for example, with commands in the text editor.

Your program’s command table can inherit from this one so that these arguments

can be used. See the function cp:define-command-accelerator in ���� ���������

����������.

Minus-sign sign-argument-command

0 digit-argument-command

through

9 digit-argument-command

Infinity infinity-argument-command

3.4.5. Command Table "Marked Text"

This table contains the following accelerators:

Super-W kill-ring-push-all-marked-text-command-accelerator

Meta-W kill-ring-push-all-marked-text-command-accelerator

Super-G clear-marked-text-command-accelerator

There are also two long-named commands in this table: Clear Marked Text, Kill

Ring Push All Marked Text

63
February 2018 Managing the Command Processor

3.4.6. Command Table "Input Editor Compatibility"

This table contains the following accelerators:

Return noop-command-accelerator

Space noop-command-accelerator

Refresh refresh-command-accelerator

There are also two long-named commands: Noop and Refresh.

3.4.7. Command Table "Global"

The "Global" command table contains most system commands, such as Clean File,

Edit Directory, Reset Network, and Start GC. There are approximately two hun-

dred commands in this table, which is the one your application should inherit from

if you want it to be able to access all the system commands.

3.4.8. Command Table "User"

The "User" command table is primarily for user-defined commands. When you de-

fine your own special-purpose CP commands, you should put them in this table,

unless you want them available globally in all programs that inherit from the

"Global" command table.

3.5. Accelerating Commands

A command accelerator allows you to define a single keystroke that will invoke a

command when the user presses that key. For example, suppose you are writing an

application program that has an Exit command that buries the program frame. You

could put this command on the key � or �. A user would merely have to press the

� or � key to exit the program. Zmail and the Lisp debugger are examples of pro-

grams that make use of accelerated commands.

You define a command accelerator with the macro

cp:define-command-accelerator. In order for the keyboard accelerator to work,

you must have set the :kbd-accelerator-p option to t when you made the command

table for your application.

Note: single-keystroke command accelerators are not currently available in the top-

level Command Processor (such as that used by the Lisp Listener); this feature is

for use within your application programs.

Example: defining an accelerated command

(cp:define-command com-exit () (send dw:*program-frame* :bury))

(cp:define-command-accelerator com-exit

 my-command-name (#\c-E)(:activate t)()

 ’(com-exit))

64
Managing the Command Processor February 2018

Note that the Exit command of the example is available ���� by means of the sin-

gle-key accelerator, since no command table was specified in the defining macro.

In the usual case, where you want both the command in the command table and a

single-key accelerator within an application program, use dw:define-program-

command or, better still, the dw:define-�������-����-command macro provided

by dw:define-program-framework. Either of these macros allows you to define

both the command and the accelerator within a single form.

Be aware that your program can inherit any command accelerators already existing

in other command tables. If your program inherits these tables via the :command-

table option to dw:define-program-framework or by the :inherit-from option to

cp:make-command-table, the installed accelerators come along with the com-

mands they accelerate. Take care that your accelerators make mnemonic sense and

do not introduce possible conflicts with command names. Remember that you can

use the �������, ����, �����, and ����� keys to modify your single-character ac-

celerator.

The presence of accelerators does not require reading via single keystroke com-

mands: even if you inhibit accelerators, you can read without them in your com-

mand loop.

3.6. Executing Commands from within a Program

cp:execute-command provides a convenient way to execute CP commands from

within a program. It lets you express command arguments as strings, saving you

the trouble of supplying arguments in the exact form expected by the command ex-

ecution function. For example, to hardcopy a file, you can use:

(cp:execute-command "Hardcopy File"

 "sys:examples;arrow.lisp"

 "Audubon"

 :body-character-style "fix.roman.large")

If the command name is a string, it is looked up in the command table in

cp:*command-table*. If the command can not be found there, then you must sup-

ply the command execution function as a symbol, thus

(cp:execute-command ’hci::com-hardcopy-file

 "sys:examples;arrow.lisp" "Audubon"

 :body-character-style "fix.roman.large")�

An alternative (somewhat less readable) way to accomplish the same result as the

above example would be to call the command execution function directly:

65
February 2018 Managing the Command Processor

(let* ((file ‘(,(parse-namestring "sys:examples;arrow.lisp")))

 (printer

 (accept-from-string ’sys:printer "Audubon"))

 (style

 (accept-from-string ‘((character-style-for-device

 :device

 ,(send printer

 :display-device-type)))

 "fix.roman.large")))

 (hci::com-hardcopy-file file printer

 :body-character-style style))

Note: This latter usage is ��� recommended.

A common application of cp:execute-command is in lispm-init files and similar

"script" files.

3.7. Getting Input to Your Program From the Command Loop

The special variable cp:*last-command-values* is bound to a list containing the

values returned by the most recently executed CP command. System CP commands

do not, as a rule, return any values, but you can define your own commands that

do. A simple example is:

(cp:define-command (com-show-test :command-table "User" :values t)

 (&key (format ’((member :one :two :three))

 :default :one))

 (format t "~&Format was ~S.~%" format)

 (values 1 2))�

To execute this command and use the returned values within your program you

can use something like:

(cp:execute-command "show test")

(setq test-values cp:*last-command-values*)

The above example is an alternative to

(multiple-value-bind (test-values) (cp:execute-command "show test")

Note the difference between what a CP command might display or send to a

stream and the ������ it returns. For example, suppose you want to execute a CP

command such as Show File and have the output displayed in your program frame

rather than in the Lisp Listener. You can do this using cp:execute-command with

output directed to one of your program’s panes:

(let ((pane (dw:get-program-pane ’pane-1)))

 (cp:execute-command ’com-show-file "V:>User>file.text"

 :output-destination (list pane)))�

The following table summarizes the top-level facilities for managing the Command

Processor. Refer to the user interface dictionary for the details of these. See the

document �������������������������.

66
Managing the Command Processor February 2018

3.8. Table of Basic Command Facilities

This table includes the top-level command processor management functions,

macros, and variables. Middle-level and lower-level facilities are described else-

where. See the section "Managing Your Program Frame", page 307.

cp:define-command ���������������������������&body�����

Defines a CP command named ���� that reads in from the

user a set of parameters bound to variables specified in �����

�����. When invoked, the command executes the code in ����.

Command options are :name, :command-table,

:explicit-arglist, :provide-output-destination-keyword, and

:values. ��������� is a list of lists of the form (�������������

�������������� �������). Argument options are :documentation,

:prompt, :prompt-mode, :default, :mentioned-default, :when,

:name, :default-type, :provide-default, :display-default, and

:confirm.

cp:define-command-accelerator ���� ������������� ���������� ������� �������

&body�����

Creates a single-keystroke command accelerator for a command

named ���� that executes the code in ���� with arguments

from �������; enters it in �������������; and assigns it to �����

������, a list of every character that will invoke the command.

cp:execute-command ������������ &rest������������������

Invokes the CP command ������������, with the arguments

�����������������, from within a program.

cp:make-command-table ���� &rest ������������ &key ����������� :error� &allow-

other-keys

Creates a command table named ����. ������������ is a list of

keyword-value pairs, in which possible keywords are :inherit-

from, :command-table-delims, :command-table-size, :kbd-

accelerator-p, :accelerator-case-matters, and :if-exists. Re-

turns the command-table object.

cp:delete-command-table ���������������������

Removes the command table, ���������������������, from the

command table registry. (Returns t if successful.)

cp:find-command-table ���� &key���������������������:error�

Returns the command-table object bound to ����.

cp:install-commands ��������������������������

Installs the list of commands, ������������, in

�������������. (Returns nil if successful.)

cp:command-table-delete-command-name ������������� ������������ &key

��������������������:error�

Removes the command named ������������ (a string) from

�������������.

67
February 2018 Managing the Command Processor

cp:command-table-delete-command-symbol ������������� �������������� &key

��������������������:error�

Removes ������� from �������������.

cp:command-in-command-table-p �������������� &optional ��������������

cp:*command-table*�������������t�

Returns a list containing: t if �������������� is in ��������

����� or a superior, the name of the command table (or nil if

��������� is nil), and the command table in which ��������

������ was found.

cp:*command-table*

Bound to the current command table.

cp:*last-command-values*

Bound to the value(s) returned by the most recent CP com-

mand.

cp:command Presentation type for accepting or presenting a command pro-

cessor command.

cp:choose-command-arguments ������������ &rest ���� &key ������������������

������� (length cp::initial-arguments)� ���� ���������������

cp:*command-table*� �������� *standard-input*� ���������

������ ������������� cp::typeout-stream� ������� �������������

:normal� ����������� ����������� ’(:mouse)� ������������

������������������� ������ :accept-values� ������������������������

����������

Returns arguments for the command ������������ in one of

three possible modes.

cp:command-table-install-command ������������� �������������� &optional

������������

Installs the command �������������� in command table ����

���������� and, optionally, gives it the name ������������ (a

string).

cp:*default-command-accelerator-echo*

Controls whether accelerated commands are echoed on the

command line when their single-key accelerators are pressed.

dw:*display-ellipsis-help*

Controls the presentation of a help message explaining the

meaning of a notation such as "Foo ... (7)" to indicate 7 pos-

sibilities beginning with "Foo".

68
Managing the Command Processor February 2018

69
February 2018 Presenting Formatted Output

4. Presenting Formatted Output

This chapter explains how to use basic facilities to produce formatted output. To

find out how to produce output that can be redisplayed and reformatted, see the

section "Displaying Output: Replay, Redisplay, and Formatting", page 281.

4.1. Introduction to Output Formatting

The output formatting facilities take data that is either given to them or produced

within them and display that data in some specified way, for example, in a row or

column of items, in a table, or in a graph. The implementation of such display is a

two-pass process: first, the program must determine how much space the various

items of the display are to occupy, then it can actually perform the output.

The formatted output facilities are designed to allow output without perturbing the

flow of control of the program that is, without requiring the user to produce

some intermediate data structure to represent the individual items being format-

ted. (Facilities that do operate in that manner, such as format-item-list, are in-

deed provided, but they are not the only interface, and they are built from the pro-

cedural interfaces in the obvious way.) To avoid the need for such user-defined

structures, your output formatting code iterates through its own data structures,

doing output in a special dynamic context so that the output is properly formatted.

In fact, the part of your code that does the output runs twice: the first time in a

way that only remembers how large an area is required, and a second time when

the layout has been determined, to draw on the screen.

Because some of the output code runs twice, there are restrictions on the side ef-

fects of code doing output with an output formatting facility. In particular, your

code must be written with the understanding that it will be run more than once.

In simplest terms, the code should have no side effects other than doing output to

the designated stream. More liberally, it must limit its side effects to those that

are impervious to multiple execution. We include several sections that explain how

to write output code that addresses these issues:

"Out-of-Order Evaluation"
"Variable Snapshotting"
"Cursor Position and Formatting Output Macros"

We begin, however, with "Basic Facilities for Program Output" .

70
Presenting Formatted Output February 2018

4.2. Naming Conventions for Program Output Macros

The naming of macros for program output has followed certain conventions. Facili-

ty names prefixed with "with-" are macros that bind the environment but do not

directly participate in generating output. They establish a local environment for

output. Code in the bodies of such facilities is responsible for creating the output.

After output is completed, the local environment goes away.

A good example is with-character-style. Code in the body of the macro has the job

of generating characters. The macro ensures that they are output in the specified

style. When the macro is finished executing, the default character style for the

output stream used remains the same as before the macro was invoked.

Facility names in which the first word ends in "ing" are also macros that bind the

local environment and let it go again when output is completed. In addition to

this, however, they make a significant contribution to the output display, generally

adding to whatever is generated in their bodies. surrounding-output-with-border,

for example, makes an obvious contribution to the display.

4.3. Basic Facilities for Program Output

Genera’s display facilities, the high-level formatting macros in particular, are col-

lectively known as Showcase. The Showcase facilities are intended to make gener-

ating useful and attractive displays a simpler task than if you had to do all the

formatting yourself. You get to spend more time on application-specific needs for

program output, and less on the requirements that most applications have in com-

mon.

Recall that the primary output facilities are those for ���������� objects. These in-

clude the the functions present and present-to-string, and the macro dw:with-

output-as-presentation, all of which output objects as �������������. The use of

these primary output facilities is described in "Using Presentation Types for Out-

put".

Output facilities described in this chapter include macros for controlling character

and line output, and a large number of formatting macros. The character output

facilities provide control over character style or style components (family, face, and

size). (For more information on character styles, see the section "Character Styles"
in ��������� ������ ���� �������� ��������.) Facilities for controlling line out-

put let you specify underlining, filling, abbreviation, and truncation.

The formatting macros are high-level facilities for creating textual lists, tables,

and graphs. The textual list facilities accept a sequence of objects from you and

provide item delimiters, like commas, and a conjunction between the final two

items. The table facilities let you create two-dimensional displays of simple or com-

pound objects; they give you detailed control over layout. Two graph formatting fa-

cilities are available; both are for constructing hierarchical graphs showing the

connections among object nodes. You can write your own output formatting

macros. See the section "Writing Formatted Output Macros", page 304. You can al-

71
February 2018 Presenting Formatted Output

so write code that enables your formatted output to be automatically replayed or

redisplayed. A chapter in Part 2 explains how to do these (see the section "Dis-

playing Output: Replay, Redisplay, and Formatting", page 281).

4.3.1. Formatting Text

The facilities for formatting text include means to control both character style and

line output.

4.3.1.1. Controlling Character Style
Four macros control character style: one controls all three aspects of the style and

each of the other three controls the individual aspects, family, face, and size. The

macros are:

with-character-style

with-character-family

with-character-face

with-character-size

The final character style of the output characters is the result of merging the

macro-specified style against the default style set for the output stream. (For more

information on character styles, see the section "Character Styles" in ���������

������ ���� �������� ��������.) These formatting macros have a common key-

word argument, :bind-line-height, that causes the height of the line containing the

character output to be based on the style specified in the macro.

The following example shows the use of with-character-face to italicize the col-

umn headings in a table:

(defun table-with-italicized-heads ()

 (fresh-line)

 (formatting-table ()

 (formatting-column-headings (())

 (with-character-face (:italic)

(formatting-cell ()

 "Number")

(formatting-cell ()

 "Square")))

 (loop for i from 1 to 10

 as square = (* i i)

 do

 (formatting-row ()

(formatting-cell (nil :align :center)

 (princ i))

(formatting-cell (nil :align :right)

 (princ square)))))) �

(table-with-italicized-heads)

72
Presenting Formatted Output February 2018

�������������

 1 1

 2 4

 3 9

 4 16

 5 25

 6 36

 7 49

 8 64

 9 81

 10 100

4.3.1.2. Controlling Line Output

with-underlining Adds underlines to character output.

abbreviating-output

Terminates output and supplies ellipses if the output is wider

or taller than specified limits.

filling-output Prevents the breaking of lines in the middle of words; it in-

serts newlines at appropriate points.

indenting-output Lets you insert space or a string at the beginning of each new

line of character output.�

Here is an example using abbreviating-output:

(defun abbrev-test (width height)

 (abbreviating-output (() :width width :height height

 :show-abbreviation t)

 (loop for row from 1 to 20 do

 (terpri)

 (loop for col from 1 to 100 do

(format T " ~d:~d" row col)))))

(abbrev-test 42 10)

 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:...

 2:1 2:2 2:3 2:4 2:5 2:6 2:7 2:8 2:9 2:...

 3:1 3:2 3:3 3:4 3:5 3:6 3:7 3:8 3:9 3:...

 4:1 4:2 4:3 4:4 4:5 4:6 4:7 4:8 4:9 4:...

 5:1 5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9 5:...

 6:1 6:2 6:3 6:4 6:5 6:6 6:7 6:8 6:9 6:...

 7:1 7:2 7:3 7:4 7:5 7:6 7:7 7:8 7:9 7:...

 8:1 8:2 8:3 8:4 8:5 8:6 8:7 8:8 8:9 8:...

...

73
February 2018 Presenting Formatted Output

4.3.2. Formatting Textual Lists

Showcase provides the following facilities for formatting "textual" lists:

format-textual-list

formatting-textual-list�

A textual list is simply a list of comma-separated items, for example: "1, 2, 3, and

4". You provide the items for the list, and the facilities take care of inserting the

commas and the "and" before the final item.

format-textual-list is the function for printing textual lists. formatting-textual-list

is the environment-binding macro for doing the same thing. What this and similar

formatting macros provide that the functions do not is flexibility. In this case, the

format-textual-list function requires that an explicit sequence object provide the

items for formatting, for example:

(defun simple-list-formatter ()

 (fresh-line)

 (format-textual-list ’(1 2 3 4) #’princ :conjunction "and"))

(simple-list-formatter)

1, 2, 3, and 4

formatting-textual-list, on the other hand, lets you write code to sequence through

the items using whatever data structure you choose, for example:

(defun simple-list-formatting ()

 (fresh-line)

 (formatting-textual-list (t :conjunction "and")

 (loop for i from 1 to 4

 do

 (formatting-textual-list-element ()

 (princ "Number ")

(princ i)))))

(simple-list-formatting)

Number 1, Number 2, Number 3, and Number 4

As shown in the above example, formatting-textual-list-element controls the print-

ing of one item for display by formatting-textual-list.

4.3.3. Formatting Tables

There are five top-level facilities for displaying output in tabular form:

format-item-list

formatting-item-list

format-sequence-as-table-rows

formatting-multiple-columns

formatting-table

These allow you either to display an existing sequence or list in tabular format or

to bind an environment such that data created within that environment is dis-

74
Presenting Formatted Output February 2018

played in a table. formatting-multiple-columns, for example, displays what would

otherwise be a single column of output in a multiple-column format:

(defun quick-table ()

 (fresh-line)

 (formatting-multiple-columns ()

 (loop for i from 0 to 79

 do

 (prin1 i)

 (terpri))))

(quick-table)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77�

(If you try this example, be aware that your display might not look like the one

above; the width of the output window affects the number of columns.)

format-sequence-as-table-rows takes a sequence of elements and outputs each ele-

ment on its own row. format-item-list and formatting-item-list are also used for

generating tables of simple items but, through a variety of keyword options, pro-

vide much finer control over the appearance of the table than do the first two fa-

cilities.

formatting-table provides the greatest flexibility for constructing tables. Five mid-

level facilities can be used within a formatting-table form to control separately

the formatting of rows, columns, and individual cells:

formatting-column-headings

formatting-column

formatting-row

format-cell

formatting-cell

graphics:formatting-graphics-cell

The following example creates a table of network servers:

75
February 2018 Presenting Formatted Output

(defun server-table ()

 (fresh-line)

 (formatting-table ()

 (formatting-column-headings ()

 (with-character-face (:italic)

(with-underlining ()

 (formatting-cell ()

 (write-string "Protocol"))

 (formatting-cell ()

 (write-string "Medium"))

 (formatting-cell ()

 (write-string "No. of Arguments")))))

 (loop for server in neti:*servers* do

 (formatting-row ()

(formatting-cell ()

 (format t "~a"

 (neti:server-protocol-name server)))

(formatting-cell ()

 (format t "~a"

 (neti:server-medium-type server)))

(formatting-cell (*standard-output* :align :right)

 (format t "~a"

 (neti:server-number-of-arguments server)))))))�

(server-table)

76
Presenting Formatted Output February 2018

 ==>

�������� ������ ����������������

MANDELBROT BYTE-STREAM 1

UNIX-RWHO UDP 1

IEN-116 UDP 2

TCP-FTP BYTE-STREAM 4

TFTP UDP 1

CHAOS-FOREIGN-INDEX CHAOS 1

RTAPE BYTE-STREAM 1

CONVERSE BYTE-STREAM 2

SEND BYTE-STREAM 1

SMTP BYTE-STREAM 3

CHAOS-MAIL BYTE-STREAM 1

CONFIGURATION BYTE-STREAM 1

NFILE BYTE-STREAM-WITH-MARK 2

QFILE CHAOS 1

CHAOS-SCREEN-SPY CHAOS 1

NOTIFY CHAOS 1

CHAOS-ROUTING-TABLE CHAOS 1

CHAOS-STATUS CHAOS 1

ECHO-XCN-TOKEN-LIST TRANSACTION-TOKEN-LIST 1

3600-LOGIN BYTE-STREAM 3

SUPDUP BYTE-STREAM 3

TELNET BYTE-STREAM 3

TTY-LOGIN BYTE-STREAM 3

NAMESPACE-TIMESTAMP DATAGRAM 3

NAMESPACE BYTE-STREAM 0

BAND-TRANSFER BYTE-STREAM 2

WHO-AM-I DATAGRAM 2

PRINT-DISK-LABEL BYTE-STREAM 1

EVAL BYTE-STREAM 1

NAME BYTE-STREAM 2

ASCII-NAME BYTE-STREAM 2

LISPM-FINGER DATAGRAM 1

UPTIME-SIMPLE DATAGRAM 2

TIME-SIMPLE-MSB DATAGRAM 2

TIME-SIMPLE DATAGRAM 2

RESET-TIME-SERVER DATAGRAM 0

NIL�

4.3.4. Formatting Graphs

There are four top-level graph formatting facilities:

 format-graph-from-root

 formatting-graph

 formatting-graph-node

77
February 2018 Presenting Formatted Output

 dw:find-graph-node

format-graph-from-root and formatting-graph create graphs showing the connec-

tions between nodes. The format-graph-from-root function generates a graph from

your specification of a root node and its descendants. Here, for example, is a fla-

vor-component grapher built on format-graph-from-root:

(defun graph-flavor-components (flavor-name)

 (labels ((component-flavors (flavor-name)

 (flavor::flavor-local-components

 (flavor:find-flavor flavor-name))))

 (fresh-line)

 (format-graph-from-root flavor-name

 #’(lambda (thing stream)

 (present thing ’flavor:flavor-name

:stream stream))

 #’component-flavors

 :dont-draw-duplicates t)))�

(graph-flavor-components ’dbg:proceedable-ferror)

If you run this function on complex flavors, by the way, you will get a chance to

exercise the horizontal scrolling capability of Dynamic Windows. This also illus-

trates the point that the graph formatters (and formatting-table as well) have

built-in the functionality provided by dw:with-output-truncation to other kinds of

output. That is, output generated using these macros that exceeds the width of the

output window does not wrap around as character output ordinarily would. Rather,

the user’s view of the output is truncated by the right margin of the window, but

can be made visible by horizontal scrolling.

formatting-graph works similarly to format-graph-from-root, but lets you specify

a number of nodes and their connections, not just one node and its descendants.

This allows the creation of more complex graphs than possible to create with

format-graph-from-root. (For an example, see the function formatting-graph-

node in ���� ��������� ����������.) Creating node objects within formatting-graph

is the job of formatting-graph-node.

78
Presenting Formatted Output February 2018

Note that neither of the graph formatting facilities can be used for generating

graphs containing cycles, but you can write your own function to do this using

other formatting facililities.

4.4. Using the Formatted Output Facilities: Programming Hints

4.4.1. Nesting Formatted Output

Most simple combinations of formatted output macros work inside of one another.

Here is an example that formats several very simple tables with no headings of

any sort. Note that this task does not require the use of formatting-table.

(defun nested-formatting-1 (&optional (ntables 2) (nrows 3) (ncols 2))

 (fresh-line)

 (formatting-item-list (t :n-rows 1)

 (dotimes (i ntables)

 (formatting-cell ()

(formatting-item-list (t :n-rows nrows :n-columns ncols)

 (dotimes (row nrows)

 (dotimes (col ncols)

 (formatting-cell ()

(format t "Cell ~D,~D" row col)))))))))�

(nested-formatting-1)�

Here is another example that formats the same tables, but this time with table

headings as well as row and column headings.

79
February 2018 Presenting Formatted Output

(defun nested-formatting-1a (&optional (ntables 2) (nrows 3) (ncols 2))

 (fresh-line)

 (formatting-table ()

 (formatting-column-headings ()

 (dotimes (table ntables)

(with-character-style (’(nil :bold :large) t :bind-line-height t)

 (formatting-cell (t :align-x :center)

 (format t "Table #~D" table)))))

 (formatting-row ()

 (dotimes (table ntables)

(formatting-cell ()

 (formatting-table ()

 (formatting-column-headings ()

 (dotimes (col ncols)

(formatting-cell ()

 (format t "Column #~D" col))))

 (dotimes (row nrows)

 (formatting-row ()

(dotimes (col ncols)

 (formatting-cell ()

 (format t "Cell ~D,~D" row col)))))))))))

(nested-formatting-1a)

 Table #0 Table #1

Column #0 Column #1 Column #0 Column #1

Cell 0,0 Cell 0,1 Cell 0,0 Cell 0,1

Cell 1,0 Cell 1,1 Cell 1,0 Cell 1,1

Cell 2,0 Cell 2,1 Cell 2,0 Cell 2,1�

Here is an example that shows how format-item-list can be used within a format-

graph-from-root form to format a node of the graph. Note how the functional in-

terface to format-item-list differs from formatting-item-list in its defaults.

80
Presenting Formatted Output February 2018

(defun nested-formatting-2

 (&optional (tree ’(((1 2 3 4) ((5 6 7))) ((9 10 11)))))

 (fresh-line)

 (format-graph-from-root tree

 #’(lambda (node stream)

 (if (consp (first node))

 (with-character-size (:large stream :bind-line-height t)

 (princ "*" stream))

 (format-item-list node :stream stream

 :optimal-number-of-rows 2

 :fresh-line nil

 :additional-indentation 0)))

 #’(lambda (node)

 (and (consp (first node)) node))))

(nested-formatting-2)

This last example shows how a formatted graph can be included within a table:

81
February 2018 Presenting Formatted Output

(defun nested-formatting-3 (&optional (tree ’((a b c) (e f) d)))

 (fresh-line)

 (formatting-table ()

 (formatting-column-headings ()

 (dotimes (graph 2)

 (with-character-style (’(nil :bold :large) t :bind-line-height t)

 (formatting-cell (t :align-x :center)

 (format t "Graph #~D" graph)))))

 (formatting-row ()

 (dolist (orientation ’(:horizontal :vertical))

 (formatting-cell ()

 (format-graph-from-root tree #’prin1

 #’(lambda (code) (unless (atom code) code))

 :orientation orientation))))))

(nested-formatting-3)

4.4.2. Filling Output Inside Table Cells

Unless you specifically set it, the width of the column of a table is determined by

the output that goes into it. So if you do not set it, there is no way to fill to the

full column width, since the filled output determined that width. On the other

hand, if you specify the width of the filling output via the :fill-column argument,

the output will automatically be filled to fit that width. Example:

(defun character-table ()

 (fresh-line)

 (let ((fill-col

 (round (* (send *standard-output* :inside-size) 2/3))))

 (formatting-table ()

 (dolist (symbol (subseq sys:area-list 0 10))

(formatting-row ()

 (format-cell symbol #’prin1)

 (formatting-cell ()

 (format-textual-list (coerce (string symbol) ’list)

 #’prin1 :filled t :fill-column fill-col)))))))

(character-table)�

82
Presenting Formatted Output February 2018

4.4.3. Graphic Output within Tables

For the most part, graphic output works just like any other output inside a table.

The special form graphics:formatting-graphics-cell gives a primary quadrant of

the whole cell, the extent of the cell being the output drawn, regardless of any

translation. Example:

(defun shapes ()

 (fresh-line)

 (formatting-item-list (t :n-rows 2 :row-wise nil)

 (loop for i from 3 to 8 do

 (graphics:formatting-graphics-cell ()

 (graphics:draw-regular-polygon 0 0 1 0 i :scale 20)))))

(shapes)

83
February 2018 Presenting Formatted Output

(defun grays ()

 (fresh-line)

 (let ((stipples (map ’list #’symbol-value

 ’stipples:(vertical-lines horizontal-lines

 filled-diamonds hearts))))

 (formatting-table (t :inter-row-spacing 10)

 (formatting-row ()

 (format-cell "Gray" #’princ)

 (dolist (stipple stipples)

 (format-cell stipple #’princ)))

 (loop for gray from 0 to 1 by 1/4 do

 (formatting-row ()

 (format-cell gray #’prin1 :align-y :center)

 (dolist (stipple stipples)

 (graphics:formatting-graphics-cell

(t :align-x :center :align-y :center)

(graphics:draw-circle 0 0 30 :gray-level gray

 :stipple stipple))))))))�

(grays)

Note that the polygons with more than four sides and all the circles extend into

the negative � region, but are still floated inside the cell.

84
Presenting Formatted Output February 2018

4.4.4. Controlling Location and Other Aspects of Output

The following facilities allow you to control where in the output history of a Dy-

namic Window your output appears, as well as some other aspects of output histo-

ry.

(flavor:method :clear-window dw:dynamic-window)

(flavor:method :clear-history dw:dynamic-window)

(flavor:method :clear-region dw:dynamic-window)

(flavor:method :delete-displayed-presentation dw:dynamic-window)

(flavor:method :visible-cursorpos-limits dw:dynamic-window)

(flavor:method :set-viewport-position dw:dynamic-window)

(flavor:method :y-scroll-position dw:dynamic-window)

(flavor:method :y-scroll-to dw:dynamic-window)

(flavor:method :x-scroll-position dw:dynamic-window)

(flavor:method :x-scroll-to dw:dynamic-window)

dw:with-output-recording-disabled

dw:with-own-coordinates

dw:with-output-truncation

surrounding-output-with-border

dw:displayed-presentation-set-highlighting

dw:displayed-presentation-clear-highlighting

Controlling the location of output is especially important in the case of dynamic
as opposed to static windows, because it is often impossible to know in advance

where the visible portion of the window will be at the time any given output is

displayed. One way of handling this situation is with the :visible-cursorpos-limits

method, as illustrated by the following example:

(defun graphic-output-to-dynamic-window-1 ()

 (let ((width 100) (height 50) (start-x 200) (start-y 150))

 (multiple-value-bind (x1 y1 x2 y2)

 (send *standard-output* :visible-cursorpos-limits)

 (send *standard-output* :draw-rectangle width height

 (+ x1 start-x) (+ y1 start-y)))))

In this example, we are asking the window the coordinates of the current viewport,

and using these as offsets to adjust where we send output.

The dw:with-own-coordinates macro has a similar purpose. That is, it allows you

to avoid using absolute coordinates, and to use coordinates relative to the current

viewport instead:

(defun graphic-output-to-dynamic-window-2 ()

 (let ((width 100) (height 50) (start-x 200) (start-y 150))

 (dw:with-own-coordinates ()

 (send *standard-output* :draw-rectangle width height

 start-x start-y))))

Another capability of dw:with-own-coordinates is the disabling of output record-

ing. That is, through a keyword option to this macro, you can prevent output from

being recorded in the output history of the window to which it is sent. (This capa-

85
February 2018 Presenting Formatted Output

bility is also provided by dw:with-output-recording-disabled.) It defeats one of the

main advantages of Dynamic Windows, but is sometimes useful, particularly when

doing graphic output. Try calling the following example with t, to enable output

recording, then nil, to disable it:

(defun moving-arrow (t-or-nil)

 (dw:with-own-coordinates (t :enable-output-recording t-or-nil)

 (do ((x 100 (+ x 4))

 (y 100 (+ y 2)))

((> x 500) ’done)

 (graphics:draw-arrow 100 100 x y :alu :flip

:arrow-base-width 20

:arrow-head-length 35)

 (graphics:draw-arrow 100 100 x y :alu :flip

:arrow-base-width 20

:arrow-head-length 35))

 (graphics:draw-arrow 100 100 500 300 :alu :flip

 :arrow-base-width 20

 :arrow-head-length 35)))�

(moving-arrow t)

First note the speed with which the arrows are drawn. Now try scrolling back-

wards and forwards over the output and observe the effects.

dw:tracking-mouse lets you track the current position of the mouse cursor, useful

in graphic applications, and other mouse events as well. In conjunction with the

mouse handler facilities, it provides the primary interface between your programs

and the mouse. An example showing its use in a drawing function is presented

elsewhere, see the section "Creating Graphic Output", page 139. dw:with-output-

truncation is necessary for taking advantage of the horizontal scrolling capability

of Dynamic Windows. With it you can prevent the wrapping of character output

and let the user’s view of the output be truncated by the right (or bottom) margin

of the window. The truncated output is accessible through scrolling. This also ap-

plies to graphic presentations that would otherwise be too big if limited to the size

of a window. (Note that formatting-table and the two graph formatters,

formatting-graph and format-graph-from-root, include this kind of functionality

as a built-in feature.)

For a simple demonstration of output truncation, try calling the following function

first with t, and then with nil:

(defun truncation-test (t-or-nil)

 (dw:with-output-truncation (t :horizontal t-or-nil)

 (loop repeat 200 do (write-char #\a))))

(truncation-test t)

(truncation-test nil)

surrounding-output-with-border lets you enclose any other kind of output
tables, graphics, whatever in a rectangular, oval, circular, or diamond-shaped

border. To see the different shapes, try calling the following function with :rect-

angle, :oval, :circle, or :diamond.

86
Presenting Formatted Output February 2018

(defun shape-test (shape)

 (fresh-line)

 (surrounding-output-with-border

 (*standard-output* :shape shape)

 (present tv:selected-window)))�

(shape-test :oval)

dw:displayed-presentation-set-highlighting and dw:displayed-presentation-clear-

highlighting, as their names suggest, let you highlight and clear the highlighting

of displayed presentations. This highlighting, unrelated to mouse sensitivity, is

done by either underlining the presentation or putting it into reverse video. This

is the same highlight that region marking (������������) uses, thus it affects ���

����, for example.

4.4.5. Output Formatting Spacing Parameters

The spacing parameters listed for the following output formatting macros are spec-

ified and treated in a special way:

:inter-column-spacing of formatting-table

:inter-column-spacing of formatting-item-list

����������� of indenting-output

:fill-column of filling-output

Each of these parameters can be specified in one of the following possible ways:

As an integer If the output stream is one whose device units are smaller

than single characters (pixels, for example) and if the integer

is less than ten, it is interpreted as a number of character

spaces; otherwise, if the number is greater than ten, it is in-

terpreted as a number of device units. Note that the require-

ment that this number be an integer precludes the specifica-

tion of spacing as a fraction of a character size; use the list

method below to get fractional character spacing. (Ten is the

number of pixels in a device character.)

As a string The spacing is the width of the string.

As a function The spacing is the amount of space the function would con-

sume when called on the stream.

As a list The list is of the form (������ ����), where ���� is one of

:pixel or :character. ’(3 :character) is different from (* 3

(send stream :char-width)) or just 3, in that the character

width of whatever stream is really used to do the formatting is

correctly used. ’(4 :pixel) is different from just 4 in that it is

not subject to the special interpretation of small numbers (<
10) normally applied.

87
February 2018 Presenting Formatted Output

These first two examples produce output that appears identical:

(defun example-1 ()

 (formatting-table (t :inter-column-spacing

 (* 3 (send *standard-output* :char-width)))

 (formatting-row ()

 (loop for item in

 ’("AAAAAA" "BBBBBB" "CCCCCC" "DDDDDD" "EEEEEE")

 do (format-cell item #’princ)))))�

(example-1)

(defun example-2 ()

 (formatting-table (t :inter-column-spacing 3)

 (formatting-row ()

 (loop for item in

 ’("AAAAAA" "BBBBBB" "CCCCCC" "DDDDDD" "EEEEEE")

 do (format-cell item #’princ)))))

(example-2)

In this example, the integer is interpreted as pixels rather than as characters:

(defun example-3 ()

 (formatting-table (t :inter-column-spacing 13)

 (formatting-row ()

 (loop for item in

 ’("AAAAAA" "BBBBBB" "CCCCCC" "DDDDDD" "EEEEEE")

 do (format-cell item #’princ)))))�

(example-3)

Here, in order to achieve fractional character spacing, we force the units (which

would have been assumed to be characters) to be interpreted as pixels:

(defun example-4 ()

 (formatting-table (t :inter-column-spacing ’(8 :pixel))

 (formatting-row ()

 (loop for item in

 ’("AAAAAA" "BBBBBB" "CCCCCC" "DDDDDD" "EEEEEE")

 do (format-cell item #’princ)))))�

(example-4)

(send stream :char-width) would not work for the following example, because the

encapsulating stream would not "know" about character width at the appropriate

time. The 3 is interpreted as number of characters.

88
Presenting Formatted Output February 2018

(defun example-5 ()

 (with-open-stream

 (stream

 (hardcopy:make-hardcopy-stream

 hardcopy:*default-text-printer* :landscape-p t))

 (formatting-table (stream

 :inter-column-spacing 3)

 (formatting-row (stream)

 (loop for item in

 ’("AAAAAA" "BBBBBB" "CCCCCC" "DDDDDD" "EEEEEE")

 do (format-cell item #’princ :stream stream))))))�

(example-5)�

If example-5 had used inter-column-spacing of ’(3 :character) for an LGP2, there

would have been no visible difference in the result. This might not be the case for

other hardcopy devices.

4.4.6. Out-of-Order Evaluation

In most cases, even though some output-producing code is run twice, it is still run

in the order in which it appears lexically. In limited specific cases, though, the

part of the program that does an individual item is separated and run the second

time in a different order. The main example of this is the use of the :row-wise nil�

:output-row-wise t options to formatting-item-list. These options are used for lay-

ing items out in columns, left to right, rather than rows, top to bottom; it does ac-

tual output in rows since that involves less cursor motion. In this case, the first

pass to determine the size of the items in the menu will be in the normal order.

However, for the second pass, they will be taken in the order necessary to produce

the desired inversion.

Here is a concrete example:

(defun what-order (l row-wise)

 (terpri)

 (stack-let ((things (make-array 100 :fill-pointer 0)))

 (formatting-item-list (t :row-wise row-wise :output-row-wise t)

 (dolist (x l)

(formatting-cell ()

 (vector-push-extend x things)

 (princ x))))

 (coerce things ’list)))

 (what-order ’(a b c d e f) t)

(A B C D E F A B C D E F)

 (what-order ’(a b c d e f) nil)

(A B C D E F A D B E C F)

Note the double evaluation: Each element appears twice in the result. If you use

the format-item-list functional interface, the problem is similar, but not quite so

severe, since the function given for printing is more likely to stand alone. The

89
February 2018 Presenting Formatted Output

function may be called on the items in a table or menu multiple times, and not in

the order in which they occur in the argument sequence.

4.4.7. Variable Snapshotting

Variable snapshotting is saving the values of lexical variables at one time and us-

ing the saved values at a later time, for example, when output-producing code is

run a second time. To understand the need for variable snapshotting, consider the

following programs.

(map ’list #’funcall

 (loop for i from 1 to 10 collect #’(lambda () i)))

=> (11 11 11 11 11 11 11 11 11 11)

(map ’list #’funcall

 (let ((continuations nil))

 (dotimes (i 10)

 (push #’(lambda () i) continuations))

 (nreverse continuations)))

=> (10 10 10 10 10 10 10 10 10 10)

(map ’list #’funcall

 (let ((continuations nil))

 (dolist (x ’(a b c d))

 (push #’(lambda () x) continuations))

 (nreverse continuations)))

=> (D D D D)

(map ’list #’funcall

 (map ’list #’(lambda (x) #’(lambda () x))

 ’(a b c d)))

=> (A B C D)

In all but the last case, the program does not perform as expected. A strict inter-

pretation of the definition of dolist and dotimes requires that there be a single it-

eration variable that is set each time around the loop to the next value. The se-

mantics of the complete version of loop, with multiple variables of iteration, makes

this even more imperative. All the closures collected are closed over the same vari-

able � or �, not ten different variables. Hence they all return the same value when

called. A setq after a closure is created changes the value of the enclosed variable.

Unfortunately, this collecting of continuations is exactly how the formatted output

macros accomplish their layout, as the following examples show.

90
Presenting Formatted Output February 2018

(defun with-snapshotting (l)

 (terpri)

 (formatting-item-list ()

 (dolist (x l)

 (formatting-cell ()

(princ x)))))

(with-snapshotting ’(a b c d e f g h i j))

A B

C D

E F

G H

I J�

(defun without-snapshotting (l)

 (terpri)

 (formatting-item-list ()

 (dolist (x l)

 (formatting-cell (t :dont-snapshot-variables (x))

 (princ x)))))

(without-snapshotting ’(a b c d e f g h i j))

J J

J J

J J

J J

J J�

So that the formatting output macros work correctly when they are used in con-

junction with the simplest iteration macros, the output macros create new vari-

ables with the same names to hold an unchanging value. Compare this example

with the previous map examples:

(map ’list #’funcall

 (loop for i from 1 to 10

 collect (let ((i i))

 #’(lambda () i))))�

Be careful that snapshotting does not cause problems for legitimate uses of shared

lexical variables: the macros cannot distinguish these from variables of iteration.

Here is an example of this sort of problem:

91
February 2018 Presenting Formatted Output

(defun show-some-hash-elements (table)

 (terpri)

 (let ((items-output nil))

 (formatting-table ()

 (maphash #’(lambda (key item)

 (when (oddp key)

 (pushnew item items-output)

 (formatting-row ()

 (formatting-cell ()

 (princ key))

 (formatting-cell ()

 (princ item)))))

 table))

 (sort items-output #’<)))

(show-some-hash-elements (make-hash-table

:initial-contents ’(1 2 2 3 3 4 4 5 5 6)))

5 6

3 4

1 2�

This program will get a compiler warning because it is writing to a snapshotted

variable. It also does not work, as it returns nil instead of the derived list of

items. In order to get the code to function correctly, you must inhibit the snap-

shotting of the ������������ variable as follows:

(defun show-some-hash-elements (table)

 (terpri)

 (let ((items-output nil))

 (formatting-table (t :dont-snapshot-variables (items-output))

 (maphash #’(lambda (key item)

 (when (oddp key)

 (pushnew item items-output)

 (formatting-row ()

 (formatting-cell ()

 (princ key))

 (formatting-cell ()

 (princ item)))))

 table))

 (sort items-output #’<)))

(show-some-hash-elements (make-hash-table

 :initial-contents ’(1 2 2 3 3 4 4 5 5 6)))

5 6

3 4

1 2�

92
Presenting Formatted Output February 2018

4.4.8. Cursor Position and Formatting Output Macros

Most formatted output macros that produce blocks of output such as tables or

graphs put the upper left corner at the current cursor position and leave the cur-

sor just below the bottom left corner of the output. This means that if you want a

table to be flush left in a window, you should do a (fresh-line) before starting the

output. Since a program frame redisplay function or Command Processor command

is called with the cursor already on a fresh line, you do not actually need the

(fresh-line) in all situations.

When you are debugging in the Lisp Listener by typing forms, the position at the

start of form evaluation is just after the form on the same line. So, when you are

debugging, the absence of an initial (fresh-line) form may cause your output to

start in the middle of the window, displaced to the right by the width of the last

line of the Lisp form you typed in.

Note: The various kinds of table formatting output macros perform their own new-

line output where needed. They do the conditional decisions necessary for this. Do

not include newline commands inside formatting output macros unless you are cre-

ating multi-line cells this includes use of ~% and ~&, as well as fresh-line and

terpri.

4.5. Table of Program Output Facilities

with-character-style ������ &optional���������t� &key������������������� &body�����

Binds the local environment such that character output is in

the specified style.

with-character-family ������� &optional ������� t� &key ������������������ &body

����

Binds the local environment such that character output is in

the specified family.

with-character-face ����� &optional���������t� &key������������������� &body�����

Binds the local environment such that character output is in

the specified face.

with-character-size ����� &optional���������t� &key������������������� &body�����

Binds the local environment such that character output is of

the specified size.

with-underlining �&optional������� &key������������������������t�� &body�����

Binds the local environment such that character output is un-

derlined.

abbreviating-output �&optional ������ &key ������ ������� �������������������

�� &body�����

Binds local environment such that character output is abbrevi-

ated.

93
February 2018 Presenting Formatted Output

filling-output �&optional ������ &key ������������ ����������������� ’(#\space)� �������
���������� ������������������������������� �������������������������

&body�����

Binds local environment such that character output is filled.

indenting-output �������������������� &body�����

Binds local environment to control the insertion of spaces or

other characters at the beginning of each newline output to a

stream.

format-textual-list �������� �������� &rest ���� &key ����������� ", "� �������� ����
��� ������� ������������ ����������������� ������������ ��������

standard-output�

Outputs a sequence of items as a textual list.

formatting-textual-list �&optional ������ &key ����������� ", "� �������� �������

������� ����������������� ������������ �������������������������

&body�����

Binds local environment to output a sequence of items as a

textual list.

formatting-textual-list-element �&optional ������ &key �������������������������

&body�����

Controls the printing of items output as textual list elements

within a formatting-textual-list macro.

format-item-list ���� &key �������� *standard-output*� �������� ������������������

����� #’identity� ������������ t� ��������������� t� ��������

���������� t� ������������������������ si:*optimal-number-of-

rows*� ������������������������ 2� ����������������������� �����

�����������������

Displays the elements of a list in a tabular format.

formatting-item-list �&optional ������ &key ������������������� 0� ���������������

������� (scl:send stream :char-width)� ���������� t� ��������

�������� ������� ���������� ����������������������� ��������

����� �������������� ���������� ����������� ���������������

���������� &body�����

Binds local environment to output a list of items created in the

body of the macro as a table.

format-sequence-as-table-rows �������� ������� &key �������� *standard-output*�

����������������������� ������������� �������������� ������������

������� 0� ���������������������� (scl:send stream

:char-width)� ����������������� �������������������������������

������� dw::inter-column-spacing� ��������������������������

��

Displays the elements in a sequence as a series of table rows.

formatting-multiple-columns �&optional ������ &key ������������������� &body

����

Binds the local environment such that the lines of text gener-

ated by ���� are output in a multiple-column format.

94
Presenting Formatted Output February 2018

formatting-table �&optional ������ &key ����������������������� ������������� ����

����������� ������������������� 0� ����������������������

(scl:send stream :char-width)� ����������������� �����������

��������������������������� dw::inter-column-spacing� �������

�������������������������� ���������������������������������

�������������������������������� &body�����

Binds local environment to output items in a tabular format.

formatting-column-headings �&optional ������ &key ������������ ���������������

���������� &body������

Controls the display of column headings within a formatting-

table macro.

formatting-column �&optional������� &key�������������������������� &body�����

Controls column layout within a formatting-table macro.

formatting-row �&optional ������ &key ������������������������ ���������������

&body�����

Controls row layout within a formatting-table macro.

format-cell �������������� &key����������*standard-output*�������������������

Controls the printing of a table element within a formatting-

table or formatting-item-list macro.

formatting-cell �&optional ������ &key �������� �������� �������������������������

&body�����

Binds local environment to control the printing of a table ele-

ment within a formatting-table macro.

graphics:formatting-graphics-cell �&optional ������ &key ��������� :left� ���������

:bottom�����������������t��������������������������� &body�����

Binds local environment to control the printing of a graphical

table element within a formatting-table or formatting-item-

list macro.

format-graph-from-root ����������� �������������� ����������������� &key ��������

standard-output� ��������������������� ����� #’identity� ������
#’eql� ����������������� ����������� :after� ����������������������

:line� ������������������������ ������������� �������� ’(:shape

:rectangle)� ������������� dw:*default-graph-orientation*� ������

����������� dw:*default-graph-balance-evenly*� �������������

dw:*default-graph-row-spacing*� ��������������������

dw:*default-graph-within-row-spacing*� ����������������

dw:*default-graph-column-spacing*� �����������������������

dw:*default-graph-within-column-spacing*� ��������������

dw:*default-graph-branch-point*� ��������������� dw:*default-

graph-allow-overlap*�

Constructs and displays a tree graph, given the root of a tree,

a function to display a node, and a function to extract a node’s

inferiors.

95
February 2018 Presenting Formatted Output

formatting-graph �&optional ������ &key ������������� dw:*default-graph-

orientation*� ����������������� dw:*default-graph-inverted-

center*� ���������������� dw:*default-graph-balance-evenly*�

������������� dw:*default-graph-row-spacing*� �������������

������� dw:*default-graph-within-row-spacing*� ���������

������� dw:*default-graph-column-spacing*� ����������������

������� dw:*default-graph-within-column-spacing*� ���������

����� dw:*default-graph-branch-point*� ���������������

dw:*default-graph-allow-overlap*� ����������������������

:line� ������������������������ ������������������������� &body

����

Binds the local environment to output a graph connecting node

objects generated in the body of the macro.

formatting-graph-node �&optional ������ &key ��� ������������ �������������� t�

���������������� ��������� #’eql� ������������������������� &body

����

Binds local environment to create node objects for use by the

formatting-graph macro.

dw:find-graph-node �������������������������� &key�������#’identity���������#’eql�
Searches for a node object given its symbol and the output

stream on which it is to be displayed and returns the object if

it finds it.

dw:erase-displayed-presentation ���������������������� ������ &optional ���������

�������������������������������t�

Erases the specified ���������������������� from ������ and re-

moves it from the output history.

(flavor:method :clear-window dw:dynamic-window) &optional����������

Scrolls the window forward in the vertical dimension far

enough to eliminate previous output from the current display.

(flavor:method :clear-history dw:dynamic-window) &key ��������� t� &allow-other-

keys

Eliminates all items in the output history of the window, and

resets the viewport to the top of the history.

(flavor:method :clear-region dw:dynamic-window) ���������������������

Clears the output display in a rectangular area of the window.

(flavor:method :delete-displayed-presentation dw:dynamic-window) ����������

������������

Deletes an already displayed presentation from a Dynamic

Window’s output history and display.

(flavor:method :visible-cursorpos-limits dw:dynamic-window) &optional �����

:pixel�

Returns the limits of the current viewport as absolute window

locations.

96
Presenting Formatted Output February 2018

(flavor:method :set-viewport-position dw:dynamic-window) ����������������

Scrolls the window to a specified location in the window’s out-

put history.

(flavor:method :y-scroll-position dw:dynamic-window)

Returns: absolute location of current viewport’s top edge, its

vertical extent, window’s minimum y-coordinate, and absolute

location of viewport’s bottom edge.

(flavor:method :y-scroll-to dw:dynamic-window) �������������

Scrolls the window to a specified y-coordinate.

(flavor:method :x-scroll-position dw:dynamic-window)

Returns: absolute location of current viewport’s left edge, its

horizontal extent, window’s minimum x-coordinate, and abso-

lute location of viewport’s right edge.

(flavor:method :x-scroll-to dw:dynamic-window) �������������

Scrolls the window to a specified x-coordinate.

dw:with-output-recording-disabled �&optional�������� &body�����

Binds the local environment so that output produced by ���� is

not recorded in the history of the dynamic window associated

with ������.

(flavor:method :with-output-recording-disabled dw:dynamic-window) ���������

������������

Disables output recording on a specified window for a specified

continuation.

dw:with-own-coordinates �&optional ������ &key ����� ���� ������ ������� ��������

������ t� ������������� ������������������������� t�� &body

����

Binds the local environment such that output to a Dynamic

Window is in a refreshed area and the coordinate system is

relative to the current viewport.

dw:tracking-mouse �&optional ������ &key ���������� "track mouse"� ����������
�������������������� ����������������������������������� �������

����������� &body��������

Tracks the mouse in the user process.

dw:with-output-truncation �&optional������� &rest��������� &body�����

Binds the local environment to allow textual output to extend

beyond the bottom and right borders of the output window.

surrounding-output-with-border �&optional ������ &key ������� :rectangle�

����������� 1� �������� 1� ��������� t� ������������ 1� ������� �������

���� ������������� t� ������ ������� ������ ����������������

:bottom� ��������������������� �������������������������������� 1�

������������������:left�� &body�����

Binds the local environment such that output generated in the

body of the macro is enclosed within a border.

97
February 2018 Defining Your Own Program Framework

5. Defining Your Own Program Framework

5.1. Introduction to Program Frameworks

If you have not read the introductory sections describing the Genera user interac-

tion paradigm and introducing program frameworks, it might be helpful to do so

now. See the section "User Interaction Paradigm", page 8. See the section "Pro-

gram Frameworks", page 14.

A program framework organizes the interaction portion of an interactive program.

The most elaborate framework can consist of:

• A command loop

• A set of commands

• A window-layout declaration

• A set of window display definitions

Genera provides a top-level facility, dw:define-program-framework, for creating a

program framework that aids the programmer in:

• Establishing and managing the command loop

• Managing the program’s state variables

• Managing screen real estate, by means of a window called a ��������������

A simple program framework might consist of just a command loop and a set of

commands; it is not a requirement that an interactive program have its own win-

dow. In fact, you can use the Genera program framework facility simply to create

a few related commands. Doing so gives you the state-variable, redisplay, and com-

mand-management facilities at the cost of minimal programming effort.

Genera includes an interactive code-building utility, the Frame-Up Layout Design-

er, that produces code written as a single definition using dw:define-program-

framework. You can use Frame-Up, or you can write your own code using

dw:define-program-framework to organize an interactive program, or you can

generate a preliminary version with Frame-Up and then edit the resulting defini-

tion to produce code tailored to your application. A later section describes in detail

the use of Frame-Up. See the section "Using Frame-Up", page 113. Before present-

ing dw:define-program-framework in detail, we need to define more precisely the

various concepts involved.

98
Defining Your Own Program Framework February 2018

5.1.1. The Top-Level Command Loop

A typical top-level command loop involves these steps:

1. Read a command.

2. Execute the command.

3. Update the display.

An option to dw:define-program-framework, called :top-level, allows you to speci-

fy a function to perform these steps or any others you might want. The function

specified by :top-level also lets you control what happens when your program is

selected for the first time. The default of this option, the function dw:default-

command-top-level, takes care of the first two of the above steps in a manner

similar to that of the Lisp listener command loop, and it handles the initial redis-

play of the program frame, if there is one. This includes the automatic provision

of a large number of capabilities, including:

• Command recognition, with completion and all the associated help, documenta-

tion, and input editing facilities. This makes use of a program-specific command

table, which is set up for you by dw:define-program-framework. Additionally,

you can specify other command tables from which your program is to inherit

commands. You define the commands themselves by making use of a command

definition macro that is automatically created for you as part of the framework

definition.

• Command acceleration by means of

° program menus, which are set up by the framework definition

° single-keystroke accelerators, enabled by the framework definition, and set up

by program command definitions

° mouse translations or actions (see the section "Actions and Translations",
page 12.)

• Handling of�*������* breaks

• Optional evaluation of Lisp forms and maintenance of the top-level-loop vari-

ables, *, +, and the like.

Note that you do not have to make use of all these features: You can have a pro-

gram, for example, that does not make use of keyboard input at all it just uses

a command menu that the user clicks the mouse on. Alternatively, you might have

only single-keystroke commands and make no use of the mouse.

Another option to dw:define-program-framework, called :command-evaluator, al-

lows you to specify some additional action to be performed before or after a com-

mand has been read.

99
February 2018 Defining Your Own Program Framework

The third step of a command loop, redisplaying data, is handled on a per-program-

frame basis. Each pane within a program frame (window) for which redisplay

makes sense can have its own redisplay function, defined by the pane’s :redisplay-

function option, as well as a set of options specifying whether and under what cir-

cumstances redisplay should be performed and whether the redisplay should be in-

cremental.

Writing your own top-level command loops and redisplay functions is discussed in

Part 2. See the section "Managing Your Program Frame", page 307. See the sec-

tion "Displaying Output: Replay, Redisplay, and Formatting", page 281.

5.1.2. Program Panes

dw:define-program-framework, if you so specify, creates and initializes a dynamic

window that is dedicated to your program. Such a window is called a �������

�����. A program frame is a window resource of type dw:program-frame and is

an object of flavor dw:program-frame. You can split this window interface to your

application into any number of subwindows, called panes. The Frame-Up Layout

designer allows you to do splitting, swapping, sizing, and deletion of a program

frame’s panes interactively. You can further alter the layout of panes by editing

the code generated by Frame-Up.

There are six types of program frames, each based on a dynamic pane flavor:

Title Pane A constant display telling the user what the window is for.

Interactor Pane A pane for interactive input/output. This holds your command

history.

Lisp Listener Pane Another, taller, pane for interactive input/output.

Display Pane A pane for output display. This is where your display is done.

You might have several display panes in your window.

Command Menu Pane

A menu of mouse-sensitive commands.

Accept Values PaneAnother kind of menu pane for accepting variable, user-

specified values typically, state variables.

Appropriate options for each type of pane control such factors as the pane name,

its height, whether a typeout window can appear, and the pane’s redisplay func-

tion.

5.1.3. Program State Variables

One of the things that dw:define-program-framework does is to define a flavor

named after your program. The purpose of this is to allow you to have variables to

which your program has direct access. These variables are writable instance vari-

ables of the program’s associated flavor. They are called the program’s ����� �����

�����. Their bindings are preserved between activations of the program.

100
Defining Your Own Program Framework February 2018

You define and initialize state variables by means of a keyword option to

dw:define-program-framework. This is a handy alternative to having to declare

your program data as special variables. More important, it allows multiple in-

stances of your program to co-exist without interfering with each other. See the

section "Kinds of Variables" in ��������� ������ ���� �������� ��������. An im-

portant and useful consequence of this is that program functions can be written as

methods of the program flavor and thereby have direct access to its instance vari-

ables, including your state variables. (For information on flavors and methods, see

the section "Flavors" in ��������� ������ ���� ����������� ����������.) Also,

remember to include a compile-flavor-methods form in your program if you have

defined flavor methods within it.

5.2. The dw:define-program-framework Macro

Here is the complete definition of the main framework-building tool. It lists and

describes in detail all program framework options, including all the program pane

options. You may want to skip over this definition to the section "Using

Frame-Up", returning to this section for reference as needed.

dw:define-program-framework� �������������&key�������������(����

�������������nil)�(��������������nil) (���������

’(dw:default-command-top-level))�(��������

����������nil)�(������’(dw::main :listener))����

���

�����(���������������nil)�(����������������nil)�����

���������t��(�����������nil)�(������������nil)�(�����

����������nil)�(�������������’(dw::program))

(������������������������nil)

Defines a program framework, including: a command-defining macro, a fla-

vor named after the program with instance variables you can specify (the

program’s state variables), a command table for the program, and a list of

options specifying the command and screen interfaces for the program.

���� The name to be given to the program flavor created by

dw:define-program-framework.�

:pretty-name

Specifies the user-visible name of the program. This name

appears in places like the ������ key menu and the System

menu and as an argument to the Select Activity command. If

this option is not supplied, the displayed name is the pro-

gram-flavor name specified by the ���� argument, but with

hyphens removed and initial capitals (for example, "my-

program" becomes "My Program"). You can set this option

using the Frame-Up Set Program Options command.

The value you supply for this option is not evaluated.�

101
February 2018 Defining Your Own Program Framework

:command-definer

Specifies the symbol to be used when defining program com-

mands. In the typical case, this option is supplied with a val-

ue of t (that is, :command-definer t); this results in the cre-

ation of a program command-definition macro invoked with

the symbol define��������������command, where ��������

���� is the ���� argument supplied to dw:define-program-

framework.

The command-definition macro so created has the same syn-

tax as dw:define-program-command, but with one excep-

tion: You do not have to supply the ������������. (See the

function dw:define-program-command in ���� ��������� ����

�������.)

The :command-definer option defaults to nil, in which case

no command-definition macro is created, and you must use

dw:define-program-command.

The value you supply for this option is not evaluated.�

:command-table

Specifies a list of two options to the cp:make-command-

table function: :inherit-from and :kbd-accelerator-p.

dw:define-program-framework calls cp:make-command-

table to create a command table for your program (having

as its name the name of your program). You can set these

options using the Frame-Up Set Program Options command.

Supplying the name (symbol or string) of a command table

to the :inherit-from option makes all the commands in that

table available during the running of your program. For ex-

ample, supplying a value of "global" or "user" results in all

the commands in the global or user command table, respec-

tively, being included in your application command table.

If your frame includes an accept-values pane, one of the val-

ues to the :inherit-from option must be "accept-values-pane".

Supplying a value of t to :kbd-accelerator-p allows you to

specify single-key accelerators for program commands; the

default is nil. Keyboard accelerators are specified via the

command-definition macro define-������������-command

created by dw:define-program-framework; via dw:define-

program-command; or via cp:define-command-accelerator.

Keyboard accelerators are also inherited when you use the

:inherit-from option.

If :kbd-accelerator-p is t, to enter an unaccelerated com-

mand the user must first type a colon or m-X. This behavior

can be modified via the default command loop function: See

the function dw:default-command-top-level in ���� ���������

102
Defining Your Own Program Framework February 2018

����������. See also the :top-level option to dw:define-

program-framework.

The value you supply for this option is not evaluated, but

each individual component of the list you give it �� evaluat-

ed, as in

:command-table (:inherit-from ’("global"))�

:top-level Specifies a list of functions and arguments to be executed

when a program instance is created, typically, when the pro-

gram is selected for the first time. The default behavior is

for the program to enter the standard command loop, provid-

ed by dw:default-command-top-level.

You can take advantage of this option in two ways: 1) to run

top-level functions before entering the command loop; 2) to

provide your own command loop function or specify modifica-

tions or options to the default top-level function. An example

of the first is provided by the Flavor Examiner, an applica-

tion built using dw:define-program-framework. The design-

er of this program wanted a special help message to be dis-

played the first time the program is entered. This was imple-

mented by the following code:

(dw:define-program-framework examiner

 ...

 :top-level (examiner-top-level :prompt examiner-prompt)

 ...)

;;; This top-level function exists to get HELP

;;; text printed out at the start. Then it just

;;; runs the standard command loop.

(defun examiner-top-level (program &rest options)

 ;; No point in making this a generic function,

 ;; although typically it would be.

 (examiner-help program (dw:get-program-pane ’command) nil)

 (apply #’dw:default-command-top-level program options))�

Note that dw:define-program-framework passes the pro-

gram instance to the :top-level function, in this case

examiner-top-level. examiner-top-level first calls the

examiner-help function created to generate the top-level

help message, then turns control over to the command loop

function for the program, dw:default-command-top-level.

examiner-prompt is a function defined elsewhere in the fla-

vor examiner program. It causes an arrow prompt to be used

instead of the default prompt.

The purpose of the &rest options argument to examiner-top-

level is to pass through any command loop function options

to the command loop function. :prompt is one such option to

103
February 2018 Defining Your Own Program Framework

dw:default-command-top-level. The examiner-prompt value

provided to this keyword is responsible for the Flavor Ex-

aminer’s arrow prompt. (For information on other keywords:

See the function dw:default-command-top-level in ���� ���

������������������.)

Other commonly desired options for the top-level function

are the :form-preferred or :command-preferred dispatch

modes. The former is all you need to do to get your com-

mand loop to read forms. The latter gives you the same be-

havior as the default for Lisp Listeners. You supply the

:dispatch-mode keyword to dw:default-command-top-level

as follows:

(dw:define-program-framework forms-too

 :top-level (dw:default-command-top-level

 :dispatch-mode :form-preferred))

For information on facilities available for writing your own

command loop function: See the section "Managing Your Pro-

gram Frame", page 307. The value you supply for this option

is not evaluated.

:command-evaluator

Specifies function called after a command is read. Arguments

passed to the called function are the program instance, the

command, and any command arguments. At some point be-

fore, during, or after the execution of application-specific

tasks, the evaluator function should (apply <�������> <���
�������>). This only applies when you are using the default

top-level command loop function.

The value you supply for this option is not evaluated.�

:panes Specifies a list of panes to be included in the program

frame. Each element of the list is itself a list of the form

���������� ��������� ������� ...�. Pane types and their op-

tions can be specified using the Frame-Up Set Pane Options

command. Six types of panes are available:

:title Pane for display of the program title (:pretty-

name is the default).

:command-menu

Pane for menu of program commands.

:display Pane for display of application-generated output.

:interactor

Pane for interactive input/output.

:listener Similar to an interactor, but taller. (Use this pane

when you want the interaction history to be visi-

104
Defining Your Own Program Framework February 2018

ble, especially when the history is to include a sig-

nificant amount of output.)

:accept-values

Pane providing the features and services of a

dw:accept-variable-values menu. (If your frame

includes an :accept-values pane, supply "accept-

values-pane" as one of the values with the

:inherit-from keyword to the :command-table op-

tion.)�

The value you supply for this option is not evaluated.

The appearance and behavior of panes can be modified with

a variety of keyword options; not all are appropriate for use

with every pane type. Each option is listed below with a de-

scription of its purpose and an indication of the pane types

for which it is appropriate:

:default-character-style

Specifies list of the form ������� ���� ����� to speci-

fy the style of characters displayed in the pane.

The default style for :display panes is (:fix :roman

:normal); for :title panes (:swiss :bold :large); and

for :command-menu panes (:jess :roman

:normal). (For more information on available

styles: See the section "Character Styles" in ����

������������������������������������.)

This option is applicable to all pane types.�

:height-in-lines

Specifies integer to fix the height of the pane to a

number of text lines. The actual height in pixels

depends on the :default-character-style for the

pane (see above).

This option is applicable to the :title, :display,

:interactor, :listener, and :accept-values pane

types. It is settable with the Frame-Up Set Pane

Options command.�

:size-from-output

Boolean option specifying whether a pane is sized

according to the space needs of output to that

pane; the default is t for :command-menu and

:accept-values pane types, nil for other pane types.

This option is applicable to the :title, :command-

menu, :display, and :accept-values pane types. It

is settable with the Frame-Up Set Pane Options

command.�

105
February 2018 Defining Your Own Program Framework

:typeout-window

Boolean option specifying whether a typeout (pull-

down) window for *terminal-io* appears within the

pane; the default is nil.

This option is applicable to :display, :interactor,

and :listener pane types. It is settable with the

Frame-Up Set Pane Options command.�

:automatically-remove-typeout-window

Boolean option for Display, Interactor, and Listener

panes specifying whether automatically to remove

any typeout window that may appear. It is settable

with the Frame-Up Set Pane Options command. By

default the typeout window is automatically re-

moved, that is, the system will generate a "Type

any character to refresh this display" message for

the window and remove it when a character is

typed. If you do not want this action to occur, set

this option to nil and then be sure to include in

your program code to take care of removing the

typeout window. See the init option (flavor:method

:deexposed-typeout-action tv:sheet) in ���� ������

���������������.

:redisplay-string

Specifies a string written to the pane (starting at

top) whenever the pane is redisplayed. This option

is mutually exclusive with the :redisplay-function

option (see below).

:redisplay-string is applicable to the :title and

:display pane types. It is settable with the Frame-

Up Set Pane Options command.�

:redisplay-function

Specifies the name of a user-defined function that

runs whenever the pane is redisplayed. This option

is mutually exclusive with the :redisplay-string op-

tion (see above).

The redisplay function may be written either as a

generic function (using defmethod) to the program

flavor or as a regular function (using defun). The

function is passed two arguments: the current in-

stance of the program flavor and the stream on

which to do output. If you write this as a

defmethod, you get to access the program state

variables.

106
Defining Your Own Program Framework February 2018

:redisplay-function is applicable to the :title and

:display pane types. It is settable with the Frame-

Up Set Pane Options command.�

:redisplay-after-commands

Boolean option specifying whether output to the

pane is to be redisplayed after each command is

executed; the default is t for :accept-values and

:display panes, nil for :title panes.

This option is applicable to the :title, :display, and

:accept-values pane types. It is settable with the

Frame-Up Set Pane Options command.

The following options are applicable only to the :command-

menu pane type:�

:menu-level

Specifies a unique identifier for each command

menu in the program when more than one com-

mand menu is needed. The default value (for a sin-

gle command menu) is :top-level. This is always

used in conjunction with the :menu-level option to

define-������������-command. You can set this

option with the Frame-Up Set Pane Options com-

mand by specifying a Menu Identifier after select-

ing pane type Command-Menu.�

:rows Specifies a list, each element of which is a list of

command names (strings) to be included in the

same row. The Menu Geometry choice in the

Frame-Up Set Pane Options command allows you

to set this option.�

:columns Specifies a list, each element of which is a list of

command names (strings) to be included in the

same column. The Menu Geometry choice in the

Frame-Up Set Pane Options command allows you

to set this option.

:equalize-column-widths

Boolean option specifying whether the widths of

columns containing command names be equal; the

default is nil (widths adjust according to size of

the output in each column). The Compress item

columns choice in the Frame-Up Set Pane Options

command allows you to set this option.

107
February 2018 Defining Your Own Program Framework

:center-p Boolean option specifying whether command names

are centered (left-right) in the command menu; the

default is nil (flush left). The Center menu items

choice in the Frame-Up Set Pane Options com-

mand allows you to set this option.

The following two options are applicable only to the :display

pane type:�

:flavor Specifies the pane flavor to use for this pane; the

default is dw:dynamic-window-pane. You can set

this option using the Frame-Up Set Pane Options

command.�

:incremental-redisplay

Boolean option specifying whether redisplayed in-

formation is limited to items that have changed

since the last redisplay, rather than the entire

pane. If t, you must write the appropriate redisplay

function (see :redisplay-function above). You can

set this option using the Frame-Up Set Pane Op-

tions command.

For information on incremental redisplay: See the

section "Displaying Output: Replay, Redisplay, and

Formatting", page 281. See also the file

SYS:EXAMPLES;INCREMENTAL-REDISPLAY.LISP.�

The following option is applicable only to the :accept-values

pane type:�

:accept-values-function

Specifies a function for creating a dw:accept-

variable-values-like display; it defaults to an inter-

nal one that operates on program state variables.

You can set this option using the Frame-Up Set

Pane Options command.

The function may be written either as a generic

function (using defmethod) to the program flavor

or as a regular function (using defun). The func-

tion is passed two arguments: the current instance

of the program flavor and the stream for I/O.

The accept-values display is created by wrapping

the body of the function you write in a

dw:accepting-values macro: See the function

dw:accepting-values in ���� ��������� ����������.

The wrapping is done for you by dw:define-

program-framework. Note that the state is stored

108
Defining Your Own Program Framework February 2018

only in the program: it is not duplicated in the

pane. Your program must "remember" the values

and give them back as defaults. You can change

the values of these variables elsewhere in the pro-

gram, as well as in the accept-values pane. The

general form of the function you write is

(defmethod (my-avv-function program) (stream)

 (setq state-var-1 (accept ... :default s-v-1)

 (setq state-var-2 (accept ... :default s-v-2)

 (setq state-var-3 (accept ... :default s-v-3)

 ...)�

For an example, see the program avv-pane-test in

the file

SYS:EXAMPLES;DEFINE-PROGRAM-FRAMEWORK.LISP.�

The :default-character-style keyword option is inherited

from dw:dynamic-window (via dw:dynamic-window-pane,

on which all program panes are based by default). Many

more keyword options to :panes exist; most of them, howev-

er, are inappropriate for use with panes created via

dw:define-program-framework. Among keywords that are

appropriate, the following are most useful: �

:blinker-p

Boolean option specifying whether a blinker ap-

pears in the pane. This option defaults to t for the

:interactor and :listener pane types, nil for other

pane types. When you define panes in the

dw:define-program-framework form, you have to

make sure that the pane you wish to interact with

using accept-values or accepting-values has

:blinker-p t set.

Example:

 (edit-pane :DISPLAY :blinker-p t :incremental-redisplay nil)

This allows you to

(dw:accepting-values (dw:get-window-pane ’edit-pane)) ...)

If you do not set :blinker-p to t, you will get an

error that states that the window could not set

:visibility and that :visibility is nil. :more-p

Boolean option specifying whether ���� ����������

is enabled. More processing lets the user control

scrolling of character output to a window. The de-

fault is t for the :display and :listener pane types,

nil for other pane types.

109
February 2018 Defining Your Own Program Framework

:end-of-page-mode

Specifies what happens when queued output ex-

ceeds the space available in the current viewport

of the pane. There are three possibilities:

:scroll causes the pane to scroll automatically to

accommodate the output.

:truncate causes scrolling to be the responsibility

of the user, who must press the SCROLL key to see

more output.

:wrap causes new output to appear at the top of

the pane, rather than at the bottom as in the case

of :scroll or :truncate.

:scroll-factor

Specifies the number of lines by which to scroll

the pane when the :end-of-page-mode is :scroll.

:label Specifies the string that appears as a label in the

lower, left-hand corner of the pane (directly inside

the border). The character style used is the default

style for the pane. You may only use the :label op-

tion if not using the :margin-components option,

described below.�

:margin-components

Takes a list of options specifying characteristics of

pane margins. The default is for a 1-pixel-wide bor-

der and a 4-pixel margin between the border and

displayed output to the pane. Do not specify the

:margin for a vertical dw:margin-scroll-bar com-

ponent.

The defaults are implemented by the list

((dw:margin-borders) (dw:margin-white-borders

:thickness 4)). dw:margin-borders and

dw:margin-white-borders are flavors for control-

ling the margin specifications of dynamic windows.

For an overview of these and related facilities: See

the section "Using the Window System", page 333.

This option is applicable to all pane types. �

[End of documentation for :panes option to dw:define-program-

framework.]�

:selected-pane

Designates pane selected (generally indicated by blinking

cursor) when program is activated. If none is designated,

this option defaults to an available pane in the following or-

110
Defining Your Own Program Framework February 2018

der of priority (highest to lowest): :listener, :interactor,

:display.

The value you supply for this option is not evaluated.�

:query-io-pane

Designates pane to which *query-io* is bound when program

is active. If none is designated, this option defaults to an

available pane in the following order of priority (highest to

lowest): :listener, :interactor, :display.

The value you supply for this option is not evaluated.�

:terminal-io-pane

Designates pane to which *terminal-io* is bound when pro-

gram is active. If none is designated, this option defaults to

an available pane in the following order of priority (highest

to lowest): the typeout window of the pane with a :typeout-

window option (see above), a :listener pane, a :display pane.

The value you supply for this option is not evaluated.�

:label Designates pane on which program label is displayed if the

program does not have a :title pane. If none is designated,

this option defaults to an available pane in the following or-

der of priority (highest to lowest): :listener, :interactor,

:display.

The value you supply for this option is not evaluated.�

:configurations

Specifies the layout and sizes of panes within the program

frame. This option is evaluated. Program frames are built on

a more basic type of window known as a ���������� �����.

The ���������� �������� used to specify the layout and sizes

of panes in a constraint frame is documented elsewhere: See

the section "Specifying Panes and Constraints", page 396.

Frame-Up writes the constraint frame description for you so

you do not normally have to learn the constraint language.

In the default configuration, panes are vertically stacked in a

single column and in the order specified by the :panes op-

tion (see above).

The value you supply for this option �� evaluated.�

:state-variables

Specifies a list of program variables whose states are pre-

served between activations of the program. Each variable is

itself a list consisting of the variable name and, optionally, a

default value, and a presentation type. Note that if you want

a state variable to be included in the program frame’s ac-

111
February 2018 Defining Your Own Program Framework

cept-values menu, you must include its presentation type.

State variables are implemented as writeable instance vari-

ables to the program flavor. Example:

:state-variables

 ((half-life 2400 integer)

 (log-file #p"local:>log.file" pathname)

 (start-time 2732241600 time:universal-time))

 ;default 8/1/86 00:00:00

The value you supply for this option is not evaluated.�

:select-key

Specifies a character for selecting the program via the SE-

LECT key. You can set this option using the Frame-Up Set

Program Options command.

The value you supply for this option �� evaluated.�

:selectable

Specifies whether or not the program should appear in the

list of choices for Select Activity HELP. The default is t (the

program should appear).

The value you supply for this option��� evaluated.�

:system-menu

Boolean option specifying whether the program appears on

the System menu. If t, the program appears both in the ����

����� column of the top-level menu and in the ������ sec-

ond-level menu; the default is nil.

The value you supply for this option �� evaluated.�

:size-from-pane

Specifies the name of the pane on which to base the size of

the whole program frame; the default is nil.

The value you supply for this option is not evaluated.�

:help Specifies the help message displayed when the HELP key is

pressed while the program is selected. The value of this op-

tion can be either a string or a function. If it is a string,

the string is displayed when the user presses HELP.

If the value of the :help option is a function, the function

receives three arguments: the program object, the stream to

which the help message should be output, and the string

that has been typed so far.

The value you supply for this option is not evaluated.�

112
Defining Your Own Program Framework February 2018

:inherit-from

Specifies a list of other program flavors from which this pro-

gram inherits; the default is dw::program (it is not evalu-

ated).

Inheritance affects program :state-variables and any explicit

local defmethods. This allows one program to be built on

top of another. Note that there is no inheritance of panes,

configurations, or command tables. You need to exercise the

:command-table option to specify the one(s) to use.

The value you supply for this option is not evaluated.�

:other-defflavor-options

Specifies defflavor options as a list of keyword-value pairs.

The value you supply for this option is not evaluated. The

keyword-value pairs are passed through to the defflavor

form that creates your program flavor when dw:define-

program-framework is compiled. For information on avail-

able options:

See the section "Summary of defflavor Options" in ���������

����������������������������������.

See the section "Complete Options for defflavor" in �������

��������������������������������������.�

Included among :other-defflavor-options can also be flavor

init options to the program. For example, one option that

may be of particular interest is :superior. If, for example,

you want your program to display on a color console, you can

specify :superior color:color-screen. Another such option is

:size.

Note that, since your program has been associated with its

own flavor, created by defflavor, and may have one or more

methods defined for that flavor, you should probably include

a compile-flavor-methods form in the appropriate place in

your program.�

For an overview of dw:define-program-framework and related facilities:

See the section "Defining Your Own Program Framework", page 97.

For an example and additional information on the use of certain options to

dw:define-program-framework, particularly those implementing the com-

mand interface: See the section "Managing Your Program Frame", page

307. More examples are available in the file SYS:EXAMPLES;DEFINE-PROGRAM-

FRAMEWORK.LISP.�

113
February 2018 Defining Your Own Program Framework

5.3. Using Frame-Up

The Frame-Up Layout Designer is an interactive facility for creating the user in-

terface to an application program. It is usually invoked from Zmacs, though also

available on SELECT Q and through the System Menu.

Frame-Up is the interactive version of dw:define-program-framework, a macro

for defining a program’s window and command interface. Frame-Up lets you con-

figure a ������������� and specify options for individual ����� within the frame.

(For more information on frames and panes, see the section "Frames", page 393.)

Other options, for the program as a whole, provide control over the program’s

command loop.

When you finish configuring the program frame and specifying pane and program

options, Frame-Up creates the corresponding dw:define-program-framework code.

This code is written to an editor buffer where it is available for hand editing. (For

information on how to edit the frame configuration, see the above-referenced sec-

tion on "Frames".) Alternatively, you can go back to Frame-Up, modify the inter-

face, and have the new code written out in place of the old. Note, though, that

once you have hand-modified the code, you cannot return to Frame-Up.

5.3.1. Getting Started

In order to produce code for a framework definition, here is what you do. In a

Lisp-mode Zmacs buffer, with the editor cursor at the point where you want the

dw:define-program-framework macro to be written:

1. Type the extended command m-X Create Program Definition.

2. Type the program name.

Frame-Up enters the name you give in step 2 as the ���� argument to the

dw:define-program-framework form that it is creating. That macro will create a

flavor for your program of the same name.

There are other ways to enter the Frame-Up program, but these are primarily for

use ����� you have associated Frame-Up with an editor buffer, as described: You

can enter Frame-Up directly by pressing SELECT Q, or by selecting Frame-Up from

the System Menu, or by using the command processor Select Activity command.

After you invoke the Frame-Up program in whatever manner, an initial display

appears. This includes a default starting configuration for a program frame and a

menu of Frame-Up commands. Program- and frame-level commands are listed to-

gether on the left of the command menu, pane-level commands on the right. You

could start with any of these, but if you are unfamiliar with Frame-Up, we recom-

mend that you start with commands in the first category. (See the section "Pro-

gram and Frame Commands in Frame-Up", page 114.) If you have entered the

Frame-Up program from an editor buffer, then when you exit the program, the re-

sulting dw:define-program-framework is written to your buffer. If you first enter

the program by pressing SELECT Q or via the System Menu, nothing will be writ-

114
Defining Your Own Program Framework February 2018

ten out: You will need to type the command m-X Insert Program Definition from

an editor buffer to write into it the result of running Frame-Up. The section "A
Program-Framework Extended Example" contains figures that show what a Frame-

Up screen looks like.

5.3.2. Frame-Up Commands

5.3.2.1. Program and Frame Commands
Five Frame-Up Layout Designer commands are included in this category: Set Pro-

gram Options; Select Configuration; Reset Configuration; Preview; and Done. The

following subsections consider each in turn.

Set Program Options�

The program options you can modify using the Set Program Options command are

described below. (Where appropriate, references to the corresponding dw:define-

program-framework options are given.)

Program name The name of the program flavor created by dw:define-

program-framework for your application.

If you invoked Frame-Up from an editor buffer with the Create

Program Definition extended command, the default value for

this option is the name you supplied to that command.

Select key The key to use for selecting your program.

(See the function dw:define-program-framework, page 100.)

Name of command-defining macro

The name given to the macro created by dw:define-program-

framework and used to define commands for your program.

The default, t, causes your program name to be used as part of

this name. For example, if the name of your program is shell-

game, the default command-defining macro will be define-

shell-game-command.

You use the command macro created for you as you would

dw:define-program-command. The syntax and keywords are

the same, except that you do not have to supply the ��������

���� argument, see the function dw:define-program-

command in �������������������������.

(See the function dw:define-program-framework, page 100.)

Read single-character command accelerators

Boolean option specifying whether your program accepts single-

character command accelerators; the default is No.

If you enter Yes for this option, you have three possible

sources of accelerators:

115
February 2018 Defining Your Own Program Framework

1. Accelerators you inherit when you inherit command tables

using the program option discussed below.

2. Standard accelerators you supply to your program. (See

the section "Advanced Command Facilities".)

3. Accelerators you define yourself. (See the section "Ad-

vanced Command Facilities".)�

(See the function dw:define-program-framework, page 100.)

Inherit commands from command tables

The name(s) of command table(s) from which your program in-

herits commands and, if specified by the above option, com-

mand accelerators.

For example, supplying a value of user to this option results in

all of the commands normally available in a Lisp Listener be-

ing available in your program, in addition to program com-

mands you define yourself.

The default for this option ’("colon full command" "stan-

dard arguments" "standard scrolling") enables use of ex-

tended (m-x) and colon full commands, standard single-

character accelerators like c-U, and standard scroll keys like

SCROLL and m-SCROLL. These are enabled only if you specify

Yes to the Read single-character command accelerators op-

tion.

If your frame includes an :accept-values pane, supply "accept-

values-pane" as one of the values with the :inherit-from key-

word to the :command-table option.

(See the function dw:define-program-framework, page 100.)

Select Configuration

The Select Configuration command gives you a choice of two standard configura-

tions for your program frame. The first consists of a command-menu pane and a

listener pane; the second consists of a title, command-menu, display, and interactor

pane. (For a description of pane types, see the section "Set Pane Options Frame-

Up Command", page 116.)

You may select a standard configuration and then modify it using one or more of

the pane-oriented commands, see the section "Pane Commands in Frame-Up", page

116.

Reset Configuration

The Reset command restores the original program frame. (The original frame is

the one displayed when you first enter Frame-Up; it consists of a single display

pane.)

116
Defining Your Own Program Framework February 2018

Preview

The Preview command lets you see what the frame you have configured looks like

on a full-screen display without having to compile your program. Without this

command, to see your program frame you would have to exit Frame-Up, compile

the dw:define-program-framework definition, and select your program. With it,

you can look at the frame directly and, if you don’t like the result, continue edit-

ing the layout before writing out the interface code.

Done

The Done command signals the end of the Frame-Up session. What happens when

you invoke this command depends on how you entered Frame-Up:

• If you entered Frame-Up from an editor buffer via the Create Program Defini-

tion or Edit Program Definition extended editor command, Frame-Up returns

you to that buffer and automatically writes out the dw:define-program-

framework macro corresponding to the interface you configured.

In the case of Edit Program Definition, the new code replaces the code that was

already there (dw:define-program-framework macro).

• If you entered Frame-Up from the System Menu or via SELECT Q, you are re-

turned to the activity selected prior to entering Frame-Up.

In this case, the dw:define-program-framework code corresponding to your in-

terface is not written automatically to an editor buffer. You must select the buf-

fer you wish the code to be written to and use the extended editor command

m-X Insert Program Definition.�

5.3.2.2. Pane Commands
Five Frame-Up Layout Designer commands are available for manipulating panes:

Set Pane Options; Set Pane Name; Split Pane; Swap Panes; and Delete Pane. The

following subsections discuss each in turn.

(Note that, after finishing the Frame-Up session, further editing of the code affect-

ing the appearance of program panes and the frame as a whole is possible. For

more information, see the section "Frames", page 393. In particular, see the sec-

tion ":layout Constraint Frame Specification", page 396 and see the section ":sizes
Constraint Frame Specification", page 397.)

Set Pane Options

Pane options you can modify using the Set Pane Options command include the

pane name and type. Other options depend on the pane type. Six types are avail-

able:

accept-values Pane providing the features and services of a dw:accept-

variable-values menu (the kind of menu used to display the

pane options themselves).

117
February 2018 Defining Your Own Program Framework

display Pane for display of application-generated output.

title Pane for display of the program title.

command-menu Pane for menu of program commands.

interactor Pane for interactive input/output.

listener Similar to an interactor, but taller. (Use this pane when you

want the interaction history to be visible, especially when this

history is to include a significant amount of output.)�

The options for the various pane types are listed in the following table.

118
Defining Your Own Program Framework February 2018

Table of Frame-Up Pane Options

��������� �������

Accept- Accept Redisplay Height Set size

Values values each time in lines of pane

 function around from

 command contents

 loop

Display Pane Redisplay Height Set size Typeout Four

 flavor each time in lines of pane window redisplay

 around from options*

 command contents

 loop

Title Redisplay Height Set size Four

 each time in lines of pane redisplay

 around from options*

 command contents

 loop

Command Menu Menu Center Compress

-Menu geometry identifier menu item

 items columns

Interactor Height Typeout Automatically

 in lines window remove

 typeout

 window

Listener Height Typeout Automatically

 in lines window remove

 typeout

 window

*The four redisplay options are:

 Redisplay output generator

 Redisplay string

 Redisplay function

 Incremental redisplay

Here are the pane options that are settable from the Frame-Up program. Addition-

al options that you can hand-edit into the dw:define-program-framework macro

are listed in ":panes Option to dw:define-program-framework". We present only

brief descriptions of these options here. Full descriptions are included in the refer-

ence section on the dw:define-program-framework macro.

119
February 2018 Defining Your Own Program Framework

Accept values function

An option of Accept-Values panes. Specifies a function for cre-

ating a dw:accept-variable-values-like display. This option

maps to the :accept-values-function keyword option for

:accept-values panes. If you include an Accept Values pane in

your program frame but do not specify an Accept Values

Function, the option defaults to an internal function that uses

your program’s state variables as the variables in the accept-

values display. The state variables are those specified by the

:state-variables option to dw:define-program-framework. (

See the function dw:define-program-framework, page 100.)

Pane flavor An option for display panes only. The pane flavor to use for

this pane; the default is dw:dynamic-window-pane. This op-

tion maps to the :flavor keyword option for :display panes, de-

scribed in dw:define-program-framework.

Menu geometry An option for command-menu panes only. Specifies how the

menu is to be laid out. You have three choices: you can let

Frame-Up come up with a configuration (Default) that is in

most cases reasonable; you can control the layout yourself by

specifying menu Rows; or you can control layout by specifying

menu Columns.

If you select Rows, then you are asked if you want to Specify

number of rows or row contents. If Number, then enter a val-

ue in the Number of rows field that appears. If Contents, then

enter one or more command names (strings) to be the Items

in row 1, followed by the entering of one or more strings to be

the Items in row 2, and so on, until all the rows are specified.

This option maps to the :rows keyword option for :command-

menu panes. See the function dw:define-program-framework,

page 100.

If you select Columns for the Menu geometry option, you pro-

ceed in a fashion analogous to that described for Rows. This op-

tion maps to the :columns keyword option for :command-

menu panes. See the function dw:define-program-framework,

page 100.

If you specify menu rows or columns by their contents, the

string used to identify each command must be the same as

that specified in the :menu-accelerator option to the command

definer used for the program. (See the function dw:define-

program-command in ���� ��������� ����������.) The command

definer is specified by one of the options in the Set Program

Options command. See the section "Set Program Options

Frame-Up Command", page 114.

120
Defining Your Own Program Framework February 2018

Menu identifier An option for command-menu panes only. Symbol identifying

the command menu to appear in this pane if the program

frame includes more than one. If only one command menu is

available, choose the default value (:TOP-LEVEL) for this option.

This option maps to the :menu-level keyword option for

:command-menu panes, as described in dw:define-program-

framework

Center menu items

An option for command-menu panes only. Boolean option speci-

fying whether command names are centered (left-right) in the

command menu. The default is No, causing command names to

be flush left in the column. This option maps to the :center-p

keyword option for :command-menu panes, as described in

dw:define-program-framework

Compress item columns

An option for command-menu panes only. Boolean option speci-

fying whether columns of command names are compressed on

the left side of the pane or spread out over the full horizontal

extent of the pane. The default is Yes (compressed to the left).

This option maps to the :equalize-column-widths keyword op-

tion for :command-menu panes, as described in dw:define-

program-framework

Redisplay each time around command loop

A Boolean option for Accept-Values, Display, and Title panes

specifying whether to redisplay the pane after each command

is executed. The default is Yes for Accept-Values and Display

panes, No for Title panes. This option maps to the :redisplay-

after-commands keyword option for program panes, as de-

scribed in ":panes Option to dw:define-program-framework"�

Set size of pane from contents

A Boolean option for Accept-Values, Display, and Title panes

specifying whether a pane is sized according to the space needs

of output to that pane. The default is Yes for Accept-Values

panes, No for Display and Title panes. This option maps to the

:size-from-output keyword option for program panes, as de-

scribed in ":panes Option to dw:define-program-framework"

Height in lines An option for all types of program panes except Command-

Menu panes. Fixes the pane height to the specified number of

lines. The default value is 1 for Title panes and 4 for Interac-

tor panes. No default is provided for Listener Panes. This op-

tion maps to the :height-in-lines keyword option for program

panes, as described in ":panes Option to dw:define-program-

framework"

121
February 2018 Defining Your Own Program Framework

Redisplay output generator

An option for Display and Title panes. Specifies one of three

possibilities for generating redisplay to the pane: no redisplay

generator (None); a redisplay string (String); or a redisplay

function (Function).

If you specify String, then the Redisplay string option ap-

pears.

If you specify Function, then both the Redisplay function and

Incremental redisplay options appear. See the section "Set
Pane Options Frame-Up Command", page 116.�

Redisplay string An option for Display and Title panes. Specifies a string writ-

ten to the pane (starting at top) whenever the pane is redis-

played. This option is mutually exclusive with the Redisplay

function option.

This option maps to the :redisplay-string keyword option for

program panes, as described in

dw:define-program-framework.

Redisplay function An option for Display and Title panes. The function that runs

whenever the pane is redisplayed. This option is mutually ex-

clusive with the Redisplay string option. This option maps to

the :redisplay-function keyword option for program panes, as

described in dw:define-program-framework.

Incremental redisplay

A Boolean option for Display and Title panes, specifying

whether redisplayed information is limited to items that have

changed since the last redisplay, rather than the entire pane;

the default is No.

If you specify Yes, you must write the appropriate redisplay

function. See the section "Displaying Output: Replay, Redisplay,

and Formatting", page 281. This option maps to the

:incremental-redisplay keyword option for :display panes, as

described in dw:define-program-framework.

Typeout window A Boolean option for Display, Interactor, and Listener panes,

specifying whether a typeout (pull-down) window for *terminal-

io* appears within the pane. The default is No. Generally, your

program should set this option to Yes for the one pane in

which you want to receive messages for *terminal-io*. This op-

tion maps to the :typeout-window keyword option for program

panes, as described in ":panes Option to dw:define-program-

framework"

Automatically remove typeout window

A Boolean option for Display, Interactor, and Listener panes,

122
Defining Your Own Program Framework February 2018

specifying whether automatically to remove any typeout window

that may appear. By default, the typeout window is automati-

cally removed, that is, the system generates a "Type any char-

acter to refresh this display" message for the window and

removes it when a character is typed. If you do not want this

action to occur, click No on this option, and then be sure to in-

clude code in your program to take care of removing the win-

dow. This option maps to the user::automatically-remove-

typeout-window keyword option for program panes, as de-

scribed in ":panes Option to dw:define-program-framework"

Set Pane Name

The Set Pane Name command lets you change the name of a pane. The arguments

to this command are the current name of the pane and the new name.

Split Pane

The Split Pane command divides the specified pane in half. Arguments to this

command are the pane to divide and whether the division is horizontal or vertical.

Splitting a pane horizontally causes the two daughter panes to appear in a column

orientation, one on top of the other. Splitting a pane vertically causes the two

daughter panes to appear in a row orientation, side-by-side.

Swap Panes

The Swap Pane command exchanges the position of two panes. The two panes

must occur in either the same row or same column.

Delete Pane

The Delete Pane command deletes a specified pane from the configuration for the

program frame.

5.3.3. Zmacs Commands for Frame-Up

5.3.3.1. Create Program Definition
The Create Program Definition command initiates a Frame-Up session from an ed-

itor buffer. When the session is terminated (via the Done command to Frame-Up),

the dw:define-program-framework code corresponding to the configured interface

is inserted into the buffer at point.

Create Program Definition is an extended (���) Zmacs command. When invoked, it

firsts prompts you for the name of the program, then enters Frame-Up.

If you entered Frame-Up via ������ � or from the System menu, you must use

the Insert Program Definition extended command to write the dw:define-program-

framework code into an editor buffer.

123
February 2018 Defining Your Own Program Framework

5.3.3.2. Insert Program Definition
Insert Program Definition is an extended (���) Zmacs command for writing Frame-

Up Layout Designer code into an editor buffer. Use it when you have entered

Frame-Up via ������ � or from the System menu, rather than through the Create

Program Definition extended command.

When you exit from the Frame-Up session (via the Done command), select an edi-

tor buffer and use the Insert Program Definition command to write the dw:define-

program-framework code corresponding to the configured interface. The code is

inserted at point.

5.3.3.3. Edit Program Definition
You can use the Edit Program Definition extended (���) command to re-enter a

Frame-Up session and make further modifications to the user interface configura-

tion. This occurs after you have already written into your editor buffer the

dw:define-program-framework macro corresponding to an earlier session. (The

original code may have been written through either the Create Program Definition

or Insert Program Definition extended command.) If you have edited in your own

changes, they may be lost. The Edit Program Definition command warns you of

this.

When you terminate the new Frame-Up session (via the Done command), the code

corresponding to the new interface configuration replaces the original code.

5.4. Defining Commands within Your Own Framework

Defining and managing commands within your own program is very similar to

managing the Command Processor. The same tasks and issues are involved: defin-

ing commands, specifying single-key accelerators, managing command tables, and

the like. Most of the information in "Managing the Command Processor" is applica-

ble to program framework command management.

5.4.1. The Command-Definition Macro

The dw:define-program-framework macro sets up a command-definition macro for

each program defined by it. The default name for the command-definition macro

for a program whose name is �������-���� is define-�������-����-command.

You get this default when the keyword :command-definer is set to t. If you assign

some other symbol as the value of :command-definer, then that symbol becomes

the name of the command-definition macro.

The definition of the dw:define-program-command macro serves as a model of

command-definition macros created by dw:define-program-framework: your pro-

gram’s define-�������-����-command has the same arguments and performs the

same operations. The only difference between the two is that your

define-�������-����-command does not require an argument that specifies ����

����-����, while dw:define-program-command does. You should not, in fact, use

dw:define-program-command in your program, but instead use

124
Defining Your Own Program Framework February 2018

define-�������-����-command. As described in the dictionary entry for

dw:define-program-command, this macro not only allows you to define commands

for your program, but also specifies whether they are to be included on a com-

mand-menu pane created by dw:define-program-framework and other things like

whether there are command accelerators.

The macro also ensures that the defined commands are installed in your program’s

command table. This command table, generated by your command-definition macro,

is returned by the function dw:program-command-table.

The command definition created by your define-�������-����-command generates

two internal methods for the program flavor. (Remember: dw:define-program-

framework creates a flavor for your program named �������-����.) One of these

internal methods parses the command, and the other one executes it. The methods

provide lexical access to the program’s state variables, both in the body of the

command definition and in the command’s argument list, so you can use state

variables as arguments.

Here are a couple of examples:

(dw:define-program-framework g-t

 :command-definer t

 :command-table (:inherit-from ’("colon full command"

 "standard arguments"

 "standard scrolling")

 :kbd-accelerator-p ’t)

 :panes

 ((pane-1 :display)

 (command-menu-1 :command-menu :menu-level :top-level))

...)

(define-g-t-command (com-clear :menu-accelerator "klear"

 :keyboard-accelerator #\k) ()

 (send (dw:get-program-pane ’pane-1) :clear-history))

(define-g-t-command (com-show-help-file) ()

 (let ((pane (dw:get-program-pane ’pane-1)))

 (cp:execute-command ’si:com-show-file "v:>elm>help.text"

 :output-destination (list pane))))

5.4.2. Command Errors

You can use the function dw:command-error to specify an error message to be

displayed if your command encounters an error in execution. For example, inside a

function called by a command to draw a line between two points you could put

 (when (and (= from-x1 from-x2) (= from-y1 from-y2))

 (dw:command-error "Length must not be zero"))

125
February 2018 Defining Your Own Program Framework

5.4.3. Single-Key Accelerators

Commands defined with program frames can have single-keystroke accelerators. To

implement them, you need to set the :keyboard-accelerator-p option to the

dw:define-program-framework :command-table keyword to t, and you need to

specify a :keyboard-accelerator in your command definition. This is illustrated in

the first example in "The Command-Definition Macro". You can also use cp:define-

command-accelerator to define accelerated Command Processor commands.

5.4.4. Menu Commands

To include a mouse-sensitive menu of commands in your program frame, you need

to include a :command-menu pane in your list of :panes, and then all you need to

do is include a :menu-accelerator keyword and value in your

define-�������-����-command macro, as shown in the first example in "The

Command-Definition Macro".

5.4.5. Menu Subcommands

To obtain a sub-menu of a command in a menu pane, you:

1. Use the define-�������-����-command macro to define a command that is

to have subcommands. Its :menu-level option will specify something other

than :top-level.

2. Specify a set of subcommands with define-�������-����-command macros,

setting each of their :menu-level options to the level chosen in step 1.

3. Set up a command-menu pane that has the desired menu level.

4. Use the dw:define-subcommand-menu-handler macro to specify the string to

be included in the program’s command menu, the menu level in which the

menu handler is to be included, and the menu level of the subcommands. For

an example, see the function dw:define-subcommand-menu-handler.

5.4.6. Getting Your Own Program Interactor to Read Lisp Forms

A Lisp listener is a window running a command loop in its own process and print-

ing out the values. Do not try to make a Lisp listener be a pane of your program.

If you do, you will wind up with two processes and the situation will be confused.

The command loop used by a program framework is functionally equivalent to the

one in the Lisp window. All you need to do to get your own command loop to read

forms is to supply the :dispatch-mode keyword to dw:default-command-top-level.

Example:

(dw:define-program-framework forms-too

 :top-level (dw:default-command-top-level :dispatch-mode :form-preferred))

126
Defining Your Own Program Framework February 2018

5.4.7. Setting up a Non-Echoing Command Loop

The Command Processor expects an interactive stream, that is, one that does input

editing. For this reason, to have a program frame in which the commands are not

echoed, you must not only default the echoing of the commands themselves, but

you must also arrange not to require an input editing stream. This is most easily

done by defining the program to have single-character command accelerators. The

program need not define any such accelerators: This is just to avoid the use of the

full Command Processor. Note that a program that had any keyboard commands

(especially ones with long names), but did not echo, would be very difficult to use.

Here is an extended example of a program with no echoing. Notice the :echo-

stream option to dw:default-command-top-level is set to ignore.

(dw:define-program-framework no-echo

 :select-key #\2

 :command-definer t

 :command-table (:inherit-from nil

 :kbd-accelerator-p t)

 :top-level (dw:default-command-top-level :echo-stream ignore)

 :panes ((display :display :redisplay-function ’draw-circles)

 (menu :command-menu))

 :state-variables ((circles nil)

))

(defstruct circle

 center-x

 center-y

 radius)

(defmethod (draw-circles no-echo) (stream)

 (dolist (circle circles)

 (dw:with-output-as-presentation (:object circle :type ’circle :stream stream)

 (graphics:draw-circle (circle-center-x circle) (circle-center-y circle)

 (circle-radius circle) :stream stream))))

(define-no-echo-command (com-add-circle :menu-accelerator t)

 ((x ’number :default 500)

 (y ’number :default 500)

 (radius ’number :default 50))

 (push (make-circle :center-x x :center-y y :radius radius) circles))

(define-no-echo-command (com-delete-circle)

 ((circle ’circle))

 (setq circles (delete circle circles)))

(define-presentation-to-command-translator delete-this-circle (circle) (circle)

 ‘(com-delete-circle ,circle))�

127
February 2018 Defining Your Own Program Framework

5.5. Accessing Program Frame Objects

The variable dw:*program-frame* is bound to the program frame that the current

process is operating. The following example was generated by selecting the Frame-

Up Layout Designer (which is an example of a program created with dw:define-

program-framework) and pressing ������� to enter a break loop:

Command: ,dw:*program-frame* ==>

#<PROGRAM-FRAME Frame-Up 1 3106337 exposed>

The function dw:find-program-window returns the program frame of a specified

program flavor, whether the frame is exposed or not. Optionally, this function cre-

ates and initializes an instance of the program if one does not already exist. Using

dw:get-program-pane is how you access a particular pane of a program frame,

rather than the frame as a whole.

5.6. Adding the Help-Program to Your Framework

The Help program defines translators on Mouse Middle for command menu items

and command name displays that invoke the formatter on the corresponding docu-

mentation records. At present, a record to be used in this way is just a record

whose name is "The ������������ ������� Command" or "The ��������� ����

���� Menu Item"; for example, " "The Edit Object Namespace Editor Command" ".
Additionally, there is a special Help command which lets you display documenta-

tion for commands or overview topics. The set of overview topics is gotten from

the links in a record entitled "������� Overview Help Topics". Documentation

records are created using Symbolics Concordia.

The dw:help-program facility automatically attaches documentation to a program

framework. It attaches documentation to all menu items, CP commands, and the

program name.

To include it in your program framework:

1. In your dw:define-program-framework,

• Include dw:help-program in the list of :inherit-from flavors.

• Include "help-program" in the list of :command-table :inherit-from com-

mand tables.

128
Defining Your Own Program Framework February 2018

(dw:define-program-framework concordia-bank-account

 :inherit-from (dw:help-program)

 :command-table (:inherit-from ’("help-program"

 "colon full command"

 "standard arguments"

 "standard scrolling"

 "input editor compatibility")

 :kbd-accelerator-p ’nil)

...)�

2. For each CP command you want documented, create a documentation topic

"The ������������������������� Command".

For each menu item you want documented, create a documentation topic "The

����������������������������Menu�Item".

(dw:define-program-framework concordia-bank-account

 :command-definer define-conc-bank-command

 ...)

(define-conc-bank-command (com-deposit

 :menu-accelerator t)

...)

displays these records:

�

129
February 2018 Defining Your Own Program Framework

3. Any presentations of type dw:program-name, with a presentation object of

the symbol ������������, is documented by the topic "The ������������".
You may want your program’s title to display as this presentation type.

(dw:define-program-framework concordia-bank-account

 :panes

 ((title-pane :title :height-in-lines 1 :redisplay-after-commands nil

 :redisplay-function ’refresh-title))

...)

(defmethod (refresh-title concordia-bank-account) (stream)

 (dw:with-output-as-presentation (:stream stream

 :object ’concordia-bank-account

 :type ’dw:program-name)

 (send stream :display-centered-string "Concordia Bank Account")))

displays this record:

�

4. Make sure your documentation records are loaded while your program is run-

ning. The best way to do this is to include the documentation records in your

system definition.

5. When running the program frame, click Mouse-Middle over a menu item or

the program title to display the documentation.

6. Type ���� ������������ to display documentation about a command.

7. Type ���� ������������� ������������������� to display any loaded documen-

tation.�

130
Defining Your Own Program Framework February 2018

5.7. A Program-Framework Extended Example

The following extended example demonstrates how to write a simple program us-

ing the Frame-Up Layout Designer to produce a program framework and using

top-level program framework facilities to define commands for the program.

The program to be written manages a "to do" list. It maintains a list of tasks in a

program frame display pane. As the user finishes a task, that task is "crossed off"
the list by being overwritten with a gray rectangle. The program includes com-

mands to add new items, as well as to clean up the list by removing some or all

the "done" tasks.

Before you enter the Frame-Up program, you need to make some design decisions

about the program you’re creating:

1. Decide how the program frame should look, that is, how many and what kind

of panes you want. For example:

• Title pane, 1 line high with title "NOTEPAD".

• Display pane, for putting your to-do items on.

• Command menu, arbitrarily sized to contain your commands.

• Interactor pane, for echoing your typein and displaying system messages.

2. Choose a Select Key. Pressing ����������� shows that "O" is unused.

3. Decide what commands the program needs and what they should do:

• An Add Task command that enters an item on the task list.

• A Toggle Thing Done command marks an undone task as done or changes

the task’s state from done to undone.

• A Delete Task command removes an item from the task list.

• A Delete Completed Tasks command removes all the crossed out items from

the task list.

• A Clear command empties the task list.

4. Decide how to activate the commands. You have the choices:

• Type in a command name.

• Use a single-key accelerator.

131
February 2018 Defining Your Own Program Framework

• Click on items (presentations) in various ways.

Having made all these choices, you are ready to select the editor and start

Frame-Up. Press ��� Create Program Definition to bring it up. Figure 3

shows the screen as it looks now.

Figure 3. The initial Frame-Up display.

a. Use the Set Program Options command to set the ������ key to O.

b. Click Right on Select Configuration so that you can choose "title display

command-menu interactor".

c. Use the Set Pane Options command to set the following options for the

Display pane: Redisplay output generator to Function, Incremental Re-

display to yes.

Figure 4 shows the screen as it looks now.

5. Click on the Preview command to see how your program frame now looks. It

should resemble Figure 5.

132
Defining Your Own Program Framework February 2018

Figure 4. Frame-Up with display options set

6. Type any character to go back into Frame-Up.

7. When you are finished with Frame-Up, click on Done. This puts you back in

the editor, ready to edit your program framework definition macro and create

your commands. Here is what Frame-Up writes into the editor buffer:

133
February 2018 Defining Your Own Program Framework

Figure 5. The Notepad Frame, initial appearance

134
Defining Your Own Program Framework February 2018

(DW:DEFINE-PROGRAM-FRAMEWORK NOTEPAD

 :SELECT-KEY

 #\O

 :COMMAND-DEFINER

 T

 :COMMAND-TABLE

 (:INHERIT-FROM ’("colon full command" "standard arguments"

"input editor compatibility")

 :KBD-ACCELERATOR-P ’NIL)

 :STATE-VARIABLES

 ((task-list nil))

 :PANES

 ((TITLE-1 :TITLE :HEIGHT-IN-LINES 1 :REDISPLAY-AFTER-COMMANDS NIL)

 (COMMAND-MENU-1 :COMMAND-MENU :MENU-LEVEL :TOP-LEVEL)

 (PANE-1 :DISPLAY :INCREMENTAL-REDISPLAY T :REDISPLAY-FUNCTION ’NIL)

 (INTERACTOR-1 :INTERACTOR :HEIGHT-IN-LINES 4))

 :CONFIGURATIONS

 ’((DW::MAIN (:LAYOUT (DW::MAIN :COLUMN TITLE-1 COMMAND-MENU-1

 PANE-1 INTERACTOR-1))

 (:SIZES

 (DW::MAIN (TITLE-1 1 :LINES)

 (COMMAND-MENU-1 :ASK-WINDOW SELF :SIZE-FOR-PANE COMMAND-MENU-1)

(INTERACTOR-1 4 :LINES)

 :THEN (PANE-1 :EVEN))))))

At this point, if you want to change a choice, you can go back to Frame-Up

by pressing ��� Edit Program Definition, changing items, and clicking on

Done to write out a new program framework definition form. Once you have

edited the form "by hand," however, you cannot use Frame-Up to change any-

thing. If you do, your hand-edited changes will be overwritten.

8. The first item that needs to be added to the program framework definition is

a state variable to represent the list of tasks. Change :STATE-VARIABLES NIL to

:STATE-VARIABLES ((task-list nil)).

9. Create a flavor, a presentation type, and a redisplay function (in this case, a

method) for your list items:

(defflavor thing-to-do

((description) (done?))

()

 (:conc-name "THING-")

 :initable-instance-variables

 :readable-instance-variables

 :writable-instance-variables)

135
February 2018 Defining Your Own Program Framework

(define-presentation-type thing-to-do ()

 :no-deftype t

 :printer ((thing stream)

 (write-string (thing-description thing) stream)))

(defmethod (display-tasks notepad) (stream)

 (formatting-table (stream)

 (loop for thing in task-list

 do

 (dw:with-redisplayable-output (:stream stream

 :unique-id thing

 :cache-value (thing-done? thing))

 (dw:with-output-as-presentation (:stream stream

 :object thing

 :type (type-of thing)

 :single-box t)

 (formatting-row (stream)

 (formatting-cell (stream)

 (if (thing-done? thing)

 (let ((presentation (present thing ’thing-to-do

 :stream stream)))

 (when presentation

 (multiple-value-bind (left top right bottom)

 (dw:box-edges

 (dw:presentation-displayed-box presentation))

 (graphics:draw-rectangle

 left top right bottom

 :opaque nil

 :gray-level .1))))

 (present thing ’thing-to-do :stream stream)))))))))

Part 2 of this manual contains information about how to produce redis-

playable output as illustrated by the method above. See the section "Display-

ing Output: Replay, Redisplay, and Formatting", page 281.�

Now edit the code specifying PANE-1, changing :REDISPLAY-FUNCTION from NIL

to ’display-tasks.

10. Here are our command definitions. Including the keyword :menu-accelerator

and a string to be its value in the command definition causes the string to be

included in the program’s command-menu pane. Note that we do not include

a menu accelerator for the Toggle Task Done command, because we intend to

make that command available only through clicking on a presentation of a

task.

136
Defining Your Own Program Framework February 2018

(define-notepad-command (com-add-task :menu-accelerator "Add Task")

((description ’string :default nil :prompt "task description"))

 (push (make-instance ’thing-to-do :description description) task-list))

(define-notepad-command (com-delete-task :menu-accelerator "Delete Task")

((thing ’thing-to-do :prompt "Task"))

 (setq task-list (delete thing task-list)))

(define-notepad-command (com-delete-completed-tasks

 :menu-accelerator "Delete Completed Tasks")

 ()

 (setq task-list

(delete-if #’thing-done? task-list)))

(define-notepad-command (com-clear :menu-accelerator "Clear")

()

 (setq task-list nil))

(define-notepad-command (com-toggle-task-done)

 ((thing ’thing-to-do :default nil :prompt "task"))

 (setf (thing-done? thing) (not (thing-done? thing))))

11. Define a presentation-type to command translator that enables the user to

toggle the state of a task by clicking on it with the mouse:

(define-presentation-to-command-translator toggle-task (thing-to-do

 :gesture :select :documentation "Toggle")

 (thing)

 ‘(com-toggle-task-done ,thing)) �

Your program is now ready to use. Remember to enclose each task you enter in

quotes.

5.8. Table of Program Framework Facilities

dw:define-program-framework ���� &key ����������� (��������������� nil)

(������������� nil) (��������� ’(dw:default-command-top-level)) (��������

����������nil) (����� ’(dw::main :listener)) ������������� �������������� ������������

���� ���������� (�������������� nil) (��������������� nil)� ����������� t� (���������� nil)

(����������� nil) (���������������nil) (������������ ’(dw::program)) (����������������

��������nil)�

Defines a program framework, including: a command-defining macro, a flavor

named after the program with instance variables you can specify (the program’s

state variables), a command table for the program, and a list of options specifying

the command and screen interfaces for the program.

dw:default-command-top-level ������� &rest ������� &key ���������������

#’dw::default-window-wakeup-handler� ������������ �������������������

137
February 2018 Defining Your Own Program Framework

(dw::program-command-evaluator dw::program)� ���������������� si:*command-

loop-eval-function*� ������������ ���������������������������� si:*command-loop-

print-function*����������������������t� &allow-other-keys

The default command loop function for programs created with dw:define-program-

framework.

dw:read-program-command ������� &rest ������� &key �������� *query-io*�

������� ��������������� :command-only� ���������������������� ������������ �����

�� &allow-other-keys

Default command reading function for programs created via dw:define-program-

framework.

dw:define-program-command ����� ������������ &rest ������� &key ����������

����������� ������ t� ����������������� ������������ ’(:top-level)� �������

������������� t� ������������������������������������ ����������������������������

������� &allow-other-keys��������� &body�����

Defines a Command Processor command named ���� for a program named ����

�������� created with dw:define-program-framework and installs it in the pro-

gram’s command table.

dw:program-command-table �������

Returns the command table used by an instance of a program flavor (created via

dw:define-program-framework).

dw:command-error &optional�������������� &rest������������

Used inside a dw:define-program-command form to signal an error.

dw:define-subcommand-menu-handler ��������� ������������� ������������� ���

����������

Defines a subcommand menu handler for an item in the command-menu pane of a

program frame.

dw:get-program-pane ���� &key���������������������:error�

Returns specified pane in a program frame created with dw:define-program-

framework.

dw:find-program-window ������������ &rest ������������������� &key ����������

t� ������������ t� ������������� t� ����������� �������� ��������� ������������������������

&allow-other-keys

Returns the window (frame) of a program (created via dw:define-program-

framework).

dw:current-program &key����������������’dw::program������������t�

Returns the current program of the type specified by :type given the starting win-

dow specified by :window.

dw:find-and-select-program-window ���� &rest��������

Returns the window (frame) of a program and selects that window.

dw:*program-frame*

The program frame associated with the current instance of a program flavor (cre-

ated via dw:define-program-framework).

138
Defining Your Own Program Framework February 2018

define-presentation-to-command-translator ���� (����������������� &key ������

(������� :select) �������������� ��������������������� (���� t) (�������������������

nil)��)���������&body������

Defines a mouse handler that translates from a displayed presentation object into a

Command Processor command using that object as input.

cp:build-command ������������ &rest������������������

Constructs the internal representation of a Command Processor command.

139
February 2018 Creating Graphic Output

6. Creating Graphic Output

Graphic images are data, representing pictures, that can be sent to and received

from streams. The Genera graphics output facilities provide an extensive set of op-

erations that allow the user to create and manipulate graphic images for most

types of output streams, including windows, files, and hardcopy streams. A basic

graphics operation is generic: it produces appropriate results no matter what sort

of stream it is called with. Genera also provides advanced graphics operations that

operate efficiently on specific types of streams, for example, bitmap streams or

raster graphics devices.

The graphics output facilities provide a complete imaging model. All output is

done under a general transform that allows for scaling, rotating, and translating.

Shapes can be drawn filled or unfilled, with or without an outline of arbitrary

thickness. There is a uniform means of specifying texture attributes of the shape

drawn, such as colors or stipple patterns.

In general, the mathematical shape of an object is speficied by the function used

and its positional arguments. The details of how this shape is imaged are specified

by keyword arguments.

The imaging model is compatible with modern graphics imaging standards, in par-

ticular PostScript and the X Window System. A graphic image, say for example,

the image of a circle, can be defined in several different ways:

• As a discrete logical object, an entity that can be created, selected, deleted, or

moved as a single item.

• As a bitmap, that is, an array that describes the pixel values of a rectangular

region.

• As a geometrical entity, that is, as a set of points in a coordinate system that

can be described mathematically.

• As a topological entity, separating the space it occupies into regions.

Genera graphics output facilities support all of these interpretations. The section,

"Basic Graphic Output Facilities" explains the graphics coordinate system and

graphics transforms. It also describes the set of basic drawing functions and their

options, including pattern filling. The section "Advanced Graphic Output Facilities"
describes advanced transformation facilities and graphics drivers.

140
Creating Graphic Output February 2018

6.1. Text as Graphics

There are several different interpretations of text as graphical output. The inter-

esting issues arise when the graphics containing the text is scaled or rotated, and

when the text is mixed with other graphics.

There are several possible actions that might be taken when a graphics transfor-

mation is applied to text:

• Affect only the starting point of the text, keeping the actual letters upright.

• Affect the baseline of the text, slanting it, but keeping the letters upright.

• Actually scale and rotate the individual glyphs along with the rest of the draw-

ing.

Since the various output devices available to the graphics substrate do not imple-

ment a consistent set of fonts, one must be careful when mixing text and graphics

if the result is to be device- and scale-independent. There are two possibilities:

• Ask the stream the size of the text to be drawn and constrain the other graph-

ics to that size.

• Use the kinds of text graphics drawing that allow scaling to a given size and

specify that in accordance with the rest of the drawing.

6.2. Mixing Graphics and Text

When you output several graphical objects one after another, the later objects ap-

pear "on top" of those displayed earlier. If you scroll away from and then back to

such output, the redrawn display looks like the original because the temporal pri-

ority of each component of the drawing has been maintained. This maintanence of

priority is done only for graphics output to a window. To keep basic textual output

efficient, its ordering relative to any graphics is not preserved. Therefore, if you

wish to output text that overlays some graphics and guarantee that it will redis-

play properly when the window scrolls, you should use graphics:draw-string

rather than write-string. This restriction does not apply to things that do not in

fact overlap, such as is produced by surrounding-output-with-border.

The graphics output substrate is generic. In particular, this means that essentially

the same program can be made to work on the LGP2/LGP3 and the screen. How-

ever, a common use of graphics is mixed in with a stream of textual output. This

runs into problems because the character stream output protocol implemented by

the hardcopy system is similar but not identical to that implemented by the

screen.

These are the important differences that a program may need to be aware of if it

is to work generically on the screen and the LGP2/LGP3. All of these differences

141
February 2018 Creating Graphic Output

predate the graphics substrate, so compatibility requirements prevent changing

them.

1. The orientation of the initial default coordinate system is different. On a

hardcopy stream, <0,0> is the lower-left corner and positive � proceeds up the

page. On a window, <0,0> is the upper-left corner and positive � proceeds

down the page.

2. The coordinate system units are incompatible. The screen implements units of

:pixel and :character. The hardcopy system units of :device, :pixel,

:character. The initial default unit for graphics on the screen is the same as

pixels and for hardcopy the same as device units. Device units on the

LGP2/LGP3 are not the same as pixels. There are about four pixels to a de-

vice unit, which is approximately one printer’s point. The default unit for

:read-cursorpos on the screen is :pixel. For a hardcopy stream, it is :device.

Therefore, the default units used by cursor addressing and graphics are in

fact the same. However, a program which is to work compatibly on both de-

vices must not specify any units in order to get the proper defaults on each

device.

3. The origin of the text cursor coordinate system is different. The current cur-

sor position returned by :read-cursorpos to a window is relative to the top of

the history, the same as graphics coordinate arguments. The :read-cursorpos�

value returned by a hardcopy stream is offset by the page margins, while

graphics are not. To get the same coordinate system for the current text posi-

tion as is used by graphics, use :read-page-cursorpos.

4. The interpretation of the current cursor position is different. The position re-

turned for a window is the top of the current output line. For hardcopy

streams, it is the position of the current line baseline.

The most realistic strategy for mixing text and graphics is to use the

graphics:with-room-for-graphics special form. This makes a local graphics coordi-

nate system available, which is oriented as a primary Cartesian quadrant (positive

� up) and whose �=0 axis is positioned at a given position relative to the top of

the current character output position. It works for both windows and LGP2/LGP3

streams. The best choice of units to use with graphics operations is a multiple of

the stream’s character width or line height.

��������

142
Creating Graphic Output February 2018

(defun histograms (&optional (stream *standard-output*))

 (dotimes (ignore 10)

 (let ((n (random 100)))

 (format stream "~&~3D~10T" n)

 (let ((height (- (send stream :line-height) (send stream :vsp)))

 (width (* 10 (send stream :char-width))))

(graphics:with-room-for-graphics

 (stream height :fresh-line nil :move-cursor nil)

 (graphics:draw-rectangle 0 0 width height

 :gray-level .15

 :stream stream)

 (graphics:draw-rectangle 0 0 (* width (/ n 100)) height

 :gray-level .75

 :stream stream)

 (graphics:draw-rectangle 0 0 width height :filled nil

 :stream stream))

(send stream :increment-cursorpos width 0)

(format stream " %~%")))))

6.3. Basic Graphic Output Facilities

6.3.1. Coordinate System Facilities

Coordinate System Facilities

 graphics:with-room-for-graphics

 graphics:stream-transform

 graphics:with-graphics-translation

 graphics:with-graphics-scale

 graphics:with-graphics-rotation

 graphics:with-graphics-transform

 graphics:graphics-translate

 graphics:graphics-scale

 graphics:graphics-rotate

 graphics:graphics-transform

 graphics:*identity-transform*

 graphics:with-graphics-identity-transform

Keyword Options Affecting the Coordinate System

 :rotation

 :scale

 :scale-x

 :scale-y

 :translation

 :transform�

Common to all types of graphics programming is the need to reconcile the coordi-

nate system employed by the programmer and end user with the coordinate sys-

tems built in to particular graphics output devices. A coordinate system is a

143
February 2018 Creating Graphic Output

framework that allows the location of any point on a drawing to be specified, usu-

ally in terms of a horizontal and a vertical distance from a point that is defined to

be <0, 0>, called the origin.

The initial coordinate system for the graphics functions is the device coordinate

system. This system is not the same for all devices, so various facilities are provid-

ed for accessing it uniformly. The general graphics transformation facilities can be

used to provide any scale that is convenient for a particular operation. Keep in

mind that there is no restriction on the type of coordinate arguments. They can be

integers, floats, or ratios.

The coordinate system of the LGP2/LGP3 is a single page, with <0,0> at the bot-

tom. The coordinate system of a dynamic window is a plane with <0,0> at the top

of the history, and some greater � value at the top of the currently visible screen-

ful, and some greater still � value at the current cursor position. It is very useful

to be able to deal with graphics as a single block interspersed with any text output

already on the page or in the output history. Additionally, it is usual to want to

deal with graphics within a primary Cartesian quadrant, so that <0,0> is at the

lower left. The special form provided for this is graphics:with-room-for-graphics.

Note that the 0 point of the quadrant is at the bottom of the local coordinate sys-

tem, not the bottom of the page or screenful.

The initial scale for the LGP2/LGP3 is 1/72 inch, a "PostScript point." (The X

Window System uses the printer’s point, which is 0.01384 or about 1/72.27 inch.)

There is more than one device pixel available within a single point. The initial

scale of the screen is a single pixel. In order to draw a figure with a certain phys-

ical dimension, either inches/centimeters, or as a fraction of a page or number of

lines on the device, the special form graphics:with-physical-device-scale is pro-

vided.

The ���� coordinate system usually has its origin in the lower left-hand corner of

the drawing area. The horizontal reference line is called the � axis and its positive

direction extends toward the right. The vertical reference is the � axis and its pos-

itive direction is up. The � and � coordinates can be specified as arbitrary num-

bers, either integers or floating-point numbers. When an image in user coordinates

is displayed on a window without any scaling, the default unit distance along ei-

ther axis is approximately 1/90 of an inch. See Figure 5. All of the drawing func-

tions in the graphics package expect their arguments to be specified in user coor-

dinates.

A user normally prefers to see drawings displayed as they are drawn in the

user coordinate system. This is not, however, the coordinate system of the default

display device, the Genera window, nor is it the system of every graphics hardcopy

device. The coordinate system of a Genera window has its origin in the upper left-

hand corner of the screen, and the positive � direction is down. Its basic units are

������, whose size is device-dependent. In a dynamic Lisp Listener window that has

just had its output history cleared, the origin is located at the upper left-hand

corner of the prompt-character, as shown in Figure 6. The location of this origin

is relative to the window in which it appears, not to the screen as a whole. This is

true of any window.

144
Creating Graphic Output February 2018

x

y

0,0

<10,10> <15,10>

<10,13> <15,13>

Figure 6. The user coordinate system

x

y

0,0

Figure 7. The device coordinate system of a dynamic window

In a dynamic window, scrolling horizontally or vertically moves the position of the

origin with respect to the window. For example, the window in Figure 7 has been

scrolled both horizontally and vertically. Scrolling a dynamic window can be

thought of as moving around a screen-sized opening that is over a plane that is

unbounded on the right and toward the bottom. In the graphic system, such an

opening is called a ��������.

In order to present a drawing specified in user coordinates on a display that has a

different coordinate system, we need to apply a ������������������������� ��������.

A coordinate transform operator maps one set of coordinates into another. Such an

operator is specified by a mathematical object called a �������������� ������,

which can specify three types of dimensional changes:

• �����������, in which the new coordinates differ from the old ones by some addi-

tive constant the points of a drawing are translated some distance specified

by a vector <�������, �������>.

145
February 2018 Creating Graphic Output

x

y

1250, 1500

0,0
(graphics:draw-rectangle 1600 1350 1700 1450)

Figure 8. Device coordinate system, window scrolled vertically and horizontally

• ��������, in which the new coordinates are located by rotating the old coordi-

nates a specified angle ����� about their origin.

• �������, in which the new coordinates differ from the old ones by some multi-

plicative constant the � and � coordinates are each multiplied by some speci-

fied scale factor ������� and �������. When the � and � scale factors are the

same, the result is magnification or reduction. A negative scale factor reverses

the direction of an axis.

There is a special transformation matrix, called the identity transform, which

when applied to a set of coordinates makes no change; its result is the original set

of coordinates. The essential part of this matrix, expressed as a list, is the value

of the variable graphics:*identity-transform*. The function graphics:make-

identity-transform creates and returns this list.

There is more information on transformation matrices in another section. See the

section "Advanced Transformation Facilities", page 171.

Every graphics stream has a transformation matrix associated with it. This is

known as the stream’s ������� �������������� ������ or CTM. The default CTM is

the identity transform. The method graphics:stream-transform returns the CTM

of a stream. The graphics system or the user can change a stream’s CTM in order

to display a graphic image with the desired size and orientation. A few examples

show how this is done.

146
Creating Graphic Output February 2018

Figure 8 shows a drawing in user coordinates (on the left) and how it appears on

a window when displayed without any transformation; that is, when the user coor-

dinate points are mapped to device coordinates with the identity coordinate trans-

form. The window in this case has been scrolled down so that the coordinates of

the upper left-hand corner happen to be <0, 10>. The dotted lines indicate the loca-

tion of the user’s ��� coordinate frame in device coordinate space. Since we are us-

ing the identity mapping, the user coordinates (regular typeface) are the same as

the device coordinates (boldface). The figure also shows a mouse cursor and its

coordinates. The code to produce the drawing as shown is

(graphics:draw-rectangle 10 13 15 10 :filled nil)

(graphics:draw-line 10 15 15 15)

x

y

0,0
y

x

0,10

10,0

CTM = I

0,0
0,0
=

=

<10,10> <15,10>

<10,10> <15,10>
== <15,10><10,10>

<10,13>

<10,13>

<15,13>

<15,13>
= = <15,13><10,13>

u

u

u

u
x

y

d

d

<10,30>
=<10,30>

User Coordinate System Device Coordinate System

0,10
0,10

Figure 9. Display of user drawing with no transformation

The macro graphics:with-room-for-graphics enables the user to issue a drawing

function in terms of user coordinates and have the result displayed on a window in

the expected manner. Figure 9 illustrates how this is done. graphics:with-room-

for-graphics changes the window stream’s CTM so as to ��������� the user origin

downwards with respect to the device origin and then to ����� the � coordinate by

a factor of -1 so that the drawing comes out rightside up. The resulting location of

the user ��� frame is shown in dotted lines. Note the relationship between the co-

ordinates of the two systems. Also note that the window coordinates of the mouse

cursor, shown in boldface, are not the same as its user coordinates.

(graphics:with-room-for-graphics (t 10)

 (graphics:draw-rectangle 10 13 15 10 :filled nil)

 (graphics:draw-line 10 15 15 15))

If you are writing a program that is to display images both on the screen and on

147
February 2018 Creating Graphic Output

x

y

0,0
y

x

0,0

0,0
=

=

<10,10> <15,10>

<15,10>

<10,13>

<10,13>

<15,13>

<15,13>

u

u

u
x

y

d

d

<10,30>
=

User Coordinate System Device Coordinate System

CTM =

00 0

0

1

1

-10

0

<10,10>
0,10

= =

= =

u

0,10

0,20

0,30

30

<10,20> <15,20>

<15,17><10,17>

<10,0>

Figure 10. Use of graphics:with-room-for-graphics

an LGP2/LGP3, you should employ the user coordinate system and always use

graphics:with-room-for-graphics when displaying on the screen to have it appear

correctly oriented. Similarly, if you want to have your image on the screen offset,

rotated, or magnified, you should use one or more of the graphics transformation

macros graphics:with-graphics-translation, graphics:with-graphics-rotation,

graphics:with-graphics-scale, or graphics:with-graphics-transform. Each of these

macros has an effect similar to that of graphics:with-room-for-graphics, in that

each modifies the current stream’s CTM so that the specified transformation oc-

curs.

Example:

(graphics:with-room-for-graphics (*standard-output* 330)

 (graphics:with-graphics-translation (*standard-output* 150 150)

 (graphics:draw-line 0 -150 0 150)

 (graphics:draw-line -150 0 150 0)

 (graphics:draw-rectangle 10 50 70 20 :filled t :gray-level 1/2)

 (graphics:with-graphics-rotation (*standard-output* (* 1/4 pi))

 (graphics:draw-line 0 -150 0 150)

 (graphics:draw-line -150 0 150 0)

 (graphics:draw-rectangle 10 50 70 20 :filled t :gray-level 1)

 (graphics:with-graphics-scale (*standard-output* 2)

(graphics:draw-rectangle 10 50 70 20 :filled nil)))))

Figure 10 shows the result. Note that successively nested transformations are per-

formed ���� ������� �� ��� ���������� ����������������� ���� ��� ��������������� ���

��������������������������.

148
Creating Graphic Output February 2018

Figure 11. Use of nested graphics transformation macros

The initial scale for the LGP2/LGP3 is 1/72 inch, more or less a printer’s point.

There is more than one device pixel available within a single point. The initial

scale of the screen is a single pixel. In order to draw a figure with a certain phys-

ical dimension, either inches/centimeters, or as a fraction of a page or number of

lines on the device, the special form graphics:with-physical-device-scale is pro-

vided. Actually, this is less useful that fractions or multiples of character and line

widths, though.

The general graphics transformation facilities can be used to provide any scale

that is convenient for a particular operation. There is no restriction on the type of

coordinate arguments. They can be integers, floats, or ratios.

All of the graphics ������ that begin with with- affect the CTM of the current

stream only within their environment. Once that environment is left behind, the

stream’s original CTM is restored.

There is a set of equivalent graphics transformation ��������� that begin with

graphics- instead of with-, which do permanently affect the CTM of the stream on

which they are called. A call to one of these functions with ������ as an argument

modifies the CTM of ������ to be the composition of ������’s original CTM with

the matrix that performs the change specified by the graphics function. These

functions are intended to be used inside environments that have previously saved

away the stream’s CTM so that it can be restored. graphics:graphics-translate,

graphics:graphics-scale, graphics:graphics-rotate, and graphics:graphics-

transform are mainly intended for use with graphics:draw-path.

You can use the macro graphics::with-identity-transform in the case where you

want to use a graphics translation function to draw on the screen without using

graphics:with-room-for-graphics. Like the other with- macros, graphics::with-

identity-transform preserves the stream’s CTM. Unlike these macros,

graphics::with-identity-transform ignores the previous value of the CTM.

149
February 2018 Creating Graphic Output

6.3.1.1. Keyword Options Affecting the Coordinate System
Each of the graphics drawing functions affords a set of options for transforming

the image the function produces. The transformations available are the same as

those provided by the coordinate system transformation functions and macros: ro-

tation, uniform scaling, translation, horizontal or vertical scaling, or general

transformation.

These options to the graphics drawing functions affect the local coordinate system

for the duration of the function; that is, they affect only the output of the func-

tions with which they are used. The other coordinate system facilities make more

lasting changes to the coordinate system of the output stream: See the section "Co-

ordinate System Facilities", page 142.

There are six transformation keywords: :rotation, :scale, :scale-x, :scale-y,

:translation, and :transform. When two or more of these are used in the same

drawing function, the options are applied in the order given here, ��� �� ��� �����

���������� ��� ��������. However, as a matter of style, we recommend that you

only use one keyword at a time. More than one might confuse others who subse-

quently read your code.

In cases where you wish to apply more than one coordinate system change to the

same drawing operation, use the facilities described in "Coordinate System Facili-

ties". Doing so will make your intentions more obvious. Also, it gives you control

over the order in which the coordinate system changes are applied. Another possi-

bility is to use the :transform option.

Be especially careful when using any of these options within coordinate system

macros such as graphics:with-room-for-graphics. For example, if you specify a

negative value for :scale-y within this form, your image will not be drawn within

the space provided by the macro, but will extend below it and be overwritten by

the prompt.

6.3.2. Drawing Functions

Functions for Drawing Objects

 graphics:draw-arrow

 graphics:draw-bezier-curve

 graphics:draw-cubic-spline

 graphics:draw-conic-section

 graphics:draw-circle

 graphics:draw-ellipse

 graphics:draw-line

 graphics:draw-lines

 graphics:draw-point

 graphics:draw-polygon

 graphics:draw-regular-polygon

 graphics:draw-rectangle

 graphics:draw-triangle

 graphics:draw-glyph

150
Creating Graphic Output February 2018

 graphics:draw-image

 graphics:draw-string

 graphics:draw-string-image

Functions for Drawing Paths

 graphics:draw-path

 graphics:drawing-path

 graphics:draw-bezier-curve-to

 graphics:draw-circular-arc-to

 graphics:draw-conic-section-to

 graphics:draw-line-to

 graphics:close-path

 graphics:set-current-position

 graphics:current-position

graphics:graphics-origin-to-current-position

Clipping Functions and the Mask Option

 graphics:with-clipping-path

 graphics:with-clipping-from-output�

The drawing functions offer straightforward means of drawing strings, points, ar-

rows, lines, and a variety of closed plane figures. Many of these drawing functions

have options in common. It is by means of these options that you can control the

painting qualities opacity, gray-levels, patterns and outline characteristics of

your figures. Before discussing the options, we describe some of the graphics ob-

jects that may not be well known to all users. After describing the options, we

present a summary of the different types of drawing functions.

151
February 2018 Creating Graphic Output

6.3.2.1. Graphics Objects
A ������ ����� is a type of cubic parametric curve for which the endpoints are

specified, while the tangents at the curve’s endpoints are specified indirectly by

two other points that are generally not on the curve. You can get an idea of how

the control points affect the shape of a Bezier curve by looking at Figure 12. Refer

to any standard graphics textbook, such as ������������ �� ��������������������

�������� by Foley and Van Dam (Addison-Wesley 1982), for the mathematical de-

tails of cubic parametric curves.

End-1 End-1

End-1

End-2

End-2

End-2 End-1 End-2

Control-1

Control-1

Control-1

Control-1

Control-2

Control-2

Control-2

Control-2

Figure 12. Bezier curves and their control points�

152
Creating Graphic Output February 2018

A ����� ������ is another type of cubic parametric curve. For this curve, a set of

points, including the endpoints, specifies the shape: the curve is constrained to

pass through all the points such that the curve is "smooth" that is, there is no

sudden change in the slope of curve at any point.

Figure 13 contains several examples of cubic splines. Compare Figure 12.

Point-1

Point-1 Point-1

Point-1

Point-2

Point-2

Point-2

Point-2

Point-3 Point-3

Point-3

Point-3

Point-4 Point-4

Point-4
Point-4

Figure 13. Cubic splines and their control points

The graphics:draw-cubic-spline function has several options, which are described

completely in its dictionary entry. Here is a table that summarizes these options:

The default option If the user supplies no keyword arguments, but only a list of

points, cubic splines like the ones in Figure 13 are the result.

The slopes of the curves are constrained to change continuous-

ly everywhere.

153
February 2018 Creating Graphic Output

The clamped optionThe keyword :clamped, accompanied by specifications for the

starting and ending slopes, allows the user to draw a special

kind of cubic curve, called a Hermite curve. The slopes at the

endpoints of the curves are constrained to be those specified.

Figure 14 shows a family of these cubics. The tangent vector

at the right end of each curve is fixed at -90 degrees (�� = 0,

�� = -1); at the left the angle is the value printed below the

curve. All tangents were specified using unit �� and �� values.

The curves in the figure are all clamped at both ends, but this

need not be the case: you can specify that only the start or the

end should be clamped.

180 degrees 90 degrees

135 degrees 45 degrees

0 degrees

Figure 14. Hermite cubic splines

�

The cyclic or anti-cyclic option

This option is intended to be used for drawing closed curves

that either close to form a smooth curve (cyclic) or that close

in a cusp (anti-cyclic). The :start-relaxation and :end-

relaxation must be specified identically for this option: either

both :cyclic or both :anti-cyclic. Also, the first point and the

last point in the list of control points must be identical.�

154
Creating Graphic Output February 2018

A ����� is a single character from a specified font such as a timesroman (tr12) let-

ter A or a northwest arrow from the mouse font. The graphics:draw-glyph func-

tion is primarily intended for drawing characters like the latter, that is, special

symbols as opposed to regular characters for which graphics:draw-string would be

more appropriate.

An ����� is a graphics image contained in a bit array. You can create such an ar-

ray using, for example, tv:with-output-to-bitmap. The function graphics:draw-

image allows you to send an image or part of an image to a stream.

A ������ ����� can be thought of as character outline shapes being transformed. In

other words, you can think of a string image as being the result of putting a

graphics:draw-string function inside a tv:with-output-to-bitmap form.

graphics:draw-string-image allows you to draw a string image scaled or rotated

as a unit, something that you cannot do with graphics:draw-string. See the sec-

tion "Graphics Objects", page 151.

There are several different interpretations of text as graphical output. The inter-

esting issues arise when the graphics containing the text is scaled or rotated, and

when the text is mixed with other graphics.

There are several possible actions when applying a graphics transformation to text.

• Affect only the starting point of the text, keeping the actual letters upright.

• Affect the baseline of the text, slanting it, but keeping the letters upright.

• Actually scale and rotate the individual glyphs along with the rest of the draw-

ing.

Since the various output devices available to the graphics substrate do not imple-

ment a consistent set of fonts, one must be careful when mixing text and graphics

if it is to be device and scale independent. There are two possibilities:

• Ask the stream the size of the text to be drawn and constrain the other graph-

ics to that size. For example, using the function dw:continuation-output-size.

• Use the kinds of text graphics drawing that allow scaling to a given size, that

is, graphics:draw-string-image, and specify that in accordance with the rest of

the drawing.

6.3.2.2. Scan Conversion
The screen is a ������ device. This means that it is drawn on by means of an ar-

ray of single units called ������, each of which represents the contents of a single

cell of bitmap memory. The most important thing to keep in mind when trying to

understand scan conversion is that these pixels are actually little squares that

have finite extent: they are a single device unit on a side. Mathematical shapes

are made up of points, which have no size. The business of scan conversion is to

take the infinitely thin outline of a mathematical shape and determine which pix-

els should be affected in order to draw it.

155
February 2018 Creating Graphic Output

Generally, a pixel is affected by drawing a shape when it is inside that shape. Re-

calling that pixels are little squares of finite dimension, you can see that most of

the time there will be a number of pixels that are only partially within the shape

to be drawn. It is important that there by an exact decision procedure to deter-

mine which of these pixels to draw.

The definition used by windows is as follows:

A pixel is inside a shape, and hence affected when drawing

that shape, if the center of the pixel is inside the shape. If the

center of the pixel lies exactly on the boundary of the shape, it

is considered inside if the inside of the shape is immediately to

the right of the center point (increasing � direction). If the

center of the pixel lies exactly on a horizontal boundary, it is

considered inside if the inside of the shape is immediately be-

low (increasing � direction).

An unfilled shape is drawn by generating new outlines consist-

ing of those points which are within 1/2 the thickness (normal

distance) from the outline curve of the corresponding filled

shape, and filling in the new outlines by applying the defini-

tion above.

This definition is compatible with that used by the X Window System. Even

though X windows does not deal with fractional coordinates and the Genera graph-

ics substrate does, there is no problem in generalizing the definition to accomodate

that case. It is important to note that the decision point used for insideness check-

ing is offset from the point used for addressing the pixel by half a device unit in

both the � and�� directions.

It is worth mentioning that for pixel devices that can store or display a single pix-

el cell in more than one color or graytone, one usually attempts to draw a given

pixel proportionately lighter or darker depending on the fraction of the pixel with-

in the shape. This is known as �������������. The Genera graphics output substrate

for windows does not support anti-aliasing, because the black-and-white screen is

still the normal output device for Genera applications.

The resolution limitations of a raster device make scan conversion a hard problem,

for which there are no easy universal solutions. For an application in which exact-

ness is important, it is critical that the same means be applied for all shapes with-

out exception. The definition used by windows is borrowed from the X Window

System, extended in the most obvious way to allow for non-integral coordinates.

Even though this definition is standard, it is worth considering some of the moti-

vations.

When two shapes share a common edge, it is important that only one of them own

any pixel. Mathematically speaking, given two figures whose intersection is of mea-

sure zero, the intersections of their rasterizations should be of measure zero. Fig-

ure 15 illustrates this. The pixels along the diagonal belong to the lower figure.

When the decision point within the pixel (the center) lies to one side of the line or

the other there is no issue. When the boundary passes through the decision point,

156
Creating Graphic Output February 2018

which side the inside of the figure is on is used to decide.

0 1 2 3 4 50

1

2

3

4

5

0 1 2 3 4 50

1

2

3

4

5

Figure 15. Decision rule for allocating pixels

The reason for choosing the decision point half a pixel offset from the address

point is to reduce the number of common figures that invoke the boundary condi-

tion rule. This leads to more symmetrical results. For instance, in the figure be-

low, we see a circle drawn when the decision point is the same as the address

point. The four lighter points are indeterminate: it is not clear whether they are

inside or outside. Since we desire to have each boundary case determined accord-

ing to which side has the figure on it, and since we must apply the same rule uni-

formly for all figures, we have no choice but to pick only two of the four points,

leading to a lopsided figure, which is clearly undesirable.

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5�

If we had instead chosen to take all four points, as the :draw-filled-in-circle

method does, we would have a nice symmetrical figure. This figure is symmetrical

about a whole pixel, however, so it is one pixel wider than it ought to be. The

problem with this can be seen clearly if we attempt to draw a rectangle and circle

overlaid.

(defun shape (r)

 (graphics:draw-circle 0 0 r)

 (graphics:draw-rectangle (- r) (- r) (+ r) (+ r) :alu :flip))

For this reason, we choose to have the decision point at the center of the circle.

This draws circles that look like the figure below.

157
February 2018 Creating Graphic Output

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5�

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5�

The problem with these circles is that they look rather more like stop-signs than

the ones the old :draw-circle produced. This is due to the eye picking up on the

straight lines before it picks up on the rotational symmetry. We sometimes prefer

something that is indeed centered around a whole pixel. Once we understand the

rules for scan conversion, it is easy to see how to draw this figure. We want a cir-

cle that is of radius �+1/2 (since we have one more pixel in the middle to account

for) and whose center is at <1/2,1/2> (the point in the middle of the square about

which we want to be symmetrical). Since the graphics functions are not restricted

to integer coordinates, this is easy to do.

Since this is a rather common case, we provide a special drawing mode to enable

this. This is :coordinate-mode :center. You can draw such circles either way.

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5�

Despite the well-controlled symmetry of the above shapes, there is really no way to

guarantee that all circles look round when scan converted. For instance, one whose

coordinates are offset by one quarter unit does not look very round. For this rea-

son, it is often desirable to make sure that coordinates and radii are integers if

they come from some potentially inexact computation and you want the figure to

look round.

158
Creating Graphic Output February 2018

Since this is also a rather common case, you can disable the exact conversion of

fractional shapes with :coordinate-mode :integer.

Unfilled circles follow exactly the same rules as filled circles. An unfilled circle is

essentially a circular ring of the desired thickness with the circle in question lying

in the middle of the ring.

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5�

We distinguish lines of thickness 0, which are drawn by a special fast integer

slope algorithm, from those of thickness 1, which are exactly drawn as tilted rect-

angles. For the majority of cases, these produce results that are similar enough for

most purposes.

0 1 2 3 4 50

1

2

3

4

5

0 1 2 3 4 50

1

2

3

4

5�

For thick lines, we can draw the exact tilted fractional rectangle, or we can round

the coordinates of the rectangle so it becomes a polygon with integral coordinates

and draw that. The latter case is faster since it can make full use of the triangle

microcode. For the majority of cases, these two methods produce results that are

usually similar enough.

0 1 2 3 4 50

1

2

3

4

5

0 1 2 3 4 50

1

2

3

4

5�

The decision about which side of the figure to take when a boundary line passes

through the decision point is made arbitrarily. We have chosen to be compatible

159
February 2018 Creating Graphic Output

with the X Window System definition, although this is not necessarily the most

convenient. The main problem with this is illustrated by the case of a horizontal

line. Our definition chooses to draw the rectangular slice above the coordinates,

since those pixels are the ones whose centers have the figure immediately above

them. It would be more convenient if we could recognize that a line from <1,3> to

<4,3> is the same as the primitive device rectangle of height 1 and width 4 at

<1,3>.

0 1 2 3 4 50

1

2

3

4

5

0 1 2 3 4 50

1

2

3

4

5�

We have attempted to choose a primitive imaging definition that is convenient for

lower level control. We have then tried to add higher level facilities on top of it

that capture some of the more common convenient interfaces. These modes are not

the only possible modes that could be added. For instance, we could choose a mod-

el which did not attempt to tile correctly and always selected pixels that had any

of the figure at all in them. Fortunately, the framework of the graphics: functions

permits adding this modularly at a later time if the need can be shown and the

details worked out.

We have chosen to make our definition compatible with the X Window System to

permit future migration to a graphics system based on that system at the lowest

level. Since X is designed for a healthy combination of generality and efficiency, it

is hoped that this would lead to superior performance and generality, while re-

maining essentially compatible.

It would also be possible to define all operations in terms of a primitive path fill-

ing operation. This would take a shape as a set of continuous segments, such as

lines, conic sections, and cubics. It would then scan convert the area within the

segments, using standard techniques. This is essentially the primitive operation de-

fined for the PostScript imaging system. This would require much less special-case

code, but would not be as well optimized. Such a system could benefit, however,

from the aid of a graphics coprocessor or special assistance microcode.

Outlining with Thin Lines

Drawing a shape with :thickness 0 is not the same as outlining it. For instance,

take a circle of radius 6 and consider it and its unfilled counterpart. These two

shapes overlap in a few pixels because of the overlap of the mathematical shapes.

Keeping in mind the scan conversion model, it is not hard to generate an outline

for this shape. You just draw an unfilled circle of radius 6.5 and thickness 1 with

the same center. This shape is a ring with inner radius 6 and outer radius 7,

which is outlines the filled circle.

Other simple shapes can be treated similarly. For more complicated shapes, there

160
Creating Graphic Output February 2018

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10�

is no simple representation of the outline based on the filled or unfilled shape. A

wholly new mode just for outlining is required. This has not yet been implement-

ed. There are, then, some shapes for which there is no convenient way to generate

a closely surrounding and similarly shaped mouse-sensitivity box.

6.3.2.3. Drawing Function Options
The options available for drawing graphics objects consist of those for specifying:

• The type of line used for the object or its outline

• The type of pattern filling the interior of closed objects

• How the drawing is to interact with objects that it might be drawn on top of

• The target stream

• Whether the object is to be a dynamic-windows presentation

• A masking pattern for the object

Another set of options specify transformations to be performed on the object.

These are described in another section. See the section "Coordinate System Facili-

ties", page 142.

Line Options

You can specify the following characteristics of a line:

Line thickness The :thickness option specifies the line thickness in an inte-

gral number of device line-width units (for windows, pixels). A

value of 0 specifies the minimum line thickness for the output

device used. This option only takes effect when you are draw-

ing line objects (lines, arrows, curves) or �������� closed objects

(circles, rectangles, and the like). The default is device-

dependent: for the screen, it is 1; for the LGP2/LGP3, it is 0.

Note that when thickness is greater than 1, the coordinates

161
February 2018 Creating Graphic Output

specifying the location of the object refer to the center points

of the line ends. If you want a closed object with a thick out-

line to fit within a specified space, remember to subtract out

the line thickness from the dimensions you specify.

When thickness is specified to be greater than one, two addi-

tional options become available:

Line joint shape The :line-joint-shape option specifies how

the joints between line segments of closed,

unfilled figures, or sequences of line seg-

ments are to be drawn. The default, :miter,

produces the commonly expected result.

:round produces the same effect as draw-

ing the figure with a sequence of thick

lines with their end shapes specified to be

:round. Note that this produces roundness

on the outside of figures but not on the in-

side. :bevel produces a result like :miter,

except that the corners of the object are

trimmed: Each trimming line is perpendicu-

lar to the bisector of the angle formed by

intersecting lines of the figure and is locat-

ed halfway between the line centers and

the corner they form. :none produces fig-

ures with gaps at the corners if line thick-

ness is greater than one.

Thickness scaling Ordinarily, when you scale up an object

that has lines in it, the thickness of the

lines is scaled up. You can change this,

however, by setting the :scale-thickness

option to nil.

Dashed lines The lines that make up objects are, by default, solid. You can

specify dashed lines using the Boolean option :dashed. Having

chosen the dashed option, you can also specify four characteris-

tics of the dashes:

Line dash pattern With the keyword :dash-pattern you can

specify in a vector the number of pixels to

be on and off. (Whether a pixel that is on

is white or black depends on whether the

image is displayed in reverse video.) For

example, the vector #(5 2 2 2) produces a

dash-dot-dash-dot pattern. The exact num-

ber of pixels drawn depends on whether

and how the dash pattern is scaled. The

first number in the dash pattern vector al-

162
Creating Graphic Output February 2018

ways specifies the number of pixels in the

solid that is, "on" portion of the dash;

if you want the dash pattern to start with

"off" pixels, use the :initial-dash-phase

keyword described below.

Scaled dashes Ordinarily, when a line, or object contain-

ing lines, is scaled, the dash pattern is ���

scaled: Lines are drawn longer or shorter,

but the number of pixels in the solid and

open parts remains constant. You can

change this by specifying :scale-dashes to

be t, which causes the number of pixels to

be multiplied by the current scale factor.

Note that this scale factor is the combina-

tion of any such factor specified by the

:scale keyword, by graphics:with-graphics-

scale, by graphics:with-graphics-

transform, or the like.

Initial dash phase The :initial-dash-phase keyword specifies a

number of pixels to be skipped over (left

off) from the beginning of a dashed line.

The default value is 0: The dashed line

starts off with solid or "on" pixels. Keep in

mind that when you are drawing lines

within transforming macros such as

graphics:with-room-for-graphics, the be-

ginning of the line may differ from what

you expect.

Drawing partial dashes

When the :draw-partial-dashes option is

true (t, the default), the on and off pattern

of the dashes is repeated as many times as

is necessary to complete the line: if the

pattern does not come out even with the

line’s end, a partial pattern is drawn. This

could have the effect, for example, of "leav-
ing out" the corners of a polygon. The al-

ternative is to specify :draw-partial-dashes

nil. Compare the following two forms:

(graphics:with-room-for-graphics (t 200)

(graphics:draw-regular-polygon 40 40 100 40 5

:filled nil :dashed t :draw-partial-dashes nil))�

(graphics:with-room-for-graphics (t 200)

(graphics:draw-regular-polygon 40 40 100 40 5

:filled nil :dashed t :draw-partial-dashes t))�

163
February 2018 Creating Graphic Output

The exact behavior of the :draw-partial-dashes nil option is

rather complicated and depends upon the dash pattern. Experi-

mentation is probably the best way to obtain the results you

want.�

Pattern Options

There are several options for specifying how the interiors of graphics images are

to be drawn.

Filling The :filled keyword specifies when t (the default) that figures

are to be drawn filled that is, the region within the drawing

path is to be filled in and when nil that figures are to be

drawn "stroked" that is, just the drawing path itself is to be

drawn, with the specified width. (Whether this is black or

white depends on whether the sense of drawing on the graph-

ics output device is normal or inverted.)

Selecting a gray-level

The :gray-level keyword allows you to specify a system-defined

gray level in a range between solid white (0) and solid black

(1), to be drawn within the figure (when the drawing sense is

normal when the drawing sense is inverted, white is 1 and

black 0). This option allows a more complete range of possibili-

ties for gray levels than does the next one. Stippling

The :stipple keyword allows you to specify a stipple pattern to

be drawn within the figure. A stipple pattern is a two-

dimensional array of one-bit values, 0 or 1 for each pixel. On a

color screen, ones are drawing in one color and zeros in a dif-

ferent color. On a monochrome screen one "color" is white and

the other black. A stipple pattern always aligns with the coor-

dinate origin used.

You can use one of a series of standard background gray pat-

terns of the form tv:n%-gray with this option, but for this use,

:gray-level is preferred. Likewise, you can specify a predefined

stipple array, a tile, or a color, but, again, if you want one of

these you should probably be specifying :stipple, :tile, or

:color.

You can create your own bitmap pattern for use with :stipple

by drawing an image inside a tv:with-output-to-bitmap macro,

or you can use one of the standard bitmap patterns supplied by

the system. See the option :stipple in ���� ��������� ����������.

Tiling

The :tile keyword allows you to specify a colored-stipple pat-

tern that is, a ���� pattern within a figure. A tile pattern

is a two-dimensional array of �-bit values, which specify colors:

each of the � bits controls a color. To tile a figure means to

perform a cell-to-cell transfer from the tile pattern to the fig-

164
Creating Graphic Output February 2018

ure. Like stipple patterns, a tile pattern aligns with the coordi-

nate origin used. Tiling and stippling are similar on one-bit-

per-pixel devices that do not have special alu functions. See the

option :tile in �������������������������.

Coloring The :color option allows you to specify a color within a figure.

If the output device used supports color, the specified color

will be used; if not, the object will be filled with a gray-level

pattern that approximates the intensity of the color specified.

See the option :color in �������������������������.

Pattern filling The :pattern keyword allows you to specify any bitmap pattern

to be drawn within the figure. This allows you to, in effect,

paint some image on the interior of the figure. According to

how you specifiy :pattern, you can cause the way the pattern

is produced to be conditionally device dependent.

Lastly, you can specify a flavor instance as the pattern. The

methods of the flavor of the instance specify how the drawing

is to be done.

See the option :pattern in �������������������������.

The pattern options :gray-level, :stipple, :tile, :color, and :pattern interact with

each other: If you specify more than one, the effect is the result of "anding" the

on pixels resulting from each, in the general case.

The options :filled and :thickness are mutually exclusive; you cannot have a fig-

ure that is filled and that has some non-zero thickness. If you specify a non-zero

thickness together with any of the other pattern options, the results are combined:

The thick line is drawn with the specified gray-level, or color.

Drawing Mode Options

The keyword :alu specifies the drawing mode for drawing any kind of graphics ob-

ject. That is, it specifies how the drawing of an image is to affect other images

that may already be present in the target location. The effect of :alu is nullified

by setting the keyword :opaque to t: when :opaque is t, the pixels in the target

area are cleared (turned off) before the image is drawn. In this case, the only alu

option that makes sense is :draw, since there will not be any pixels in the target

to erase or flip. Use the :opaque option when you want to draw one image on top

of another and not have the two images interact, or when you want to draw one

image over another and not have the first show through. Use the :alu modes with

:opaque nil when you want the images to combine with one another.

The possible values of :alu are :draw, :erase, and :flip.

:draw does the obvious thing: Pixels in the image being drawn are turned on, re-

gardless of what the pixel values may be in the target area, that is, in the place

where the image is being drawn. :erase is a bit more complicated. Pixels that are

included in the image being drawn (ones specified to be "on" by :filled :pattern,

:stipple, :tile, or :gray-level) are turned off in the target area. For example, if you

165
February 2018 Creating Graphic Output

draw a filled, 100% black rectangle in :draw mode and then draw a patterned cir-

cle over it in :erase mode, the result is a circular pattern in white inside the

black rectangle. If you draw that patterned, erased circle over a white area, noth-

ing appears.

The :flip keyword allows you to draw in an exclusive-or (XOR) mode: If a pixel in

the image being drawn is on and the corresponding pixel in the target area is off,

the pixel is drawn (turned on); if the image pixel is on and the target pixel is on,

the pixel is "un"-drawn (turned off). Pixels that are not on in the image being

drawn are not affected. The result is that the drawn image is rendered normally

when drawn over a white area and rendered in reverse over a solid black area. (If

the screen you are drawing on is in reverse video mode, this description is still

true with the words "black" and "white" interchanged.)

Other Options

The :stream option for drawing functions specifies a stream for the drawing func-

tion. It defaults to *standard-output*.

The :return-presentation option specifies whether the drawing function should re-

turn the graphic image it creates as a presentation object. The default is nil; no

type and object of the presentation is returned. Keep in mind however, that

whether or not the image is returned as a presentation, it is recorded in the out-

put history unless you specifically take steps to prevent this. :return-presentation

t is for presenting a single graphics object: If you want a presentation to comprise

a collection of images, use graphics:with-output-as-graphics-presentation. For

more information on graphics images as presentation objects: See the section "Oth-

er Basic Facilities for Graphic Output", page 167.

The :mask option is presented in another section: See the section "Clipping Func-

tions and the Mask Option", page 167.

6.3.2.4. Functions for Drawing Objects
The graphics output facility has functions for drawing the following types of ob-

jects:

arrows triangles* Bezier curves

circles* polygons* cubic splines

ellipses* regular polygons* conic sections

lines rectangles* glyphs

points strings images

 string images

* ��������������

All of these functions have options that are specified by keywords. See the section

"Drawing Function Options", page 160. There is another collection of graphics

functions for drawing fillable outlines of arbitrary shape. See the section "Path-

Drawing Functions", page 166. Any of the objects drawn with one of these can be

returned as a graphics presentation. See the section "Other Basic Facilities for

166
Creating Graphic Output February 2018

Graphic Output", page 167. The objects listed in the rightmost column above, are

described in detail in another section: See the section "Graphics Objects", page 151.

The functions for drawing closed figures, marked with an asterisk above, have op-

tions for filling: :filled, :pattern, :gray-level, :stipple, :tile, and :color.

Circles and ellipses can be drawn either clockwise or counterclockwise, which is

necessary because of the way the winding rule works (see the section "Path-

Drawing Functions", page 166). The complete figure can be drawn, or you can

specify a beginning and ending angle for drawing an arc. Also, you can draw circu-

lar or elliptical rings by specifying inner radii. The ellipse drawing function has an

additional option, :join-to-path that lets you specify that the ellipse or elliptical

arc be joined to a path properly (that is, with no gap).

Polygons, whose successive sides are specified by a list of their endpoints, can be

convex, in which case a more efficient drawing algorithm is used to draw them.

Regular polygons are specified by the endpoints of a line segment that is to be one

of the congruent sides. A keyword, :handedness, allows you to specify whether the

polygon is drawn to the left of the given segment or to the right.

There is a function for drawing a single line and another for drawing a connected

series of lines. The latter has a :join-to-path option similar to that of

graphics:draw-ellipse. In addition, it has an option, :closed, that lets you specify

all but the last segment of a closed polygon; the graphics:draw-lines function with

:closed t adds the closing line segment for you.

The function for drawing a string allows you to specify the character style, the po-

sition of the string in relation to the placement point you give the function, and a

vector indicating the direction in which the string is to be drawn. This vector can

be thought of as a line along which the characters of the string are to be placed.

You can also specify whether the characters of the string are to be stretched out

or squeezed together. Note that you ������ specify any graphics translations of the

actual string image; the translation options of the keywords of the graphics:draw-

string function apply only to the string position you specify, not to the characters

in the string. Use the graphics:draw-string-image function to perform transfor-

mations on the string itself.

6.3.2.5. Path-Drawing Functions
You can draw an arbitrary closed path using the graphics functions for drawing

ordinary objects just connect the ending point of one object with the beginning

point of the next. This is, in fact, how you create a path-function argument for the

path-drawing function.

The path-drawing function graphics:draw-path and the macro graphics:drawing-

path allow you to do two things with closed paths that you could not do otherwise:

make the closed path fillable and make it usable for clipping. See the section

"Clipping Functions and the Mask Option", page 167. The path-drawing function

graphics:draw-path has an option, :winding-rule, that allows you to specify how

the region outlined by the path is to be filled. graphics:drawing-path allows you

to specify a path by sequentially calling several drawing functions, and it collects

and returns any values produced by the functions called.

167
February 2018 Creating Graphic Output

There is an object called the �������� ������ that is of use in drawing paths. The

graphics cursor, which is completely unrelated to the window cursor or mouse po-

sition, is simply an ��� coordinate pair that you can use as a positional reference.

You set its value with graphics:set-current-position and use (refer to) it with

graphics:current-position. You can perform a local transformation to make it the

current origin for graphics transformations with graphics:graphics-origin-to-

current-position. Four drawing functions make use of the graphics cursor:

graphics:draw-bezier-curve-to, graphics:draw-circular-arc-to, graphics:draw-

line-to, and graphics:close-path. The first three functions draw their figure start-

ing at the current position of the graphics cursor, and then move that cursor to

the endpoint of the drawn figure.

The graphics:set-current-position function not only fixes the location of the

graphics cursor, but also marks the start of a "path segment." All the lines or

curves drawn subsequent to a graphics:set-current-position belong to the "current
path segment" until another graphics:set-current-position is issued.

graphics:close-path finishes a closed path by connecting the current graphics cur-

sor position to the beginning of the path segment, with a straight line.

graphics:graphics-origin-to-current-position is useful for specifying transforma-

tions with respect to the current position of the graphics cursor. For an example

of its use: See the function graphics:draw-path in ���� ��������� ����������. The

referenced section also presents examples of how to construct path functions and

presents an example of the effect of the :winding-rule option.

6.3.2.6. Clipping Functions and the Mask Option
There are three methods you can use to restrict the output of graphical objects to

be within a limited region:

graphics:with-clipping-path clips the output produced by forms contained within

the macro so that it lies within the specified path. The path is created by means

of graphics path-drawing functions.

graphics:with-clipping-from-output clips the output produced by forms within the

macro so that it lies within a specified figure. The figure is created by one of the

graphics functions for drawing two-dimensional figures such as circles and rectan-

gles.

The :mask option allows you to specify a bitmap to serve as a mask through

which graphical output is drawn.

6.3.3. Other Basic Facilities for Graphic Output

Other Basic Facilities for Graphic Output

 graphics:with-output-as-graphics-presentation

graphics:replacing-graphics-presentation

 graphics:erase-graphics-presentation

 graphics:erase-rectangle

 graphics:2pi�

168
Creating Graphic Output February 2018

Graphics as Presentations

Just as a piece of text displayed on a dynamic window can be a presentation, so

can any graphic output. To "present" a figure as a presentation, either you include

the form that generates it inside a graphics:with-output-as-graphics-presentation

form or you use the :return-presentation keyword of the drawing function.

graphics:with-output-as-graphics-presentation is the graphical equivalent of the

dw:with-output-as-presentation form for text.

Once you have presented a figure as a presentation, you can accept the figure as

input just as any other presentation; the system automatically highlights the figure

in the proper input context. Also, once you have a figure that is a presentation,

you can use graphics:replacing-graphics-presentation to produce the effect of an-

imation by successively replacing a presentation at incrementally changing loca-

tions, and you can use graphics:erase-graphics-presentation both to delete the

presentation and to erase the figure.�

Erasing versus Deleting versus Painting White

There are three different ways of getting rid of some graphics that you have

drawn, each of which has its place. It is important to understand the difference

and to know when a particular one is right for you.

1. Erasing, as with the graphics:erase-rectangle function, or the :clear-region,

:clear-rest-of-window, or :clear-history messages to a window, means clear-

ing a portion of the output history, removing anything that is in it. This is

the fastest way to get rid of something that you have output. However, it is

important to keep in mind that things are only removed from the history in

single units. If you erase a region that intersects a graphical object, that ob-

ject will be removed from the output history, even if it is not wholly con-

tained in the region. For reasons of efficiency, only the area you requested to

clear will be erased right away. Only when you scroll away from an area and

back again will you notice that a partially erased graphic has been wholly re-

moved from the history.

2. Deleting, as with graphics:erase-graphics-presentation, means removing

something from the output history and redisplaying everything that overlaps

it. Because proper temporary ordering of output is remembered as part of the

history, when you delete something, it is possible to completely reconstruct

what would appear on the screen as if you had never drawn it.

3. Painting in white means adding a new graphic to the output history on top of

what is already there that obscures what is underneath it. If the shape in

question does not completely cover something underneath, then the combined

shape will display properly even when scrolled back.

Graphics and the Stream Output

When an erasing, hyphen, or delete type of operation, such as :clear-rest-of-

window or :clear-between-cursorposes, encounters a piece of graphics, it removes

the piece from the history. It does not compute the corresponding several graphics

that would actually result from erasing pieces of the whole.

169
February 2018 Creating Graphic Output

If you forget to move the cursor past some graphics that you draw in a window,

the :clear-rest-of-line that happens after the command loop returns to command

level and does a terpri will erase part of it. It may look mostly okay right then

(only a little bit has been nicked out), but it will be gone completely when you

scroll back.

����������������

(dw:with-own-coordinates ()

 (graphics:draw-circle 100 200 100))

�������

(dw:with-own-coordinates ()

 (graphics:draw-circle 100 200 100)

 (send *standard-output* :set-cursorpos 0 310))

�����������������������

(graphics:with-room-for-graphics ()

 (graphics:draw-circle 100 100 100))

Handy Constant

The constant graphics:2pi is supplied for use in generating the angle arguments

to functions such as graphics:draw-circle. It is a double-precision floating-point

approximation of the circumference-to-radius ratio.

6.3.4. Choosing the Best Graphic Output Technique for Your Application

There are a number of things to be considered when choosing how to use the

graphics substrate.

• If you already have an application using the :draw- messages, it will continue to

work. Especially if you have had to go to lots of trouble to determine the exact

pixel locations and offsets of various figures, you may not have any motivation

for changing it. If you want your drawing to work compatibly on the

LGP2/LGP3 and any future similar device which is supported, then you must

use the new graphics:draw- facilities. You must also keep in mind the coordi-

nate system issues. See the section "Coordinate System Facilities", page 142.

Note that the LGP2/LGP3 has high enough resolution that exact pixel choices

are usually unimportant, and that Symbolics has no control over the speed of

the Adobe code that runs in it, so the remaining decision points covered here

apply to the screen only.

• If you are just doing a simple drawing, such as a pie chart, you probably do not

need to think about any further refinement.

• If it is important that figures tile correctly, you should set the value of the key-

word :coordinate-mode to :exact, or better yet do not use this keyword, since it

defaults to :exact. Similarly, if you require that shapes with fractional coordi-

nates be drawn properly rather than rounded to integer shapes, set :coordinate-

mode to :exact.

170
Creating Graphic Output February 2018

• If you want small circles which appear symmetrical about a single pixel dot and

do not need to carefully align them with other shapes, you can use :coordinate-

mode :center.

• If you do need to align round circles with other shapes, you are probably best

off adding in the 1/2-pixel offsets yourself so that you will add them exactly

where needed.

• If speed is more important than tiling accuracy in sketching a figure, drawing

with :thickness 0 is the faster way.

• If speed is of moderate importance in drawing a filled figure or one with thick

lines, and exactness is of little importance, then :coordinate-mode :integer will

always use special integer drawing methods, which are faster. Keep in mind

that it is better to do this by means of a single graphics:with-coordinate-mode

around all the output than to do it in each drawing function call, which requires

more argument decoding.

• If speed is of paramount importance, you will save time in some cases by using

the old :draw- messages. Of course, the application will have to take responsibil-

ity of conversion to integers, or errors will result, and no scaling or output to

the LGP2/LGP3 is available. As this is only a small gain over the fastest case of

the graphics:draw- functions, it is also possible that even this technique will

not meet your needs adequately.�

Graphics Output Performance

There are many considerations affecting the performance of a graphics output pro-

gram. Ways of drawing that do not differ substantially in their specification (and

hence in what they look like), can differ significantly in how they perform.

Some of the factors affecting speed of output are:

• The modularity level at which your program interfaces.

° The :draw-rectangle method on a window generates an error at a rather em-

barrassing time when passed floating point or ratio coordinates. The

graphics:draw-rectangle function has no such restriction. Even when passed

integer coordinates, this function has to verify that they are integers. When

drawing lots of rectangles, this moderately small amount of time can still be

noticeable.

• The algorithm used for drawing.

° A :thickness parameter of 0 is interpreted by the graphics substrate to mean

not a line that is too thin to ever be seen, but the thinnest line which does

indeed display visibly. This interpretation is compatible with PostScript and

the X Window System. Additionally, as with X windows, a thin line (one of

171
February 2018 Creating Graphic Output

thickness 0) is allowed to be drawn using a faster algorithm which does not

obey the complete requirements for raster scan conversion. A line of thickness

1 device unit, which is approximately as thick, must be scan converted exact-

ly, which entails a much slower algorithm.

For more details on this, see the section "Scan Conversion", page 154.

° A circle whose center and radius are integers or integers plus 1/2 can be im-

aged without using any fractional arithmetic. Circles that have fractional pa-

rameters need a slower, more general algorithm.

• How the algorithm is implemented.

° Because of compatibility considerations, it was not possible to change any of

the microcoded drawing routines or to add new ones. As a result, some draw-

ing methods are in macrocode and other have greater microcode assistance.

6.4. Advanced Graphic Output Facilities

6.4.1. Advanced Transformation Facilities

Advanced Transformation Facilities

 graphics:transform-point

 graphics:untransform-point

 graphics:transform-window-points

 graphics:untransform-window-points

 graphics:compose-transforms

 graphics::stream-compose-transforms

 graphics:decompose-transform

 graphics::build-transform

 graphics:transform-distance

 graphics:untransform-distance

 graphics:invert-transform�

6.4.1.1. The Transformation Matrix
Arbitrary transformation of coordinates is effected by multiplication of coordinate

vectors by a transformation matrix. For coordinates in two-dimensional space, a ho-

mogeneous vector <� � 1> is used, and the 3 x 3 transformation matrix is premul-

tiplied by the point vector to produce the transformed coordinates of the point.

0

0

1

a b

d

e f

x y 1 ax + cy + e bx + dy + f 1=c

172
Creating Graphic Output February 2018

of which the elements in the third row are constant. In the Genera graphics sub-

strate, such a transformation matrix is stored in list format, that is, as the list (�

� � � � �). The six elements of the matrix effectively control the transformation as

follows:

• Scaling in the � and � dimensions is controlled by elements � and �, respec-

tively. In the absence of rotation, these are the respective scale factors, and val-

ues of 1 for these elements result in no scaling.

• Translation in the � and � dimensions is controlled by elements � and �, re-

spectively. Values of 0 for these elements result in no translation.

• Rotation about the origin is controlled by elements �, �, �, and �. In the ab-

sence of scaling, counterclockwise rotation by an angle ����� is effected by � =
cos �����, � = sin �����, � = -sin �����, and � = cos �����. A value of 0 for � and �

results in no rotation (����� = 0).�

The graphics data structure ��������� is a list of these six elements, in order �, �,

�, �, �, �.

To further understand the relationship between the scaling and rotation elements

and how various transforms interact, consider the following example:

Here is a transformation matrix for a ninety-degree counterclockwise rotation:

1

cos(π/2)=0

cos(π/2)=0

sin(π/2)=1

sin(π/2)=-1

0

0

0 0

R =

And here is one for a scaling by a factor of 1.5 in the � direction and a factor of 2

in the � direction:

1

scale-y=2

scale-x=1.5 0

0

0 0

0

S = 0

Application of R transforms the ���������� ������ so that a point � at location

<10,10> in the original coordinate system, when redisplayed in the transformed co-

ordinate system, appears at location <-10,10> ���� ������� �� ��� ��������� �������

������ Similarly, S transforms the same point so that it appears at <15,20>.

Figure 16 shows these transformations. The figure shows the transformation of a

line so that the changes in orientation are apparent. The original coordinate-

system is shown with dotted lines and the transformed coordinate-system in solid

lines.

Once a transformation has occurred, subsequent transformations occur ���� �������

������������������������������� as Figure 17 illustrates.

The upper right coordinate system shows the location of point � resulting from the

173
February 2018 Creating Graphic Output

x

y

0,0
yx

0,0

0,0

=

=

y

Original Coordinate System

Rotated Coordinate System

o

o

o

r

0,0

0,0

=

s

p

p

p

x
o

o
y

00 0

0

1

0

0

0 0

0

1

1

-1 0

0

y
r

0

0

2

1.5

Scaled Coordinate System

<10,10>

<10,10>

s

r

= <15,20>
o

= <-10,10>

o

<10,10>

CTM = R

CTM = S

Figure 16. Changes effected by single coordinate transforms�

scaling done in Figure 16 , followed by a ninety-degree counterclockwise rotation.

Note that the new coordinates of the point, <-20,15>, still with reference to the

original coordinate system, are the result of ����� �������� point <10,10> into point

<-10,10> and ���� ������� �� to <-20,15>. (The order of transformation of the origi-

nal coordinate system, shown by dotted axes, is the opposite: first scaling to the

coordinates shown by dashed axes, then rotating to the coordinates shown by solid

axes.) The lower right coordinate system shows the result of taking the transforms

in the opposite order. Note that the results are not the same as the first case.

174
Creating Graphic Output February 2018

x0,0

yx

0,0

0,0

=

=

y

Original Coordinate System

o

o

r

0,0

0,0

=

s

p

p

p

x
o

o
y

CTM =

0

0

0

1

0

0

CTM =

0 0

0

1

0

0

y
r

0

0

-2

-1.5

<10,10>

<10,10>

o

<10,10>

x

Scaled then Rotated Coordinate System

Rotated then Scaled Coordinate System

R x S

S x R

1.5

2

=
sr

y
sr

y

x

rs

rs

<-20,15>
o

sr

=

<-15,20> =
o

rs

y

Figure 17. Changes effected by sequential coordinate transforms

Graphics transformations are not, in general, commutative. The only cases that are

order-independent are (1) successive translations, (2) successive rotations, (3) suc-

cessive scalings, and (4) rotations and scalings �� ��� � ��� � ����� ������� ���

�����.

The coordinate transform matrices of Figure 17 are computed by forming the prod-

ucts of those in Figure 16, in the order shown. In general, transform matrices are

composed by multiplying an original transform by the new transform; that is, the

175
February 2018 Creating Graphic Output

new transform is on the left. This is how graphics:compose-transforms works: Its

first argument is replaced with the product of its second argument times its first

argument. The composed matrix effects the same transformation as first perform-

ing new-transform and then performing transform.

graphics::stream-compose-transforms is similar to graphics:compose-transforms,

but always uses the CTM of its stream argument as the original transform to be

composed with a given new transform. Note that you should never use a transform

as the first argument to graphics:compose-transforms if you need to keep that

transform unaltered. If you need the composition, make a copy of your original and

compose with that.

You can specify your own transforms by creating a list of specified elements, or

you can construct one using the graphics:build-graphics-transform function. For

example:

(graphics:build-graphics-transform :rotation (* 1/2 pi)

:scale-x 2 :scale-y 3 :translation ’(150 90))

This form returns a list that is, in simplified form, ’(0 2 -3 0 150 90), which corre-

sponds to the CTM:

1

sin(π/2)=1

cos(π/2)=0

cos(π/2)=0 0

0

0 0

sin(π/2)=-1

R

=

1

scale-y=3

scale-x=2 0

0

0 0

0

S

*0 * 00

e=150

0

f=90

0

1

T

0

0

1

-3 0

0

150 90

21

1

The resulting transformation is a result of composing coordinate system trans-

forms for scaling, rotation, and then translation, in that order. The effect of the

resulting transform on the coordinates of any given point is first to scale the coor-

dinates by � and � factors of 2 and 3, then rotate by 90 degrees (1/2 pi radians)

counterclockwise, and finally to translate the point’s coordinates (by +150 � units

and +90 � units). You can verify this by using the list above as the argument to

graphics:decompose-transform, which will return 1.570796 (radians), 2, 3, 150,

and 90.

Nesting graphics with-graphics-xxx macros within one another causes the CTM of

the given stream to be composed with each succeeding inner transform, so that

the coordinate system is changed, in order, from the outside in the innermost

transform is the last one performed on the coordinate system. See figure 10.

The function graphics:invert-transform returns a transform that is the multi-

plicative inverse of its argument; when the inverse transform is composed with the

original transform, the result is the identity transform. If a point � has been

transformed by matrix T, applying the inverse of T returns � to its original coor-

dinates.

6.4.1.2. Transforming Points in Window Coordinates
If you wish to use the mouse cursor to position graphics images drawn by func-

tions within transformation macros, you must transform the device coordinates ob-

176
Creating Graphic Output February 2018

tained from the mouse, by dw:tracking-mouse for example, into user coordinates

before you use them in drawing commands. For example, in the following code,

graphics:transform-window-points adjusts the ��� coordinates returned by the

mouse so that they are transformed in same way as the other points drawn inside

graphics:with-room-for-graphics. For better results, press the ������� key before

running this example.

(graphics:with-room-for-graphics (*standard-output* 200)

 (dw:tracking-mouse ()

 (:mouse-motion (x y)

 (graphics:transform-window-points *standard-output* x y)

 (graphics:draw-rectangle x y (+ x 10) (+ y 10)))

 (:mouse-click (button x y)

 (return (graphics:draw-rectangle 10 50 70 20)))))

graphics:transform-window-points performs the same function within any other

environment that causes offsets between the stream and its associated window,

such as one caused by dw:with-own-coordinates or dw:in-sub-window.

To obtain the resulting coordinates of any given point, given the application of a

specified transform, you can use the function graphics:transform-point. Given a

point that has been transformed, you can use graphics:untransform-point to find

its original coordinates. The function graphics:stream-transform-point does the

same thing as graphics:transform-point but uses as its transform the CTM of the

specified stream. graphics:stream-untransform-point is likewise analogous to

graphics:untransform-point.

The functions graphics:transform-distance and graphics:untransform-distance

are analogous to graphics:transform-point and graphics:untransform-point, but

they do not perform any translation; they just scale and rotate the given coordi-

nates according to the transform specified. These functions are useful for convert-

ing vector data (for example, the unit vector) into user coordinates.

6.4.2. Graphics Drivers

The graphics drivers are low-level routines each of which draws a rectangular

slice of the figure or path for its associated shape circle, triangle, and so forth

 using a specified slice function to do the actual drawing. The routines scan-

convert the shapes, that is, they convert the coordinates of the pixels that lie on

the shape into a two-dimensional raster grid. The set of available drivers includes

 graphics:draw-line-driver

 graphics:draw-triangle-driver

 graphics:draw-ellipse-driver

 graphics:draw-unfilled-ellipse-driver

 graphics:draw-unfilled-circle-driver

 graphics:draw-circular-ring-driver�

You can use these routines to write device-specific drivers for your own graphics

output devices.

177
February 2018 Creating Graphic Output

6.4.3. Texturing

There are three layered protocols for implementing one’s own instances to be

passed as :pattern.

All pattern instances should be built upon graphics:basic-pattern, which has only

the required method, graphics:pattern-call-with-drawing-parameters.

This protocol is device-independent, in that the same generic function is called by

all graphical output devices. If the pattern wishes to gain further device-dependent

control, it should implement graphics:pattern-call-with-drawing-parameters so as

to call its �������� argument with :pattern self. That is, it should pass in an in-

stance for the pattern once more. This is most easily done by including the flavor

graphics:device-pattern, which is built on graphics:basic-pattern and implements

graphics:pattern-call-with-drawing-parameters in just this way.

The protocol(s) that the instance must implement then depend on the desired out-

put devices, currently the LGP2 (and other postscript devices) and the screen (and

other raster devices).

For the LGP2, the generic function lgp:pattern-output-postscript-code will be in-

voked. If the pattern is being used at this level unconditionally, it is best to get

this by including the flavor lgp:postscript-device-pattern, which is built on

graphics:device-pattern, and has this as a required method.

For the screen, the generic function graphics:pattern-compute-raster-source-

pattern is invoked. If the pattern is being used at this level unconditionally, it is

best to get this by including the flavor graphics:raster-device-pattern, which is

built on graphics:device-pattern, and has this as a required method.

If even more control is desired of a raster device like the screen, the

graphics:pattern-compute-raster-source-pattern implementation can return an in-

stance (such as self) for ��������������. The instance is then invoked for the

graphics:pattern-draw-raster-slice generic function. If the pattern is being used

at this level, it is best to get this by including the flavor graphics:raster-slice-

device-pattern, which is built on graphics:raster-device-pattern and has this as a

required method.

Note that it is perfectly legitimate to include both graphics:raster-slice-device-

pattern and lgp:postscript-device-pattern in the same flavor, as these require two

separate protocol implementations, which can both be accommodated.

6.4.4. Other Advanced Facilities for Graphic Output

These are the advanced facilities for graphic output:

 graphics:compute-cubic-spline

 graphics:draw-circular-arc-to-compute-points

 graphics:map-points

 graphics:make-raster-array-with-correct-width

 tv:with-output-to-bitmap

178
Creating Graphic Output February 2018

 tv:with-output-to-bitmap-stream

 graphics:write-encoded-graphics-as-characters

 graphics:read-encoded-graphics-as-characters

 graphics:binary-encode-graphics-to-array

 graphics:binary-decode-graphics-from-array-into-function

 graphics:with-graphics-subroutine�

The first three are primitive operations that compute sets of points or call a func-

tion to operate on a set of points.

The next three are useful for creating raster arrays or bitmaps for use as stipple

patterns or masks.

The graphics encoding/decoding functions are useful for saving the output to a

graphics stream in a compacted form. For example, the illustrations in Concordia

have been created by the Graphic Editor and encoded in this manner.

6.5. Table of Graphics Facilities

Since the names of the graphics functions are, for the most part, self-explanatory,

they are simply listed here without description.

graphics:2pi

graphics:angle-between-angles-p

graphics:basic-pattern

graphics:binary-decode-graphics-from-array-into-function

graphics:binary-encode-graphics-to-array

graphics:build-graphics-transform

graphics:build-multiple-point-transform

graphics:building-graphics-transform

graphics:close-path

graphics:compose-transforms

graphics:compute-cubic-spline

graphics:compute-cubic-spline-points

graphics:current-position

179
February 2018 Creating Graphic Output

graphics:decompose-transform

graphics:defstipple

graphics:device-pattern

graphics:draw-arrow

graphics:draw-bezier-curve

graphics:draw-bezier-curve-to

graphics:draw-circle

graphics:draw-circle-driver

graphics:draw-circular-arc-through-point-to

graphics:draw-circular-arc-to

graphics:draw-circular-arc-to-compute-points

graphics:draw-circular-ring-driver

graphics:draw-conic-section

graphics:draw-conic-section-to

graphics:draw-cubic-spline

graphics:draw-ellipse

graphics:draw-ellipse-driver

graphics:draw-elliptical-ring-driver

graphics:draw-glyph

graphics:draw-image

graphics:draw-line

graphics:draw-line-driver

graphics:draw-line-to

graphics:draw-lines

180
Creating Graphic Output February 2018

graphics:draw-oval

graphics:draw-path

graphics:draw-pattern

graphics:draw-point

graphics:draw-polygon

graphics:draw-rectangle

graphics:draw-regular-polygon

graphics:draw-string

graphics:draw-string-image

graphics:draw-triangle

graphics:draw-triangle-driver

graphics:draw-unfilled-circle-driver

graphics:draw-unfilled-ellipse-driver

graphics:drawing-path

graphics:erase-graphics-presentation

graphics:erase-rectangle

graphics:graphics-origin-to-current-position

graphics:graphics-rotate

graphics:graphics-scale

graphics:graphics-stream-p

graphics:graphics-transform

graphics:graphics-translate

graphics:gray-level-stipple

graphics:*identity-transform*

181
February 2018 Creating Graphic Output

graphics:invert-transform

graphics:line-intersection

graphics:make-contrasting-pattern

graphics:make-device-conditional-pattern

graphics:make-graphics-transform

graphics:make-identity-transform

graphics:make-raster-array-with-correct-width

graphics:make-simple-pattern

graphics:make-two-color-stipple

graphics:map-points

graphics:pattern-call-with-drawing-parameters

graphics:pattern-compute-raster-source-pattern

graphics:pattern-draw-raster-slice

lgp:pattern-output-postscript-code

graphics:*pattern-stipple-arrays*

lgp:postscript-device-pattern

graphics:raster-graphics-mixin

graphics:read-encoded-graphics-as-characters

graphics:replacing-graphics-presentation

graphics:saving-graphics-transform

scale-float

graphics:sector-wide-p

graphics:set-current-position

graphics:standard-graphics-mixin

182
Creating Graphic Output February 2018

graphics:*stipple-arrays*

graphics:stream-transform

graphics:stream-transform-point

graphics:stream-untransform-point

graphics:transform-distance

graphics:transform-point

graphics:untransform-distance

graphics:untransform-point

graphics:untransform-window-points

graphics:with-clipping-from-output

graphics:with-clipping-mask

graphics:with-clipping-path

graphics:with-coordinate-mode

graphics:with-drawing-state

graphics:with-graphics-identity-transform

graphics:with-graphics-rotation

graphics:with-graphics-scale

graphics:with-graphics-subroutine

graphics:with-graphics-transform

graphics:with-graphics-translation

graphics:with-output-as-graphics-presentation

graphics:with-physical-device-scale

graphics:with-room-for-graphics

graphics:write-encoded-graphics-as-characters

183
February 2018 Creating Graphic Output

PART II.

AUGMENTING THE TOP-LEVEL TOOLS: EXTENDING
 USER INTERFACE FEATURES

184
Creating Graphic Output February 2018

185
February 2018 Defining Your Own Presentation Types

7. Defining Your Own Presentation Types

7.1. Introduction: More Presentation-Type Concepts

In an earlier chapter (see the section "Using Presentation Types", page 21) we in-

troduced presentation types and explained how to use the extensive set of prede-

fined types available with Genera. In this chapter, we describe presentation types

in greater detail so that you can write your own.

7.1.1. Why Define Your Own Presentation Types

7.1.1.1. Presentation Types for Command Arguments
A straightforward case in which you need to define a presentation type is when

you simply want to make a command either a CP command or an application

program command out of an existing function. Commands require that the pre-

sentation types of their arguments be specified, and often the function you wish to

make a command of takes an argument whose type is not predefined. So, you must

define an appropriate presentation type.

Here is an example. To define a CP command to draw a standard-size rectangle

with a specified stipple pattern, we need a presentation type for stipple patterns.

We can define such a thing as follows:

(define-presentation-type pattern-stipple ()

 :expander ’graphics:stipple-array

 :parser ((stream &key original-type)

 (dw:complete-from-sequence

 graphics:*pattern-stipple-arrays* stream

 :type original-type

 :name-key #’graphics:stipple-array-name))

 :printer ((stipple stream)

 (write-string

 (graphics:stipple-array-name stipple) stream)))�

The CP command is then easy:

(cp:define-command (com-draw-rectangle :command-table "user")

 ((stipple ’pattern-stipple))

 (graphics:with-room-for-graphics (t 50)

 (graphics:draw-rectangle 0 20 40 0 :stipple stipple)))

7.1.1.2. A Hierarchy of Presentation Types for Application Programs
When you are defining a program framework for an application, you often need to

define a number of presentation types for objects in your program that a user will

want to manipulate. In a graphics program, these might be graphics objects, as

well as aspects of graphics objects lines, rectangles, circles, as well as line-

thickness, scale factor, and fill pattern. In some cases, these types are to be ar-

ranged in a hierarchy, so your presentation-type definitions need to specify sub-

186
Defining Your Own Presentation Types February 2018

and supertype relationships, in addition to specifying how to recognize an object of

the type, how to print one, and how to display information about one.

For example, consider a simple graphic editor that uses the presentation types

shown in Figure 17. Defined properly, an object of one of these types will be

mouse-sensitive in appropriate contexts. For example, in the context of a Fill

Closed Figure command, circles and polygons including rectangles and triangles

 should be sensitive, but lines and text should not. Additionally, when the user

enters a Draw Figure command and asks for help, the system should display a

message such as "Specify a figure, such as a line, a text-string, or a closed figure,"
or "A line, text-string, circle, rectangle, or triangle."

Drawable-Figures

Closed-FiguresLine

Circle

Node-Outline Rectangle Triangle

Text-String

Node-Label

Figure 18. A collection of hierarchically related presentation types for a simple

graphic editor

In summary, you define your own presentation types to:

• Control mouse sensitivity of objects within a set of given input contexts. This

entails establishing the placement of objects within a type hierarchy.

• Differentiate between objects that have similar syntax and implementations, but

different meanings.

• Tailor the appearance of and help facilities for objects of different types.

A presentation type has associated with it a collection of specifications describing:

• Membership in the type.

• How to parse input when accepting, including how to prompt the user and how

to use the input history for the type, if it has any.

187
February 2018 Defining Your Own Presentation Types

• How to display output when presenting an object of the type.

• How the user can control the viewspecs of the presentation, that is, how alter-

native ways of displaying the presention can be selected.

The define-presentation-type macro sets up all these specifications for you when

you use it to define your own presentation type. In order to use the defining

macro, you need to understand the purpose of each major part of a presentation

type description and the syntax for specifying it. The following sections explain

each of these in turn. First, however, you need to know how presentation types can

inherit various aspects from one another, because this inheritance determines ex-

actly what your definitions must specify.

7.1.2. Type Inheritance

As we mentioned in "Using Presentation Types", the types in the Genera presenta-

tion system constitute a partial ordering that is, a hierarchy defined by the sub-

set relationship. In a manner analogous to that of the flavor system, presentation

types inherit attributes from their superiors in the type hierarchy. At the top of

the hierarchy is the type t, which is a supertype of all other presentation types. As

explained in the "Dictionary of Predefined Presentation Types", the type t is used

for specifying "any type" when you are defining a mouse handler but, because of

its universality, it is too general to have useful inheritable aspects; it has no pars-

er.

The next highest type in the hierarchy, sys:expression, does have a printer, a

parser, and a history. All data types not explicitly defined as presentation types in-

herit these three aspects from sys:expression. Thus sys:expression represents or-

dinary Lisp objects without application-specific semantics. The parser is essentially

the Lisp read function, with the :escape option chosen heuristically. One subtype

of sys:expression is sys:form, the presentation type for Lisp forms to be evaluat-

ed. In the Lisp read-eval-print loop, input is accepted with presentation type

sys:form and output is presented with presentation type sys:expression. (Normally

the Lisp listener accepts commands as well as forms, so the above description is

not completely accurate for Lisp listeners.)

Many other defined presentation types inherit one or more of these features as

well.

Figure 19 illustrates several features of the presentation type system. Note well:

The relationships shown in this figure are ��������������, not necessarily actual.

The internal implementation of predefined presentation types is subject to change.

In the figure:

• The presentation type relationships form a lattice, not a tree. Note, for example,

that the types vector, list, simple-string, and others are subtypes of more than

one supertype.

188
Defining Your Own Presentation Types February 2018

t

sys:expression

sys:form

sequence

vector

array

list PsH

Pn

instance structuresymbol

flavor-name

pathname
sys:function-spec

package

Ps

numberPsPn

integer

rational Ps
keyword Ps

float

Ps

H

ratio

null

simple-array

simple-vector tv:sheetstring

simple-string

booleanPsPn

(alist-member :alist names)

inverted-boolean

(member-sequence (a b c d)

*

(integer 0 100)

(or instance structure)

(member-sequence (c d e f))

(member-sequence (c d))

Pn

Pn

(subset :A :B :C)

H PnPs

H

Ps

* abbreviation-for (alist-member :alist ’(("Yes" . nil)("No" . t)))

expander

symbol-name

Ps

bignum

cons

H Ps Pn

H Ps Pn

H Ps Pn

H Ps Pn

H Ps Pn

H Ps Pn

Ps Pn

Ps Pn

Ps Pn

Ps Pn

H Ps Pn

Ps Pn

+ abbreviation-for (and symbol (satisfies flavor-name-p))

+

)

Figure 19. Presentation type subset/superset representations

• The boxes with square corners contain presentation types that are also Common

Lisp types. The boxes with rounded corners contain types that are not Common

Lisp types. Note that there are derivative presentation types (shown enclosed in

double parentheses) in both categories. The letters H, Ps, and Pn indicate types

that have their own histories, parsers, and printers. (We show these here only

for instruction purposes, however. The actual assignments of these type at-

tributes are subject to change and should not be counted upon.) For example,

sys:expression, sequence, array, package, sys:flavor-name, and others have

their own type histories. Types that do not have their own histories, and are

subtypes of sys:expression, inherit a type history from that, but pruned. For

example, in the context of accepting an object of type symbol, the system gener-

ates a list of possibilities by finding in the list of all sys:expressions those ob-

jects for which symbolp is true.

In the same manner, types that do not have their own parsers or printers inher-

it those from their superiors. For example, sys:form inherits its printer from

189
February 2018 Defining Your Own Presentation Types

sys:expression and all the subtypes of number inherit their printers from that

type. Notice, though, that float and integer have their own parsers.

• The large arrows point out types that illustrate the use of the keywords

:expander (one-way arrow) and :abbreviation-for (two-way arrow) in their type

definitions. For example, the definition of symbol-name includes :abbreviation-

for ’string and that for sys:form includes :expander ’expression. This will be

discussed in greater detail next.

Besides understanding inheritance, you also need to know something about how the

system goes about matching potential input with the current context. For example,

given a command that requires an object of a particular presentation type, say, a

net:local-host, how does the system decide whether some object is a member of

that type? This knowledge is necessary so that you can define a presentation type

such that the matching process will be as efficient as possible.

7.1.3. Input Context Matching

In order to provide automatic highlighting and mouse sensitivity of displayed ob-

jects, the presentation system matches the presentation type of an object with the

presentation required by the current ������������ ����� �������. The presentation

input context establishes the ��-������������-����. (The presentation type of a dis-

played object is the ����-������������-����.) When the �� and ���� types match, the

object usually becomes mouse-sensitive and is highlighted. It is important to note

that the meaning of "match" here refers to type/subtype relationships, not to

equality.

A presentation input context is established by a call to accept or by a higher-level

function that incorporates such a call. The macros dw:with-presentation-input-

context and dw:with-presentation-input-editor-context also establish it. The

mechanism for effecting mouse sensitivity is the translating mouse handler. A han-

dler defined for a presentation type translates ���� that type, or any subtype of

that type, �� something else, possibly another type, possibly a command or action.

Mouse handlers and the way they work are documented in the chapter "Program-

ming the Mouse: Writing Mouse Handlers".

Here is a simple example of input context type matching. Suppose we call (accept

’symbol). This establishes the input context in which anything whose type is a

subtype of the presentation type symbol, for example, sys:flavor-name or

keyword, is recognized to qualify as input to the call. Thus, if :pattern has previ-

ously been presented as a keyword, it will be highlighted and sensitive in the

symbol input context.

Here is a more complicated case of type matching. Suppose we have defined a pre-

sentation type integer-name, using :expander ’integer. We also have a mouse

handler that translates from the presentation type number to the presentation

type version-number, which we have defined using :expander ’file-identifier. The

translating handler, on the ���� side, applies to any presentation that is a subtype

of the ���� presentation type. In this case, it applies to integer-name, since that

is a subtype of integer, which is a subtype of number. On the �� side, the handler

190
Defining Your Own Presentation Types February 2018

applies in any context for which the �������������������� is a subtype of the context

type. In this case, it applies in the context of file-identifier, since version-number

is a subtype of that. So, whenever the input context type is file-identifier, any ob-

ject of the type integer-name is mouse-sensitive. This is illustrated in the accom-

panying figure.

FROM SIDE
TO SIDE

number

integer-name

file-identifier

version-number

Translating Handler

Presentation Type

Context:

(accept ’file-identifier)

(present TWO ’integer-name)

(define-presentation-translator trans

(number version-number) (version) ...)

TWO
TWO

Figure 20. Matching betweem input context and a presentation type by a translat-

ing handler�

Note that, as a special case, when the presentation type t is specified as the ���

�����������������, it means "all contexts" that is, any presentation type is ac-

ceptable.

Input context matching is explained in greater detail elsewhere. See the section

"Presentation Type Matching for Mouse Handlers", page 222.

7.1.4. The Recursive Behavior of Accept

Often a presentation type can best be parsed by means of reference to some other,

usually more general, presentation type. For this kind of type, it is perfectly ac-

ceptable to write a parser that makes a call to accept. Here is an example.

191
February 2018 Defining Your Own Presentation Types

(define-presentation-type ones-complement-integer ()

 :history t

 :printer ((object stream)

 (prin1 (if (minusp object)

(- (lognot object))

object)

 stream))

 :parser ((stream &key default original-type)

 (let ((twos-complement

 (accept ’integer :stream stream

 :prompt "Enter an integer"

 :default (and default

 (if (minusp default)

 (- (lognot default))

 default))

 :original-type original-type)))

 (if (minusp twos-complement)

 (lognot (- twos-complement))

 twos-complement))))

Now, when you or the user want a ones-complement integer as input, you call

accept or an equivalent:

(accept ’ones-complement-integer)

Here accept is being called recursively: First an integer is accepted, and then the

ones-complement integer generated from the result is accepted. There is no limit

to this kind of nesting of accept calls.

Another situation in which accept is called recursively is the case of compound

objects, for example, character-style: accept is called recursively on each item of

family, face, and size.

The recursive use of accept is important to recognize because of the implications

it has for the stream, prompt, and default arguments of the presentation type’s

parser.

Try making the definition above and running the accept form several times, notic-

ing the behavior of the prompt and the default. You will see that they are awk-

ward. After we introduce the defining macro for presentation types, we will discuss

writing parsers, and how to avoid this kind of awkwardness, in the section "Writ-

ing a Parser That Recursively Calls Accept".

7.2. The define-presentation-type Macro

The define-presentation-type macro is the tool for defining your own presentation

types. It allows you to define many different sorts of functions to be associated

with your new type. These become part of the presentation-type substrate and are

run by it when appropriate. Additionally, it allows you to specify data arguments

and presentation arguments that can be used in just the same manner as those of

192
Defining Your Own Presentation Types February 2018

Common Lisp types and other Symbolics predefined presentation types. The data

and presentation arguments you specify are lexically available as variables in the

bodies of those presentation-type functions that are supposed to depend on them.

Always keep in mind, when you are defining a new presentation type, that a sub-

stantial number of predefined types are available, one of which might suit your

needs. Or, there may be a combination or specialization of existing types that you

can make use of using the :expander or :abbreviation-for keyword arguments.

The keyword options of the define-presentation-type macro are summarized in the

following table, which lists the purpose of each option and auxiliary functions that

are typically used within the form that is its value.

193
February 2018 Defining Your Own Presentation Types

������� ������ ����������� �������������������

:printer Display an object of format, princ

 this type. write-string,

 present,

 present-to-string,

 dw:with-output-as-

 presentation

:parser Recognize keyboard accept,

 input as a mem- dw:complete-input,

 ber of the type. dw:complete-from-sequence,

 dw:completing-from-suggestions

:viewspec- Set up accepting- dw::presentation-type-

choice values-like keyword-options-into-cvv

 structures for

 displaying this type

 of object in

 several ways.

:describer Describe this dw:describe-presentation-type,

 presentation format,

 type. formatting-textual-list,

 write-string, princ,

 dw::presentation-string-

 pluralize

:default- Coerce default dw::common-sequence-default-

 preprocessor to conform to preprocessor

 type’s data or

 presentation

 arguments.

:highlighting- Highlight objects Generic graphics primitives

box-function of this type in a

 special way.

:choose- Show the choices dw:accept-values-choose-

 displayer that can be from-sequence

:menu-displayer made for objects

:accept-values- of this type.

 displayer

:presentation- Use data arguments Lisp functions, such as

 subtypep to determine type eq, eql.

 relationship be-

 tween subtypes of

 this type.

194
Defining Your Own Presentation Types February 2018

:typep Use data arguments Lisp functions, such as

 to determine if eq, eql

 some object is of

 this type.

The last two options in the table require explanation. If you define a presentation

type that has data arguments that restrict membership in the type, you often need

to specify how these arguments are to be used. For example, suppose you define a

presentation type bins with a data argument of ������������. You want a bin to

be accepted as a member of ((bins 8)) if it has a size of 8 or less. In this case,

you must include a :presentation-subtypep function in your presentation type def-

inition to specify that the type ((bins 6)) is a subtype of ((bins 8)). Similarly, you

should include a :typep function in your presentation type definition to specify

how to test whether an object is a bin of an acceptable size.

Of the remaining keyword options to define-presentation-type, :expander and

:abbreviation-for are discussed in an earlier section. See the section ":expander
and :abbreviation-for". The other options are summarized in the following table:

195
February 2018 Defining Your Own Presentation Types

������� ������ �����������

:description A string that describes the

 type. Used if there is no :describer.

:no-deftype A Boolean, which when t, specifies

 that the data type has been defined

 elsewhere, so define ���� the presentation

 type rather than altering the definition

 of the data type.

:history A Boolean, which, when t, specifies

 that this type is to have its own

 history (instead of inheriting one).

:presentation-type-arguments

 A list of the data arguments that

 are presentation types themselves.

:data-arguments-are-disjoint

 Indicates that the data-arguments partition

 the set into disjoint sets. This can be speci-

 fied, for example, in cases where

 (fn a) and (fn b) denote disjoint

 sets if and only if (not (eql a b)).

:do-compiler-warnings

 A function for checking that presentation-type

 arguments in ������������ are the correct type.

 Not needed if :presentation-type-arguments

 is used.

Other keywords mentioned in the argument list of define-presentation-type are

exclusively for internal system use.

define-presentation-type� �����������������������������(������������������

�������)�&key������������������������������������

���

(��������nil�������������������)�������������������

���

��

���

��

��

���

��

����������������������

196
Defining Your Own Presentation Types February 2018

Defines a new presentation type. Note that you cannot use :no-deftype and

:abbreviation-for together.

���������The name for the new type.

������������

Arguments describing an object of this type; ������������ may

be any permissible defun-style argument list.

Data arguments are used to determine the sensitivity of an

object in any given input context established by accept, and

the applicability of defined mouse handlers. They also partic-

ipate in determining the subtype and supertype relationships

of the type. (For more information and examples, see the

section "Predefined Presentation Types", page 28.)

���������� Keyword arguments that affect the accepting or presenting

of an object of this type; such keywords are handled in the

body of the presentation type’s :parser, or :printer respec-

tively (see below).

Unlike data arguments, presentation arguments are not rele-

vant to determining mouse sensitivity or subtype and super-

type relationships. (For more information and examples, see

the section "Predefined Presentation Types", page 28.)

(Certain predefined keywords are meta-presentation argu-

ments. They can be used when calling any type and are un-

derstood directly by accept or present, rather than used by

the type’s parser or printer. At present, such arguments are

limited to :description. Meta-presentation arguments are not

available to type-methods unless explicitly listed in ����������.

(For more information, see the section "The Presentation

Type System: an Overview", page 21.)

All of the functions that can be defined as values for options

take the following two arguments.

:original-type Specifies the presentation type originally

supplied in the call to accept.

:type Specifies the presentation type from

which the function being specified is in-

herited.

:parser Specifies a function for parsing a presentation object of the

defined type. This is what accept calls for inputting objects

entered as a series of characters.

Arguments passed to the parser function include the input

stream and a set of optional keywords. Of these, the argu-

ments that you intend for the parser to use must be declared

197
February 2018 Defining Your Own Presentation Types

in the argument list for the parser function, after an &key.

The parser keyword options, in addition to :original-type and

:type are:

:default Value is supplied by accept. You only need to use

this for merging; actual defaulting is handled at a

higher level.

:initially-display-possibilities

Boolean option specifying whether to display the

objects that could be used as input in the current

context; the default is nil. If t, the possibilities are

presented before the input prompt appears.

:default-supplied

True if the :default argument is valid.

:default-type

The presentation type of the default.�

The :parser function that gets invoked is found via the pre-

sentation-type inheritance mechanism it will not necessar-

ily be ���� parser. The parser that is found may have called

accept recursively on a less specific type and passed along

the original type via the :original-type option. As was men-

tioned above, any of the accept keyword arguments in the

following list, can be passed through and used in your pars-

er, if you declare them in the parser’s argument list: :type,

:original-type, :initially-display-possibilities, :default-

supplied, and :default-type. For example, if you want to use

the default specified by accept, you can use:

(define-presentation-type foobar ()

 :parser ((stream &key default) ...))

Additionally, there is one other source of arguments: those

declared in the type’s ������������ and ����������. These are

available lexically in the body of the parser function, and are

not explicitly declared in the argument list to the parser

function.

The syntax for the parser function is as follows:

:parser ((stream &key ���������������) ����)

The parser should return one required value, the object

parsed, and possibly one additional value, the presentation

type of the object parsed. The latter defaults to the type for

the parser. Do not return this second value unless you really

intend for it to be used.�

:printer Specifies a function for printing a presentation object of the

defined type. This is what present calls for outputting ob-

jects.

198
Defining Your Own Presentation Types February 2018

Arguments passed to the printer function include the object,

the output stream, and a set of optional keywords. Of these,

those arguments that the printer uses must be declared in

the argument list for the printer function. The printer key-

word options, in addition to :original-type and :type, are:

:acceptably

Specifies when t to print the presentation in such

way that it can be parsed by accept as the speci-

fied presentation type. Other possibilities include

nil and :very. The latter is for use with :for-

context-type.:for-context-type

Specifies the context in which the presentation is

to be presented with :acceptably :very. The most

often used value is ’((cp:command-or-form :dis-

patch-mode :form-preferred))), which causes pre-

sentations of the type cp:command to be printed

with a leading colon.�

Additionally, there is one other source of arguments: those

declared in the type’s ������������ and ����������. These are

available lexically in the body of the parser function, and are

not explicitly declared in the argument list to the printer

function.

The syntax for the printer function is as follows:

:printer ((object stream &key <���������������>) ����)�

:viewspec-choices

Specifies a form that returns a list of locatives, presentation

types, and prompts to slots in the presentation type. This

provides the ability to do in-place modification of presenta-

tion printing.

The keyword option for this form, in addition to :original-

type and :type, is:

:presentation The particular presentation being re-viewed

(having its viewspecs changed).�

Example:

(defflavor employee ((first-name)

 (last-name)

 (status))

 ()

 :readable-instance-variables

 :writable-instance-variables

 :initable-instance-variables)

199
February 2018 Defining Your Own Presentation Types

(define-presentation-type employee (()

;; keywords for different printed representations

&key (format :last-name-first)

 (include-status nil))

 :no-deftype t�

 :printer ((employee stream)

 (ecase format

 (:last-name-first

 (format stream "~A, ~A"

(employee-last-name employee)

(employee-first-name employee)))

 (:first-name-first

 (format stream "~A ~A"

(employee-first-name employee)

(employee-last-name employee)))

 (:last-name-only

 (write-string

(employee-last-name employee) stream)))

 (when include-status

 (format stream " (~(~A~))"

(employee-status employee))))�

 :viewspec-choices ((&key type)

;; a necessary internal function

(dw::presentation-type-keyword-options-into-cvv

 type

 ;; Choice 1: keyword, pres type (member),

 ;; selected choice (optional), and prompt

 ’((:format (member :last-name-first

 :first-name-first

 :last-name-only)

 :last-name-first "Format of name")

 ;; Choice 2: keyword, pres type (boolean),

 ;; selected choice (optional), and prompt

 (:include-status boolean nil "Include status")))))

(present (make-instance ’employee :last-name "Jones"

:first-name "Fred" :status :retired))�

Compile the two definitions; then evaluate the present function. You can ei-

ther click �����Middle on the presentation to invoke the Edit Viewspecs

mouse handler or click Right on the presentation to get a menu of options,

one of which is "Edit viewspecs". Clicking �����Middle or selecting "Edit

viewspecs" brings up a dw:accept-variable-values menu. Using this, you

can specify how the presentation is displayed.

With the :viewspec-choices option, you give your users the ability to modi-

fy at runtime any displayed presentations of the defined type. To provide

the same capability with respect to arbitrary program output, you can use

200
Defining Your Own Presentation Types February 2018

dw:with-replayable-output. See the function dw:with-replayable-output in

�������������������������.

In addition to :original-type and :type, the keyword arguments for this op-

tion are:

:description

Specifies a string describing the presentation type, for exam-

ple, "an integer". This string is used by accept to prompt for

an object of this type.

This option and the :describer option are mutually exclusive.

If neither option is supplied, a description is created based

on inheritance from another type; if type is t, it will be the

string "anything".

Do not confuse this option with the :description meta-

presentation argument. This option supplies the default for

the meta-presentation argument. See the section "The Pre-

sentation Type System: an Overview", page 21.

:describer

Specifies a function that outputs a description of the presen-

tation type. This is used by accept to prompt for an object

of this type. The describer function is generally used only

for complex presentation types, such as compound and aggre-

gate types.

Arguments passed to the describer function include the out-

put stream and a set of optional keywords. The describer

function keyword, in addition to :original-type and :type, is:

:plural-count

Boolean option specifying whether the type descrip-

tion is pluralized.�

The syntax for the describer function is:

:describer ((stream &key <������������������>) ����)�

This option and the :description option are mutually exclu-

sive. If neither option is supplied, a description is created

based on inheritance from another type; if that type is t, this

description is the string "anything".�

:no-deftype

Boolean option specifying whether this definition only defines

a presentation type and not also a new data type. The de-

fault (nil) results in the generation of a deftype.

:no-deftype t must be supplied if a deftype is provided else-

where for the symbol used as the ��������� argument in the

201
February 2018 Defining Your Own Presentation Types

presentation type definition. This also applies to presentation

types being defined for flavors and structures previously de-

fined by defflavor and defstruct, respectively. For more in-

formation: See the section "Using User-Extendable Data

Types as Presentation Types", page 209.

:disallow-atomic-type

This keyword argument is for the use of internal system

functions only. Do not use it in application code.�

:history Boolean option specifying whether a separate history is cre-

ated for this presentation type. The default is nil, meaning

that the history will be found via inheritance.�

:expander

Specifies a form that is invoked to generate the "expansion"
of the presentation type, for example, (or ���������� �����

�����). Expansions allow for presentation types to inherit

presentation functions (that is, parsers, printers, describers)

from other presentation types.

If you do not specify an :expander, then you must either

specify the :abbreviation-for option or supply a parser and

printer. If you do specify an expander, you can still supply

the presentation type with its own parser or printer, and just

inherit the functions not supplied; however, you may not

specify the :abbreviation-for option.

Note: This should not depend on outside influences to deter-

mine its expansion. This includes global variables. It is gen-

erally better to pass in the outside information as data argu-

ments. If this is not practical, however, you may use the

form (dw:prepare-for-type-change ’<����-����>) before

changing the variable, and (dw:finish-type-redefinition) af-

ter the change is complete. This will allow SemantiCue to

maintain its handler tables properly.�

:abbreviation-for

Specifies the form that is invoked to generate another pre-

sentation type for which this presentation type serves as an

abbreviation. The form lets you define a new presentation

type by combining, or in other ways qualifying, existing pre-

sentation types, for example, (and ��������� (satisfies�

�����������)). Example:

(defvar *star-list* ’(("Vega" :vega)

 ("Altair" :altair)))

(dw:define-presentation-type star ()

 :abbreviation-for ‘(alist-member :alist ,*star-list*))

Better ways to write the defining code for the type are:

202
Defining Your Own Presentation Types February 2018

(dw:define-presentation-type star ((&key star-list))

 :abbreviation-for ‘(alist-member :alist ,star-list))

(accept ‘(star :star-list ,*star-list*))

or

(dw:define-presentation-type star ()

 :parser ((stream &key original-type)

 (dw:complete-from-sequence

 star-list stream

 :type original-type

 :name-key #’first

 :value-key

 #’tv:menu-execute-no-side-effects)))

(accept ’star)�

:choose-displayer

Specifies a form that does output showing the choice or

choices that can be made for a presentation of this type in a

menu or accept-values context. This output is in place of the

default value, which is displayed if you do not define a

:choose-displayer, and is useful in cases when you want a

sequence or enumeration of choices displayed. There are no

other keyword arguments for this function besides :original-

type and :type.

Use the internal function dw:accept-values-choose-from-

sequence to write this form. The following example is ex-

tracted from the definition for the alist-member presentation

type. The full definition is included in the file sys:dynamic-

windows;sequence-types.lisp.�

Example:

(define-presentation-type alist-member ((&key alist)

&key (convert-spaces-to-dashes nil))

 :choose-displayer ((stream object query-identifier

 &key original-type)

 (accept-values-choose-from-sequence

 stream alist object query-identifier

 :type original-type

 :key #’tv:menu-execute-no-side-effects))

 ...)�

:accept-values-displayer

Specifies a form that does output showing the choice or

choices that can be made for a presentation of this type in a

accept-values context. This output is in place of the default

value normally used, and is useful in cases when you want a

sequence or enumeration of choices displayed. The :accept-

values-displayer form should return five values: object, pre-

203
February 2018 Defining Your Own Presentation Types

sentation-type, presentation, x, and y. The only keyword ar-

gument for this form, besides :original-type and :type is:

:provide-default

Boolean option specifying whether a default

should be provided.

Use the internal macro dw:standard-accept-values-

displayer to write this form. Here is an example, which first

defines the presentation type, and then shows its use. The

defined type does not have a :parser, so it inherits the inte-

ger parser, and it does not allow spelled-out numbers to be

typed in. In the example, dw:present-editable-choice is an

internal function flet’ed by the dw:standard-accept-values-

displayer macro.�

204
Defining Your Own Presentation Types February 2018

(define-presentation-type spelled-integer

 (() &key (count 3) (language :english))

 :abbreviation-for ’integer

 :describer

 ((stream &key plural-count)

 (unless plural-count

 (write-string (if

 (find (char

 (string language) 0)

 "AEIOU") "an " "a ")

 stream))

 (write-string (string-capitalize language) stream)

 (write-string " number" stream)

 (when plural-count

 (write-string "s" stream)))

 :printer

 ((n stream &key acceptably)

 (let ((*print-base* (if (or acceptably (minusp n) (> n count))

 10

 language)))

 (prin1 n stream)))

 :accept-values-displayer

 ((stream object query-identifier &key

 original-type provide-default)

 (dw::standard-accept-values-displayer

 (stream object query-identifier provide-default)

;; First a row of spelled out integers, selectable with the mouse

 (let ((choices (loop for n from 0 to count collect n)))

 (dw:accept-values-choose-from-sequence

 stream choices object query-identifier

 :type original-type))

 (write-string " " stream)

;; Position the cursor here if keyboard entry is used

;; dw::x & dw::y were bound by dw::standard-accept-values-displayer

 (multiple-value-setq (dw::x dw::y)

 (send stream :read-cursorpos))

;; Now a field into which any integer can be entered via keyboard

 (let ((presentation

 (dw::present-editable-choice object

 ’integer

 (and

 (integerp object)

 (≤ 0 object count)))))
;; Return values describing the displayed choices

 (values object original-type presentation dw::x dw::y)))))

205
February 2018 Defining Your Own Presentation Types

(dw:accepting-values ()

 (list (accept ’spelled-integer :default 2)

(accept ’((spelled-integer) :count 10 :language :roman))))�

:default-preprocessor�

Allows preprocessing (coercion) of the default before the user

sees it. This is useful when you want to change the object

gotten from the presentation history so that it conforms to

the data or presentation args. For example, the default-

preprocessor for pathname looks like

(define-presentation-type pathname

 (() &key (default-version :newest default-version-p)

 (default-type nil default-type-p)

 (default-name nil default-name-p)

 dont-merge-default (direction :read)

 (format :normal))

 :default-preprocessor

 ((default)

 (when default-version-p

 (setq default (send default :new-version default-version)))

 (when default-type-p

 (setq default (send default :new-type default-type)))

 (when default-name-p

 (setq default (send default :new-name default-name)))

 default)

The only keyword argument, besides :original-type and :type

is:

:default-type

The presentation type of the default.

If the object cannot be coerced properly, the default prepro-

cessor returns nil. This is useful when the system is map-

ping over elements of the history trying to find a default. If

the default preprocessor returns two values, the second one

should be a presentation-type, which should be at least as

specific as the :original-type argument.

The syntax for the default-preprocessor function is as fol-

lows:

:default-preprocessor (object &key type original-type default-

type) ������

:highlighting-box-function

Specifies a non-standard way of highlighting objects of a par-

ticular presentation type, for example, by drawing circles

around them. The keyword arguments :x and :y are the up-

206
Defining Your Own Presentation Types February 2018

per left corner of the presentation’s bounding box. All draw-

ing to ������ should be done using the generic graphics

primitives, and only ������� drawing should be done. (In oth-

er words, be sure to specify :filled nil.) The outline drawn

by the highlighting box function is cached in the presenta-

tion so that the function does not have to run each time the

presentation should be highlighted. (Note this, because it

means that if you recompile the presentation type, existing

presentations of this type that have already been highlighted

will not get the new definition.)

The syntax for the highlighting function is as follows:

:highlighting-box-function ((stream &key presentation x y

type original-type)�����)

Example:

(define-presentation-type circle-pathname ()

 :abbreviation-for ’pathname

 :highlighting-box-function

 ((stream &key presentation)

 (multiple-value-bind (left top right bottom)

 (dw:box-edges

 (dw:presentation-displayed-box presentation))

 (let* ((width (- right left))

 (height (- bottom top))

 (max-dimension (max width height))

 (center-x (floor (+ left (/ width 2))))

 (center-y (floor (+ top (/ height 2))))

 (diameter (+ max-dimension 10))

 (radius (floor (/ diameter 2))))

 (graphics:draw-circle center-x center-y radius

 :stream stream

 :filled nil)))))�

(present (fs:user-homedir) ’circle-pathname) and then

move the mouse over it.�

:presentation-type-arguments

Specifies a list of type arguments, appearing in the presenta-

tion type’s ������������, that are themselves presentation

types.

define-presentation-type uses this list in writing the appro-

priate :do-compiler-warnings option to the macro if this op-

tion is not supplied explicitly. Also, it is used for caching:

omitting it can make the caches much larger and less effec-

tive.�

:presentation-subtypep

Specifies a comparison function for the case where two type

names are the same but the data arguments are different.

207
February 2018 Defining Your Own Presentation Types

The function receives two arguments, both lists. The first is

a list of the type-name and data arguments of this presenta-

tion type; the second is a list of the type-name and data ar-

guments of the putative supertype, that is, of the presenta-

tion type with which this one is being compared.

dw:presentation-subtypep determines the applicability of

mouse handlers to displayed presentations in a given input

context. By writing the comparison function yourself, you can

control the mouse sensitivity of presentations of the defined

type relative to available mouse handlers.

Because you likely want to use arguments in the ������������

for writing the comparison function, you should use the de-

fault value (nil) for the :data-arguments-are-disjoint option

to define-presentation-type. �

:key-generator

This keyword argument is for the use of internal system

functions only. Do not use it in application code.

:key-function

This keyword argument is for the use of internal system

functions only. Do not use it in application code.

:do-compiler-warnings

Specifies a function for checking that presentation-type argu-

ments appearing in the ������������ and available at compile

time are of the correct type. If you specify such arguments

in the :presentation-type-arguments option, you do not need

to write a :do-compiler-warnings function to handle these.�

:map-over-supertypes

This keyword argument is for the use of internal system

functions only. Do not use it in application code.

:map-over-subtypes

This keyword argument is for the use of internal system

functions only. Do not use it in application code.

:map-over-supertypes-and-subtypes

This keyword argument is for the use of internal system

functions only. Do not use it in application code.

:typep Specifies a function that determines whether a given object

is of the type specified by the data arguments in the presen-

tation type. It takes one argument, the object.

The :typep function is used to determine, for example,

whether a displayed integer presentation in an input context

established by (accept ’((integer 1 10))) can be used as

208
Defining Your Own Presentation Types February 2018

input, that is, whether the displayed integer is in fact be-

tween 1 and 10. In the general case, the :typep function

must consider all of the positional and keyword data argu-

ments to a presentation type in determining if the presenta-

tion object at hand is of the type sought. The data argu-

ments are made lexically available to the :typep function

when it is invoked. (The presentation arguments are not

available.)�

:with-cache-key

This keyword argument is for the use of internal system

functions only. Do not use it in application code.

:data-arguments-are-disjoint

Boolean option specifying whether the arguments included in

the ������������ are to be used as keys for determining the

equivalence class of the presentation type. The default is nil.

If :data-arguments-are-disjoint is nil, then the presentation

type name and the data-arguments are not considered in sub-

type relationships unless you define a :presentation-

subtypep function.

If you use the :presentation-subtypep option to define-

presentation-type for writing the comparison function con-

trolling subtype relationships, then use the default value, nil,

for :data-arguments-are-disjoint. Also use the default if the

data arguments to this type are not appropriate for compari-

son by eql.

For information on writing parsers for presentation types, including exam-

ples, see the section "Defining Your Own Presentation Types", page 185.

For more examples, see the file sys:dynamic-windows;presentation-types.lisp.�

7.3. Miscellaneous Presentation Facilities

Perhaps the most important among the various other presentation facilities is

dw:presentation-subtypep. This function tests to see if one type can be regarded

as a subtype of another. Subtype considerations are key for determining the avail-

ability of presentation objects for input in a given context, and the applicability of

mouse handlers to such objects.

In general, when the input context is for a supertype, all subtypes to that super-

type are acceptable as input. Similarly, if a mouse handler is defined for the su-

pertype, it is also active for all the subtypes. In both cases, the reverse is not true;

that is, when a subtype is specified, a supertype is not acceptable.

In concrete terms, when you are accepting a number, any kind of number
integer, ratio, etc. will do; when you are looking for an integer, any kind of in-

209
February 2018 Defining Your Own Presentation Types

teger will do, but not any kind of number. dw:presentation-subtypep and equiva-

lent internal functions are the basis of such determinations.

The remaining facilities in this subcategory are for taking apart presentations and

manipulating presentation-type arguments. They are:

 dw:presentation-type-p

 dw:presentation-object

 dw:presentation-type

 dw:presentation-equal

 dw:describe-presentation-type

 dw:check-presentation-type-argument

 dw:with-presentation-type-arguments

 dw:with-type-decoded

 dw:presentation-type-name

 dw:presentation-type-default

7.4. Using User-Extendable Data Types as Presentation Types

All user-extendable data types (flavors and structures) are also presentation types.

These types inherit from the sys:expression presentation type. Unless you want to

define more restrictive subtypes of the structured types using data arguments,

there is no particular advantage to defining your own presentation types for them,

unless perhaps to supply a parser or a printer.

You will, however, need to define a print-self method. All presentation types used

as CP arguments must be presentable in a way that accept can handle, since this

is the way that CP unparsing works. The default printer for flavors, using the #<>

syntax, even with princ, is not parsable by read. So, if you are using flavor names

as presentation types for CP arguments, even if the commands are only echoed by

a program frame and not to be entered from the keyboard, you must supply a

sys:print-self method to handle princ.

If you want to introduce data arguments to form subtypes of, for example, a flavor,

the best thing to do is to define a new presentation type for that subtype. In other

words, do not try to use data arguments and :presentation-subtypep to form sub-

types of structures, but define a separate type for each kind of subtype.

If you do define a non-separate presentation type for an extended type, you must

remember to include the :no-deftype t option to define-presentation-type.

If you do not supply a :printer for your new presentation type, the default printer

that it inherits will do princ. If you do not supply a :parser, you will only be able

to type in a structure, and only using #s syntax. This is presumably not very desir-

able if you really want to type in structures or instances, you need to define the

parser.

210
Defining Your Own Presentation Types February 2018

7.5. Writing a Parser

7.5.1. General Approach to Parser Writing

It is a presentation type’s parser function that determines which sequences of

characters are potentially acceptable as members of the type. This is because

accept sets up the input context. The parser does not always do the whole job,

however: If you specify data arguments to restrict type membership, the :typep

function you supply is the final arbiter of inclusion.

In addition to its function of membership determination, it is the parser’s responsi-

bility to provide appropriate prompting, defaults, completion, and the like. Here are

the important requirements of a parser:

The parser and printer must work as a team. A parser must be able parse back in-

to the original object the printed representation the printer produces (at least for

presentation types that are going to be used in command lines).

A parser can process input at several levels. You need to specify what errors to

signal when invalid input is received (see the sys:parse-error function and the er-

rors dw:input-not-of-required-type and dw:object-parsed-not-of-type).

The lowest-level approach is to read individual characters until a valid input is

recognized.

The next level is to call dw:read-standard-token to get an entire token, and then

look it up in a database or otherwise map from the token to an object. This is the

lowest-level method that any normal parser would use. You can use dw:with-

accept-blip-chars to define the set of "trigger" characters, which, when typed, will

cause dw:read-standard-token to return (it returns in the token all the characters

up to, but not including, the blip character). It is the parser’s responsibility to

read out embedded delimiter characters (for example, the dots separating

family.face.size in a character style), but the parser must leave the final delimiter

that terminated the whole parsing process for the caller to deal with (for example,

the space that separates fields in a command line).

 :parser ((stream &key original-type)

 (let ((token (dw:read-standard-token stream)))

 (second (or (assoc token *names-to-objects-mapping-alist*)

 (error ’dw:input-not-of-required-type

 :string token

 :type original-type)))

The next level is to call one of the completion utilities: dw:complete-from-

sequence, dw:complete-input, or dw:completing-from-suggestions and

dw:suggest.

Mouse sensitivity is automatically provided for your parser when you make use of

any of the presentation system input functions, all of which are based on accept.

You can think of accept as having been defined by:

211
February 2018 Defining Your Own Presentation Types

(defun accept (type &key stream etc...)

 (let ((parser-function (lookup-presentation-type-parser type)))

 (dw:with-presentation-input-context (type)

(blip)

 (funcall parser-function stream)

 (t (dw:presentation-blip-object blip)))))

Where dw:with-presentation-input-context establishes the mouse sensitivity con-

text and the parser function is called to do the actual input.

Here are a few general suggestions:

• Avoid the necessity for writing your own parser by making use of those already

provided for the predefined presentation types. That is, use :abbreviation-for

and :expander whenever possible. An exception to this rule, however, is the

next suggestion.

• When the type you are defining is a member of a list that changes dynamically,

write a parser for it using dw:complete-from-sequence rather than defining the

type as an :abbreviation-for using member or alist-member. If the list is a

constant, define the type using those predefined types.

• If you are using an extended type, such as a flavor or a structure, and you want

to use data arguments to further restrict type membership, define a presenta-

tion type for such a restriction. See the section "Using User-Extendable Data

Types as Presentation Types", page 209. Remember that you can use existing

presentation types inside of recursive calls to accept to provide the input con-

text you want. See the section "Writing a Parser That Recursively Calls Accept",
page 211. Make sure your parser only returns one value: The object it accepts as

a member of the type. In rare cases, you can return two values: The second val-

ue must be a presentation type, usually a subtype of the parser presentation

type. See the section "Returning Values from a Parser", page 216.�

7.5.2. Writing a Parser That Recursively Calls Accept

The key points to remember when writing recursive calls to accept are:

• Be careful to read from the correct stream.

• Modify as necessary any default, and pass it on. Include

• ° :default-type

° :default-supplied - the value supplied here gets passed on as the argument to

:provide-default in the recursive call to accept.

Any prompt in the recursive call is output in parentheses after the main

prompt.

212
Defining Your Own Presentation Types February 2018

• Pass on the value of :original-type if appropriate.

• Pass on�the value of :initially-display-possibilities.

You should pass on the original type whenever the inner call to accept is reading

a more general argument and filtering it. You should not pass it on when the in-

ner call reads a piece of a more complex object.

���������

(define-presentation-type system-version-number

 ((&optional for-system))

 :expander ’(integer 1)

 :parser ((stream &key original-type)

 (accept ’(integer 1) :stream stream

 :original-type original-type

 :default

 (when for-system

 (sct:get-system-version for-system)))))

(define-presentation-type system-patch ()

 :printer ((object stream)

 (present (first object) ’sct:system :stream stream)

 (write-char #\space stream)

 (present (second object)

’patch-version :stream stream))

 :parser ((stream)

 (let ((system

 (accept ’(sct:system :patchable-only t)

 :stream stream

 :prompt "system"

 :additional-blip-chars ’(#\space))))

 (unless (dw:compare-char-for-accept

(dw:read-char-for-accept stream) #\space)

 (sys:parse-error "Must terminate with space"))

 (list system (accept ’patch-version

 :stream stream

 :prompt "version"))))

213
February 2018 Defining Your Own Presentation Types

 :description "a system patch version")

(define-presentation-type patch-version ((&optional for-system))

 :printer ((object stream)

 (apply #’format stream "~D.~D" object))

 :parser ((stream &key initially-display-possibilities)

 (let ((major (accept ‘(system-version-number ,for-system)

 :stream stream

 :prompt "major"

 :initially-display-possibilities

 initially-display-possibilities

 :additional-blip-chars

 ’(#\. #\space))))

 (unless (member (dw:read-char-for-accept stream)

 ’(#\. #\space)

 :test #’dw:compare-char-for-accept)

 (sys:parse-error "Must terminate with space or period"))

 (list major (accept ’(integer 1)

 :stream stream

 :prompt "minor"

 :initially-display-possibilities

 initially-display-possibilities)))))

(present (accept ’system-patch) ’system-patch)

If we did ��� pass down the original type in system-version-number, then random

numbers would be sensitive (even though a parser might afterwards reject them).

If we ��� pass the original type down from patch-version to system-version-

number, we would be confusing looking for a list with looking for one of the ele-

ments of that list and patch version numbers would not be sensitive at all.

7.5.3. Writing a Parser That Calls accept Several Times

The delimiter is left in the stream after accept returns. You must read it out be-

tween successive calls to accept. You should leave the final delimiter in the

stream, so that your parser properly obeys the protocol.

The delimiter is used by programs like the Command Processor to determine

whether a command argument field was terminated by a space to move to the next

field, or by a newline to finish the whole command. Leaving the delimiter in the

stream causes all nested levels of accept to properly terminate and return to the

next higher level in the case of the activation (return) character.

If you want to have more field delimiters in effect, use the :additional-blip-chars

option to accept. ���������

214
Defining Your Own Presentation Types February 2018

(define-presentation-type system-patch ()

 :printer ((object stream)

 (apply #’format stream "~A ~D.~D" object))

 :parser ((stream &key default)

 (let ((system (accept ’(sct:system :patchable-only t)

 :stream stream :default (first default)

 :additional-blip-chars ’(#\space)

 :prompt nil)))

 (unless (dw:compare-char-for-accept (dw:read-char-for-accept stream)

 #\space)

 (sys:parse-ferror "You must terminate system name with space"))

 (let ((major (accept ’(integer 1)

 :stream stream

 :default (second default)

 :additional-blip-chars ’(#\.)

 :prompt nil)))

 (unless (dw:compare-char-for-accept (dw:read-char-for-accept stream)

 #\.)

 (sys:parse-ferror "You must terminate major version with period"))

 (let ((minor (accept ’(integer 1)

 :stream stream

 :default (second default)

 :prompt nil)))

 (list system major minor))))))

(define-presentation-type system-patch-with-prompts ()

 :printer ((object stream)

 (apply #’format stream "~A ~D.~D" object))

 :parser ((stream &key default)

 (let ((system (accept ’((sct:system :patchable-only t))

 :stream stream :default (first default)

 :additional-blip-chars ’(#\space)

 :prompt "system")))

 (unless (dw:compare-char-for-accept (dw:read-char-for-accept stream)

 #\space)

 (sys:parse-ferror "You must terminate system name with space"))

 (let ((major (accept ’(integer 1)

 :stream stream

 :default (second default)

 :additional-blip-chars ’(#\.)

 :prompt "major.minor")))

 (unless (dw:compare-char-for-accept (dw:read-char-for-accept stream)

 #\.)

 (sys:parse-ferror "You must terminate major version with period"))

 (let ((minor (accept ’(integer 1)

 :stream stream

 :default (second default)

 :prompt nil)))

 (list system major minor))))))

215
February 2018 Defining Your Own Presentation Types

7.5.4. Parsing Objects for Which There is No Character Representation

The accept function is called with a character stream. It takes care of setting up

the right input context for use of the mouse, but it expects a parser function to be

available to feed the character stream. For this reason:

• Give the presentation type a parser function that either ignores or signals a

parsing error when something is typed on the keyboard. This makes the type

available even for CP command arguments.

• Use dw:with-presentation-input-context to do the input without using the in-

put editor. In this case, the presentation type cannot be used as a CP command

argument. You will also need to extract the presentation value from its associat-

ed blip.

• Use the lower level mouse-oriented dw:tracking-mouse facility instead. In this

case, you must keep in mind that you will see more presentations than just the

ones that match, and must select for yourself.

���������

(define-presentation-type circle ()

 :printer ((object stream)

 (if (graphics:graphics-stream-p stream)

 (graphics:with-room-for-graphics (stream)

 (graphics:draw-circle 150 20 10 :stream stream))

 (princ object stream)))

 :parser ((stream)

 (dw:read-char-for-accept stream)

 (sys:parse-ferror

 "You must click on the desired circle.")))

(present ’foo ’circle)

(accept ’circle)

or

(defun pick-a-circle (&optional (stream *standard-input*))

(dw:with-presentation-input-context (’circle :stream stream) (blip)

 (let ((char (sys:read-character stream :presentation-context t)))

 (error "Don’t know what to do with ~C" char))

 (circle (dw:presentation-blip-object blip))))

(present ’foo ’circle)

(pick-a-circle)

or

216
Defining Your Own Presentation Types February 2018

(defun pick-a-circle (&optional (stream *standard-input*))

 (dw:tracking-mouse (stream :whostate "Pick circle")

 (:presentation (presentation)

 (unless

 (loop as presentation = presentation then

 (dw:presentation-superior presentation)

 while presentation

 doing

 (when (dw:presentation-subtypep

 (dw:presentation-type presentation) ’circle)

 (send stream :set-highlighted-presentation presentation

 "L: Use this circle.")

 (return t)))

 (send stream :set-highlighted-presentation nil)))

 (:presentation-click (presentation click)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (loop as presentation = presentation then

 (dw:presentation-superior presentation)

 while presentation

 doing

 (when (dw:presentation-subtypep

 (dw:presentation-type presentation) ’circle)

 (return-from pick-a-circle

 (dw:presentation-object presentation)))))))

(present ’foo ’circle)

(pick-a-circle)

7.5.5. Returning Values from a Parser

The parser returns two values, the object parsed and its type. The second value is

optional, meaning that if you do not return a second value, it defaults to the type

for the parser. However, if you do return a second value, that is used. Be careful

about accidentally returning values.

������

(define-presentation-type like-expression ()

 :parser ((stream)

 (read-from-string

 (dw:read-standard-token stream))))

������

217
February 2018 Defining Your Own Presentation Types

(define-presentation-type like-expression ()

 :parser ((stream)

 (values

 (read-from-string

 (dw:read-standard-token stream)))))

7.6. Writing a Printer

Writing a printer for a presentation type is straightforward, but there are a couple

of things to note. The first is that the printer and parser must work as a team. A

printer must be able to produce a printed representation of an object that the

parser can parse back into the original object (at least for presentation types that

are going to be used in command lines).

If you are printing your object as a graphic display, you must allow for the fact

that present may be called with your presentation type on streams that do not

support graphical output. Also, if you are outputting in a typescript (as in a Lisp

window, as opposed to your own program framework), the cursor can be anywhere

and should properly be factored into your output. For these reasons:

• Check whether the stream you are using does support graphics

• Or, do not put the graphics in the :printer function itself, but rather use an ex-

plicit dw:with-output-as-presentation.

���������

(define-presentation-type circle ()

 :printer ((object stream)

 (if (graphics:graphics-stream-p stream)

 (graphics:with-room-for-graphics (stream)

 (graphics:draw-circle 150 20 10 :stream stream))

 (princ object stream))))

(present ’foo ’circle)

or

(define-presentation-type circle ()

 :printer ((object stream)

 (princ object stream)))

(defun draw-as-circle (object stream x y)

 (dw:with-output-as-presentation

 (:object object :stream stream :type ’circle)

 (graphics:draw-circle x y 10 :stream stream)))

218
Defining Your Own Presentation Types February 2018

(dw:with-own-coordinates ()

 (draw-as-circle ’foo *standard-output* 150 20)

 (send *standard-output* :set-cursorpos 0 50))

The functions most often used by printers to produce output are princ, format,

write-to-string, present, present-to-string, and dw:with-output-as-presentation.

When you use one of the first three without enclosing it in dw:with-output-as-

presentation, the object is presented as an object of type sys:expression. This is

not, in general, what you want; in most cases you should use one of the latter

three facilities, all of which are based upon present.

You can think of present as having been defined by:

(defun present (object type &key stream etc...)

 (dw:with-output-as-presentation (:object object

 :type type

 :stream stream)

 (funcall (lookup-presentation-type-printer type) object stream)))

The use of present in a printer, like that of accept in a parser, is recursive. Do

not present an object of a specific type as a less specific one. Instead, call a sub-

routine from both printers (or one could have a keyword argument to allow doing

this).

7.7. Table of Facilities for Defining Presentation Types

define-presentation-type �������������������� (������������ � ����������) &key ������

������� ���������������������������� ��������� ���������� �������������������� (�������

nil ������������������)� �������� ���������������� ���������������� ��������������

���������� �������������� �������������������� ��������������������� �����������������

��������� ��������������������������� ��������������������� �������������� ������������

�������������������� ����������������� �������������������� ��������������������

��

Defines a new presentation type.

dw:with-presentation-input-context ������������������ &rest �������� �&optional

����������’dw::.blip.���������������� &body�����������

Binds local environment to the input context of a specified presentation type.

dw:read-standard-token ������ &key���������

Parses string as delimited by activation and blip characters established by

dw:with-accept-activation-chars and dw:with-accept-blip-chars, respectively.

dw:with-accept-blip-chars ���������������������� &key����������� &body�����

Binds local environment to establish additional characters to be used as delimiters

of input blips. The characters are additional only if a previous, higher-level call to

this macro in a nested structure has established an existing set of delimiters; no

predefined set exists.

219
February 2018 Defining Your Own Presentation Types

dw:complete-from-sequence �������� ������ &key ����� ���������� #’string� ������
������ #’identity� ����������� #’scl:true� ������������ dw::*standard-completion-

delimiters*� ���������������� ��������������������� �������������������������������� �����

��������������� ������������������� ������������������ 20� �����������������������

#\space�����������������������
Provides input completion from a sequence of possible completions for input to

accept. Returned values are the object associated with the completion string; t or

nil depending on whether or not the completion was the only one possible; and the

completion string.

dw:complete-input ������ �������� &key ���������������� ���������������� t� ��������

������������� ������������������� ����� ������� ������������������ 20� ��������������

��������� #\space� ��������������������������� t� �������������������������������� �����������

��(not (null dw::documenter))�

Provides input completion for input to accept.

dw:completing-from-suggestions ������� &key ���������������� ������������

dw::*standard-completion-delimiters*� ��������������������� ��������������� ���������

���������� ����� ������� ������������������� ������������������ 20� �������������

��� &body�����

Binds local environment to build a completion table for input to accept. Three val-

ues are returned.

dw:suggest ���� &rest��������

Adds an element to a completion table being constructed inside a dw:completing-

from-suggestions macro.

dw:with-presentation-input-context ������������������ &rest �������� �&optional

����������’dw::.blip.���������������� &body�����������

Binds local environment to the input context of a specified presentation type.

dw:presentation-type-p ����

Returns the presentation type descriptor if its argument is a presentation type, nil

otherwise.

dw:presentation-object ������������

Returns the Lisp object represented by a presentation.

dw:presentation-type ������������

Returns the presentation type of a presentation.

dw:presentation-equal �����������������������������

Determines whether two presentations are "equal", that is, whether they are pre-

senting the same object in the same manner.

dw:describe-presentation-type ���� &optional ������� *standard-output*� �������

������������

Outputs the description of a presentation type provided by the type’s definition

(define-presentation-type macro).

dw:check-presentation-type-argument �������� &rest ���� &key ����������� t�

���������� compiler:default-warning-function� ����������������� compiler:default-

warning-definition-type�

Checks an argument that is expected to be a presentation type for validity.

220
Defining Your Own Presentation Types February 2018

dw:with-presentation-type-arguments ���������������� &body�����

Binds local environment such that the arguments in a presentation-type specifica-

tion are lexically available within the body of the macro.

dw:with-type-decoded �������������� &optional ������������� ����������������������

���� &body�����

Binds local environment such that the type-name and, optionally, arguments in a

presentation-type specification are bound to variables lexically available within the

body of the macro.

dw:presentation-type-name ���� &optional�������

Returns the name of the presentation type from a presentation-type specification.

dw:presentation-type-default �����������������

Returns the current default the object at the top of the type history for a

presentation type, if the type supports a history; otherwise, it returns nil.

221
February 2018 Programming the Mouse: Writing Mouse Handlers

8. Programming the Mouse: Writing Mouse Handlers

This chapter explains what translating mouse handlers are, what they do, and how

to write one.

The first section explains the principles and terminology of translating mouse

handlers. The next section then introduces the facilities provided by SemantiCue

for writing and using them. This section includes the complete definitions of

define-presentation-translator, define-presentation-to-command-translator, and

define-presentation-action. The third section presents a collection of suggestions

and examples to help you write mouse handlers, and the last section discusses how

to investigate and debug presentation problems.

8.1. Mouse Handler Concepts

A translating mouse handler translates an output presentation into an input pre-

sentation. When a program is accepting input, the user can use the mouse to sup-

ply that input by pointing at a presentation previously output on a window and

clicking a mouse gesture. The input is the object previously presented, or some

function of that object. For information on low-level mouse handling functions, see

the section "Mouse Input", page 375.

8.1.1. Mouse Sensitivity

Mouse sensitivity causes immediate context-sensitive help to be displayed when

Genera is accepting input. As the user moves the mouse around the screen, the

mouse documentation line describes what would happen if a mouse button were

clicked with the mouse at its current position. Any relevant presentation is high-

lighted by drawing a box around it.

Mouse sensitivity is a function of the current input context, the location of the

mouse, and the chord of modifier keys being pressed.

• Input context: a presentation type describing the type of input currently being

accepted.

• Mouse location: the mouse is pointing either at a presentation or at a blank

area of the screen.

• Modifier keys: control, meta, super, hyper, and shift. These expand the space of

available gestures beyond what is available from just three mouse buttons.

222
Programming the Mouse: Writing Mouse Handlers February 2018

8.1.2. Mouse Handlers

All aspects of mouse sensitivity and mouse input are controlled by mouse handlers.

A mouse handler specifies the conditions under which it is applicable, a description

to be displayed in the mouse documentation line, and what to do when the handler

is invoked by clicking a mouse button. The "relevant" presentation to be highlight-

ed is a presentation that has at least one applicable handler that could be invoked

by clicking a mouse button with the mouse at its current location and the modifier

keys in their current state. If there is no applicable handler, there is no mouse-

sensitivity highlighting.

Each mouse handler has two associated presentation types, its ������������������

���� and ��������������������, which are the primary definition of its applicability.

The basic idea is that a mouse handler translates an output presentation into an

input presentation. Thus a handler is applicable if the previously-output presenta-

tion at which the mouse is pointing matches ���������������������� and the input

context matches ��������������������. Each mouse handler is attached to a particu-

lar mouse gesture, which is a combination of a mouse button and a set of modifier

keys. Clicking the mouse button while holding down the modifier keys invokes the

handler.

���������������������� is sometimes called ��������������������������� and ���

����������������� is sometimes called �������������������������.

A mouse handler is either a translator or an action. A translator produces an in-

put presentation, consisting of an object, a presentation type, and some options, to

satisfy the program accepting input. The result of a translator might be returned

from accept, or might be absorbed by a parser and provide part of the input. An

input presentation is not actually represented as an object. Instead, a translator’s

body returns multiple values. The object is the first value. The presentation type

is the second value; it defaults to �������������������� if the body returns only one

value. Remaining values after the second are alternating keywords and values for

options.

An action does not actually produce any input. Instead, it performs some side ef-

fect that will help the user choose the desired input with a second gesture. Exam-

ples of actions include popping up a menu of translations and actions, expanding a

subdirectory name in a directory listing to show the files contained in the subdi-

rectory, and changing the viewspecs of a presentation to show more or less detail.

8.1.3. Presentation Type Matching for Mouse Handlers

A mouse handler’s ���������������������� matches a presentation at which the

mouse is pointing if that presentation’s presentation type is a subtype of �����

�����������������. Thus a presentation inherits mouse handlers from supertypes of

the presentation type. A mouse handler with a ���������������������� of t is appli-

cable to all presentations, since t is a supertype of every type.

Mouse handler matching also depends on the presented object, in two ways.

First, ���������������������� can be ������� to another presentation type that is not

a subtype, combined with a predicate that tests the presented object. For example,

223
February 2018 Programming the Mouse: Writing Mouse Handlers

a handler whose ���������������������� is (and integer (satisfies oddp)) tentatively

matches a presentation of type integer, even though integer is not a subtype of

(and integer (satisfies oddp)). The handler is only applicable if the presented in-

teger satisfies the oddp predicate. Another example is a handler whose �����

����������������� is (sequence pathname), with the mouse pointing at a presenta-

tion of type vector. vector is not a subtype of (sequence pathname), however

(sequence pathname) reduces to vector and a predicate that tests that each ele-

ment of the vector is a pathname.

Second, certain presentation types are standins for a more specific presentation

type determined by the type of the object presented. Handler matching and mouse

sensitivity use the more specific type. These presentation types are sys:expression,

sys:form, and sys:code-fragment. For instance, values printed by the Lisp Listen-

er are sys:expression presentations, but for purposes of mouse sensitivity, han-

dlers whose ���������������������� is a supertype of the actual type of the value

are considered, in addition to handlers whose ���������������������� is a supertype

of sys:expression. For example, a handler whose ���������������������� is integer

matches a presentation whose type is sys:expression if the object presented is of

type integer or a subtype of integer.

A mouse handler’s �������������������� matches the input context if ����������������

���� is a subtype of the input context presentation type. In other words, if the han-

dler is a translator, the input presentation that the handler produces must be a

member of the presentation type that the program doing input is expecting. A

mouse handler with a �������������������� of nil is applicable to all input contexts,

since nil is a subtype of every type. For historical reasons, t as a ����������������

���� is a special case and is treated as a synonym for nil.

Translator matching also depends on the object returned by the handler. The con-

text type can be ������� to another presentation type that is not a subtype, com-

bined with a predicate that tests the object returned by the translator. For exam-

ple, consider a translator whose �������������������� is cp:command and an input

context of (cp:command :command-table "Global"). The translator could return

any command, but the input context only accepts commands in the global command

table. cp:command is a supertype of (cp:command :command-table "Global"),
not a subtype of it; however, the input context type reduces to cp:command along

with a predicate that tests whether the command is available in the global com-

mand table. Thus the translator tentatively matches and its body is executed. If

the object returned by the translator satisfies the predicate, the translator is appli-

cable and contributes to mouse sensitivity. If not, the translator is ignored.

Note that, because of type reduction to a type and a predicate, mouse handler

matching is not simply

 (and (dw:presentation-subtypep

 (dw:presentation-type ������������)

 ����������������������)

(dw:presentation-subtypep

���������������������

 (dw::presentation-input-context-presentation-type

 �������)))

224
Programming the Mouse: Writing Mouse Handlers February 2018

You can think of dw:presentation-subtypep as a first approximation to the mouse

handler type matching test, however the actual test is less restrictive.

FROM SIDE
TO SIDE

context-type

handler-to-type
presentation-type

Translating Handler

handler-from-type

Presentation Type

Context:

(present OBJECT ’presentation-type)

(define-presentation-translator trans

(from-type to-type (object) ...)

OBJECT
OBJECT

(accept ’context-type)

Figure 21. Mouse handler applicability

8.1.4. Nested Input Contexts

The input context is not simply a presentation type. Input contexts can be nested,

so several different context presentation types can be available to match mouse

handler ���������������������. One level of input context is established by calling

accept, or by calling a higher-level function that in turn calls accept. The macros

dw:with-presentation-input-context and dw:with-presentation-input-editor-

context also establish a level of input context.

One source of input context nesting is compound objects. For example, when read-

ing the argument to the Show File command, the input context contains

pathname nested inside of (sequence pathname). Acceptable keyboard input is a

sequence of pathnames separated by commas. A mouse handler that translates to a

(sequence pathname) supplies the entire argument to the command, and the com-

mand processor moves on to the next argument (the keywords). A mouse handler

that translates to a pathname is also applicable. It supplies just one element of

the sequence being built up, and the command processor awaits additional input

for this argument, or entry of a Space or Return to terminate the argument.

A second source of input context nesting is dynamic nesting of program levels,

such as when a presentation type’s parser calls accept. For example, the complete

set of nested input contexts when reading the argument to the Show File com-

mand, from the inside out, are

225
February 2018 Programming the Mouse: Writing Mouse Handlers

((dw::in-band-menu) :name "Menu of completions")

pathname

si:input-editor

((sequence pathname))

si:input-editor

The pathname and (sequence pathname) contexts are associated with accepting

an object. Mouse handlers for these contexts involve files and pathnames. The

si:input-editor contexts are associated with accepting a sequence of characters

that can be edited and parsed. Mouse handlers for si:input-editor context involve

marking and yanking text. The dw::in-band-menu context is associated with path-

name completion; a mouse handler for this context pops up a menu of possible

completions. Pathname acceptance, completion, and input editing are three differ-

ent levels of program.

Another example is the nested input contexts established by (accept ’cons). From

the inside out, these are

(and ((sys:expression)) (satisfies listp))

si:input-editor

cons

si:input-editor

The and context is present because the parser for cons (inherited from list) calls

the general expression parser with a restriction that the result must be a list.

When there are multiple nested contexts, mouse sensitivity considers only the in-

nermost context that has any applicable mouse handlers for the currently pressed

chord of modifier keys. Contexts nested outside that one contribute only to the list

of other available modifier chords displayed in the second line of the mouse docu-

mentation line.

8.1.5. Nested Presentations

There can be more than one presentation at the mouse location, since presenta-

tions can overlap on the screen. Normally, when two presentations overlap one is

nested inside the other. One cause of nesting is presentations of compound objects.

For example, a presentation of a list encloses presentations of its elements, and a

presentation of a formatted table encloses presentations of its content cells. Anoth-

er cause of nesting is presentations that consist of other presentations. For exam-

ple, the printer for a sys:function-spec presentation calls prin1 recursively, which

produces a sys:expression presentation. The sys:expression is nested inside the

sys:function-spec; unlike the case of a list, both presentations occupy the same re-

gion of the window. A third cause of nesting is raw-text presentations; nested in-

side that sys:expression presentation is a presentation of the string of characters

displayed as the printed representation of the expression. The priority for mouse

selection of graphics presentations, by the way, is the same as the temporal priori-

ty used to determine how to refresh overlapping graphic objects.

When there is more than one candidate presentation at the mouse location, Seman-

tiCue must decide which presentation is the sensitive one. It starts with the inner-

most presentation at the mouse location and works outwards through levels of

226
Programming the Mouse: Writing Mouse Handlers February 2018

nesting until a sensitive presentation is discovered. This is the innermost presenta-

tion that has any applicable mouse handlers, in any of the nested input contexts,

for the currently pressed chord of modifier keys. Next SemantiCue checks for the

case of nested presentations that occupy exactly the same region of the window, as

in the sys:function-spec example above. If the sensitive presentation is nested in

this way, and its containing presentation is sensitive in the same context, or in a

context nested inside that one, the containing presentation becomes the sensitive

presentation and the search continues. Continuing the search in this way ensures

that a more specific presentation is sensitive, for example, sys:function-spec

rather than sys:expression. Note that nested input contexts are searched first, be-

fore nested presentations.

The above algorithm is slightly modified to try to choose a more appropriate sensi-

tive presentation: mouse handlers with certain options do not receive equal consid-

eration when the sensitive presentation is being chosen.

:context-independent t

Context-independent mouse handlers do not affect the choice of

sensitive presentation and sensitive context, unless there are

no applicable context-��pendent mouse handlers. In that case,

the innermost presentation sensitive to any context-independent

mouse handlers for the currently pressed chord of modifier

keys becomes the sensitive presentation. Use this option for

handlers that should be available in all contexts, with a ���

����������������� of t. The presentation debugging menu (on

#\s-Mouse-right) is a good example.

:suppress-highlighting t

This handler does not affect the choice of sensitive presenta-

tion. Use this option for handlers that do not apply to any par-

ticular presentation: the system menu (on #\sh-Mouse-right)

and the window operations menu (on #\m-sh-Mouse-right) are

good examples. The ���������������������� is almost always t

when you use this option.

:suppress-highlighting :defines-menu

This handler interacts with the value of :context-independent

and also depends on the value of :defines-menu. It is used to

prevent the highlighting of some presentations under a certain

set of circumstances. The complete description of how this

works is included in the documentation of the :suppress-

highlighting option for the various translator-definition

macros. (See the function define-presentation-translator, page

229.)

The raw text characters underlying textual (as opposed to graphical) presentations

have presentation type dw:raw-text. The object is a list whose first element is a

string and whose second element is the position of a character in that string.

227
February 2018 Programming the Mouse: Writing Mouse Handlers

You can write mouse handlers that apply to blank areas of the window, where

there are no presentations. Use dw:no-type as the ���������������������� and speci-

fy the :blank-area t option. There is no highlighting when such a mouse handler

is applicable, since there is no presentation to highlight.

8.1.6. Mouse Gestures

Each mouse handler is attached to a particular mouse gesture, which is a combina-

tion of a mouse button and a set of modifier keys. Mouse gestures are named by

keyword symbols. The use of mouse gestures, rather than mouse characters such

as #\m-c-sh-Mouse-Middle, provides a level of indirection that makes it possible to

customize the user interface by changing the mapping between mouse gestures

and mouse characters. It also allows the possibility of adaptation of tablets and

single-button mice.

There are two kinds of mouse gesture name, logical and physical. A physical ges-

ture name looks like :meta-control-shift-middle. It describes which keys and but-

ton are pressed to create the gesture. A logical gesture name looks like :edit-

definition. It describes the type of operation invoked by the gesture. The advan-

tage of using logical gesture names is that it encourages a more consistent user

interface by ensuring that similar operations in different contexts are on the same

gesture. This makes the system easier to learn and explore. Most programs should

use logical gesture names in preference to physical gesture names. The physical

names are sometimes appropriate when the desired user interface is defined in

terms of actual buttons rather than in terms of consistency with the rest of the

system.

The special mouse gesture name nil is used in handlers that are not directly in-

vokable by mouse gesture. Such a handler can only be invoked from a menu. The

:menu option should be used to specify which menu; the default is the standard

click-right menu.

The special mouse gesture name t means that the handler is available on every

gesture.

The following logical mouse gesture names are defined in Genera. You can add

your own, using (setf (dw:mouse-char-for-gesture ������) ����������). The map-

ping of these logical gesture names to mouse characters follows the following con-

ventions.

The left button is generally used for selection. The right button is generally used

for menus. The shift key is used to simulate the existence of six buttons instead of

three and does not have any significance of its own. Gestures with no modifiers

other than shift are used for the most common operations specific to a particular

application program. The meta key provides additional operations, often for a larg-

er presentation. Meta-shift is for commands that apply to the whole window. The

control key is for text marking and yanking commands. Control and meta together

are for debugging-related commands. The super key is for commands related to

presentations themselves, rather than to the objects presented. The hyper key is

reserved for customer use.

228
Programming the Mouse: Writing Mouse Handlers February 2018

�������������������� ���������������� �����������

:select Left Select the presented object

:describe Middle Describe the presented object

:select-and-edit Middle Edit an editable field

:menu Right Pop up a menu

:alternate-select Shift-Left Select in a modified way

:select-and-activate Shift-Left

:inspect Shift-Middle

:delete Shift-Middle

:remove Shift-Middle

:system-menu Shift-Right Pop up the system menu

:hold-and-mark-region Control-Left Highlight some text

:yank-word Control-Middle Copy text into input editor

:marking-and-yanking-menu

 Control-Right Pop up a menu of text

 operations

:mark-word Control-Shift-Middle Highlight some text

:edit-definition Meta-Left

:edit-function Meta-Left

:evaluate-form Meta-Middle

:disassemble Meta-Middle

:window-operation-menu

 Meta-Shift-Right Pop up a menu of window

 operations

:set-breakpoint Control-Meta-Left Breakpoint if instruction

executed

:clear-breakpoint Control-Meta-Middle

:set-complex-breakpoint

 Control-Meta-Right

:modify Control-Meta-Right Change contents of presented

 location

:monitor-location Control-Meta-Shift-Left Breakpoint if location modified

:unmonitor-location Control-Meta-Shift-Middle

:select-object Super-Left Forcibly select the presented

 object

:describe-presentation Super-Middle

:presentation-debugging-menu

 Super-Right

:reprint-differently Super-Shift-Left Change viewspecs

 heuristically

:edit-viewspecs Super-Shift-Middle Change viewspecs via menu

8.1.7. Actions Versus Translations

������������ return values, but ������� do not they cause ������������. Normally,

the purpose of the side effect should be to aid in getting some more input. An ac-

tion, for example, can add a menu of possibilities.

229
February 2018 Programming the Mouse: Writing Mouse Handlers

Actions are almost always defined for the t context, since they are not returning

values for anything. Actions must always have :documentation.

8.2. The Facilities

This section introduces the facilities for writing mouse handlers and controlling

their application: macros for writing the handlers, input context and input blip fa-

cilities, and functions for using mouse gestures.

8.2.1. Mouse Handler Facilities

A large number of predefined mouse handlers are already included in SemantiCue.

Clicking Right on a displayed presentation in a Dynamic Lisp Listener throws up a

menu of handlers applicable to the presentation object.

You define your own, application-specific handlers using these definition macros

and their adjuncts:

 define-presentation-translator

 define-presentation-to-command-translator

 define-presentation-action

 dw:handler-applies-in-limited-context-p

 dw:presentation-subtypep

 dw:delete-presentation-mouse-handler

8.2.1.1. The define-presentation-translator Macro
define-presentation-translator� �������������(��������������������������

������������������&key��������(��������:select)�����

���������������������������������(�����t) (����

�����������������nil)������������������������

����������������������������������)��������

&body�����

Defines a mouse handler that translates a displayed presentation into an in-

put object. Typically, the "translation" is a matter of extracting a nested

object, for example, a host object from a pathname object.

���� The name of the handler.

����������������������

The type of the displayed presentation.

��������������������

The presentation type of the returned object.�

:tester Specifies the parameter list and body for a tester function.

The tester function determines whether the handler applies

to the current presentation, if it is otherwise applicable

based on the current presentation type and input context.

230
Programming the Mouse: Writing Mouse Handlers February 2018

The parameter list consists of a positional argument the

current presentation object and a subset of the keywords:

:presentation The presentation at the mouse location

that matches ����������������������

:presentation-type The presentation type of that presenta-

tion

:input-context The input context that matches ���

�����������������

:gesture The mouse gesture that could invoke the

handler

:mouse-char The corresponding mouse character

:window The window containing the presentation

:handler The handler itself

These keywords are the same as those available for inclusion

in the argument list for the body of the handler, and are al-

so documented under ������� in the handler documentation;

they are also documented separately (see the function

define-presentation-action, page 246.).

Note: inefficient testers can degrade the performance of your

program. Tester functions must be capable of rapid execu-

tion. Also, do not use the body of your handler as an implicit

tester if it does a large amount of consing or in other ways

consumes resources; this will similarly affect program per-

formance. For more information, see the section "Some Effi-

ciency Caveats for Mouse Handlers", page 255.

For functions used in :testers, see the function dw:handler-

applies-in-limited-context-p in ���� ��������� ����������. See

the function dw:presentation-subtypep in ���� ���������

����������.

:gesture Specifies the mouse gesture on which the handler is avail-

able.

The gesture is specified by its symbolic name rather than as

a mouse character. See the section "Mouse Gestures", page

227. The default gesture is :select, which is the same as

:left.

To assign your own symbolic name to a mouse character, use

the following form:

(setf (dw:mouse-char-for-gesture ������) #\mouse-�)

Specifying this option with nil, that is :gesture nil, results

231
February 2018 Programming the Mouse: Writing Mouse Handlers

in the handler being unavailable on any gesture, only in a

handler menu.

Specifying this option with t, that is, :gesture t, results in

the handler being available on all gestures.

:documentation

Specifies a string or a function returning a string to be used

as mouse and menu documentation for the handler.

The argument to :documentation can be a list of the form

((object) . body), where object is bound to the presentation-

object of the presentation to which the mouse points, and

body is a form referencing this object.

:suppress-highlighting

Suppresses the contribution of a mouse handler to mouse-

sensitivity highlighting, in circumstances that depend on the

value of the option. A mouse handler whose highlighting is

suppressed will not affect the choice of which of the nested

presentations is sensitive, nor the choice of which of the

nested contexts is sensitive. The choice of sensitive presenta-

tion and context is determined by other applicable mouse

handlers. Once that choice has been made, if the mouse han-

dler whose highlighting is suppressed is applicable for the

chosen presentation, context, and modifier keys, then this

handler is available too.

When the :context-independent t and :suppress-

highlighting options are used together, :suppress-

highlighting only controls whether or not the sensitive pre-

sentation is highlighted. When context-dependent mouse han-

dlers are applicable for the currently pressed modifier keys,

context-independent mouse handlers never affect the choice

of which of the nested presentations is sensitive, nor the

choice of which of the nested contexts is sensitive. If only

context-independent mouse handlers are applicable for the

currently pressed modifier keys, the innermost presentation

with any applicable handlers is sensitive, and it is highlight-

ed unless all of those handlers have their highlighting sup-

pressed.

Note that :suppress-highlighting is not used with a :blank-

area t mouse handler. When a blank area is mouse-sensitive,

there is never any highlighting, since there is no presenta-

tion to be highlighted.

The possible values of the :suppress-highlighting option are:

nil Highlighting is never suppressed. This is

the default.

232
Programming the Mouse: Writing Mouse Handlers February 2018

t Highlighting is always suppressed. Use

this option for handlers that do not apply

to any particular presentation; the sys-

tem menu and the window operations

menu are good examples. The �����

����������������� is generally t when you

use this option.

:defines-menu Use this only with a mouse handler that

has the :defines-menu ������������ op-

tion and does not have the :context-

independent t option. Highlighting is

suppressed unless there are no applicable

mouse handlers for the currently pressed

modifier keys whose highlighting is not

suppressed. In that case, :suppress-

highlighting :defines-menu handlers are

considered. If any of these define menus

containing "interesting" items, the "in-
teresting" menu for the innermost pre-

sentation and context is used and that

presentation is highlighted. If not, the

"uninteresting" menu for the innermost

presentation and context is used, but

nothing is highlighted. A menu item is

"uninteresting" if it has the :defines-

menu or :suppress-highlighting option

with a non-null value.

Use :suppress-highlighting :defines-

menu to prevent a menu from interfer-

ing with the choice of the appropriate

sensitive presentation and input context,

which will be based on applicable han-

dlers on mouse gestures that use the

same chord of modifier keys but other

buttons. The standard menu on mouse-

right is a good example.

:within-menu Highlighting is not suppressed when the

mouse handler is directly available on a

gesture. The only effect of this option is

to make this handler "uninteresting"
when it appears in a menu defined by a

:suppress-highlighting :defines-menu

handler. This prevents this handler from

making an uninteresting presentation be

highlighted by a menu. Use this for very

general mouse handlers, for example,

233
February 2018 Programming the Mouse: Writing Mouse Handlers

"Edit Viewspecs". The heading of a direc-

tory listing is sensitive for "R: Menu",
but the menu that is popped up contains

only "Edit Viewspecs" and some other

menus. Thus :suppress-highlighting

:within-menu is used on "Edit

Viewspecs" to prevent the directory list-

ing from being highlighted, which would

be distracting. The directory listing is

still highlighted for "Edit Viewspecs"
when the super and shift modifier keys

are pressed.�

:menu Specifies the name of a menu in which the handler is to be

included. The default is t, the name of the standard click-

right handler menu. nil means do not include the handler in

any menu.

You can define you own handler menu with define-

presentation-action: See the function define-presentation-

action, page 246.�

:context-independent

Boolean option specifying whether handler behavior (that is,

applicability to displayed presentations) is the same for all

contexts in a nested-context structure (accept being called

recursively); the default is nil.

This option is supplied with t, for example, if the handler’s

�������������������� is t (any context), and its contract is to

print additional information about a particular presentation

(that is, only the output matters).

:context-independent should be set to t only if the ���

����������������� is t and when the :do-not-compose option

has been set to t. If either of these does not hold, the com-

piler will issue a warning if you try to set :context-

independent to t.

For more information on context matching and related han-

dler issues, see the section "How Mouse Handlers Are

Found".

:priority Specifies a number adding to the priority of this handler rel-

ative to other applicable handlers defined on the same ges-

ture; the default is 0.

Handler applicability to displayed presentations depends on

two factors: the presentation type of the presentation and

the current input context.

234
Programming the Mouse: Writing Mouse Handlers February 2018

In some cases, more than one applicable handler might be

available on a given mouse gesture. In such cases, which

handler is the one for that gesture is determined by handler

precedence or priority. The system automatically assigns pri-

orities according to the matching factors as follows: the pri-

ority is incremented by 4 when the presentation type match-

es; and by 2 when the context type matches. (Note: in the

case of priority assignment, "matches" means "having the

identical presentation-type name" contrary to the meaning

of this term in the general case, where it connotes hierarchi-

cal type relationship.)

For example, in a Lisp Listener in the command-or-form

context, an accept of a pathname appears something like the

following:

(accept ’pathname)

Enter the pathname of a file [default

Q:>rel-7>sys>doc>uims>ui-dict2.sar]: ==>

Q:>rel-7>sys>doc>uims>ui-dict2.sar

#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest"

FS:LMFS-PATHNAME�

The default pathname was accepted causing it to be present-

ed as both a pathname presentation (Q:>rel-

7>sys>doc>uims>ui-dict2.sar) and a sys:expression presenta-

tion (#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest").

Two handlers defined on the :select gesture are applicable to

both presentations in top-level command context. The first is

si:com-show-file, applicable to expression presentations with

a pathname object type, or pathname presentations of any

object type. The second is dw::quoted-expression, applicable

to expression presentations of any object type. The following

table shows the priorities determined for them by the system

relative to the two presentations in the above example:

Pathname Presentation Expression Presentation

Q:>rel-7>sys>doc>... #P"Q:>rel-7>sys>doc>...

Show File 4 0

Quoted Expression n/a 5.5�

It was the system programmer’s intent that the quoted ex-

pression handler should be displayed in the mouse documen-

tation line whenever the mouse is over a presentation of the

sys:expression type, regardless of what other applicable han-

dlers might be available on the :select gesture. Therefore, in

the definition for this handler, the value of the :priority op-

235
February 2018 Programming the Mouse: Writing Mouse Handlers

tion was made 1.5. This is added to the system-generated

priority of 4 in the bottom right cell of the table for a total

score of 5.5, enough to give this handler precedence even

over another handler for sys:expression that would have pri-

ority 4.�

:exclude-other-handlers

Boolean option, used with :gesture t handlers, specifying

whether to exclude non-t handlers.

For example, any gesture selects a menu item. The transla-

tor that implements this has a :tester option that checks,

among other things, for the keyword :no-select in the menu-

item list: See the section "The "General List" Form of Item",
page 425. If the menu item includes the :no-select keyword,

the translator does not apply. But, if :exclude-other-

handlers t were not specified for this translator, other trans-

lators would still apply to the :no-select item’s presentation,

like the :menu (�������) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presenta-

tion it matches".

:blank-area

Boolean option specifying whether the handler is active when

the mouse cursor is over areas of the screen in which no

presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank

areas are not active over displayed presentations, use the

dw:no-type presentation type as the ����������������������

positional argument to the handler.

:do-not-compose

Boolean option specifying when t that the value of ���� is

not to be computed to determine if the handler satisfies the

current input context. The default is nil: the body is com-

puted.

To see the need for this option, consider the default behav-

ior. For example, if 1) you have a translating mouse handler

that returns integer objects; 2) the mouse cursor is currently

over the handler’s ���������������������� ; 3) any shift keys

modifying the mouse gesture the handler is on are pressed;

and 4) the current input context is for integers, the default

system behavior would be to determine what the body of the

handler returns. If it returns anything other than a single

value of nil, then the handler is applicable; this fact is indi-

cated in the mouse documentation line and the presentation

is highlighted (if it’s not already).

236
Programming the Mouse: Writing Mouse Handlers February 2018

Now, if the input context in this situation was for odd inte-

gers, rather than for any integer that is, (accept ’((and

integer ((satisfies oddp))))) by default this handler

would still be run to see if it returns an ��� integer, that is,

that the returned object will satisfy the input context re-

quirements. Only if this is the case will the handler be

available. This is the motivation for the default behavior.

However, some translating handlers have side effects, for

example, popping up a menu or asking a question. It is un-

likely that you want such events occurring merely when a

user of your program waves the mouse over a presentation.

You want this behavior suppressed until the user actually

clicks on the presentation. :do-not-compose t is how you ex-

press this intent.

As a general rule, avoid defining translators that have side

effects. One way of doing this is by defining side-effecting

handlers explicitly, with define-presentation-action. Another

way is to make the translator produce a command and put

the side effects in the body of the command.

������� The argument list for the body of the handler. The argu-

ment list consists of one positional argument, the object that

the mouse cursor is over, and keyword arguments from a

predefined set.�

The following predefined keywords are available for inclusion

in the argument list to a mouse handler body. Their inclu-

sion makes the named parameters available for use in the

body.�

:input-context

The current presentation-input context.�

:presentation

The presentation instance that the mouse cursor is

over.�

:handler The handler object of which the body is a part.�

:mouse-char

The mouse character that triggered the handler.

(This keyword cannot be used in the :tester func-

tion parameter list.)�

:window The window object in which the current presenta-

tion occurs.�

237
February 2018 Programming the Mouse: Writing Mouse Handlers

:x The x-coordinate of the mouse cursor when the

mouse was clicked.

:y The y-coordinate of the mouse cursor when the

mouse was clicked.

:gesture The mouse gesture (symbolic name) this handler is

on.

The parameter list can specify only those keywords that are

explicitly used, for example, (object &key window x y).�

The ���� of your handler must return at least one value, the object. Op-

tionally, it can return the presentation type of its result, which defaults to

�������������������� if only one value is returned. Also optionally, it can also

return keyword-value pairs that you define. In this case, you must return

the presentation type of the object as well. The object is the first item re-

turned, its presentation type the second; these are followed by the keyword-

value pairs. If the desired object is nil, you must return two values, since a

single value of nil means the mouse handler does not apply.

One predefined keyword is available, :activate. Supplied with nil, the acti-

vation of input entered via this handler is suppressed, with t it’s promoted.

The following example is taken from the system code:

(define-presentation-translator command-name-to-command

 (cp:command-name cp:command)

 (command-name)

 (values

 ‘(,command-name) ’cp:command :activate nil))�

This translator allows commands displayed as command-name presentations

 for example, in the display generated when you press ���� after entering

the first word of a command to the command processor prompt to be

used as command object input. Because :activate nil is provided, the com-

mand is not executed immediately after clicking on its name; the user must

press ������ to activate the command. This allows the opportunity to enter

arguments.

The values returned by the translator will be used to construct a presenta-

tion blip. You do not make the blip; the handler takes care of this automat-

ically. Any keywords the translator returns are included in the options field

of the blip. Options can be extracted from blips with the dw:presentation-

blip-options function. For an overview of this and related functions, see the

section "Presentation Input Blip Facilities", page 254.

For an overview of define-presentation-translator and related facilities,

see the section "Programming the Mouse: Writing Mouse Handlers", page

221. For information on handler lookup and performance issues, see the sec-

tion "How Mouse Handlers Are Found".

238
Programming the Mouse: Writing Mouse Handlers February 2018

Here is an example that defines a translating handler to extract the version num-

ber, an integer object, from a pathname presentation. Users have the options of

typing in a version number to the input prompt or clicking on a pathname presen-

tation that included a version number.

(define-presentation-translator pathname-version

 (pathname integer ;From pathname to integer

 :documentation "Return file version number"

 :gesture :middle

 ;; Only works for pathnames with numeric versions

 :tester ((path) (integerp (pathname-version path))))

 (path)

 (pathname-version path))

(present #P"KOALA:>KJones>foo.lisp.17")

(accept ’integer)

After compiling this translator, try doing a Show Directory listing, then evaluate

(accept ’integer). In this input context, move the mouse cursor over one of the

pathnames and notice that the top mouse documentation line now says Mouse-M:

Return file version number; Mouse-R: Menu. Clicking Middle enters the file version

number as an integer object.

8.2.1.2. The define-presentation-to-command-translator Macro
The define-presentation-to-command-translator macro creates handlers for per-

forming a single kind of translation: from presentations to Command Processor

commands.

define-presentation-to-command-translator� �������������(�������������

�����&key��������(��������:select)��������������

����������������������(�����t)�(��������

������������nil)��������������������������������

�������������������������)���������&body�����

Defines a mouse handler that translates from a displayed presentation to a

list whose first element is a command function name and whose remaining

elements are argument values.

���� The name of the handler. Usually, you give the handler the

same name as the Command Processor command.

�����������������

The type of the displayed presentation for which the handler

is intended.�

:tester Specifies the parameter list and body for a tester function.

The tester function determines whether the handler applies

to the current presentation, if it is otherwise applicable

based on the current presentation type and input context.

The parameter list consists of a positional argument the

current presentation object and a subset of the keywords:

239
February 2018 Programming the Mouse: Writing Mouse Handlers

:presentation The presentation at the mouse location

that matches ����������������������

:presentation-type The presentation type of that presenta-

tion

:input-context The input context that matches ���

�����������������

:gesture The mouse gesture that could invoke the

handler

:mouse-char The corresponding mouse character

:window The window containing the presentation

:handler The handler itself

These keywords are the same as those available for inclusion

in the argument list for the body of the handler, and are al-

so documented under ������� in the handler documentation;

they are also documented separately (see the function

define-presentation-action, page 246.).

Note: inefficient testers can degrade the performance of your

program. Tester functions must be capable of rapid execu-

tion. Also, do not use the body of your handler as an implicit

tester if it does a large amount of consing or in other ways

consumes resources; this will similarly affect program per-

formance. For more information, see the section "Some Effi-

ciency Caveats for Mouse Handlers", page 255.

For functions used in :testers, see the function dw:handler-

applies-in-limited-context-p in ���� ��������� ����������. See

the function dw:presentation-subtypep in ���� ���������

����������.

:gesture Specifies the mouse gesture on which the handler is avail-

able.

The gesture is specified by its symbolic name rather than as

a mouse character. See the section "Mouse Gestures", page

227. The default gesture is :select, which is the same as

:left.

To assign your own symbolic name to a mouse character, use

the following form:

(setf (dw:mouse-char-for-gesture ������) #\mouse-�)

Specifying this option with nil, that is :gesture nil, results

in the handler being unavailable on any gesture, only in a

handler menu.

240
Programming the Mouse: Writing Mouse Handlers February 2018

Specifying this option with t, that is, :gesture t, results in

the handler being available on all gestures.

:documentation

Specifies a string or a function returning a string to be used

as mouse and menu documentation for the handler.

The argument to :documentation can be a list of the form

((object) . body), where object is bound to the presentation-

object of the presentation to which the mouse points, and

body is a form referencing this object.

:suppress-highlighting

Suppresses the contribution of a mouse handler to mouse-

sensitivity highlighting, in circumstances that depend on the

value of the option. A mouse handler whose highlighting is

suppressed will not affect the choice of which of the nested

presentations is sensitive, nor the choice of which of the

nested contexts is sensitive. The choice of sensitive presenta-

tion and context is determined by other applicable mouse

handlers. Once that choice has been made, if the mouse han-

dler whose highlighting is suppressed is applicable for the

chosen presentation, context, and modifier keys, then this

handler is available too.

When the :context-independent t and :suppress-

highlighting options are used together, :suppress-

highlighting only controls whether or not the sensitive pre-

sentation is highlighted. When context-dependent mouse han-

dlers are applicable for the currently pressed modifier keys,

context-independent mouse handlers never affect the choice

of which of the nested presentations is sensitive, nor the

choice of which of the nested contexts is sensitive. If only

context-independent mouse handlers are applicable for the

currently pressed modifier keys, the innermost presentation

with any applicable handlers is sensitive, and it is highlight-

ed unless all of those handlers have their highlighting sup-

pressed.

Note that :suppress-highlighting is not used with a :blank-

area t mouse handler. When a blank area is mouse-sensitive,

there is never any highlighting, since there is no presenta-

tion to be highlighted.

The possible values of the :suppress-highlighting option are:

nil Highlighting is never suppressed. This is

the default.

t Highlighting is always suppressed. Use

this option for handlers that do not apply

241
February 2018 Programming the Mouse: Writing Mouse Handlers

to any particular presentation; the sys-

tem menu and the window operations

menu are good examples. The �����

����������������� is generally t when you

use this option.

:defines-menu Use this only with a mouse handler that

has the :defines-menu ������������ op-

tion and does not have the :context-

independent t option. Highlighting is

suppressed unless there are no applicable

mouse handlers for the currently pressed

modifier keys whose highlighting is not

suppressed. In that case, :suppress-

highlighting :defines-menu handlers are

considered. If any of these define menus

containing "interesting" items, the "in-
teresting" menu for the innermost pre-

sentation and context is used and that

presentation is highlighted. If not, the

"uninteresting" menu for the innermost

presentation and context is used, but

nothing is highlighted. A menu item is

"uninteresting" if it has the :defines-

menu or :suppress-highlighting option

with a non-null value.

Use :suppress-highlighting :defines-

menu to prevent a menu from interfer-

ing with the choice of the appropriate

sensitive presentation and input context,

which will be based on applicable han-

dlers on mouse gestures that use the

same chord of modifier keys but other

buttons. The standard menu on mouse-

right is a good example.

:within-menu Highlighting is not suppressed when the

mouse handler is directly available on a

gesture. The only effect of this option is

to make this handler "uninteresting"
when it appears in a menu defined by a

:suppress-highlighting :defines-menu

handler. This prevents this handler from

making an uninteresting presentation be

highlighted by a menu. Use this for very

general mouse handlers, for example,

"Edit Viewspecs". The heading of a direc-

tory listing is sensitive for "R: Menu",

242
Programming the Mouse: Writing Mouse Handlers February 2018

but the menu that is popped up contains

only "Edit Viewspecs" and some other

menus. Thus :suppress-highlighting

:within-menu is used on "Edit

Viewspecs" to prevent the directory list-

ing from being highlighted, which would

be distracting. The directory listing is

still highlighted for "Edit Viewspecs"
when the super and shift modifier keys

are pressed.�

:menu Specifies the name of a menu in which the handler is to be

included. The default is t, the name of the standard click-

right handler menu. nil means do not include the handler in

any menu.

You can define you own handler menu with define-

presentation-action: See the function define-presentation-

action, page 246.�

:priority Specifies a number adding to the priority of this handler rel-

ative to other applicable handlers defined on the same ges-

ture; the default is 0.

Handler applicability to displayed presentations depends on

two factors: the presentation type of the presentation and

the current input context.

In some cases, more than one applicable handler might be

available on a given mouse gesture. In such cases, which

handler is the one for that gesture is determined by handler

precedence or priority. The system automatically assigns pri-

orities according to the matching factors as follows: the pri-

ority is incremented by 4 when the presentation type match-

es; and by 2 when the context type matches. (Note: in the

case of priority assignment, "matches" means "having the

identical presentation-type name" contrary to the meaning

of this term in the general case, where it connotes hierarchi-

cal type relationship.)

For example, in a Lisp Listener in the command-or-form

context, an accept of a pathname appears something like the

following:

(accept ’pathname)

Enter the pathname of a file [default

Q:>rel-7>sys>doc>uims>ui-dict2.sar]: ==>

Q:>rel-7>sys>doc>uims>ui-dict2.sar

#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest"

FS:LMFS-PATHNAME�

243
February 2018 Programming the Mouse: Writing Mouse Handlers

The default pathname was accepted causing it to be present-

ed as both a pathname presentation (Q:>rel-

7>sys>doc>uims>ui-dict2.sar) and a sys:expression presenta-

tion (#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest").

Two handlers defined on the :select gesture are applicable to

both presentations in top-level command context. The first is

si:com-show-file, applicable to expression presentations with

a pathname object type, or pathname presentations of any

object type. The second is dw::quoted-expression, applicable

to expression presentations of any object type. The following

table shows the priorities determined for them by the system

relative to the two presentations in the above example:

Pathname Presentation Expression Presentation

Q:>rel-7>sys>doc>... #P"Q:>rel-7>sys>doc>...

Show File 4 0

Quoted Expression n/a 5.5�

It was the system programmer’s intent that the quoted ex-

pression handler should be displayed in the mouse documen-

tation line whenever the mouse is over a presentation of the

sys:expression type, regardless of what other applicable han-

dlers might be available on the :select gesture. Therefore, in

the definition for this handler, the value of the :priority op-

tion was made 1.5. This is added to the system-generated

priority of 4 in the bottom right cell of the table for a total

score of 5.5, enough to give this handler precedence even

over another handler for sys:expression that would have pri-

ority 4.�

:exclude-other-handlers

Boolean option, used with :gesture t handlers, specifying

whether to exclude non-t handlers.

For example, any gesture selects a menu item. The transla-

tor that implements this has a :tester option that checks,

among other things, for the keyword :no-select in the menu-

item list: See the section "The "General List" Form of Item",
page 425. If the menu item includes the :no-select keyword,

the translator does not apply. But, if :exclude-other-

handlers t were not specified for this translator, other trans-

lators would still apply to the :no-select item’s presentation,

like the :menu (�������) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presenta-

tion it matches".

244
Programming the Mouse: Writing Mouse Handlers February 2018

:blank-area

Boolean option specifying whether the handler is active when

the mouse cursor is over areas of the screen in which no

presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank

areas are not active over displayed presentations, use the

dw:no-type presentation type as the ����������������������

positional argument to the handler.

������� The argument list for the body of the handler. The argu-

ment list consists of one positional argument, the object that

the mouse cursor is over, and keyword arguments from a

predefined set.�

The following predefined keywords are available for inclusion

in the argument list to a mouse handler body. Their inclu-

sion makes the named parameters available for use in the

body.�

:input-context

The current presentation-input context.�

:presentation

The presentation instance that the mouse cursor is

over.�

:handler The handler object of which the body is a part.�

:mouse-char

The mouse character that triggered the handler.

(This keyword cannot be used in the :tester func-

tion parameter list.)�

:window The window object in which the current presenta-

tion occurs.�

:x The x-coordinate of the mouse cursor when the

mouse was clicked.

:y The y-coordinate of the mouse cursor when the

mouse was clicked.

:gesture The mouse gesture (symbolic name) this handler is

on.

The parameter list can specify only those keywords that are

explicitly used, for example, (object &key window x y).�

245
February 2018 Programming the Mouse: Writing Mouse Handlers

The ���� of your translator must return at least one value, the list of com-

mand name and argument values. Optionally, it can also return keyword-

value pairs that you define. In this case, you must return the presentation

type of the object as well. The object is the first item returned, its presen-

tation type the second; these are followed by the keyword-value pairs. Here

is an example that translates from a blank area of the screen to a com-

mand that draws a circle (providing that you have defined a command com-

add-circle See the section "Incremental Redisplay of Graphics", page

302.)

(define-presentation-to-command-translator add-circle-here

 (dw:no-type :documentation "Add a circle here.")

 (ignore &key x y)

 ‘(com-add-circle ,x ,y))

One predefined keyword is available, :activate. Supplied with nil, the acti-

vation of input entered via this handler is suppressed, with t it’s promoted.

For an example: See the function define-presentation-translator, page 229.

The values returned by the translator will be used to construct a presenta-

tion blip. You do not make the blip; the handler takes care of this automat-

ically. Any keywords the translator returns are included in the options field

of the blip. Options can be extracted from blips with the dw:presentation-

blip-options function. For an overview of this and related functions: See

the section "Presentation Input Blip Facilities", page 254.�

The following example is taken from the system source. It defines the Delete File

presentation-to-command translator:

(define-presentation-to-command-translator si:com-delete-file

 (fs:pathname

 :gesture nil)

 (path)

 ‘(si:com-delete-file ,(list path)))

Note the use of the backquoted form ’(si:com-delete-file ,(list path)) in the

body of this translator. This is the recommended way of interfacing to Command

Processor commands from presentation-to-command-translators. Note also that the

:gesture option to the translator is nil. This means that the translator is not avail-

able on any gesture, but only in the click right menu available for all presenta-

tions.

8.2.1.3. The define-presentation-action Macro
�������������� ����� ��������, the kind you create with define-presentation-action,

are run while your program is waiting for input, but do not themselves supply in-

put. Rather, they run code outside the main control loop of your program to ac-

complish some action that is useful relative to the presentation which activates

them.

A common use for side-effecting handlers is to display additional information about

some presentation. For example, if your program is providing graphic presentations

of several key variables, it may be the case that to select one of the variables to

246
Programming the Mouse: Writing Mouse Handlers February 2018

use as input, your user will require more information about the variables than can

be included in the graphic representations. A side-effecting mouse handler could be

used at this point to provide a display of all pertinent information about each of

the available objects.

A major use made of side-effecting handlers by SemantiCue is to display menus of

other handlers. The standard click-right menu for presentations, which shows han-

dlers available in the current input context for the presentation at hand, is imple-

mented in this fashion. Such handlers are created by specifying the :defines-menu

option to define-presentation-action.

define-presentation-action� �������������(��������������������������

������������������&key��������(��������:select)�����

���������������������������������(�����t) (����

�����������������nil)������������������������

��������������������������������)���������&body

����

Defines a side-effecting mouse handler for performing actions on a dis-

played presentation that are independent of the main body and command

loop of an application.

���� The name of the handler.

����������������������

The type of the displayed presentation.

��������������������

A presentation type. This argument establishes the input

context in which the handler is active. The value usually

supplied is t, meaning that the handler is potentially avail-

able in any input context.�

:tester Specifies the parameter list and body for a tester function.

The tester function determines whether the handler applies

to the current presentation, if it is otherwise applicable

based on the current presentation type and input context.

The parameter list consists of a positional argument the

current presentation object and a subset of the keywords:

:presentation The presentation at the mouse location

that matches ����������������������

:presentation-type The presentation type of that presenta-

tion

:input-context The input context that matches ���

�����������������

:gesture The mouse gesture that could invoke the

handler

:mouse-char The corresponding mouse character

247
February 2018 Programming the Mouse: Writing Mouse Handlers

:window The window containing the presentation

:handler The handler itself

These keywords are the same as those available for inclusion

in the argument list for the body of the handler, and are al-

so documented under ������� in the handler documentation;

they are also documented separately: See the function

define-presentation-action, page 246. Note: inefficient

testers can degrade the performance of your program. Tester

functions must be capable of rapid execution. For more in-

formation: See the section "Some Efficiency Caveats for

Mouse Handlers", page 255.

For functions used in :testers: See the function dw:handler-

applies-in-limited-context-p in �������������������������.

See the function dw:presentation-subtypep in ���� ���������

����������.�

:gesture Specifies the mouse gesture on which the handler is avail-

able.

The gesture is specified by its symbolic name rather than as

a mouse character. See the section "Mouse Gestures", page

227. The default gesture is :select, which is the same as

:left.

To assign your own symbolic name to a mouse character, use

the following form:

(setf (dw:mouse-char-for-gesture ������) #\mouse-�)

Specifying this option with nil, that is :gesture nil, results

in the handler being unavailable on any gesture, only in a

handler menu.

Specifying this option with t, that is, :gesture t, results in

the handler being available on all gestures.

:documentation

Specifies a string or a function returning a string to be used

as mouse and menu documentation for the handler.

The argument to :documentation can be a list of the form

((object) . body), where object is bound to the presentation-

object of the presentation to which the mouse points, and

body is a form referencing this object.

:suppress-highlighting

Suppresses the contribution of a mouse handler to mouse-

sensitivity highlighting, in circumstances that depend on the

248
Programming the Mouse: Writing Mouse Handlers February 2018

value of the option. A mouse handler whose highlighting is

suppressed will not affect the choice of which of the nested

presentations is sensitive, nor the choice of which of the

nested contexts is sensitive. The choice of sensitive presenta-

tion and context is determined by other applicable mouse

handlers. Once that choice has been made, if the mouse han-

dler whose highlighting is suppressed is applicable for the

chosen presentation, context, and modifier keys, then this

handler is available too.

When the :context-independent t and :suppress-

highlighting options are used together, :suppress-

highlighting only controls whether or not the sensitive pre-

sentation is highlighted. When context-dependent mouse han-

dlers are applicable for the currently pressed modifier keys,

context-independent mouse handlers never affect the choice

of which of the nested presentations is sensitive, nor the

choice of which of the nested contexts is sensitive. If only

context-independent mouse handlers are applicable for the

currently pressed modifier keys, the innermost presentation

with any applicable handlers is sensitive, and it is highlight-

ed unless all of those handlers have their highlighting sup-

pressed.

Note that :suppress-highlighting is not used with a :blank-

area t mouse handler. When a blank area is mouse-sensitive,

there is never any highlighting, since there is no presenta-

tion to be highlighted.

The possible values of the :suppress-highlighting option are:

nil Highlighting is never suppressed. This is

the default.

t Highlighting is always suppressed. Use

this option for handlers that do not apply

to any particular presentation; the sys-

tem menu and the window operations

menu are good examples. The �����

����������������� is generally t when you

use this option.

:defines-menu Use this only with a mouse handler that

has the :defines-menu ������������ op-

tion and does not have the :context-

independent t option. Highlighting is

suppressed unless there are no applicable

mouse handlers for the currently pressed

modifier keys whose highlighting is not

suppressed. In that case, :suppress-

249
February 2018 Programming the Mouse: Writing Mouse Handlers

highlighting :defines-menu handlers are

considered. If any of these define menus

containing "interesting" items, the "in-
teresting" menu for the innermost pre-

sentation and context is used and that

presentation is highlighted. If not, the

"uninteresting" menu for the innermost

presentation and context is used, but

nothing is highlighted. A menu item is

"uninteresting" if it has the :defines-

menu or :suppress-highlighting option

with a non-null value.

Use :suppress-highlighting :defines-

menu to prevent a menu from interfer-

ing with the choice of the appropriate

sensitive presentation and input context,

which will be based on applicable han-

dlers on mouse gestures that use the

same chord of modifier keys but other

buttons. The standard menu on mouse-

right is a good example.

:within-menu Highlighting is not suppressed when the

mouse handler is directly available on a

gesture. The only effect of this option is

to make this handler "uninteresting"
when it appears in a menu defined by a

:suppress-highlighting :defines-menu

handler. This prevents this handler from

making an uninteresting presentation be

highlighted by a menu. Use this for very

general mouse handlers, for example,

"Edit Viewspecs". The heading of a direc-

tory listing is sensitive for "R: Menu",
but the menu that is popped up contains

only "Edit Viewspecs" and some other

menus. Thus :suppress-highlighting

:within-menu is used on "Edit

Viewspecs" to prevent the directory list-

ing from being highlighted, which would

be distracting. The directory listing is

still highlighted for "Edit Viewspecs"
when the super and shift modifier keys

are pressed.�

:menu Specifies the name of a menu in which the handler is to be

included. The default is t, the name of the standard click-

right handler menu. nil means do not include the handler in

any menu.

250
Programming the Mouse: Writing Mouse Handlers February 2018

You can define you own handler menu with define-

presentation-action: See the function define-presentation-

action, page 246.�

:context-independent

Boolean option specifying whether handler behavior (that is,

applicability to displayed presentations) is the same for all

contexts in a nested-context structure (accept being called

recursively); the default is nil.

This option is supplied with t, for example, if the handler’s

�������������������� is t (any context), and its contract is to

print additional information about a particular presentation

(that is, only the output matters).

:context-independent should be set to t only if the ���

����������������� is t. If this does not hold, the compiler will

issue a warning if you try to set :context-independent to t.

For more information on context matching and related han-

dler issues: See the section "How Mouse Handlers Are

Found".

:priority Specifies a number adding to the priority of this handler rel-

ative to other applicable handlers defined on the same ges-

ture; the default is 0.

Handler applicability to displayed presentations depends on

two factors: the presentation type of the presentation and

the current input context.

In some cases, more than one applicable handler might be

available on a given mouse gesture. In such cases, which

handler is the one for that gesture is determined by handler

precedence or priority. The system automatically assigns pri-

orities according to the matching factors as follows: the pri-

ority is incremented by 4 when the presentation type match-

es; and by 2 when the context type matches. (Note: in the

case of priority assignment, "matches" means "having the

identical presentation-type name" contrary to the meaning

of this term in the general case, where it connotes hierarchi-

cal type relationship.)

For example, in a Lisp Listener in the command-or-form

context, an accept of a pathname appears something like the

following:

251
February 2018 Programming the Mouse: Writing Mouse Handlers

(accept ’pathname)

Enter the pathname of a file [default

Q:>rel-7>sys>doc>uims>ui-dict2.sar]: ==>

Q:>rel-7>sys>doc>uims>ui-dict2.sar

#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest"

FS:LMFS-PATHNAME�

The default pathname was accepted causing it to be present-

ed as both a pathname presentation (Q:>rel-

7>sys>doc>uims>ui-dict2.sar) and a sys:expression presenta-

tion (#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest").

Two handlers defined on the :select gesture are applicable to

both presentations in top-level command context. The first is

si:com-show-file, applicable to expression presentations with

a pathname object type, or pathname presentations of any

object type. The second is dw::quoted-expression, applicable

to expression presentations of any object type. The following

table shows the priorities determined for them by the system

relative to the two presentations in the above example:

Pathname Presentation Expression Presentation

Q:>rel-7>sys>doc>... #P"Q:>rel-7>sys>doc>...

Show File 4 0

Quoted Expression n/a 5.5�

It was the system programmer’s intent that the quoted ex-

pression handler should be displayed in the mouse documen-

tation line whenever the mouse is over a presentation of the

sys:expression type, regardless of what other applicable han-

dlers might be available on the :select gesture. Therefore, in

the definition for this handler, the value of the :priority op-

tion was made 1.5. This is added to the system-generated

priority of 4 in the bottom right cell of the table for a total

score of 5.5, enough to give this handler precedence even

over another handler for sys:expression that would have pri-

ority 4.�

:exclude-other-handlers

Boolean option, used with :gesture t handlers, specifying

whether to exclude non-t handlers.

For example, any gesture selects a menu item. The transla-

tor that implements this has a :tester option that checks,

among other things, for the keyword :no-select in the menu-

item list: See the section "The "General List" Form of Item",
page 425. If the menu item includes the :no-select keyword,

the translator does not apply. But, if :exclude-other-

252
Programming the Mouse: Writing Mouse Handlers February 2018

handlers t were not specified for this translator, other trans-

lators would still apply to the :no-select item’s presentation,

like the :menu (�������) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presenta-

tion it matches".

:blank-area

Boolean option specifying whether the handler is active when

the mouse cursor is over areas of the screen in which no

presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank

areas are not active over displayed presentations, use the

dw:no-type presentation type as the ����������������������

positional argument to the handler.

:defines-menu

Specifies the handler menu that this handler invokes. That

is, when this option is specified, it means that this handler

is to produce a menu of other handlers that apply to the pre-

sentation at hand. Other handlers are included in this menu

by specifying their :menu options with the menu named by

:defines-menu.

The following example is for the Presentation debugging

menu, available on s-Mouse-R for all presentations, in all in-

put contexts (both the ����� and ��������������������s are t):

(define-presentation-action presentation-debugging-menu

 (t t

 :documentation "Presentation debugging menu"

 :gesture :presentation-debugging-menu

 :menu (t :style (nil :italic nil))

 :defines-menu :presentation-debugging

 :context-independent t

 :blank-area t)

 (ignore &rest args)

 (return-from presentation-debugging-menu

 (apply #’dw:call-presentation-menu

 :presentation-debugging args)))

Note the body: except for the keyword identifying the menu,

:presentation-debugging, this is the same for all side-

effecting handlers that generate handler menus. The func-

tion creating the menu is dw:call-presentation-menu. Use it

exactly as shown in the example.

253
February 2018 Programming the Mouse: Writing Mouse Handlers

������� The argument list for the body of the handler. The argu-

ment list consists of one positional argument, the object that

the mouse cursor is over, and keyword arguments from a

predefined set. �

The following predefined keywords are available for inclusion

in the argument list to a mouse handler body. Their inclu-

sion makes the named parameters available for use in the

body.�

:input-context

The current presentation-input context.�

:presentation

The presentation instance that the mouse cursor is

over.�

:handler The handler object of which the body is a part.�

:mouse-char

The mouse character that triggered the handler.

(This keyword cannot be used in the :tester func-

tion parameter list.)�

:window The window object in which the current presenta-

tion occurs.�

:x The x-coordinate of the mouse cursor when the

mouse was clicked.

:y The y-coordinate of the mouse cursor when the

mouse was clicked.

:gesture The mouse gesture (symbolic name) this handler is

on.

The parameter list can specify only those keywords that are

explicitly used, for example, (object &key window x y).�

For an overview of define-presentation-action and related facilities: See

the section "Mouse Handler Facilities", page 229. For information on han-

dler lookup and performance issues: See the section "How Mouse Handlers

Are Found".�

8.2.1.4. Other Mouse-Handler Facilities
dw:handler-applies-in-limited-context-p and dw:presentation-subtypep are relat-

ed facilities used in :tester functions defined for translators. They restrict handler

applicability to a specified input context. The latter can be used to restrict applica-

bility to a displayed presentation type also. For more information, see the section

"User-defined Data Types as Presentation Types".

254
Programming the Mouse: Writing Mouse Handlers February 2018

Other facilities concerned with mouse handlers include dw:delete-presentation-

mouse-handler, which eliminates a handler from your world.

8.2.2. Presentation Input Context Facilities

Facilities for manipulating presentation input contexts are listed below:

 dw:with-presentation-input-context

 dw:clear-presentation-input-context

 dw:presentation-input-context-option

 dw:with-presentation-input-editor-context

 dw:*presentation-input-context*

The primary facility in this subcategory of presentation substrate tools is the first

listed, dw:with-presentation-input-context. This macro can be used to establish

an input context just as accept establishes a context. In a sense, its relationship

to accept is analogous to that of dw:with-output-as-presentation to present. (See

the section "Using Presentation Types for Output", page 32.) It just provides the

input context; you have to do your own input/parsing. The other facilities in this

group provide additional help in manipulating the input context.

8.2.3. Presentation Input Blip Facilities

A ������������ ����� ���� is created by a translating mouse handler when a user

clicks on a displayed presentation with the gesture appropriate for that handler.

Conceptually, the blip represents how the user clicked on a sensitive presentation:

it encodes the object, its presentation type, and the gesture used. The facilities for

managing these are:

 dw:echo-presentation-blip

 dw:presentation-blip-object

 dw:presentation-blip-options

 dw:presentation-blip-presentation-type

 dw:presentation-blip-mouse-char

 dw:presentation-blip-typep

 dw:presentation-blip-p

 dw:presentation-blip-case

 dw:presentation-blip-ecase

Do not confuse presentation blips with ordinary mouse blips. The former are gen-

erated by translating handlers in presentation input contexts established by accept

or dw:with-presentation-input-context. Mouse blips, on the other hand, are gener-

ated by clicking the mouse in non-presentation input contexts, for example, that

established by (send *terminal-io* :any-tyi). Do not mix presentation and non-

presentation input contexts in your applications. (For more information on mouse

blips, see the section "Mouse Blips", page 377.)

The Presentation Input Blip Facilities are used within the blip clauses of a

dw:with-presentation-input-context macro to manipulate input blips. The func-

255
February 2018 Programming the Mouse: Writing Mouse Handlers

tions in this subcategory extract certain fields of the blip or test them in some

way.

8.2.4. Mouse Gesture Interface Facilities

The mouse gesture interface facilities are ancillary to the mouse handlers. They

provide the interface between mouse gestures, the symbolic names for mouse clicks

and the mouse characters to which they correspond. They are:

 dw:mouse-char-gesture

 dw:mouse-char-gestures

 dw:mouse-char-for-gesture

With these facilities, you can use predefined mouse gestures in your code where

the symbolic names are required, or define and use new ones. Gestures are re-

quired, in particular, for defining mouse handlers. Handlers are always defined on

some gesture.

For other information about mouse characters and mouse character functions, see

the section "Mouse Characters", page 378.

8.3. Suggestions and Examples

This sections contains some general suggestions about how to write efficient

mouse handlers and some examples of how to accomplish specific tasks using

mouse handling.

8.3.1. Some Efficiency Caveats for Mouse Handlers

Following are some caveats for making your mouse handlers efficient:

• Make handlers as specific as possible.

Use the most specific types appropriate as your handler’s ����������������������

and ��������������������. Doing so will respectively restrict the number of presen-

tations to which the handler potentially applies and the variety of input contexts

in which it is potentially available.

In particular, avoid handlers for t as a ���� or �� presentation type and

sys:expression as a ���� presentation type. These apply in a wide variety of

contexts, and the effect is cumulative; the more there are, the slower everything

becomes. If you do define such handlers, pay particular attention to their effi-

ciency. This also applies to translators from and to subtypes of sys:expression.

See the section "Using User-Extendable Data Types as Presentation Types",
page 209.

• Keep presentation-type :expander and :abbreviation-for forms simple.

256
Programming the Mouse: Writing Mouse Handlers February 2018

These forms are evaluated a large number of times. They should avoid both con-

sing and excessive computation. It is best if they are simple backquoted forms,

as the system knows how to turn such consing into stack-consing, resulting in

more speed and less work for the garbage collector.

Also, avoid large type expansions. An :expander or :abbreviation-for clause

with a large expansion, especially inside an or, results in much extra searching

and possibly increased memory requirements for the handler lookup tables. Car-

ried to an extreme, this could make all handler lookups slow owing to excessive

paging. If needed, use a more general type and a satisfies clause.

• Keep :tester forms fast.

Bodies of translators can be slow so long as the :tester form returns nil in the

cases where the body would be slow.

• Keep translators fast.

Expensive computations are best done as commands, rather than as translators.

Translators run when you move the mouse; commands do not run until you ask

for them.

• If a slow translation is necessary, use :do-not-compose t.

If you feel a slow operation must be done as a translator, use :do-not-compose t.

This suppresses SemantiCue’s evaluation of the result. Because it also suppress-

es any contextual checking of the result, use it sparingly.

• Avoid interpreted satisfies clauses.

Write an auxiliary function and use that instead. satisfies clauses are run dur-

ing mouse handling; running them interpreted creates a needless slowdown.

For some related information and examples, see the section "User-defined Data

Types as Presentation Types". To get an idea of how many handlers are being con-

sidered when you move the mouse, use the Show Handlers All Presentations com-

mand in the Presentation Inspector (see the section "Presentation Inspector", page

265.). If your handler shows up in this list in a context where it should not be in-

volved, you may need to make its ������� presentation types more specific. Note:

Due to optimizations, not all handlers listed by the presentation inspector take

time during mouse-sensitivity computations. However, most of them do.

8.3.2. Handlers on the Same Mouse Chord

Handlers on the same mouse chord should go together. The system stops searching

nested contexts and nested presentations when it finds any match for this chord

because it cannot know which button the user will press. Note that an applicable

mouse handler (other than a :context-independent or :suppress-highlighting han-

257
February 2018 Programming the Mouse: Writing Mouse Handlers

dler) on any of the three mouse buttons will stop the search through nested pre-

sentations and input contexts. A mouse handler on another button will not be

available if it applies to an outer context or an outer presentation. This means

that you should choose the mouse handlers that go on the set of gestures associat-

ed with a particular chord of modifier keys so that the handlers are a related fam-

ily, all involving the same context and presentation type. For example, all the han-

dlers for gestures with just the control key pressed involving operations on raw-

text presentations and input-editor context. This example shows what can go

wrong if you do not follow this guideline.

(define-presentation-translator example

 ((sequence pathname) pathname

 :gesture :middle

 :documentation "my example")

 (object)

 (send (first object)

:new-type "example"))

(present ’(#p"foo") ’(sequence pathname))

(present ’(#p"foo" #p"bar") ’(sequence pathname))

:Show File

While the Show File command is awaiting its argument, move the mouse over the

(sequence pathname) presentation "S:foo and S:bar". Note that no handler is

available on Middle while the mouse is pointing at one of the file names; this is

because the applicable handler on Left terminates the mouse sensitivity search at

the pathname presentation, without ever considering the (sequence pathname)

presentation. Now try pointing the mouse over the earlier (sequence pathname)

presentation containing just one pathname. Since the pathname presentation occu-

pies the same area of the screen as the (sequence pathname) presentation con-

taining it, the latter is always sensitive and the handler on Left is not available.

To avoid such anomalies as this, be careful that the three applicable handlers for

a given chord of modifier keys go together. This also makes for an easier to grasp

user interface.

8.3.3. Writing a Translator From a Blank Area

When you are writing an interactive graphics routine, you will probably encounter

the need to have commands available when the mouse is not over any object. To

do this, you write a ���������� from the blank area.

The presentation type of the blank area is dw:no-type. You probably want the :x

and :y arguments to the translator.

��������:

(define-presentation-to-command-translator add-circle-here

 (dw:no-type :documentation "Add a circle here.")

 (ignore &key x y)

 ‘(com-add-circle ,x ,y))

258
Programming the Mouse: Writing Mouse Handlers February 2018

8.3.4. Doing Typein or Typeout From an Action

Actions are usually run inside the input editor. The input editor does its redisplay

by sending the stream messages like :string-out and :delete-char. For efficiency,

while the input editor is running, output is not recorded. So, when actions are run,

output recording is disabled. If you want your output to remain in the history, you

must temporarily reenable it. Similarly, if you want to do input, you must establish

a properly recursive input editor context, by using si:with-ie-typein.

The system cannot automatically establish contexts or enable history for you, be-

cause it does not know in advance that you will do input or output. Besides that,

establishing such things flashes the input editor and draws blank lines which

would be undesirable if they were not needed. For these reasons, you must write

code to do these things when and where you want them.

��������:

(define-presentation-type string-with-more (() &key (show-more nil))

 :printer ((object stream)

 (write-string (first object) stream)

 (when show-more

 (write-string " -- " stream)

 (write-string (second object) stream))))

(present ’("little" "somewhat more discursive, prolix and redundant")

 ’string-with-more)

(dw:define-presentation-action show-more

 (string-with-more t

:gesture :middle

:documentation "Print all of this.")

 (object &key window)

 (si:with-ie-typeout-if-appropriate (window)

 (present object ’((string-with-more) :show-more t) :stream window)))

Here is a better version that does not do typeout directly, but affects the old pre-

sentation:

(dw:define-presentation-action show-more

 (string-with-more t

 :gesture :middle

 :documentation "Print all of this.")

 (ignore &key window presentation)

 (send window :represent-presentation presentation

 ’((string-with-more) :show-more t)))

8.3.5. Making Your Own Click-Right Menu

You can define your own handler for a :menu gesture, from the presentation type

in question to whatever context type you want it to be active in, putting :defines-

menu �������������� in the handler definition. Use dw:call-presentation-menu

259
February 2018 Programming the Mouse: Writing Mouse Handlers

to call the handlers for your menu, supplying �������������� so it knows which

handlers to run. If necessary, give it a :priority high enough to ensure it takes

precedence over the system’s default mouse handler for the :menu gesture.

You can define the handlers that you want to be available via a new menu with

:menu ��������������.

Here is how to define your own custom menu.

(define-presentation-action ��������������

 (��

 :documentation "Menu"

 :gesture :menu

 :suppress-highlighting :defines-menu

 :menu nil

 :defines-menu ��������������)

 (ignore &rest args)

 (return-from ��������������

 (apply #’dw:call-presentation-menu ’�������������� args)))

8.3.6. Refining Sensitivity

There are several ways to refine the applicability of a mouse handler, and hence to

refine the choice of what presentation is mouse sensitive in a given context and

what operations can be performed on it. The most important is the :tester option.

The tester is called if the handler’s ���������������������� matches the presenta-

tion’s type and object and the handler’s �������������������� matches the input con-

text. You can implement any desired applicability condition by making �����

����������������� and �������������������� more general and using the tester to com-

pute the actual applicability condition. Be careful; the more handlers that have to

be tested, the slower mouse sensitivity will respond when the user moves the

mouse. The tester returns ���� if the handler should be applicable, or ����� (nil) if

the handler should be ignored. The tester receives the presented object as an ar-

gument. The following additional keyword arguments are available if needed:

:presentation The presentation at the mouse location that matches �����

�����������������

:presentation-type The presentation type of that presentation

:input-context The input context that matches ��������������������

:gesture The mouse gesture that could invoke the handler

:mouse-char The corresponding mouse character

:window The window containing the presentation

:handler The handler itself

Unless the mouse handler is an action, rather than a translator, or specifies the

:do-not-compose option, a handler that appears to be applicable after calling the

260
Programming the Mouse: Writing Mouse Handlers February 2018

tester is invoked and the values it returns are checked. The object returned must

satisfy any predicate derived from the input context. In addition, if the first and

second values (object and presentation type) are both nil, the handler is ignored. It

is better practice to use a :tester instead of relying on this.

Finally, if a mouse handler defines a menu (it has the :defines-menu option), it is

ignored if the menu would be empty, in other words, if none of the mouse han-

dlers in that menu is applicable.

A common use of testers is to limit the inheritance of a mouse handler by presen-

tation types other than the ones specifically named. To disable the mechanism that

reduces ���������������������� to another presentation and a predicate, the tester

can call dw:presentation-subtypep of its :presentation-type argument and �����

�����������������. To disable applicability to subtypes of ����������������������, the

tester can check dw:presentation-type-name of its :presentation-type argument.

Similarly, a handler can call dw:handler-applies-in-limited-context-p with its

:input-context argument and ��������������������. This returns ���� only if ���

����������������� and the context type are the same presentation type, or one is an

:abbreviation-for the other.

8.3.7. Resolving Conflicts Among Mouse Handlers

When more than one mouse handler is applicable for the same physical mouse

gesture, Semanticue chooses one handler and ������� the others. There are sever-

al ways to control this, so that the handler that is made available is the one you

want.

The :priority option of a mouse handler specifies a number. The handler with the

highest priority is chosen. If two handlers have the same priority, which one is

chosen is unpredictable. Note that priorities are only compared for handlers that

are applicable to the same presentation and the same input context. Priorities can-

not be used to resolve conflicts among handlers for different nested presentations

or (more commonly) different nested input contexts. See the function define-

presentation-translator, page 229.

You can make the :tester options of the conflicting mouse handlers complementary,

so that one handler knows when the other handler should be available and turns

itself off by returning nil from its tester. While this practice can be considered un-

modular if the two handlers are not from the same program, often the conflicting

handlers are closely related and the use of complementary testers is the best way

to achieve the desired behavior.

One of the conflicting mouse handlers can be moved to a different gesture. More

commonly, one of the conflicting mouse handlers can be moved to a menu. If it is

available on both a menu and a gesture, as is common, the user can simply select

it from the menu when it is not available via the gesture.

261
February 2018 Programming the Mouse: Writing Mouse Handlers

8.3.8. Editor Mouse Commands

You can use zwei:define-presentation-to-editor-command-translator to define edi-

tor commands. The list of a function name and argument values that you return

calls an editor command function rather than a CP command function. The func-

tion need not be defined with zwei:defcom. It should return nil if the typeout win-

dow should be flushed or non-nil if the typeout window should be left alone.

Here is how you use it to write a mouse command in the editor:

(defun show-length-of-plist (symbol)

 (zwei:typein-line "~D" (length (symbol-plist symbol))))

(zwei:define-presentation-to-editor-command-translator

 show-length-of-plist

 (symbol "Plist length"

 zwei:*standard-comtab*

 :gesture :super-middle)

 (symbol)

 ‘(show-length-of-plist ,symbol))

8.3.9. Rubberbanding

It is convenient to draw a line or other graphic figure by clicking a mouse button

at the start of the figure and then moving the mouse to pull or drag the end of

the figure to its final position. You can see how the final figure will appear as you

are drawing. This is called ������ �������. There are two things to remember

when you write code to do this with the mouse:

• Rubberbanding is accomplished by continually erasing the figure at its previous

position while redrawing it at new positions.

• Disable output recording during the rubberbanding, for speed.�

This example requires the user to click once at the start of the line and once

again at the end.

262
Programming the Mouse: Writing Mouse Handlers February 2018

(defun input-a-line ()

 (multiple-value-bind (start-x start-y)

 (dw:tracking-mouse (t :whostate "Pick starting point"

 :who-line-documentation-string

 "Put start of line here.")

(:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (return (values x y))))

 (let ((old-x nil) (old-y nil))

 (dw:with-output-recording-disabled ()

(dw:tracking-mouse (t :whostate "Pick end point"

 :who-line-documentation-string

 "Put other end of line here.")

 (:mouse-motion (x y)

 (when (and old-x old-y)

 (graphics:draw-line start-x start-y old-x old-y

 :alu :flip))

 (graphics:draw-line start-x start-y x y :alu :flip)

 (setq old-x x old-y y))

 (:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (when (and old-x old-y)

 (graphics:draw-line start-x start-y old-x old-y

 :alu :flip))

 (return (values start-x start-y x y))))))))

This example is similar, but uses :mouse-motion-hold, so the user only clicks once

to start the line. The end is the point at which the mouse button is released.

263
February 2018 Programming the Mouse: Writing Mouse Handlers

(defun input-a-line ()

 (multiple-value-bind (start-x start-y)

 (dw:tracking-mouse (t :whostate "Pick starting point"

 :who-line-documentation-string

 "Put start of line here and hold.")

(:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (return (values x y))))

 (let ((old-x nil) (old-y nil))

 (dw:with-output-recording-disabled ()

(dw:tracking-mouse (t :whostate "Pick end point"

 :who-line-documentation-string

 "Put other end of line here.")

 (:mouse-motion-hold (x y)

 (when (and old-x old-y)

 (graphics:draw-line start-x start-y old-x old-y

 :alu :flip))

 (graphics:draw-line start-x start-y x y :alu :flip)

 (setq old-x x old-y y))

 (:release-mouse ()

 (when (and old-x old-y)

 (graphics:draw-line start-x start-y old-x old-y

 :alu :flip))

 (return (values start-x start-y old-x old-y))))))))

In order to leave the lines drawn on the screen, it is easiest to simply draw them

again outside the with-output-recording-disabled.

(defun draw-some-lines ()

 (loop

 (multiple-value-bind (x1 y1 x2 y2)

(input-a-line)

 (graphics:draw-line x1 y1 x2 y2))))

8.4. Exploring Presentation Types and Presentations

This section documents several system facilities for acquiring information on the

presentation types defined in your world, and on displayed presentations. Informa-

tion about defined presentation types is provided by three mouse-click commands

and two Command Processor commands, Show Presentation Type and Show Han-

dlers for Types. Information about displayed presentations is provided by facilities

available on the Presentation Debugging menu, the Presentation Inspector in par-

ticular.

264
Programming the Mouse: Writing Mouse Handlers February 2018

8.4.1. Mouse-Click Facilities for Looking at Handlers

Three mouse clicks provide access to several facilities to inspect and debug mouse

handlers and the mouse-sensitivity of presentations on the screen.

������ When expecting a sys:expression or sys:form (as in a Lisp

Listener), returns the object in a presentation. This differs

from simply clicking ���� in that it treats the object as if it

were presented as a sys:expression, even if the presentation’s

type is not a subtype of sys:expression. Thus, you have access

to the object even when clicking left would not make it avail-

able to you.

�������� When expecting a sys:form (as in a Lisp Listener), calls

describe on the presentation. This is particularly useful for

seeing the object and the presentation type associated with a

particular presentation.

������� Presentation Debugging Menu. Provides access to the following

facilities:

• Does a describe of the presentation (in sys:form context

only).

• Does Edit Handler for the presentation (in ((cp:command

:command-table "GLOBAL")) context only).

• Presentation Inspector. See the section "Presentation Inspec-

tor", page 265.�

8.4.2. CP Commands to Show Presentation Types and Handlers

Show Presentation Type ��������������

Shows the argument list, supertypes, and subtypes of a presentation type.

���� A presentation type.

�������� :For Lookup, :Include Predicate, :More Processing, :Output

Destination�

:For Lookup {Yes No} Whether to list the types examined during mouse

handler lookup. Listed supertypes for lookup are examined

when ���� is the �������������������� in a handler definition;

listed subtypes for lookup are examined when ���� is the �����

����������������� in a handler definition.

:Include Predicate

{Yes No} Whether to show, if applicable, the type reduction

step of ���� to a supertype and a predicate. For example, the

symbol presentation type is reducible to the supertype

sys:expression and the predicate symbolp.

265
February 2018 Programming the Mouse: Writing Mouse Handlers

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "����������" in ���������������).

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}
Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Handlers for Types ���

Lists the mouse handlers applicable in a specified input context to a specified ob-

ject type and presentation type.

������������ The input context (�������������������� in the handler defini-

tion).

����������������� The presentation type of the presentation to which the mouse

is pointing (the ���������������������� in the handler defini-

tion).

�������� :More Processing, :Output Destination�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "����������" in ���������������).

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}
Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

8.4.3. Presentation Inspector

The Presentation Inspector is an option on the Presentation debugging menu, it-

self an option on the standard click-right menu available for all displayed presen-

tations. It allows you to explore the presentation you call it on from a variety of

aspects.

266
Programming the Mouse: Writing Mouse Handlers February 2018

8.4.3.1. Using the Presentation Inspector
The Presentation Inspector exists primarily to allow you to answer one of two

questions: "Why ������ a particular handler available?" or "Why ��� a particular

handler available?" In addition, it can help answer general inquiries, like "What in-

put contexts are active?" or "What sub-presentations does this presentation con-

tain?"

Invoking the Presentation Inspector

To use the Presentation Inspector, first get the presentation you want to know

about on the screen, and get into the input context you want to know about. For

example, if you are debugging a translator that gives version numbers (integer)

from filenames (pathname), you would want to get a pathname on the screen,

and get into an integer context, perhaps by doing:

(define-presentation-translator pathname-version

 (pathname integer ;From pathname to integer

 ;; Only works for pathnames with numeric versions

 :tester ((path) (integerp (pathname-version path))))

 (path)

 (pathname-version path))

(present #P"KOALA:>KJones>foo.lisp.17")

(accept ’integer)�

Then click ������� on the pathname KOALA:>KJones>foo.lisp.17, to get the Pre-

sentation Debugging Menu, and choose the Presentation Inspector.

The Presentation Inspector’s Frame

The Presentation Inspector’s frame is divided into three parts. From top to bottom

these are: a title pane, a listener pane, and a command menu.

The title pane at the top tells you what presentation the Inspector is currently ex-

amining, and what input contexts are active. The presentation and the input con-

texts are presentations, and can be used as input for commands.

The listener pane in the middle accepts Presentation Inspector commands in addi-

tion to the usual global commands. See the section "Presentation Inspector Com-

mands", page 269. The listener pane does not accept Lisp forms, but if you wish to

enter Lisp forms, you can enter a Lisp breakpoint by pressing �������.

The command menu at the bottom of the frame provides easy access to the simple

forms of the various Presentation Inspector commands, and serves as a reminder if

you prefer to enter commands from the keyboard.

Important Caveat:

• The Presentation Inspector covers most of the screen. If you wish to reexamine

the original output, you can switch to the window with the presentation being

debugged and then switch back. Use �������� � to switch back and forth.

267
February 2018 Programming the Mouse: Writing Mouse Handlers

• However, if you switch to another window without exiting from the Inspector

and then switch back to the program you are debugging, the result can be con-

fusing:

° Your program is still in the Presentation Inspector, trying to read from the

Presentation Inspector’s frame. There is no visual indication that this is hap-

pening, but the program does not accept input from its usual window.

° If this happens, you should select the Presentation Inspector, using [Select] in

the System menu.

° You can then use the Exit command to return to your program, or resume us-

ing the Presentation Inspector.�

Strategy for Using the Presentation Inspector

This section assumes that you know how to define Presentation Types and under-

stand their structure and context.

To learn about Presentation Types:

See the function define-presentation-type, page 195.

See the section "Presentation Input Context Facilities", page 254.
See the function dw:with-presentation-input-context in �������������������������.

The first thing to do after invoking the Presentation Inspector is to examine the

title pane. Do you find any surprises there? Often, the reason for unexpected be-

havior is that you are not really in the input context you expected, or the object or

presentation type of the presentation is not as expected.

If you are examining nested presentations, you might also find that the presenta-

tion selected is not the one you wish to examine. If so, you can click ���� on the

Show Presentation Hierarchy command to pick the presentation you wish to work

with. If you want to see the hierarchy in graph form, specify :Format Graph. You

can also click on the Show Presentation Hierarchy command in the command

menu. See the section "Show Presentation Hierarchy Presentation Inspector Com-

mand", page 276.

The next step is to get an overview of the situation with the Show Handlers All

Presentations command. See the section "Show Handlers All Presentations Pre-

sentation Inspector Command", page 271. This produces a long display that indi-

cates whether your handler was ever considered, and if so, what the result of that

consideration was.

If the handler was considered, the next step in the investigation is to click Left on

your handler in the display from Show Handlers All Presentations, to get the Show

Handler Applicability command. See the section "Show Handler Applicability Pre-

sentation Inspector Command", page 274. This will show, for the current presenta-

tion, and for each of the nested contexts, either that the handler succeeded, and

what it returned, or the reason it did not succeed. You might need to use the

268
Programming the Mouse: Writing Mouse Handlers February 2018

Show Presentation Hierarchy command in conjunction with this command to

choose the appropriate presentation for investigation.

Alternatively, you can limit the investigation to a single context by using the Show

Handler Context Applicability command. See the section "Show Handler Context

Applicability Presentation Inspector Command", page 276.

If the handler was not considered, the presentation types for the handler did not

match any combination of the presentation type and the various levels of context.

The Show Presentation Type command might help you understand why the types

do not match. See the section "Show Presentation Type Command", page 270. Us-

ing this command gives only a partial answer, as it does not allow you to specify

data arguments, which can affect the expansion of the type.

In trying to determine why a handler was never considered, your best tool is care-

ful logic.

The various types involved are matched as follows:

• The translator’s context type (that is, the type of the result) must be a subtype

of a type in the presentation input context (that is, the translator must translate

into the type of object that is currently being prompted for).

• The presentation’s presentation type must be a subtype of the handler’s ����

type.

Certain presentation types are standins for a more specific presentation type deter-

mined by the type of the object presented. Handler matching and mouse sensitivity

use the more specific type. These presentation types are sys:expression, sys:form,

and sys:code-fragment. For instance, values printed by the Lisp Listener are

sys:expression presentations, but for purposes of mouse sensitivity, handlers whose

���������������������� is a supertype of the actual type of the value are considered,

in addition to handlers whose ���������������������� is a supertype of

sys:expression. For example, a handler whose ���������������������� is integer

matches a presentation whose type is sys:expression if the object presented is of

type integer or a subtype of integer.

Actually the system is more flexible and powerful than just using subtypes. For

example, consider a context that is accepting ((cp:command :command-table

"GLOBAL")), and a translator that produces a cp:command. A cp:command is

not a subtype of a ((cp:command :command-table "GLOBAL")). (Remember, a

type with no data arguments is always a supertype of the same type-name with da-

ta arguments). However, the type ((cp:command :command-table "GLOBAL"))
can be ������� to cp:command and a test for the command actually being in the

global command table. Thus a translator producing a cp:command will tentatively

match a context looking for a ((cp:command :command-table "GLOBAL")), with

a predicate applied to the result of the translator to see if it satisfies command-

in-global-command-table-p. This is referred to in the display from the Show Han-

dlers All Presentations and Show Handlers This Presentation commands as "the
predicate derived from the context".

269
February 2018 Programming the Mouse: Writing Mouse Handlers

Similarly, the handler’s ���� type might undergo a similar reduction. For exam-

ple, a handler from ((and integer ((satisfies oddp)))) will match a presentation of

an integer, and yield an oddp predicate. The handler will match, but it will not

succeed unless the presented object satisfies the oddp predicate. This is referred

to in the display from the Show Handlers All Presentations and Show Handlers

This Presentation commands as "the predicate derived from handler’s presentation

and object types".

8.4.3.2. Presentation Inspector Commands
These commands are shown in the command menu pane at the bottom of the

frame, and can be selected from there. Also, many of the commands can be select-

ed by various mouse clicks on the output of other commands, as indicated by the

Mouse Documentation line. Some of the commands have additional options avail-

able only from the keyboard.

These commands are arranged in five groups. From left to right on the pane:

������� - Commands relating to the general operation of the Presentation Inspec-

tor:

"Exit Presentation Inspector Command"
"Help Presentation Inspector Command"�

�������� - Commands giving you a general overview of what handlers were consid-

ered and the result.

"Show Handlers All Presentations Presentation Inspector Command"
"Show Handlers This Presentation Presentation Inspector Command"�

�������� - Commands to investigate individual handlers.

"Show Handler Applicability Presentation Inspector Command"
"Show Handler Context Applicability Presentation Inspector Command"
"Describe Handler Presentation Inspector Command"�

����������� - Commands to show what is being inspected.

"Show Presentation Hierarchy Presentation Inspector Command"
"Show Input Context Presentation Inspector Command"�

�������� - Commands to control the operation of the Presentation Inspector

"Set Presentation Presentation Inspector Command"�

Other useful commands - Commands relating to handlers and presentation types,

but not part of the Presentation Inspector. (These are available from the

Presentation Inspector).

"Show Presentation Type Command"
"Show Handlers For Types Command"�

270
Programming the Mouse: Writing Mouse Handlers February 2018

Help Presentation Inspector Command

Help

Displays a one-screen help message explaining the basic operation of the Presenta-

tion Inspector.

Exit Presentation Inspector Command

Exit

Exits the Presentation Inspector and removes its frame from the screen.

Show Presentation Type Command

Show Presentation Type ��������������

Shows the argument list, supertypes, and subtypes of a presentation type.

���� A presentation type.

�������� :For Lookup, :Include Predicate, :More Processing, :Output

Destination�

:For Lookup {Yes No} Whether to list the types examined during mouse

handler lookup. Listed supertypes for lookup are examined

when ���� is the �������������������� in a handler definition;

listed subtypes for lookup are examined when ���� is the �����

����������������� in a handler definition.

:Include Predicate

{Yes No} Whether to show, if applicable, the type reduction

step of ���� to a supertype and a predicate. For example, the

symbol presentation type is reducible to the supertype

sys:expression and the predicate symbolp.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "����������" in ���������������).

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}
Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

271
February 2018 Programming the Mouse: Writing Mouse Handlers

Show Handlers All Presentations Presentation Inspector Command

Show Handlers All Presentations ���������

Show all the handlers that were considered for any presentation starting with

the lowest one pointed to by the mouse, up to the top of the hierarchy and

whether they were successful.

�������� :Show Context, :Show Presentation�

:Show Context {Yes, No} Show the context that each handler succeeded for.

The default is No. The mentioned default is Yes.

:Show Presentation

{Yes, No} Show the presentation for which each handler suc-

ceeded. The default is No. The mentioned default is Yes.�

The individual mouse handlers shown by this command are mouse sensitive and

can be used in the Show Handler Applicability command.

Here is some sample output (trimmed for conciseness):

272
Programming the Mouse: Writing Mouse Handlers February 2018

Presentation Inspector command: Show Handlers All Presentations

Searching the presentation and context hierarchies, for handlers

from presentation Text "THIS-I...".

to context SI:INPUT-EDITOR.

--- Handlers appearing on mouse buttons ---

 Left : (priority 5.5) QUOTED-EXPRESSION: ’THIS-IS-A-SYMBOL

 Middle : (priority 4) DESCRIBE: (DESCRIBE ’THIS-IS-A-SYMBOL)

 Right : (priority 0) MENU: Menu

 sh-Right : (priority 0) SYSTEM-MENU: System menu

 c-Left : (priority 6) CLICK-AND-HOLD-MARK-REGION: Mark a region

 c-Middle : (priority 6) YANK-WORD: THIS-IS-A-SYMBOL

 c-Right : (priority 2) MARKING-AND-YANKING-MENU: Marking and yanking menu

c-sh-Middle : (priority 6) MARK-WORD: Mark this word

--- Handlers appearing in the :PRESENTATION-DEBUGGING menu ---

DESCRIBE-PRESENTATION: (DESCRIBE ’#<DISPLAYED-PRESENTATION 467471015>)

EDIT-PRESENTATION-HANDLER: Edit handler for this presentation

INVOKE-PRESENTATION-INSPECTOR: Presentation Inspector

--- Handlers appearing in the standard Right menu ---

QUOTED-EXPRESSION: ’THIS-IS-A-SYMBOL

DESCRIBE: (DESCRIBE ’THIS-IS-A-SYMBOL)

SYSTEM-MENU: System menu

MARKING-AND-YANKING-MENU: Marking and yanking menu

--- Handlers not appearing on mouse buttons because they have no gesture ---

YANK-FROM-KILL-RING: Yank top of kill ring

EDIT-PRESENTATION-HANDLER: Edit handler for this presentation

INVOKE-PRESENTATION-INSPECTOR: Presentation Inspector

--- Handlers whose test functions failed ---

DBG:MONITOR-LOCATION: Monitor this location

--- Handlers for empty menus ---

MY-FUNNY-NUMBER-MENU: Menu of Numerology commands

--- Handlers who failed predicates derived from their object and presentation types ---

FLAVOR::EDIT-FLAVOR: Edit flavor definition�

Notes:

from presentation Text "THIS-I...". to context SI:INPUT-EDITOR-BUFFER.

Indicates that the search starts from the text presentation (the

bold "T" indicates exactly where in the text) and searches the

presentation hierarchy upward from there. The context is

searched outward from si:input-editor-buffer.�

Each heading indicates how a handler did or did not succeed. For the categories

relating to handlers appearing on mouse gestures, the physical mouse gesture it

appears on is listed, together with the priority. (See the function define-

presentation-translator, page 229.) This information is provided both for handlers

that appear on mouse buttons, and, under separate heading, for handlers which do

not appear because they were shadowed by other handlers.

273
February 2018 Programming the Mouse: Writing Mouse Handlers

Handlers appearing on mouse buttons

The handlers that actually appear on the mouse buttons.

Handlers which have been shadowed by other handlers

The handlers that would have appeared on the mouse buttons,

but are shadowed by other handlers with higher (or same) pri-

ority.

Handlers appearing in the :PRESENTATION-DEBUGGING menu

Shows successful handlers that were defined with the :menu

:presentation-debugging option to define-presentation-

translator.

Handlers which do not appear on mouse buttons

Handlers that can appear in menus. Their appearance here im-

plies they are successful, but if they do not appear in a menu,

they will be unavailable.

Handlers not appearing on mouse buttons because they have no gesture

Handlers defined with :gesture nil and are available from their

menu.

Successful handlers not on any mouse buttons or menus

Handlers that are unavailable because they are not on any

mouse button or in any menu.

Handlers whose test functions failed

Refers to handlers whose :tester function returned nil. In the

example above, the symbol was not presented with the

:location option to present, so dbg:monitor-location’s tester

returned nil since there is no location to monitor.

Handlers for empty menus

Unsuccessful handlers. A menu handler defined with the

:defines-menu :numerology option in define-presentation-

translator appears under this heading if no handlers defined

with :menu :numerology are successful.

Handlers which did not return a value

Handlers that returned nil with no second value (that is, no

type). Returning nil from a translator (but not an action,

whose values are not used), indicates that the translator de-

clines to handle the situation.

Handlers who failed predicates derived from their object and presentation

types

Handlers with a ���� type that was reduced to a supertype

and predicate, and the predicate returned nil when called on

the presentation object. An example would be a handler defined

on ((and integer ((satisfies oddp)))), with a presentation of an

even integer.

274
Programming the Mouse: Writing Mouse Handlers February 2018

Handlers who failed the predicate derived from the context

Includes any handler that returned an object that did not satis-

fy a predicate derived from the context type used in the match.

For instance, if a command loop is accepting ((cp:command�

:command-table "GLOBAL")) and the handler returns a com-

mand that is not in the global command-table, this type is re-

duced to the cp:command type. The "command-in-global-

command-table-p" predicate that is the result of this handler

fails.�

Show Handlers This Presentation Presentation Inspector Command

Show Handlers This Presentation ���������

Shows the handlers that were considered for a single presentation (the current

presentation). This is just like the Show Handlers All Presentations command, ex-

cept it limits the report to handlers for the current presentation. (The current pre-

sentation is selected with the Set Presentation command or by choosing a presen-

tation from the display of the Show Presentation Hierarchy command).

An alternative to using this command is to use the :Show Presentation option to

Show Handlers All Presentation.

�������� :Show Context, :Show Presentation�

:Show Context {Yes, No} Show the context that each handler succeeded for.

The default is No. The mentioned default is Yes.

:Show Presentation

{Yes, No} Show the presentation that each handler succeeded

for. The default is No. The mentioned default is Yes.�

For details of the output display, see the section "Show Handlers All Presenta-

tions Presentation Inspector Command", page 271.

Show Handler Applicability Presentation Inspector Command

Show Handler Applicability ������������ ��������

Shows what contexts this handler does and does not apply to for the current pre-

sentation, and why. (To set the current presentation, see the section "Show Presen-

tation Hierarchy Presentation Inspector Command", page 276.)

������������ The name of a handler to be investigated.

������� :Detailed�

:Detailed {Yes No} If Yes, show additional detail. The default is No, un-

less :Detailed is mentioned.�

For each context in the context hierarchy (see the title pane), shows whether the

handler is applicable, and if not, why. A couple of examples will help you decode

the format:

275
February 2018 Programming the Mouse: Writing Mouse Handlers

Show Handler Applicability si:com-show-file

For context SI:INPUT-EDITOR:

 Handler SI:COM-SHOW-FILE PATHNAME (presentation) → CP:COMMAND

 The handler failed because it failed to match the context and

 displayed presentation types.

 Handler SI:COM-SHOW-FILE PATHNAME (object), EXPRESSION (presentation) → CP:COMMAND

 The handler failed because it failed to match the context presentation type.

For context ((CP:COMMAND-OR-FORM :COMMAND-TABLE

 #<COMMAND-TABLE User 100214200> :DISPATCH-MODE ...)):

 Handler SI:COM-SHOW-FILE PATHNAME (presentation) → CP:COMMAND

 The handler failed because it failed to match the displayed presentation type.

 Handler SI:COM-SHOW-FILE PATHNAME (object), EXPRESSION (presentation) → CP:COMMAND

 The handler succeeded and returned values:(SI:COM-SHOW-FILE (#P"Y:>rwk>mail.text.1"))

For context SI:INPUT-EDITOR:

 Handler SI:COM-SHOW-FILE PATHNAME (presentation) → CP:COMMAND

 The handler failed because it failed to match the context and displayed

 presentation types.

 Handler SI:COM-SHOW-FILE PATHNAME (object), EXPRESSION (presentation) → CP:COMMAND

 The handler failed because it failed to match the context presentation type.

For context <������������>:
 Handler SI:COM-SHOW-FILE PATHNAME (presentation) → CP:COMMAND

 The handler failed because it failed to match the context and displayed

 presentation types.

 Handler SI:COM-SHOW-FILE PATHNAME (object), EXPRESSION (presentation) → CP:COMMAND

 The handler failed because it failed to match the context and displayed

 presentation types.�

Notes:

Handler SI:COM-SHOW-FILE PATHNAME (presentation) → CP:COMMAND

Means the handler named si:com-show-file, with the From

type of pathname, (looking at the presentation’s presentation

type), translating to the type cp:command.

Handler SI:COM-SHOW-FILE PATHNAME (object), EXPRESSION (presentation) →
CP:COMMAND

Means the handler named si:com-show-file, with the From

type of pathname, (looking at the the type of the object for

things presented as sys:expression), translating to the type

cp:command.�

The presentation in question here was a pathname, #p"Y:>RWK>mail.text.1", pre-
sented as a sys:expression. (Perhaps it was just printed with print by the com-

mand loop in a Lisp Listener). This shows that the translator never matches an

si:input-editor-buffer context, but it does match a command context when present-

ed as a sys:expression.

276
Programming the Mouse: Writing Mouse Handlers February 2018

Show Handler Context Applicability Presentation Inspector Command

Show Handler Context Applicability ������������ ��������������

Show why a handler does and does not apply to the current presentation and a

specified context, and why. (To set the current presentation, see the section "Show
Presentation Hierarchy Presentation Inspector Command", page 276.) For details

on the format of the display, see the section "Show Handler Applicability Presen-

tation Inspector Command", page 274.

������������ The name of a handler to be investigated.

������������� A level of context to explain the handler’s applicability for.

This can be specified by choosing it from the title pane with

the mouse.

Describe Handler Presentation Inspector Command

Describe Handler �������������

Calls describe on the internal representation of a handler.

������������ The name of a handler to describe.�

A presentation mouse handler is implemented in two pieces: a dw::presentation-

mouse-handler and dw::presentation-mouse-handler-functions. The latter holds

the name of handler and all of the functions. The former is separate so it can be

entered in the tables under varying combinations of types.

This also lets you see such options as :context-independent, :menu, and :defines-

menu.

Show Presentation Hierarchy Presentation Inspector Command

Show Presentation Hierarchy ��������

Show the hierarchy of presentations. The output is mouse-sensitive; if you want to

select a different presentation as the current presentation for Show Handlers This

Presentation, Show Handler Applicability, and Show Handler Context Applicability,

click Left on the appropriate presentation.

������� :Format�

:Format {Text, Graph}. Text is the default. Chooses textual or graphic

display of the hierarchy.�

Show Input Context Presentation Inspector Command

Show Input Context�

Shows the input context in more detail than is shown in the title pane.

277
February 2018 Programming the Mouse: Writing Mouse Handlers

The display looks like this:

Current presentation input context:

 PRESENTATION-TYPE: ((OR ZWEI:PRESENTATION-COMMAND SI:INPUT-EDITOR-BUFFER))

 THROW-P: T

 OPTIONS: NIL

Superior (inherited) context:

 PRESENTATION-TYPE: ((AND STRING

 ((SATISFIES NOT-NULL-STRING-P))))

 THROW-P: T

 OPTIONS: (:INHERIT T)�

presentation-type is the type being accepted.

throw-p indicates whether the context is expecting the object to be returned to it,

or the value thrown to the context packaged up in a presentation-blip.

Set Presentation Presentation Inspector Command

Set Presentation �������������

Select a presentation as the current presentation for the Show Handlers This Pre-

sentation, Show Handler Applicability, and Show Handler Context Applicability

commands. The Title pane is updated to reflect the new current presentation.

You do not normally enter this command directly. Rather, you normally get it by

clicking left on a presentation, as is shown by Show Presentation Hierarchy. See

the section "Show Presentation Hierarchy Presentation Inspector Command", page

276.

������������ The presentation to make current.�

Table of Facilities for Writing Mouse Handlers

define-presentation-translator ���� (���������������������� ��������������������

&key ������ (�������� :select) ������������� ��������������������� (���� t) (��������

����������� nil) �������� ���������������������� ����������� ��������������) �������

&body������

Defines a mouse handler that translates from a displayed presentation object of a

certain type to a returned presentation object of a different type.

define-presentation-to-command-translator ���� (����������������� &key ������

(������� :select) �������������� ��������������������� (���� t) (�������������������

nil)��)���������&body������

Defines a mouse handler that translates from a displayed presentation object into a

Command Processor command using that object as input.

define-presentation-action ���� (���������������������� �������������������� &key

������ (�������� :select) ������������� ��������������������� (���� t) (��������

����������� nil) �������� ���������������������� ����������� ������������) �������

&body������

Defines a side-effecting mouse handler for performing actions on a displayed pre-

278
Programming the Mouse: Writing Mouse Handlers February 2018

sentation object that are independent of the main body and command loop of an

application.

dw:handler-applies-in-limited-context-p �����������������������������

This function is intended for use in the :tester forms of mouse handlers.

dw:presentation-subtypep ����������������� &optional������������

This function is the presentation system equivalent of the Common Lisp function

subtypep.

dw:delete-presentation-mouse-handler ���� &key��������t�

Removes an already defined presentation mouse handler.

dw:mouse-char-gesture ����������

Returns the standard gesture associated with a mouse character.

dw:mouse-char-gestures ����������

Returns a list of gestures associated with a mouse character.

dw:mouse-char-for-gesture �������

Returns the mouse character associated with a gesture.

dw:with-presentation-input-context ������������������ &rest �������� �&optional

����������’dw::.blip.���������������� &body�����������

Binds local environment to the input context of a specified presentation type.

dw:clear-presentation-input-context

Clears the current input context.

dw:presentation-input-context-option ������������������������������������

Extracts the value of the specified option from an input context. The input context

options are supplied in the ������� clause to dw:with-presentation-input-context.

dw:with-presentation-input-editor-context ������� ����������������� &rest ��������

�&optional�����������’dw::.blip.������������������������������ &body�����������

Establishes an input context around a call to the input editor to read keyboard in-

put from the user.

dw:*presentation-input-context*

Bound to the current presentation input context.

dw:echo-presentation-blip ������ ���� &optional ��������� (scl:send stream :read-

location)������������������

Echoes a presentation blip from the input buffer.

dw:presentation-blip-object �����������������

Returns the presentation object from a presentation blip.

dw:presentation-blip-options �����������������

Returns the options field (a list of keyword-value pairs) of a presentation blip.

dw:presentation-blip-presentation-type �����������������

Returns the presentation type from a presentation blip.

dw:presentation-blip-mouse-char �����������������

Returns the mouse character from a presentation blip.

279
February 2018 Programming the Mouse: Writing Mouse Handlers

dw:presentation-blip-typep ���������

Determines whether the presentation type of a presentation blip is of a specified

type. (The comparison is based on dw:presentation-subtypep).

dw:presentation-blip-p ����

Determines whether a blip is a presentation blip.

dw:presentation-blip-case ���� &body��������

Dispatches to clauses based on the presentation-type field of a presentation blip.

dw:presentation-blip-ecase ���� &body��������

Dispatches to clauses based on the presentation-type field of a presentation blip.

dw:describe-presentation-type ���� &optional ������� *standard-output*� �������

������������

Outputs the description of a presentation type provided by the type’s definition

(define-presentation-type macro).

280
Programming the Mouse: Writing Mouse Handlers February 2018

281
February 2018 Displaying Output: Replay, Redisplay, and Formatting

9. Displaying Output: Replay, Redisplay, and Formatting

This chapter explains how to produce output that can be redisplayed and refor-

matted. It also describes how you can write your own formatting output macros.

(To find out how to use basic facilities to produce formatted output, see the sec-

tion "Presenting Formatted Output", page 69.) ���������� ������������� are ones

that can be re-run, in place, and displayed in a new format. You, the programmer,

specify the redisplay options, called "viewspec choices." At runtime, the user of

your program can click on the replayable presentation and call up a menu listing

the viewspec choices. After the user exits the menu, the presentation is erased and

redisplayed according to the choices made.

To see an example of a replayable presentation, invoke the Show Processes com-

mand in a Lisp Listener or break window. Now, with the mouse cursor anywhere

in the displayed listing, click �����Middle. This brings up a menu entitled "Output

parameters" listing the viewspec choices. Try changing the selected choice from

None to any of the others, then click on Done, and watch what happens.

����������� ��������� of program output is implemented by another set of interre-

lated facilities. Output intended for redisplay is saved in an ������ �����. With the

redisplay facilities, you can cache an output display and compare it against the old

cached output of the same display to check for changes. If changed, the cache is

updated and the objects are redisplayed; if not, both the cache and the original dis-

play remain unaltered.

9.1. How Redisplay Works

Redisplay is organized around a hierarchy of output caches. Each cache represents

a portion of the screen, divided into nested rectangles according to the hierarchy.

The contents of the cache are validated when redisplay output is performed. If

they are valid, that is, if the same output is being done now as last time, the

screen area can be saved and reused rather than having to actually be redrawn on-

to the screen.

In order to validate the cache, two pieces of information are necessary. First, an

association between the output being done by the program and a particular cache.

This is a user-supplied datum, the unique-id of the cache. It is given by the

:unique-id option to dw:with-redisplayable-output. Second, a means of determin-

ing whether this particular cache is valid. This is the :cache-value option. Nor-

mally, you would supply both options. The unique-id would be some data structure

associated with the corresponding part of output. The cache value would be some-

thing in that data structure that changes whenever the output changes.

It is valid to give the :unique-id and not the :cache-value. This is done to identify

a superior in the hierarchy. By this means, the inferiors essentially get a more

complex :unique-id when they are matched for output. (In other words, it is like

using a telephone area code.) The cache without a cache value is never valid. Its

inferiors always have to be checked.

282
Displaying Output: Replay, Redisplay, and Formatting February 2018

It is also valid to give the :cache-value and not the :unique-id. In this case,

unique ids are just assigned sequentially. So, if output associated with the same

thing is done in the same order each time, it isn’t necessary to invent new unique

ids for each piece. This is especially true in the case of inferiors of a cache with a

unique id and no cache value of its own. In this case, the superior marks the par-

ticular data structure, whose components can change individually, and the inferiors

are always in the same order and properly identified by their superior and the or-

der in which they are output.

A :unique-id need not be unique across the entire redisplay, only among the infe-

riors of a given output cache; that is, among all possible (current and additional)

uses you make of dw:with-redisplayable-output that are dynamically (not lexical-

ly) within another.

To make your incremental redisplay maximally efficient, you should attempt to

give as many caches with :cache-value as possible. For instance, if you have a

deeply nested tree, it is better to be able to know when whole branches have not

changed than to have to recurse to every single leaf and check it. So, if you are

maintaining a modification tick in the leaves, it is better to also maintain one in

their superiors and propagate the modification up when things change. While the

simpler approach works, it requires redisplay to do more work than is necessary.

Redisplay is organized around the movement of boxes. The boxes contain the out-

put that is cached. Cursor motion, including output of newlines or terpri, need not

be contained within any particular dw:with-redisplayable-output. The cursor mo-

tion only determines the placement of the actual text and graphics that make up

the display. A few restrictions apply, though:

• You cannot use fresh-line, because its meaning might be ambiguous between the

two redisplay passes.

• Instead of outputting a conditional newline at the start of some output, you

should do an unconditional newline at the end. Furthermore, it is almost always

better to do any unconditional newline at the end rather than the beginning of

the contents of a dw:with-redisplayable-output.

• If you are writing a function that is meant to be called from Lisp top level, with

output starting on a blank line, you should put a fresh-line before any redisplay:�

Here are some examples of wrong and right ways to do redisplay.

�������

283
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defun redisplay-1 ()

 (let* ((list ’(1 2 3))

 (displayer (dw:redisplayer ()

 (dolist (thing list)

(dw:with-redisplayable-output (:unique-id thing

 :cache-value t)

 (format t "~&~D" thing))))))

 (dw:do-redisplay displayer)

 (sleep 1)

 (setq list (nconc list (ncons 4)))

 (dw:do-redisplay displayer)))

������

(defun redisplay-2 ()

 (fresh-line)

 (let* ((list (copy-list ’(1 2 3)))

 (displayer (dw:redisplayer ()

 (dolist (thing list)

(dw:with-redisplayable-output (:unique-id thing

 :cache-value t)

 (format t "~D~%" thing))))))

 (dw:do-redisplay displayer)

 (sleep 1)

 (setq list (nconc list (ncons 4)))

 (dw:do-redisplay displayer)))

If the state of the display is changing asynchronously, so that it might change be-

tween passes of redisplay, it can be snapshotted during the first pass of redisplay

by using a variable for :cache-value. When dw:with-redisplayable-output sees a

variable in that position, it creates a closure over it during the first pass of redis-

play, and uses that value for the display body of the macro on both passes.

9.2. Creating Replayable Output

These are the macros you can use to produce replayable or resortable output:

 dw:with-output-to-presentation-recording-string

 dw:with-replayable-output

 dw:with-resortable-output

The first, dw:with-output-to-presentation-recording-string, is the presentation-

system equivalent of the Common Lisp macro with-output-to-string. It works sim-

ilarly, but you can subsequently output the string as a presentation or collection of

presentations, instead of just as a string.

dw:with-replayable-output and dw:with-resortable-output are closely related, the

latter being a special case of the former. dw:with-replayable-output lets you

present all of the output generated in the body of the macro as a single presenta-

284
Displaying Output: Replay, Redisplay, and Formatting February 2018

tion. This presentation is "replayable"; that is, it can be input as a whole, internal-

ly re-arranged in some fashion, and presented again as the same object.

dw:with-resortable-output takes a sequence and a sorting predicate, and con-

structs a dw:with-replayable-output macro to implement the sorting function.

Users can click on the presented sequence and have it redisplayed in a different

order.

The following example is a function for presenting a resortable display of network

servers. It is implemented similarly to the Show Processes command.

(defun format-servers (&optional (sort-by :none))

 (fresh-line)

 (dw:with-resortable-output

 ((servers sort-by :copy-of neti:*servers*)

 (:none #’ignore)

 (:protocol (lambda (s-1 s-2)

 (string<

 (string (neti:server-protocol-name s-1))

 (string (neti:server-protocol-name s-2)))))

 (:medium (lambda (s-1 s-2)

(string<

 (string (neti:server-medium-type s-1))

 (string (neti:server-medium-type s-2)))))

 (:arguments (lambda (s-1 s-2)

 (< (neti:server-number-of-arguments s-1)

 (neti:server-number-of-arguments s-2)))))

 ()

 (formatting-table ()

 (formatting-column-headings ()

(with-character-face (:italic)

 (with-underlining ()

 (formatting-cell ()

 (write-string "protocol"))

 (formatting-cell ()

 (write-string "medium"))

 (formatting-cell ()

 (write-string "no. of arguments")))))

 (loop for server in servers do

(formatting-row ()

 (formatting-cell ()

 (format t "~a"

 (neti:server-protocol-name server)))

 (formatting-cell ()

 (format t "~a"

 (neti:server-medium-type server)))

 (formatting-cell (*standard-output* :align :right)

 (format t "~a"

 (neti:server-number-of-arguments server))))))))

285
February 2018 Displaying Output: Replay, Redisplay, and Formatting

9.3. Redisplaying with dw:accepting-values Forms

The following examples illustrate how to use dw:with-redisplayable-output and

several table formatting macros within dw:accepting-values to obtain complex

formatting.

(defun enter-matrix (m n)

 (fresh-line)

 (let ((matrix (make-array (list m n))))

 (dw:accepting-values ()

 (formatting-table ()

(formatting-column-headings ()

 (formatting-cell ()

 (dw:with-redisplayable-output

 (:unique-id (list nil nil) :id-test #’equal

 :cache-value t)

 (format t "\\")))

 (dotimes (j n)

 (formatting-cell ()

 (dw:with-redisplayable-output

 (:unique-id (list nil j) :id-test #’equal

 :cache-value t)

(format t "~D" j)))))

(dotimes (i m)

 (dw:with-redisplayable-output (:unique-id i)

 (formatting-row ()

 (formatting-cell ()

(dw:with-redisplayable-output (:unique-id (list i nil)

 :id-test #’equal

 :cache-value t)

 (format t "~D" i)))

 (dotimes (j n)

(formatting-cell ()

 (setf (aref matrix i j)

(accept ’sys:expression

:default (aref matrix i j)

 :provide-default t

:query-identifier (list i j)

:prompt nil :prompt-mode :raw)))))))))

 matrix))

286
Displaying Output: Replay, Redisplay, and Formatting February 2018

(define-presentation-type choice-box-subset

 ((&key keyword-alist) &key (possible-keywords

 (map ’list #’car keyword-alist)))

 :expander ‘((subset . ,possible-keywords))

 :choose-displayer ((stream object query-identifier)

 (choice-box-subset-choose-displayer

 stream object

 keyword-alist possible-keywords

 query-identifier)))

287
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defun choice-box-subset-choose-displayer (stream value keyword-alist

 possible-keywords

 query-identifier

 &key (box-size

 (send stream :baseline)))

 (flet ((do-dependencies (new old)

 (let ((dependencies (or (cddr (assoc new keyword-alist))

 ’(nil t nil nil))))

 (macrolet ((dep-set (accessor)

 ‘(let ((tem (,accessor dependencies)))

 (if (eq tem ’t) possible-keywords tem))))

 (cond ((member new old)

 ;; Removing

 (dolist (also (dep-set third))

(setq old (adjoin also old)))

 (dolist (also (dep-set fourth))

(setq old (delete also old)))

 (setq old (delete new old)))

 (t

 ;; Adding

 (dolist (also (dep-set first))

(setq old (adjoin also old)))

 (dolist (also (dep-set second))

(setq old (delete also old)))

 (setq old (adjoin new old))))))

 old))

 (let ((choices (dw::make-accept-values-choices

 :query-identifier query-identifier

 :sequence keyword-alist

 :select-action #’do-dependencies)))

 (dw:with-output-as-presentation

 (:type ’dw::accept-values-choices-display

 :object choices

 :stream stream)

(loop for (keyword) in keyword-alist do

 (formatting-cell (stream :align-x :center :align-y :top)

 (when (member keyword possible-keywords)

 (let ((on-p (member keyword value)))

(dw:with-redisplayable-output (:stream stream

 :unique-id keyword

 :cache-value on-p)

 (dw:with-output-as-presentation

 (:stream stream

 :single-box t

 :type ’dw::accept-values-choice-display

 :object (dw::make-accept-values-choice

 :choices choices

288
Displaying Output: Replay, Redisplay, and Formatting February 2018

 :choice keyword

 :value keyword))

 (send stream :increment-cursorpos 1 1)

 ;Thickness 2 goes 1 back.

 (graphics:with-room-for-graphics (stream box-size

 :fresh-line nil

 :move-cursor nil)

 (graphics:with-drawing-state (stream :thickness 2)

(graphics:draw-rectangle 0 0 box-size box-size

 :filled nil :stream stream)

(when on-p

 (graphics:draw-line 0 0 box-size box-size

 :stream stream)

 (graphics:draw-line 0 box-size box-size 0

 :stream stream))

))))))))))))

289
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defun almost-compatible-multiple-choose (item-name item-list keyword-alist

 &key (own-window nil)

 (near-mode ’(:mouse)))

 (let ((state (loop for (item name choices) in item-list

 collect (list* item

 (loop for choice in choices

 when (and (consp choice)

 (second choice))

 collect (first choice))))))

 (dw:accepting-values (t :own-window own-window :near-mode near-mode)

 (formatting-table ()

(dw:with-redisplayable-output (:unique-id ’headings :cache-value t)

 (formatting-column-headings ()

 (format-cell item-name #’princ)

 (loop for (keyword name) in keyword-alist do

 (format-cell name #’princ))))

(loop for (item name choices) in item-list

 for state in state

 do

 (formatting-row ()

 (setf (cdr state)

 (accept ‘((choice-box-subset

 :keyword-alist ,keyword-alist)

 :possible-keywords ,(map ’list

 #’(lambda (x)

 (if (consp x)

 (car x) x))

 choices))

 :query-identifier item

 :prompt #’(lambda (stream ignore)

 (formatting-cell (stream)

(princ name stream)))

 :prompt-mode :raw

 :newline-after-query nil

 :default (cdr state)

 :provide-default t))))))

 state))

(defun mc-test (&optional (new-p t) &rest other-options)

 (apply (if new-p #’almost-compatible-multiple-choose #’tv:multiple-choose)

 "Buffer"

 ’((1 "Buffer 1" ((:save t) (:kill nil)))

 (2 "Buffer 2" ((:save nil) (:kill t))))

 ’((:save "Save") (:kill "Kill"))

other-options))�

290
Displaying Output: Replay, Redisplay, and Formatting February 2018

9.4. Snapshotting Variables

To understand the need for variable snapshotting, consider the following programs.

(map ’list #’funcall

 (loop for i from 1 to 10 collect #’(lambda () i)))

=> (11 11 11 11 11 11 11 11 11 11)

(map ’list #’funcall

 (let ((continuations nil))

 (dotimes (i 10)

 (push #’(lambda () i) continuations))

 (nreverse continuations)))

=> (10 10 10 10 10 10 10 10 10 10)

(map ’list #’funcall

 (let ((continuations nil))

 (dolist (x ’(a b c d))

 (push #’(lambda () x) continuations))

 (nreverse continuations)))

=> (D D D D)

(map ’list #’funcall

 (map ’list #’(lambda (x) #’(lambda () x))

 ’(a b c d)))

=> (A B C D)

In all but the last case, the program does not do as expected. A strict interpreta-

tion of the definition of dolist and dotimes requires that there by a single itera-

tion variable that is set each time around the loop to the next value. The seman-

tics of the complete version of loop, with multiple variables of iteration, makes

this even more imperative.

Unfortunately, this collecting of continuations is just how the formatted output

macros accomplish their layout, as the following examples show.

(defun with-snapshotting (l)

 (terpri)

 (formatting-item-list ()

 (dolist (x l)

 (formatting-cell ()

(princ x)))))

(with-snapshotting ’(a b c d e f g h i j))

=> A B C

 D E F

 G H I

 J

291
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defun without-snapshotting (l)

 (terpri)

 (formatting-item-list ()

 (dolist (x l)

 (formatting-cell (t :dont-snapshot-variables (x))

(princ x)))))

(without-snapshotting ’(a b c d e f g h i j))

=> J J J

 J J J

 J J J

 J

So, in order to make the most common usage of the the simplest iteration macros

work with the formatted output macros, variables used freely inside those macros

are placed in a separate lexical contour, that is, �����������, so that they are not

shared.

However, this snapshotting can cause problems for legitimate uses of shared lexi-

cal variables, which the macros cannot distinguish from variables of iteration or

other things requiring snapshots. For example:

(defun show-some-hash-elements (table)

 (terpri)

 (let ((items-output nil))

 (formatting-table ()

 (maphash #’(lambda (key item)

 (when (oddp key)

 (pushnew item items-output)

 (formatting-row ()

 (formatting-cell ()

 (princ key))

 (formatting-cell ()

 (princ item)))))

 table))

 (sort items-output #’<)))

(show-some-hash-elements

 (make-hash-table :initial-contents ’(1 2 2 3 3 4 4 5 5 6)))

5 6

3 4

1 2

=> NIL

This program gets a compiler warning because it is writing to a snapshotted vari-

able, and it does not work. In order to get it to function correctly, it must be

rewritten to inhibit the snapshotting of the dw::items-output variable, as follows:

292
Displaying Output: Replay, Redisplay, and Formatting February 2018

(defun show-some-hash-elements (table)

 (terpri)

 (let ((items-output nil))

 (formatting-table (t :dont-snapshot-variables (items-output))

 (maphash #’(lambda (key item)

 (when (oddp key)

 (pushnew item items-output)

 (formatting-row ()

 (formatting-cell ()

 (princ key))

 (formatting-cell ()

 (princ item)))))

 table))

 (sort items-output #’<)))

(show-some-hash-elements

 (make-hash-table :initial-contents ’(1 2 2 3 3 4 4 5 5 6)))

5 6

3 4

1 2

=> (2 4 6)

9.5. Doing Incremental Redisplay

Here is the set of inter-related facilities is provided for creating redisplayable out-

put and doing incremental redisplay:

 dw:redisplayable-present

 dw:redisplayable-format

 dw:independently-redisplayable-format

 dw:with-redisplayable-output

 dw:redisplayer

 dw:do-redisplay

Redisplayable output is similar to ordinary output in the actual display; it differs

in that, in addition to being output to a window for display, the output value is al-

so stored in an ������ ����� uniquely identified with that display. When the win-

dow is redisplayed, the cached output value is first compared to output values pre-

viously cached and, if different, the cache is updated with the new value for dis-

play. This has efficiency advantages compared with non-cached output: the display

is not changed saving time and reducing flicker.

����������� ��������� refers to the redisplay of individual pieces of the output to a

window, rather than redisplaying the window as a whole. It works in the manner

described above, except that each redisplayed piece of the window output is associ-

ated with its own output cache.

293
February 2018 Displaying Output: Replay, Redisplay, and Formatting

The first four facilities are for creating redisplayable output. dw:redisplayable-

present is used like present but creates a redisplayable presentation. Similarly,

dw:redisplayable-format works as format does, but generates redisplayable out-

put. dw:independently-redisplayable-format is like the previous function, except

that each argument in the format-control string gets cached separately, hence its

usefulness for incremental redisplay. Finally, the macro dw:with-redisplayable-

output lets you make any output-producing code produce redisplayable output.

When doing incremental redisplay with tables or graphs, you put a dw:with-

redisplayable-output ������� the formatting-row with only a :unique-id, and a

dw:with-redisplayable-output ������ the formatting-cells with only a :cache-

value.

How you do redisplay once you have functions producing redisplayable output de-

pends on whether you are taking advantage of dw:define-program-framework. If

you are, making a program pane use your redisplay function is simply a matter of

supplying that function via the :redisplay-function keyword. If, additionally, incre-

mental redisplay is what you want, you should specify so with the :incremental-

redisplay keyword.

If you are doing redisplay outside of dw:define-program-framework, you need to

create a redisplay object that you can pass to dw:do-redisplay, which, as its name

says, does the redisplay. Creating a redisplay object is the job of dw:redisplayer;

use this macro to enclose your redisplay function.

Here is an example that demonstrates the use of dw:redisplayer, dw:do-redisplay,

and dw:redisplayable-present. The function waits for a character to be input be-

fore redisplaying:

(defvar *l*)

(defun redisplay-test-1 ()

 (fresh-line)

 (setq *l* (copy-list ’("Old Top" "Old Middle" "Old Bottom")))

 (let ((displayer (dw:redisplayer ()

 (dolist (thing *l*)

 (dw:redisplayable-present thing ’string

 :unique-id thing)

 (terpri)))))

 (dw:do-redisplay displayer)

 (read-char)

 (push "New Top" *l*)

 (dw:do-redisplay displayer)

 (read-char)

 (pop (cddr *l*))

 (dw:do-redisplay displayer)

 (read-char)

 displayer))

Here are more elaborate examples, both of which require the following auxiliary

internal function, which sets up *L* and runs dw:do-redisplay. dw:do-redisplay

uses, in the examples, dw:redisplayer to look at *L* to decide what output to do.

294
Displaying Output: Replay, Redisplay, and Formatting February 2018

(defun redisplay-test-2-internal (displayer stream)

 (fresh-line)

 (setq *l* (loop for (symbol . value) in ’((*a* . a)

 (*bb* . b)

 (*c* . cc))

 do (set symbol value)

 collect symbol))

 (dw:do-redisplay displayer stream)

 (read-char)

 (set ’*@* ’ddd) (push ’*@* (cddr *l*))

 (dw:do-redisplay displayer stream)

 (read-char)

 (set ’*c* ’not-c)

 (dw:do-redisplay displayer stream)

 (read-char)

 (pop (cdr *l*))

 (dw:do-redisplay displayer stream)

 (read-char)

 displayer)

This example illustrates the use of dw:with-redisplayable-output and

dw:redisplayable-format:

(defun redisplay-test-2 (&optional (stream *standard-output*))

 (redisplay-test-2-internal

 (dw:redisplayer ()

 (dolist (thing *l*)

(dw:with-redisplayable-output (:unique-id thing)

 (dw:redisplayable-format t "~S: " thing)

 (dw:redisplayable-present (eval thing) ’expression))

(terpri)))

 stream))

Try moving the mouse over the results of the preceding example. Note that both

the symbols and their values are sensitive.

This illustrates the use of dw:independently-redisplayable-format:

(defun redisplay-test-2a (&optional (stream *standard-output*))

 (redisplay-test-2-internal

 (dw:redisplayer ()

 (dolist (thing *l*)

(dw:with-redisplayable-output (:unique-id thing)

 (dw:independently-redisplayable-format t "~S: ~S~%"

 thing (eval thing)))))

 stream))

Try moving the mouse over the results of the preceding example. Only the last

value is mouse-sensitive.

Here is an example that shows how you can use redisplay functions to display non-

questions in dw:accepting-values output:

295
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defun another-test ()

 (let ((n 5)

(m 6))

 (dw:accepting-values ()

 (setq n (accept ’((mod 7)) :prompt "The number" :default n))

 (setq m (mod (1+ n) 7))

 (dw:with-redisplayable-output (:cache-value m :unique-id ’m)

(format t " (The next number is ~D.)~%" m))

 m)))

9.5.1. Incremental Redisplay of Nested Structures

Here is an example you can follow.

(dw:define-program-framework callers

 :command-definer t

 :command-table (:inherit-from nil)

 :panes

 ((display :display

 :redisplay-function ’display-callers

 :incremental-redisplay t

 :end-of-page-mode :truncate

 :margin-components

 ‘dw:((margin-ragged-borders)

 (margin-scroll-bar)

 (margin-scroll-bar :margin :bottom)

 (margin-white-borders :thickness 2)))

 (interactor :interactor)

 (menu :command-menu))

 :state-variables

 ((display-format :text ((member :text :graph)))

 (root-nodes nil)))

(defmethod (display-callers callers) (stream)

 (ecase display-format

 (:text

 (dolist (top root-nodes)

(callers-node-display-self-and-inferiors top stream)))

 (:graph

 (format-graph-from-root root-nodes

 #’callers-node-display-in-box

 #’callers-node-inferior-nodes

 :stream stream

 :root-is-sequence t

 :orientation :horizontal

 :border nil))))

296
Displaying Output: Replay, Redisplay, and Formatting February 2018

(defflavor callers-node

(caller callee calls-how

 (inferiors-visible nil) inferior-nodes)

()

 (:writable-instance-variables inferiors-visible)

 (:constructor make-callers-node (caller callee calls-how)))

(defmethod (sys:print-self callers-node) (stream ignore slash)

 (if slash

 (sys:printing-random-object (self stream :typep)

 (princ self stream))

 (present caller ’sys:function-spec :stream stream)))

(define-presentation-type callers-node ()

 :no-deftype t

 ;; printer from print-self above via sys:expression.

 :parser

 ((stream)

 (dw:read-char-for-accept stream)

 (sys:parse-error "You can only enter the node with the mouse.")))

(defmethod (callers-node-inferior-nodes callers-node) ()

 (when inferiors-visible

 (unless (variable-boundp inferior-nodes)

 (setq inferior-nodes (make-callers-nodes caller)))

 inferior-nodes))

(defmethod (callers-node-display-in-box callers-node) (stream)

 (dw:with-redisplayable-output

 (:unique-id self

 :cache-value t ;Always draws the same

 :stream stream)

 (surrounding-output-with-border (stream)

 (present self ’callers-node :stream stream))))

297
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defmethod (callers-node-display-self-and-inferiors callers-node)

 (stream &optional (depth 0))

 (dw:with-redisplayable-output

 (:unique-id self :cache-value inferiors-visible :stream stream)

 (send stream :increment-cursorpos

 (* depth 2) 0 :character)

 (dw:with-output-as-presentation

 (:object self :type ’callers-node

 :stream stream

 :allow-sensitive-inferiors nil) ;Looks nicer

 (present self ’callers-node :stream stream)

 (format stream

 (cadr (assoc calls-how si:*who-calls-how-alist*)) callee))

 (terpri stream)

 (dolist (inferior (callers-node-inferior-nodes self))

 (callers-node-display-self-and-inferiors inferior stream (1+ depth)))))

(defun make-callers-nodes (callee)

 (let ((result nil))

 (si:map-over-callers callee

 #’(lambda (caller calls-how)

(push

 (make-callers-node caller callee calls-how)

 result)))

 result))

(compile-flavor-methods callers-node)

(define-callers-command (com-clear-all-callers :menu-accelerator t)

()

 (setq root-nodes nil)

 (send dw:*program-frame* :redisplay-pane ’display t))

(define-callers-command

 (com-add-callers :menu-accelerator t)

 ((callers ’((sequence sys:function-spec)) :confirm t))

 (setq root-nodes (append root-nodes

 (loop for caller in callers

nconc (make-callers-nodes caller)))))

298
Displaying Output: Replay, Redisplay, and Formatting February 2018

(define-callers-command

 (com-set-display-format :menu-accelerator t

:menu-documentation-include-defaults t)

 ((format ’((member :text :graph))

 :default (if (eq display-format :text) :graph :text)))

 (unless (eq format display-format)

 (setq display-format format)

 ;; Could rely on incremental redisplay, but why make it work extra hard?

 (send dw:*program-frame* :redisplay-pane ’display t)))

(define-callers-command

 (com-toggle-callers-visibility)

 ((callers-node ’callers-node))

 (setf (callers-node-inferiors-visible callers-node)

 (not (callers-node-inferiors-visible callers-node))))

(define-presentation-to-command-translator

 com-toggle-callers-visibility

 (callers-node) (callers-node)

 ‘(com-toggle-callers-visibility ,callers-node))

(compile-flavor-methods callers)

9.5.2. Incremental Redisplay of Tables

The table formatting facilities are specially written to cooperate with redisplay, so

there is nothing special about doing this. Generally, to display a set of similar

structures, you put a dw:with-redisplayable-output ������� the formatting-row

with only a :unique-id, and a dw:with-redisplayable-output ������ the

formatting-cells with only a :cache-value. If you can cheaply tell whether any at-

tribute of the object has changed (for example, using a tick) a cache-value outside

may improve performance.

��������

(defun redisplay-processes (&optional (processes sys:all-processes))

 (formatting-table ()

 (dw:with-redisplayable-output (:unique-id ’headings :cache-value t)

 (formatting-column-headings (t :underline-p t)

 (with-character-face (:italic)

 (formatting-cell () "Process Name")

 (formatting-cell () "State")

 (formatting-cell () "Priority")

 (formatting-cell () "Quantum")

 (formatting-cell (t :align :right) " %")

299
February 2018 Displaying Output: Replay, Redisplay, and Formatting

 (formatting-cell () "Idle"))))�

 (dolist (process processes)

 (dw:with-redisplayable-output (:unique-id process)

 (formatting-row ()

 (formatting-cell ()

 (let ((name (process-name process)))

 (dw:with-redisplayable-output (:cache-value name)

(present process))))�

 (formatting-cell ()

 (let ((whostate (cp::process-whostate-or-special process)))

 (dw:with-redisplayable-output (:cache-value whostate)

(write-string whostate))))�

 (formatting-cell ()

 (let ((priorities (list (si:process-priority process)

 (si:process-base-priority process))))

 (dw:with-redisplayable-output

 (:cache-value priorities :cache-test #’equal)

(prin1 (first priorities))

(let ((diff (reduce #’- priorities)))

 (unless (zerop diff)

 (write-string (format nil "~@D" diff)))))))�

 (formatting-cell ()

 (let ((quanta (list

 (tv:peek-process-quantum-remaining process)

 (process-quantum process))))

 (dw:with-redisplayable-output

 (:cache-value quanta :cache-test #’equal)

(format t "~4D/~D" (first quanta) (second quanta)))))�

 (formatting-cell (t :align :right)

 (let ((%tage (send process :percent-utilization)))

 (dw:with-redisplayable-output

 (:cache-value %tage

 :cache-test #’(lambda (x y)

 ;; Equal as a percentage.

 (= (round (* x 100))

(round (* y 100)))))

300
Displaying Output: Replay, Redisplay, and Formatting February 2018

(format t "~1,1,4$%" %tage))))�

 (formatting-cell ()

 (let ((idle (send process :idle-time)))

 (dw:with-redisplayable-output

 (:cache-value idle

 :cache-test #’(lambda (x y)

 (flet

 ((round-idle (x)

(cond

 ((null x) nil)

 ((< x 60) x)

 ((< x 3600) (* 60 (floor x 60)))

 (t (* 3600 (floor x 3600))))))

 (eql (round-idle x) (round-idle y)))))

(present idle ’cp::process-idle-time)))))))))

(defun redisplaying-processes ()

 (fresh-line)

 (let ((displayer (dw:redisplayer ()

 (redisplay-processes))))

 (loop

 (dw:do-redisplay displayer)

 (sleep 1))))

Note, from the above example, that redisplay-processes can be called from outside

of redisplay. The dw:with-redisplayable-output macro is harmless outside of

dw:redisplayer. Also note that the redisplay context is dynamically scoped, not

lexically. Finally, note the use of variables as :cache-values, since the state of a

process can change between passes.

9.5.3. Incremental Redisplay of Graphs

format-graph-from-root supplies a box around each node of a graph by default.

Normally, when doing redisplay, you want the output cache to contain both the box

and its contents. So, you have to arrange for the dw:with-redisplayable-output to

include both.

When doing graph redisplay in a program framework, it is usually desirable to

give the pane :end-of-page-mode :truncate, as this allows drawing the whole

graph without moving the viewport each time redisplay happens. In this case, the

window should also be given a scroll bar.

Here is the non-redisplay version of a graph-formatting routine:

(defun flavor-components (flavor-name)

 (flavor::flavor-local-components

 (flavor:find-flavor flavor-name)))

301
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(defun present-flavor (flavor-name &optional (stream *standard-output*))

 (present flavor-name ’flavor:flavor-name :stream stream))

(cp:define-command (com-show-flavor-tree :command-table "Global")

 ((root-flavor-name ’flavor:flavor-name))

 (fresh-line)

 (format-graph-from-root root-flavor-name #’present-flavor #’flavor-components))�

Here is the code needed to make the graph redisplay:

(dw:define-program-framework flavor-grapher

 :panes ((command-menu :command-menu)

 (graph :display

 :redisplay-function ’redisplay-graph

 :typeout-window t

 :end-of-page-mode :truncate

 :incremental-redisplay t

 :margin-components dw::*listener-margin-components*)

 (interactor :interactor))

 :command-definer t

 :state-variables ((root-node nil)

 (node-printer #’present-flavor)

 (node-inferior-producer #’flavor-components)))

(defflavor grapher-node

(object

 printer

 inferior-producer

 inferiors

 (inferiors-visible nil))

()

 (:readable-instance-variables object printer)

 (:writable-instance-variables inferiors-visible)

 (:constructor make-grapher-node (object printer inferior-producer)))

(define-presentation-type grapher-node ()

 :no-deftype t

 :printer ((node stream)

 (funcall (grapher-node-printer node)

 (grapher-node-object node) stream)))

(defmethod (grapher-node-inferior-nodes grapher-node) ()

 (when inferiors-visible

 (if (variable-boundp inferiors)

inferiors

(setq inferiors (map ’list

 #’(lambda (object)

 (make-grapher-node object

 printer inferior-producer))

302
Displaying Output: Replay, Redisplay, and Formatting February 2018

 (funcall inferior-producer object))))))

(defmethod (grapher-node-draw grapher-node) (stream)

 (dw:with-redisplayable-output (:stream stream

 :unique-id self

 :cache-value inferiors-visible)

 (dw:with-output-as-presentation (:stream stream

 :type ’grapher-node

 :object self

 :single-box t

 :allow-sensitive-inferiors nil)

 (surrounding-output-with-border (stream)

(present self ’grapher-node :stream stream)))))

(defmethod (redisplay-graph flavor-grapher) (stream)

 (when root-node

 (format-graph-from-root root-node #’grapher-node-draw

 #’grapher-node-inferior-nodes

 :border nil

 :stream stream)))

(define-flavor-grapher-command (com-set-root-flavor-name

 :menu-accelerator t)

 ((flavor-name ’sys:flavor-name

 :confirm t))

 (setq root-node (make-grapher-node flavor-name

 node-printer node-inferior-producer)))

(define-flavor-grapher-command (com-toggle-inferior-visibility)

 ((node ’grapher-node))

 (setf (grapher-node-inferiors-visible node)

 (not (grapher-node-inferiors-visible node))))

(define-presentation-to-command-translator toggle-this-node

 (grapher-node) (node)

 ‘(com-toggle-inferior-visibility ,node))

(compile-flavor-methods grapher-node flavor-grapher)

9.5.4. Incremental Redisplay of Graphics

Redisplay is oriented around rectangles. Some graphics may have shapes which

overlap in their bounding rectangles, even though they don’t overlap in what they

draw. The current implementation of incremental redisplay will not always func-

tion properly in this cases. Other than that, there is nothing special about graphi-

cal output as opposed to text output.

��������

303
February 2018 Displaying Output: Replay, Redisplay, and Formatting

(dw:define-program-framework circles

 :command-definer t

 :command-table (:inherit-from nil

 :kbd-accelerator-p t)

 :top-level (dw:default-command-top-level :echo-stream ignore)

 :panes ((display :display

 :redisplay-function ’draw-circles

 :incremental-redisplay t)

 (menu :command-menu))

 :state-variables ((circles nil)))

(defstruct circle

 center-x

 center-y

 radius)

(defmethod (draw-circles circles) (stream)

 (dolist (circle circles)

 (dw:with-redisplayable-output

 (:unique-id circle :stream stream :cache-value t)

 (dw:with-output-as-presentation

 (:object circle :type ’circle :stream stream)

 (graphics:draw-circle

 (circle-center-x circle) (circle-center-y circle)

 (circle-radius circle) :stream stream)))))

(define-circles-command (com-delete-circle)

 ((circle ’circle))

 (setq circles (delete circle circles)))

(define-presentation-to-command-translator

 delete-this-circle (circle) (circle)

 ‘(com-delete-circle ,circle))

(define-circles-command (com-add-circle)

 ((x ’number :default 100)

 (y ’number :default 100)

 (radius ’number :default 50))

 (push (make-circle :center-x x

 :center-y y

 :radius radius)

 circles))

(define-presentation-to-command-translator add-circle-here

 (dw:no-type :documentation "Add a circle here.")

 (ignore &key x y)

 ‘(com-add-circle ,x ,y))

(define-circles-command (com-delete-all-circles :menu-accelerator t)

 ()

 (setq circles nil))

(compile-flavor-methods circles)

304
Displaying Output: Replay, Redisplay, and Formatting February 2018

9.6. Writing Formatted Output Macros

Given a continuation (usually a closure) and a stream, dw:continuation-output-

size tells you how much room, in spaces or pixels, the continuation will require on

the stream. This is useful, for example, for making windows no larger than neces-

sary to accommodate formatted displays. The reference documentation for this fa-

cility includes an example (see the function dw:continuation-output-size in ����

��������������������).

dw:named-value-snapshot-continuation is a macro that makes separate bindings

for free variables referenced in its body; that is, it "snapshots" the free variables

at the time the closure is constructed. This provides lexical separation between

variables in the inner loops of a formatting function and variables with the same

names in the outer loops. The reference documentation for dw:named-value-

snapshot-continuation contains additional details on when and how to use this

facility, including examples. See the function dw:named-value-snapshot-

continuation in �������������������������.

9.7. Table of Replay and Redisplay Facilities

dw:displayed-presentation-set-highlighting ���������������������� ������ &option-

al��������������������:underline�

Highlights a displayed presentation.

dw:displayed-presentation-clear-highlighting ���������������������� ������ &op-

tional��������������������:underline�

Eliminates highlighting of a displayed presentation.

dw:redisplayable-present ������ &optional ������������������ (type-of dw::object)�

&rest�������� &key����������*standard-output*������������ &allow-other-keys

Presents an object redisplayably.

dw:redisplayable-format �������������������� &rest������������

Outputs a formatted string redisplayably.

dw:independently-redisplayable-format �������������������� &rest������������

Outputs a formatted string such that each format argument is independently re-

displayable.

dw:with-redisplayable-output �&key �������� *standard-output*� ������������

���������� ���������������� ������������ #’eql� ����������������� ��������� #’eql� �������

��������������������’dw::redisplay-piece��������������������������� &body�����

Introduces a caching point for incremental redisplay.

dw:redisplayer �&optional������� &rest��������� &body�����

Creates a redisplay object out of its ���� which can be used to do incremental re-

display on ������.

dw:do-redisplay ��������������� &optional ������� *standard-output*� &key ������

���

Causes incremental redisplay from a redisplay object (created by dw:redisplayer.

305
February 2018 Displaying Output: Replay, Redisplay, and Formatting

dw:with-output-to-presentation-recording-string ������� &optional ������� &body

����

Binds local environment to output to a string that records presentations resulting

from calls to present and dw:with-output-as-presentation.

dw:with-replayable-output ���������� &body�����

Binds the local environment such that all of the output generated by ���� becomes

a single, replayable presentation.

dw:with-resortable-output ������ ��� &key ��������� &rest ������������� ������

���������� &body�����

Binds the local environment such that all of the output generated by ���� becomes

a single, resortable presentation.

dw:continuation-output-size ������������������� &optional�������:pixel�

Determines the amount of space a specified continuation would require for output

on a specified stream.

dw:named-value-snapshot-continuation ������������� &body�����

Generates a lexical closure of its ����, except that it snapshots the current values

of lexical variables used free within ����.

306
Displaying Output: Replay, Redisplay, and Formatting February 2018

307
February 2018 Managing Your Program Frame

10. Managing Your Program Frame

In an earlier chapter, "Defining Your Own Program Framework", we introduced

the macro for creating an application program framework and the Layout Design-

er, a tool to use to automatically write such a macro. In the present chapter, we

present the facilities and techniques you can use to modify and extend your pro-

gram framework beyond what you can accomplish using the Layout Designer by

itself.

The topics covered in this chapter fall into the following areas: the top-level loop

and redisplay function, the commands and command menus, and the window lay-

out. Before discussing these topics, however, we look at the various ways you can

arrange for the user to invoke your application program.

10.1. Invoking an Application Program

The most often used and most straightforward way to invoke an application pro-

gram is to use the ������ key and the select character you define for the program

in your dw:define-program-framework form. Even if you do not assign a charac-

ter, you can still use the CP command Select Activity to select a program, if you

have not set the :selectable option to nil.

If you do not want an application program to be selectable, then you do set the

dw:define-program-framework :selectable option to nil. There are two ways to

invoke a program that is not selectable. One way is to call dw:make-program to

make an instance of the given program flavor and to apply dw::run-program-top-

level to the result. Another, way is to use allocate-resource to allocate a program

frame of the type of your program, call the frame with tv:window-call, and then

apply dw:program-frame-top-level.

The following sample program illustrates the first method. It also illustrates how

to write a redisplay function for a program’s top-level loop, in this case called

simple-menu-top-level. Note the use of dw:with-redisplayable-output dw:do-

redisplay, and dw:read-program-command.

308
Managing Your Program Frame February 2018

(dw:define-program-framework simple-menu

 :selectable nil

 :command-definer t

 :top-level (simple-menu-top-level)

 :command-table

 (:kbd-accelerator-p t

 :inherit-from ’("standard scrolling"

 "standard arguments"))

 :state-variables

 ((item-list nil)

 (selected-item nil)

 (displayer)

 (stream)))

(define-presentation-type simple-menu-item ((&key alist))

 :printer ((item stream)

 (write-string (string item) stream)))

(defmethod (redisplay-choices simple-menu) (stream)

 (let ((presentation-type ‘(simple-menu-item :alist ,item-list)))

 (dw:formatting-item-list (stream :row-wise nil)

 (loop for item in item-list

 do

 (dw:formatting-cell (stream)

 (dw:with-redisplayable-output

 (:stream stream

 :unique-id item

 :cache-value (eql item selected-item))

 (with-character-face

((if (eql item selected-item) :bold :roman)

stream)

(present item presentation-type :stream stream

 :single-box t

 :allow-sensitive-inferiors nil

 :allow-sensitive-raw-text nil))))))))

(defmethod (simple-menu-top-level simple-menu) (real-stream)

 (setf stream real-stream

 displayer (dw:redisplayer (stream)

 (redisplay-choices self stream)))

 (tv:with-blinker-visibility (stream nil)

 (catch ’return-item

 (loop

 (dw:do-redisplay displayer stream)

 (multiple-value-bind (command arguments)

 (dw:read-program-command self

 :echo-stream #’ignore

 :notification nil)

 (when command

309
February 2018 Managing Your Program Frame

 (apply command arguments)))))))

(define-simple-menu-command (com-choose-item)

 ((item ’simple-menu-item))

 (setf selected-item item))

(dw:define-presentation-to-command-translator choose-item

 (simple-menu-item :gesture :select

 :documentation "Choose this item")

 (item)

 ‘(com-choose-item ,item))

(define-simple-menu-command

 (com-exit :keyboard-accelerator (#\end)) ()

 (throw ’return-item selected-item))

(defun simple-menu-choose

(item-list &optional (stream *query-io*))

 (fresh-line stream)

 (let ((program (dw:make-program ’simple-menu)))

 (setf (simple-menu-item-list program) item-list)

 (dw::run-program-top-level program stream)))

This next example illustrates the second method and additionally demonstrates how

to create a pop-up window that does not have its own process. To do this, you need

to create the program without its own process and run its top level in the user’s

process. To do this, use the :process nil option to the dw:program-frame re-

source. Use dw:program-frame-top-level to call the program. Give :selectable nil

if the program cannot also be run by itself. This also presents an example of how

to write a display function. Note the use of catch and throw for the redisplay

function display-buttons. Also note the use of tv:window-call and dw:program-

frame-top-level.

310
Managing Your Program Frame February 2018

(dw:define-program-framework buttons

 :command-definer t

 :selectable nil

 :command-table (:inherit-from ()

:kbd-accelerator-p ’t)

 :top-level (dw:default-command-top-level

 :echo-stream ignore)

 :panes ((buttons :display

 :size-from-output t

 :redisplay-after-commands t :typeout-window t

 :incremental-redisplay t

 :redisplay-function ’display-buttons)

 (command-menu :command-menu :menu-level :top-level))

 :size-from-pane buttons

 :configurations ’((dw::main

 (:layout

(dw::main :column buttons command-menu))

 (:sizes

(dw::main

 (buttons :ask-window self

 :size-for-pane buttons)

 (command-menu :ask-window self

:size-for-pane command-menu)

 :then))))

 :state-variables ((on-buttons nil)))

(define-presentation-type button ()

 :expander ’((integer 1 10)))

(defmethod (display-buttons buttons) (stream)

 (formatting-item-list (stream :n-rows 2)

 (loop for button from 1 to 10 do

 (formatting-cell (stream)

 (let ((on-p (member button on-buttons)))

 (dw:with-redisplayable-output

 (:stream stream

 :unique-id button

 :cache-value on-p)

 (dw:with-output-as-presentation

 (:stream stream :object button :type ’button

 :single-box t

 :allow-sensitive-inferiors nil)

(surrounding-output-with-border

 (stream :shape :circle :thickness 2

 :filled on-p)

 (present button ’button :stream stream)))))))))

311
February 2018 Managing Your Program Frame

(define-buttons-command (com-turn-off-all-buttons

 :menu-accelerator t)

()

 (setq on-buttons nil))

(define-buttons-command (com-toggle-button) ((button ’button))

 (setq on-buttons (if (member button on-buttons)

 (remove button on-buttons)

 (adjoin button on-buttons))))

(define-presentation-to-command-translator toggle-button

 (button) (button)

 ‘(com-toggle-button ,button))

(define-buttons-command (com-done :menu-accelerator t

 :keyboard-accelerator #\End) ()

 (throw ’done on-buttons))

(defun button-choose (&optional (on-buttons ’(1 3)))

 (catch ’done

 (using-resource (frame dw:program-frame ’buttons

 (tv:mouse-default-superior)

 :temporary-p t :process nil)

 ;; When sizing at first, need maximum space.

 (setf (buttons-on-buttons (send frame :program)) nil)

 (let ((max-width 0)

 (total-height 0))

(dolist (pane-name ’(buttons command-menu))

 (let ((pane (send frame :get-pane pane-name)))

 (multiple-value-bind (width height)

(send frame :inside-size-for-pane pane pane-name)

 (incf width

 (- (send pane :width) (send pane :inside-width)))

 (incf height

 (- (send pane :height) (send pane :inside-height)))

 (maxf max-width width)

 (incf total-height height))))

(send frame :set-inside-size max-width total-height))

 (setf (buttons-on-buttons (send frame :program)) on-buttons)

 (tv:window-call (frame :deactivate)

(dw:program-frame-top-level frame))

 (buttons-on-buttons (send frame :program)))))

312
Managing Your Program Frame February 2018

10.2. The Top-Level Loop

The most often used top-level loop form is the default that is supplied for the :top-

level option to dw:define-program-framework. This is the function dw:default-

command-top-level. The next most frequent practice is to write a top-level loop

that makes some very simple modification to dw:default-command-top-level, per-

haps just calling it with different options.

10.2.1. Modifying the Default Top-Level Function

Making the default in your listener pane ��������������:

(dw:define-program-framework something

 :top-level (dw:default-command-top-level

 :dispatch-mode :form-preferred)

 .

 .

 .)

Changing the prompt:

(define-program-framework foo

 :top-level (my-top-level)

.

.)

(defun my-top-level (program)

 (let ((prompt #’si:arrow-prompt))

 (dw:default-command-top-level program :prompt prompt)))

Combining your own form(s) with the default:

This example comes from the flavor examiner program. It simply runs the

examiner-help program first before applying the dw:default-command-top-level

function to the program and its options.

(defun examiner-top-level (program &rest options)

 (examiner-help program (dw:get-program-pane ’command) nil)

 (apply #’dw:default-command-top-level program options))

In general, your top-level function is written in this manner:

(dw:define-program-framework something

 :top-level (my-own-top-level)

 .

 .

 .)

313
February 2018 Managing Your Program Frame

(defun my-own-top-level (program)

;Notice that the program

 ;instance is passed as the first arg.

 ... ;Insert own code here.

 (dw:default-command-top-level program

 :dispatch-mode :form-preferred))

10.2.2. Writing a Non-Echoing Command Loop

The command processor expects an interactive stream, that is one that does input

editing. So if you do not want your command loop to echo commands, not only

must you default the echoing of the commands themselves, you must also arrange

not to require an input editing stream. This is most easily done by defining the

program to have single-character command accelerators. The program need not de-

fine any such accelerators, this is just to avoid the use of the full command pro-

cessor. Note that a program that had any keyboard commands (especially ones with

long names) but did not echo would be very difficult to use. Note the :echo-

stream ignore option to dw:default-command-top-level.

(dw:define-program-framework no-echo

 :command-definer t

 :command-table (:inherit-from nil

 :kbd-accelerator-p t)

 :top-level (dw:default-command-top-level :echo-stream ignore)

 :panes ((display :display :redisplay-function ’draw-circles))

 :state-variables ((circles nil)))

(defstruct circle

 center-x

 center-y

 radius)

(defmethod (draw-circles no-echo) (stream)

 (dolist (circle circles)

 (dw:with-output-as-presentation

(:object circle :type ’circle :stream stream)

 (graphics:draw-circle

(circle-center-x circle)

(circle-center-y circle)

(circle-radius circle)

:stream stream))))

314
Managing Your Program Frame February 2018

(define-no-echo-command (com-add-circle)

 ((x ’number :default 100)

 (y ’number :default 100)

 (radius ’number :default 50))

 (push (make-circle

 :center-x x

 :center-y y

 :radius radius)

circles))

(define-no-echo-command (com-delete-circle)

 ((circle ’circle))

 (setq circles (delete circle circles)))

(define-presentation-to-command-translator

 delete-this-circle (circle) (circle)

 ‘(com-delete-circle ,circle))

(compile-flavor-methods no-echo)

10.2.3. Implementing a Timeout At Command Level

Timeouts with actions should be performed in the command loop. When reading a

command, an event should trigger a return to the loop to do this check. It is best

not to have the trigger do the action itself, since the context is not as controlled.

If you have an accelerated command loop, you can use the :timeout option to

cp:read-accelerated-command. Alternatively, you can insert your own wakeup

blips and process them yourself.

Example using :timeout:

(dw:define-program-framework timeouts-1

 :command-definer t

 :top-level (timeouts-1-top-level)

 :command-table (:inherit-from

’("colon full command" "standard arguments"

 "input editor compatibility")

:kbd-accelerator-p ’t)

 :panes ((pane-1 :display :height-in-lines 1

 :incremental-redisplay nil

 :redisplay-function ’show-time

 :redisplay-after-commands t)

 (pane-2 :listener))

 :configurations ’((dw::main

 (:layout (dw::main :column pane-1 pane-2))

 (:sizes (dw::main (pane-1 1 :lines)

315
February 2018 Managing Your Program Frame

 :then (pane-2 :even))))))

(defmethod (show-time timeouts-1) (stream)

 (format stream "The time is ~\\datime\\."))

(defmethod (timeouts-1-top-level timeouts-1) (&rest args)

 (apply #’dw:default-command-top-level self

 :timeout (* 60 10) ;ten seconds

 :unknown-accelerator-is-command t

 args))

Example using :window-wakeup:

(dw:define-program-framework timeouts-2

 :command-definer t

 :top-level (timeouts-2-top-level)

 :command-table (:inherit-from ’("user"))

 :panes ((pane-1 :display

 :height-in-lines 1 :incremental-redisplay nil

 :redisplay-function ’show-time

 :redisplay-after-commands t)

 (pane-2 :listener))

 :configurations ’((dw::main

 (:layout (dw::main :column pane-1 pane-2))

 (:sizes (dw::main (pane-1 1 :lines)

 :then (pane-2 :even))))))

(defmethod (show-time timeouts-2) (stream)

 (format stream "The time is ~\\datime\\."))

(define-presentation-type timeout-wakeup ()

 :expander ’dw::window-wakeup)

316
Managing Your Program Frame February 2018

(defmethod (timeouts-2-top-level timeouts-2) (&rest args)

 (labels ((set-next-timeout ()

 ;; We could use the repeat option, but this way

 ;;when the program is killed

 ;; you don’t have it lying around any more.

 (si:add-timer-queue-entry

 (+ (time:get-universal-time) 10.) nil

 "timeout"

 #’(lambda (stream)

 (send stream :force-kbd-input

 (dw::make-presentation-blip

 :presentation-type ’timeout-wakeup)

 t)) ;Don’t hang

 (si:follow-syn-stream *standard-input*)))

 (wakeup (blip)

 (dw:presentation-blip-case blip

 (timeout-wakeup

 (set-next-timeout)

 (throw ’dw::return-from-read-command

 (values nil blip :wakeup)))

 (otherwise

 (dw::default-window-wakeup-handler blip)))))

 (set-next-timeout)

 (apply #’dw:default-command-top-level self

 :window-wakeup #’wakeup args)))

10.2.4. Handling Asynchronous Window System Events

There are a number of generic functions for which you can define methods in your

program which are called whenever something changes. These are:

dw:after-program-frame-activation-handler

dw:after-program-frame-selection-handler

dw:before-program-frame-deactivation-handler

dw:before-program-frame-deexpose-handler

dw:before-program-frame-kill-handler

The contexts in which these functions are called is unpredictable, though, so the

methods should only do innocuous things like setting state flags. Additionally,

wakeup blips are inserted into the program’s I/O buffer when most events happen.

Example using methods:

(dw:define-program-framework complement-when-selected

 :select-key #\circle)

317
February 2018 Managing Your Program Frame

(defmethod

 (dw:after-program-frame-selection-handler

 complement-when-selected) (frame)

 (send (send frame :screen) :set-bow-mode nil))

(defmethod

 (dw:before-program-frame-deexpose-handler

 complement-when-selected) (frame)

 (send (send frame :screen) :set-bow-mode t))

Example using wakeups:

(dw:define-program-framework count-refreshes

 :top-level (count-refreshes-top-level)

 :state-variables ((refresh-count 0)))

;;; Start up and do Function Refresh

(defmethod

 (count-refreshes-top-level count-refreshes) (&rest args)

 (flet ((prompt (stream ignore)

 (format stream "Command (~D refreshes): " refresh-count))

(wakeup (blip)

 (dw:presentation-blip-case blip

 (dw::window-wakeup-refresh

 (incf refresh-count)))

 (dw::default-window-wakeup-handler blip)))

 (apply #’dw:default-command-top-level self

 :prompt #’prompt

 :window-wakeup #’wakeup arg)))

10.3. Commands and Command Menus

10.3.1. How Command Menus Work

A command menu is a table. Conceptually, the items in the table are command

verbs, that is, command names that are translated into commands. In the simplest

cases, where all items come from the :menu-accelerator option to dw:define-

program-command, this description is quite close to how command menus are

implemented. In actuality, however, the implementation is done in a way that al-

lows for more flexibility.

Menu items are presentations of the type dw::command-menu-item. Their data ar-

guments specify :menu-level and :command-table. A :menu-level is a partition of

command menu items, which normally corresponds to a pane in a program frame-

work. The :menu-level option to the :command-menu pane type causes that corre-

sponding subset to be displayed. Normally, all the items in a command menu will

have the same :menu-level, and there will not be any other presentations, but this

is not required.

318
Managing Your Program Frame February 2018

The object in a command menu item presentation is a string. This string is unique

within its menu level and command table. Or more exactly, the presentation stands

for all command menu handlers which have that string. Normally, the presentation

on the screen consists of the characters in that string, but this is not required.

(For instance, see the calculator example in the file sys:examples;define-program-

framework.lisp.)

The system defines a translator from dw::command-menu-item to commands. This

translator looks up a command menu handler which matches the command-table,

menu-level, and object string. Handlers can be inherited via the command table’s

:inherit-from option (this applies both to this lookup process and to the displaying

done by command menu program panes). Conceptually, it is reasonable to think of

a command menu handler as a special kind of translator from a command menu

item to a command.

Use dw:define-command-menu-handler to define command menu handlers. Nor-

mally, your command menu handler will call dw:standard-command-menu-

handler, which takes a command name and arguments as passed to the command

form of dw:define-command-menu-handler, and does the standard actions for two

mouse gestures.

The dw:define-command-menu-handler generated by the :menu-accelerator op-

tion to dw:define-program-command looks more or less like this:

(dw:define-command-menu-handler (,menu-accelerator-option

 ,program-name ,menu-level-option)

(:gesture (:left :right)

 :documentation

 ,menu-documentation-option)

 (&rest args)

 (apply #’dw:standard-command-menu-handler ’,command-name

 :command-table ’,program-name args))

When the command form body is running, dw:*command-menu-test-phase* will

be bound to t during the :tester phase and :documentation during the documenta-

tion phase. The body can throw to dw:command-menu-test-phase with a command

(list of command name and arguments) or string (in the documentation case). Note

that if your body pops up a menu or reads from the keyboard to get arguments, it

must look at this flag to prevent doing so except when the user really clicked.

Set up a program framework using this form:

(dw:define-program-framework command-menu-test

 :command-definer t

 :panes ((listener :listener)

 (command-menu :command-menu)))

Here is a command without any arguments: note that mouse-left and mouse-right

effect the same result.

(define-command-menu-test-command

 (com-command-without-arguments :menu-accelerator "No args")

 ()

 (format t "No args~%"))

319
February 2018 Managing Your Program Frame

Here is a command with arguments: mouse-left defaults them and mouse-right

gives a menu.

(define-command-menu-test-command

 (com-command-with-args :menu-accelerator "Some args")

 ((integer ’integer :default 69)

 (string ’string :default "foobar"))

 (format t "~D ~A~%" integer string))

Here is a command with :confirm arguments, mouse-left reads from the keyboard.

(define-command-menu-test-command

 (com-command-with-confirm :menu-accelerator "Confirm arg")

 ((file ’pathname :confirm t :prompt "File to delete"))

 (format t "~A~%" file))

Here is a command with the normal actions on mouse-left and mouse-right, and a

new action on middle.

(define-command-menu-test-command

 (com-command-with-middle :menu-accelerator "Middle too")

 ((verbose ’boolean :default nil :prompt "Verbose"))

 (format t "The answer is ")

 (present verbose ’boolean)

 (terpri))

(dw:define-command-menu-handler

 ("Middle too" command-menu-test :top-level

 :gesture :middle)

 ()

 ‘(com-command-with-middle t))

Another way of doing the same thing:

(dw:define-command-menu-handler

 ("Middle two" command-menu-test :top-level

 :gesture (:left :middle :right))

 (&rest args &key gesture &allow-other-keys)

 (if (eq gesture :middle)

 ‘(com-command-with-middle t)

 (apply #’dw:standard-command-menu-handler ’com-command-with-middle args)))

Here is a command with just an enumeration argument. It makes mouse-right give

a pop-up menu instead of an accept-values menu.

(define-presentation-type greek-letter ()

 :abbreviation-for ‘((member alpha beta gamma)))

(define-command-menu-test-command (com-command-with-enumeration)

 ((choice ’greek-letter :default ’alpha))

 (format t "The letter is ")

 (present choice ’greek-letter)

 (terpri))

320
Managing Your Program Frame February 2018

(dw:define-command-menu-handler ("Choose" command-menu-test :top-level

 :gesture (:left :right))

(&key gesture)

 (if (eq gesture :left)

 ‘(com-command-with-enumeration)

 (case dw:*command-menu-test-phase*

 ((t) ‘(com-command-with-enumeration))

 ((:documentation) (throw ’dw:command-menu-test-phase "Choose"))

 (otherwise

(let ((choice (dw:menu-choose-from-set ’(alpha beta gamma)

 ’greek-letter

 :default ’alpha

 :prompt "Choose one")))

 (when choice

 ‘(com-command-with-enumeration ,choice)))))))

10.3.2. Using Single-Character Accelerators

Single-Character Command Accelerators Together with Ordinary Commands

The single-character commands used by the input editor are not the same as com-

mand accelerators. They are part of the small editor program that lets you do

typein. Put the single-character commands you want at top-level on non-alphabetic

characters and then arrange for alphabetic typein to invoke the input editor for a

command. Otherwise, users must type : or ��� before an extended command. Here

is an example:

(dw:define-program-framework commands-and-accelerators

 :command-definer t

 :top-level

 (dw:default-command-top-level :unknown-accelerator-is-command :alpha)

 :command-table

 (:inherit-from ’("colon full command" "standard arguments"

 "input editor compatibility")

 :kbd-accelerator-p t))

(define-commands-and-accelerators-command

 (com-show-time :keyboard-accelerator #\c-T)

 (&key (verbose ’boolean

 :default nil :mentioned-default t))

 (if verbose

 (time:print-current-date-and-holidays)

 (format t "The time is ~\\datime\\~%")))

Note that users can type���� or Show Time :Verbose to the command loop.

Single-Character Command Accelerators and Lisp Forms

321
February 2018 Managing Your Program Frame

(dw:define-program-framework forms-and-accelerators

 :command-definer t

 :top-level

 (dw:default-command-top-level :dispatch-mode :command-preferred

 :unknown-accelerator-is-command :alpha)

 :command-table

 (:inherit-from ’("colon full command" "standard arguments"

 "input editor compatibility" "user")

 :kbd-accelerator-p t))

(cp:define-command-accelerator

 show-herald forms-and-accelerators (#\c-H) () ()

 ‘(si:com-show-herald))

Note also that command table inheritance was used both to get accelerators and to

get real CP commands.

10.3.3. Sharing State among Program Commands

The best place to put state that is shared among various commands in the pro-

gram is in the :state-variables of the program. These will be lexically apparent in

the body of the commands, since these are methods on the program flavor. You

can also use :command-evaluator to bind some special variables, but this is more

awkward. The state variables will not be lexically apparent to mouse translators.

To find them at this point, dw:current-program can be used. For example:

(dw:define-program-framework shapes-sequence

 :command-definer t

 :command-table (:inherit-from ())

 :panes ((display :display :typeout-window t

 :redisplay-after-commands t

 :incremental-redisplay nil

 :redisplay-function ’show-shape)

 (pane-2 :interactor :height-in-lines 4))

 :configurations ’((dw::main

 (:layout

(dw::main :column display pane-2))

 (:sizes

(dw::main (pane-2 4 :lines)

 :then (display :even)))))

 :state-variables ((shape :diamond)))

(define-presentation-type shape ()

 :expander ’keyword)

322
Managing Your Program Frame February 2018

(defmethod (show-shape shapes-sequence) (stream)

 (dw:with-output-as-presentation

 (:stream stream

 :object shape

 :type ’shape

 :single-box t

 :allow-sensitive-inferiors nil)

 (surrounding-output-with-border (stream

 :shape shape

 :thickness 2)

 (present shape ’shape :stream stream))))

(define-shapes-sequence-command (com-set-shape)

((new-shape ’shape))

 (setq shape new-shape))

(define-presentation-to-command-translator

 new-shape (shape)

 (shape &key window)

 (ignore shape)

 (let ((program

 (dw:current-program

 :window window

 :type ’shapes-sequence

 :error-p nil)))

 (when program

 ‘(com-set-shape ,(case (shapes-sequence-shape program)

 (:diamond :oval)

 (:oval :rectangle)

 (otherwise :diamond))))))

Remember that state variables and methods are inherited, but configurations and

panes are not. The methods defining commands are inherited, but actual command

inheritance is handled by the :command-table option separately.

10.3.4. Maintaining State with Accept-Values Panes

New values for queries in accept-values panes are not stored separately as they

are for normal uses of dw:accepting-values. The :default given to accept by such

panes is returned except at the time right after a new value has been entered.

This is to allow the program to modify the state itself using other commands and

other means besides the accept-values pane. If the accept-values pane saved newly

entered values, this would be overridden each time. For these reasons, you should

keep all of the state of your program in state-variables. Supply each as the

:default and store it right back. For example:

323
February 2018 Managing Your Program Frame

(dw:define-program-framework avv-shapes-sequence

 :command-definer t

 :command-table (:inherit-from ’("accept-values-pane"))

 :panes ((display :display

 :typeout-window t

 :redisplay-after-commands t

 :incremental-redisplay nil

 :redisplay-function ’show-shape)

 (accept-values :accept-values

 :accept-values-function ’change-state)

 (pane-2 :interactor :height-in-lines 4))

 :configurations ’((dw::main (:layout

(dw::main

 :column accept-values display pane-2))

 (:sizes

(dw::main

 (accept-values 2 :lines)

 (pane-2 4 :lines)

 :then (display :even)))))

 :state-variables ((shape :diamond)

 (thickness 2)))(define-presentation-type shape ()

 :expander ’keyword)

(defmethod (show-shape avv-shapes-sequence) (stream)

 (dw:with-output-as-presentation

 (:stream stream

 :object shape

 :type ’shape

 :single-box t

 :allow-sensitive-inferiors nil)

 (surrounding-output-with-border (stream

 :shape shape

 :thickness thickness)

 (present shape ’shape :stream stream))))

(define-avv-shapes-sequence-command

 (com-set-shape) ((new-shape ’shape))

 (setq shape new-shape))

(defmethod (change-state avv-shapes-sequence) (stream)

 (setq shape (accept ’shape

 :stream stream

 :default shape

 :prompt "Shape")

thickness (accept ’integer

 :stream stream

 :default thickness

 :prompt "Line thickness")))

324
Managing Your Program Frame February 2018

;;; Note that using this translator also updates the displayed AVV state.

(define-presentation-to-command-translator new-shape (shape) (shape)

 ‘(com-set-shape ,(case shape

 (:diamond :oval)

 (:oval :rectangle)

 (otherwise :diamond))))

10.3.5. Incorporating Accept-Values Keyboard Commands Into Programs

If you have one large accept-values pane and you want the keyboard commands

from accepting-values to work in your program too, include the command table

named accept-values-pane-with-keyboard-commands in place of accept-values-

pane. For example:

(dw:define-program-framework avv-with-keyboard

 :command-definer t

 :command-table

 (:inherit-from ’("accept-values-pane-with-keyboard-commands")

 :kbd-accelerator-p ’t)

 :panes ((accept-values

 :accept-values :typeout-window t

 :accept-values-function ’modify-state

 :size-from-output t :redisplay-after-commands t)

 (pane-1 :interactor))

 :configurations ’((dw::main

 (:layout (dw::main :column accept-values pane-1))

 (:sizes

(dw::main (accept-values

 :ask-window self

 :size-for-pane accept-values)

 :then (pane-1 :even)))))

 :state-variables

 ((state (loop for i from 1 to 10 collect (list i t :a)))))

Note that we obey the rule of storing back into state variables what we get and

passing it as the default, but not directly. Also note care needed to construct query

identifiers.

325
February 2018 Managing Your Program Frame

(defmethod (modify-state avv-with-keyboard) (stream)

 (setq state (loop for (index boolean choice) in state

 do

(dw:with-redisplayable-output

 (:stream stream

 :unique-id index

 :cache-value t)

 (format stream "State for entry #~D~%" index))

 collect

 (list index

 (accept ’boolean :default boolean

 :stream stream

 :prompt " Enabled"

 :query-identifier

 ‘(,index boolean))

 (accept ’keyword :default choice

 :stream stream

 :prompt " What kind"

 :query-identifier

 ‘(,index choice))))))

10.4. Window Layout

10.4.1. A Program Frame with More Than One Configuration

Frame-Up does not at this time support separating the design of a configuration

from design of the whole program. You can, however, use it several times to de-

sign the configurations and then merge them yourself using the editor. Call

Frame-Up from different editor buffers on dummy program names and then collect

the forms together into one dw:define-program-framework form, like the one in

the example below.

Use dw:set-program-frame-configuration to change configurations. If you need

more than one command menu, give each command menu a separate :menu-level

value.

326
Managing Your Program Frame February 2018

(dw:define-program-framework my-program

 :command-definer define-my-command

 :panes ((main-command-menu

 :command-menu

 :menu-level :main)

 (secondary-command-menu

 :command-menu

 :menu-level :secondary)

 (listener :listener))

 :configurations

 ’((main

 (:layout

(main :column main-command-menu listener))

 (:sizes

(main

 (main-command-menu

 :ask-window self

 :size-for-pane main-command-menu)

 :then

 (listener :even))))

 (secondary

 (:layout

(secondary :column

 main-command-menu

 secondary-command-menu

 listener))

 (:sizes

(secondary

 (main-command-menu :ask-window

 self

 :size-for-pane main-command-menu)

 (secondary-command-menu :ask-window

 self

 :size-for-pane

 secondary-command-menu)

 :then

 (listener :even))))))

(define-my-command

 (com-command-1 :menu-accelerator "Something ordinary"

 :menu-level :main)

 ()

 (format t "~&Here is a first level command.~%"))

327
February 2018 Managing Your Program Frame

(define-my-command (com-enable-secondary-commands

 :menu-accelerator "More commands"

 :menu-level :main)

 ()

 (dw:set-program-frame-configuration ’secondary))

(define-my-command

 (com-command-2 :menu-accelerator "Something extraordinary"

 :menu-level :secondary)

 ()

 (format t "~&Here is a second level command.~%"))

(define-my-command

 (com-disable-secondary-commands

 :menu-accelerator "Fewer commands"

 :menu-level :secondary)

 ()

 (dw:set-program-frame-configuration ’main))

(compile-flavor-methods my-program)

10.5. Table of Advanced Facilities for Program Frames

dw:default-command-top-level ������� &rest ������� &key ���������������

#’dw::default-window-wakeup-handler� ������������ ����������

��������� (dw::program-command-evaluator dw::program)�

���������������� si:*command-loop-eval-function*� ������������

���������������������������� si:*command-loop-print-function*�

��������������������t� &allow-other-keys

The default command loop function for programs created with

dw:define-program-framework.

dw:read-program-command ������� &rest ������� &key �������� *query-io*�

������� ��������������� :command-only� ����������������������

������������ �������������� ������������������� �����������

�������� &allow-other-keys

Default command reading function for programs created via

dw:define-program-framework.

dw:make-program ���� &rest��������

Makes an instance of the program flavor ����.

dw:set-program-frame-configuration ������������������ &optional ������

dw:*program-frame*�

dw:program-frame

A resource of program frames (of the kind used by dw:define-

328
Managing Your Program Frame February 2018

program-framework). The resource is created via

tv:defwindow-resource with the :initial-copies option set to

nil and the :reuseable-when option set to :deactivated.

dw:program-frame-top-level ������ &rest�����

Calls a program previously defined with dw:define-program-

framework.

cp:read-accelerated-command &key ��������������� cp:*command-table*�

�������� *query-io*� ������������� stream� ������������� stream�

��������� ������� ���������������� cp::*full-command-

prompt*� ������������������������� ��������������������� ��������

����������� ������������ ������������������� ������� ��������������

����� �������������������������� t� ������������������� cp:*default-

command-accelerator-echo*� �������������������������������

��������������������������� ��������������������������� ��������

��������� cp::*default-blank-line-mode*� ���������������������

������������� ���������������������������� ������������ ���������

��t�

Reads a Command Processor command input as a single-key

accelerator.

dw:standard-command-menu-handler ������������ &rest�����

Takes ������������ and arguments ���� as passed to the

command form of a dw:define-command-menu-handler form,

and does the standard actions for two mouse gestures.

dw:*command-menu-test-phase*

This variable is bound to t during the :tester phase when a

command form body is running, and to :documentation during

the documentation phase.

dw:define-command-menu-handler ������������� ������������� �����������

&key ��������� :left� ��������������� t� �������� ������� &body

������������

Defines a menu handler for the command named ��������

���� in ������������� for �����������.

dw:after-program-frame-activation-handler �������������

A generic function to do simple things after your program

frame is activated.

dw:after-program-frame-selection-handler �������������

A generic function to do simple things after your program

frame is selected.

dw:before-program-frame-deactivation-handler �������������

A generic function to do simple things before your program

frame is deactivated.

dw:before-program-frame-deexpose-handler �������������

A generic function to do simple things before your program

frame is deexposed.

329
February 2018 Managing Your Program Frame

dw:before-program-frame-kill-handler �������������

A generic function to do simple things before your program

frame is killed.

330
Managing Your Program Frame February 2018

331
February 2018 Managing Your Program Frame

PART III.

SUBSTRATE FACILITIES

332
Managing Your Program Frame February 2018

333
February 2018 Using the Window System

11. Using the Window System�

11.1. Introduction to Using the Window System

"Using the Window System" is intended to explain how you, as a programmer, can

use the set of facilities in Genera known collectively as the window system.

Specifically, this part explains how to create windows, and what operations can be

performed on them. It also explains how you can customize the windows you pro-

duce, by mixing together existing flavors to produce a window with the combina-

tion of functionality that your program requires. This section does not explain how

to extend the window system by defining your own flavors.

Most of the window system concepts and facilities covered in this part apply to Dy-

namic Windows as well as static windows. This is explicitly mentioned in a num-

ber of places. Where the two kinds of windows diverge, we also point that out. The

reference documentation for dw:dynamic-window refers you to the particular sec-

tions in this part that describe facilities for use with Dynamic Windows. See the

flavor dw:dynamic-window in ���� ��������� ����������. For more general informa-

tion on the relationship of static and Dynamic Windows, see the section "Window

Substrate Facilities", page 415.

To get the most out of this material, you should have a working familiarity with

Symbolics Common Lisp. You should also have some experience with the Genera

user interface, including the ways of manipulating windows, such as the [Edit

Screen], [Split Screen], and [Create] commands from the System menu. Further-

more, you must understand something about flavors. While you need not be famil-

iar with how methods are defined and combined, you should understand what mes-

sage passing is, how it is used in Genera, what a flavor is, what a "mixin" flavor

is, and how to define a new flavor by mixing existing flavors.

See the section "Flavors" in ��.

11.2. Concepts

11.2.1. Purpose of the Window System�

The term ������ ������ refers to a large body of software used to manage com-

munications between Genera programs and the user, via the console. The console

consists of a keyboard, a mouse, and one or more screens.

The window system controls the keyboard, encoding the shifting keys, interpreting

special commands such as the �������� and ������ keys, and directing input to

the right place. The window system also controls the mouse, tracking it on the

screen, interpreting clicks on the buttons, and routing its effects to the right

places. The most important part of the window system is its control of the screens,

which it subdivides into windows so that many programs can co-exist, and even

run simultaneously, without getting in each other’s way, sharing the screens ac-

cording to a set of established rules.

334
Using the Window System February 2018

11.2.2. Windows

When you use Genera, you can run many programs at once. You can have a Lisp

Listener, an editor, a mail reader, and a network connection program (you can

even have many of each of these) all running at the same time, and you can

switch from one to the other conveniently. Interactive programs get input from the

keyboard and the mouse, and send output to a screen. Since there is only one key-

board, it can only talk to one program at a time. However, each screen can be di-

vided into regions, and one program can use one region while another uses anoth-

er region. Furthermore, this division into regions can control which program the

mouse talks to; if the mouse blinker (the thing on the screen that tracks the

mouse) is in a region associated with a certain program, this can be interpreted as

meaning that the mouse is talking to that program. Allowing many programs to

share the input and output devices is the most important function of the window

system.

The regions into which the screen is divided are known as �������. In your use of

Genera, you have encountered windows many times. Sometimes there is only one

window visible on the screen; for example, when you cold boot a Symbolics ma-

chine, it initially has only one window showing, and it is the size of the entire

screen. If you start using the System menu’s [Create], [Edit Screen], or [Split

Screen] commands, you can make windows in various places of various sizes and

flavors. Usually windows have a border around them (a thin black rectangle

around the edges of the window), and they also frequently have a label in the low-

er left-hand corner or on top. This is to help the user see where all the windows

are, what parts of the screen they are taking up, and what kind of windows they

are.

Sometimes windows overlap; two windows may occupy some of the same space.

While the [Split Screen] command will never do this, you can make it happen by

creating two windows and simply placing them so that they partially overlap, by

using [Edit Screen]. If you have never done so, you should try it. The window sys-

tem is forced to make a choice here: Only one of those two windows can be the

rightful owner of that piece of the screen. If both of the windows were allowed to

use it, then they would get in each other’s way. Of these two windows, only one

can be ������� at a time; the other one has to be not fully visible, but either par-

tially visible or not visible at all. Only the visible window has an area of the

screen to use.

If you play around with this, you will see that it looks as if one window is on top

of the other, as if they were two overlapping pieces of paper on a desk and one

were on top. Create two Lisp Listeners using the [Create] command of the System

menu or the [Edit Screen] menu, so that they partially overlap, and then click Left

on the one that is on the bottom. It will come to the top. Now click Left on the

other one; it will come back up to the top. The one on top is fully visible, and the

other one is not. We will return to the concepts of visible and not-fully-visible win-

dows later in more detail.

From the point of view of the Lisp world, each window is a Lisp object. A window

is an instance of some flavor of window. There are many different window flavors

available; some of them are described in this document.

335
February 2018 Using the Window System

Windows can function as streams by accepting all the messages that streams ac-

cept. If you do input operations on windows, they read from the keyboard; if you

do output operations on windows, they type out characters on the screen. The val-

ue of *terminal-io* is normally a window, and so input/output functions in Genera

do their I/O to windows by default.

Windows have internal state, contained in instance variables, that indicate which

screen the window is on, where on the screen it is, where its cursor is, what

blinkers it has, how it fits into the window hierarchy, and much more. You can get

windows to do things by sending them messages; they accept a wide variety of

messages, telling them to do such things as changing their position and size, writ-

ing characters and graphics, changing their labels and borders, changing status in

various ways, redrawing themselves, and much more. The main business of this

document is to explain the meaning of the internal state of windows, and to ex-

plain what messages you can send and what those messages do.

11.2.3. Hierarchy of Windows

Several Genera system programs and application programs present the user with a

window that is split up into several sections, which are usually called ������

����� or �����. For example, the Inspector has six panes in its default configura-

tion: the one you type forms into at the top, the menu, the history list, and the

three inspection panes below the first three. The Display Debugger and Zmail also

use elaborate windows with panes. These panes are not exactly the same as the

other windows we have discussed, because instead of serving to split up the

screen, they serve to split up the program’s window itself. Sometimes you don’t

see this, because often the program’s window is taking up the whole screen itself.

Try going into the [Edit Screen] system and reshaping a whole Inspector or Zmail

window. You will see that the panes serve to divide this window up into smaller

areas.

In fact, the same window system functionality is used to split up a paned window

into panes as is used to split up a screen into windows. Each pane is, in fact, a

window in its own right. Windows are arranged in a hierarchy, each window hav-

ing a superior and a list of inferiors. Usually the top of the hierarchy is a screen.

In the example above, the Inspector window is an inferior of the screen, and the

panes of the window are inferiors of the Inspector window. The screen itself has

no superior (if you were to ask for its superior, you would get nil).

The position of a window is remembered in terms of its relative position with re-

spect to the its superior; that is, what we remember about each window is where

it is within its superior. To figure out where a window is on the screen, we add

this relative position to the absolute position of the superior (which is computed

the same way, recursively; the recursion terminates when we finally get to a

screen). The important thing about this is that when a superior window is moved,

all its inferiors are moved the same amount; they keep their relative position with-

in the superior the same. You can see this if you play with the [Move Window]

command in [Edit Screen].

336
Using the Window System February 2018

One effect of the hierarchical arrangement is that you can use [Edit Screen] to

edit the configuration of panes in a frame as well as to edit the configuration of

windows on the screen, by clicking right on [Edit Screen]. If you have ever clicked

right on [Edit Screen] while the mouse was on top of a window with inferiors,

such as an editor, you will have noticed that you get a menu asking which of

these two things you want to do. In fact, that menu can have more than two

items; the number of items grows as the height of the hierarchy.

So, what [Edit Screen] really does is to manipulate a set of inferiors of some spe-

cific superior window, which may or may not be a screen. The set of inferiors that

you are manipulating is called the ���������������� set; each inferior in this set is

said to be ������. Windows can be activated and deactivated. The active inferiors

are all fighting it out for a chance to be visible on their superior. If no two active

inferiors overlap, there is no problem; they can all be uncovered. However, when-

ever two overlap, only one of them can be on top. [Edit Screen] lets you change

which active inferiors get to be on top. There is also a part of the window system

called the �������������� whose basic job is to keep this competition straight. For

example, it notices that a window that used to be covering up part of a second

window has been reshaped, and so the second window is no longer covered and can

be brought to the top. Inactive windows are never visible until they become active;

when a window is inactive, it is out of the picture altogether. For more on the

screen manager, see the section "The Screen Manager", page 344.

Each superior window keeps track of all of its active inferiors, and each inferior

window keeps track of its superior, in internal state variables. Superior windows

do ��� keep track of their inactive inferiors; this is a purposeful design decision, in

order to allow unused windows to be reclaimed by the garbage collector. So, when

a window is deactivated, the window system doesn’t touch it until it is activated

again.

11.2.4. Pixels and Bit-Save Arrays

A screen displays an array of ������. Each pixel is a little dot of some brightness

and color; a screen displays a big array of these dots to form a picture. On regular

black-and-white screens, each pixel can have only two values: lit up, and not lit up.

The way the display of pixels is produced is that inside the Lisp Machine, there is

a special memory associated with each physical screen that has some number of

bits assigned to each pixel of the screen; those bits say, for each pixel, what

brightness and color it should display. For regular black-and-white screens, since a

pixel can have only two values, only a single bit is stored for each pixel. If the bit

is a one, the pixel is not lit up; if it is a zero, the pixel is lit up. (Actually, this

sense can be inverted if you want.) Everything you see on the screen, including

borders, graphics, characters, and blinkers, is made up out of pixels.

When a window is fully visible, its �������� are displayed on a screen so that they

can be seen. What happens to the contents when the window ceases to be fully

visible? There are two possibilities. A window may have a �������� �����. A bit-save

array is a Lisp array in which the contents of the window can be saved away when

the window loses its visibility; if a window has a bit-save array, then the window

system will copy its contents out of the screen and into the bit-save array when

337
February 2018 Using the Window System

the window ceases to be fully visible. If the window does not have a bit-save array,

then there is no place to put the bits, and they are lost. When the window be-

comes visible again, if there is a bit-save array, the window system will copy the

contents out of the bit-save array and back onto the screen. If there is no bit-save

array, the window will try to redraw its contents; that is, to regenerate the con-

tents from some state information in the window. Some windows can do this; for

example, editor windows can regenerate their contents by looking at the editor buf-

fer they are displaying. Genera windows cannot regenerate their contents, since

they do not remember what has been typed on them. In lieu of regenerating their

contents, such windows just leave their contents blank, except for the decorations

in the margins of the window, which they are able to regenerate.

The advantage of having a bit-save array is that losing and regaining visibility

does not require the contents to be regenerated; this is desirable since regenera-

tion may be computationally expensive, or even impossible. The disadvantage is

that the bit-save array uses up storage in the Lisp world, and since it can be pret-

ty big, it may need to be paged in from the disk in order to be referenced (depend-

ing on how hard the virtual memory system is being strained). If the paging over-

head for the bit-save array is very high, it might have been faster not to have one

in the first place (although the system goes through some special trouble to try to

keep the bit-array out of main memory when it is not being used).

The other important use of bit-save arrays is for windows that have inferiors. If

the superior window is not visible, the inferiors can use the bit-save array of the

superior as if it were a screen, and they can draw on it and become exposed on it.

See the section "Screen Arrays and Exposure", page 337.

An additional benefit of having a bit-save array is that the screen manager can do

useful things for partially visible windows when those windows have bit-save ar-

rays; at certain times it can copy some of the pixels from the bit-save array onto

the part of the screen in which the window is partially visible, so that when a

window is only partially visible, you can see whatever part is visible. See the sec-

tion "The Screen Manager", page 344.

11.2.5. Screen Arrays and Exposure

This section discusses the concepts of screen arrays and of exposed windows.

These have to do with how the system decides where to put a window’s contents

(its pixels), how the notion of visibility on the screen is extended into a hierarchy

of windows, and how this interacts with the desire of a program or of the user to

have some windows visible and other windows not visible at a particular time.

These are complex concepts, which you don’t have to understand completely to

make use of the window system. You probably �� need to understand these ideas

thoroughly only if you plan to make advanced use of the window system, such as

creating your own frame or customizing very basic aspects of the system’s behav-

ior.

The following discussion attempts to explain what it means for a window to be ���

�����. It will be necessary for us to refer to the concept of a window being ex-

posed before we explain exactly what that means. For the time being, the approxi-

338
Using the Window System February 2018

mate meaning of "exposed" is that a window is exposed if it has somewhere for its

typeout to go. A window that is fully visible on a screen is exposed, because its

typeout can go on the screen. A window might be exposed even if it is not fully

visible, because its typeout might be able to go to a bit-save array somewhere.

Each window has in it a set of all those inferiors that are "ready to be exposed".
This set is a subset of the set of active inferiors, discussed above. When you send

a window an :expose message, it becomes "ready to be exposed" and is added to

the set; when you send a window a :deexpose message, it ceases being ready to be

exposed and is removed from the set. These are the only ways anything ever gets

into or out of the set. The meaning of "ready" to be exposed will be cleared up

soon; for the time being, we will just say that either all the windows on that list

are, in fact, exposed, or else none of them are exposed but they are all still

"ready" to become exposed.

Each window has an internal state variable called its ������������. The value of

the screen-array variable is where output to the window should go; if a program

draws a character "on a window" or draws a triangle "on a window", that means it

is changing the values of pixels in the window’s screen-array. The value of the

screen-array variable is used in figuring out whether a window is exposed.

The screen-array of a screen (remember, a screen is a window itself) is the special

memory that gets displayed on the physical screen. For any other window, if the

window is exposed, then its screen-array is an indirect array that points into a sec-

tion of the superior’s screen-array; namely, it points into the area of the superior’s

screen-array where the inferior gets displayed on the superior. For example, con-

sider a window whose superior is a screen, which is exposed, and whose upper-left-

hand corner is at location (100,100) in the screen. Then the window’s screen-array

would be an indirect array whose (0,0) element is the same as the (100,100) ele-

ment of the screen. If you were to set a pixel in the window’s screen-array, the

corresponding pixel in the screen (found by adding 100 to each coordinate) would

be set to that value.

What happens to the screen-array variable if the window is not exposed? That de-

pends on whether the window has a bit-save array or not. If there is a bit-save ar-

ray, then the screen-array becomes the bit-save array. If there is no bit-save array,

the screen-array becomes nil.

The most important thing to understand about the value of screen-array is that it

is defined recursively, in terms of the superior’s screen-array. Consider a window

which is exposed, and all of whose ancestors are exposed: The superior is exposed,

the superior’s superior is exposed, and so on all the way back to the screen. Then

each window has a screen-array that points into the middle of its superior’s

screen-array, all the way up the hierarchy, through the window whose screen-array

points into the middle of the screen. When typeout is done on the window, it will

appear on the screen, offset by the combined offsets of all the superiors, so that it

will appear in the correct absolute position on the screen.

Now, suppose one of those ancestors becomes deexposed. There are two alternative

things that might happen. First, consider the case in which that ancestor (the one

that got deexposed) has a bit-save array. That ancestor’s screen-array will no

339
February 2018 Using the Window System

longer point to its own superior; its screen-array will be its bit-save array. That

means that our window’s screen-array will be pointing, perhaps through several

levels of indirection, into that ancestor’s bit-save array. The ancestor window is

not exposed, but our window �� still exposed. If typeout is done on our window, it

will appear on the bit-save array of the ancestor. This won’t actually be visible to

the user, since it is only a bit-save array and not an actual screen, but the typeout

can proceed and the bits can be drawn into the bit-save array. Later, if and when

the ancestor is exposed again, the window system will copy the bit-save array onto

the screen, and the drawing that had been done will become visible.

There is another case: Suppose the ancestor is deexposed, and it does not have a

bit-save array. Then the ancestor’s screen-array becomes nil. Well, now we have a

problem. The ancestor’s inferior is exposed, and so its screen-array is supposed to

point into the screen-array of its superior. However, there is no way to point into

the middle of a nil. There just isn’t anywhere for the screen-array to point to; the

window doesn’t have anywhere to type out. Since it has nowhere to type out, it

gets deexposed too. In general: When a window is deexposed, and it has no bit-save

array, all of its inferiors that are ready to be exposed (all of which are, in fact,

exposed) become deexposed. They continue to be "ready to be exposed", though.

In fact, this is the distinction between "ready to be exposed" and actually being

exposed. The rule is: A window is exposed when and only when it is "ready to be

exposed" ��� its superior has a screen-array. That is what "exposed" means.

When a window is sent an :expose message, it always becomes "ready to be ex-

posed". If the superior has a screen-array, then it immediately becomes exposed. If

the superior does not have a screen array, then the window just stays "ready", and

when the window’s superior finally gets its screen array, the window itself is ex-

posed. If a window is "ready to be exposed" but is not exposed yet, then it is wait-

ing for its superior to acquire a screen-array; when the superior gets one, the win-

dow becomes exposed. The usual way that the superior gets a screen array is for it

to get exposed itself; when this happens, the inferiors that are "ready to be ex-

posed" will all get exposed.

Also, if the superior has no screen-array then obviously it has no bit-save array; it

can be given one by the :set-save-bits message, which can change a window that

doesn’t have a bit-save array into a window that does have a bit-save array. You

can dynamically change which windows have and don’t have bit-save arrays, and

windows that are affected will be exposed and deexposed accordingly. This is much

less common, though; usually whether a window has a bit-save array or not is

specified when the window is created, and it doesn’t change.

So, the important point is that when a window is sent an :expose message, it may

not become exposed then and there. If the superior has a screen-array, then the

window will be exposed immediately. But if the superior does not have a screen

array, then making the window exposed is delayed until the superior acquires a

screen array. When the superior gets its screen array, then the window itself be-

comes exposed. So what the :expose always does is to add the window to the set of

windows that are "ready to be exposed"; a window is exposed precisely when it is

"ready to be exposed" and the window’s superior has a screen-array. The :deexpose

message always removes a window from the set of windows "ready to be exposed",
and therefore is always stops the window from being exposed.

340
Using the Window System February 2018

Note well that "exposed" does not mean "visible". A window can be exposed by

virtue of being able to type out on a bit-save array, and not be visible at all. A

window is fully visible if and only if all its ancestors are exposed, and the top level

ancestor is a screen.

(A detail: If a window is top-level (if it has no superior) then it is as if "its superi-

or has a screen array"; sending a top-level window an :expose message always ex-

poses it immediately. You usually don’t deexpose top-level windows anyway.)

(Another detail: It is possible for a screen to be deexposed. In particular, if a Sym-

bolics machine does not have a color display physically attached to it, there is still

a "color screen" Lisp object in the Lisp world, but it is deexposed (and so are all

its inferiors). This is so saved Lisp environments can be moved easily between ma-

chines with different hardware configurations. The screen object is left deexposed

so that programs will not try to output to it.)

In order to maintain the model that windows are like pieces of paper on a desk, it

is important that no two windows that both occupy some piece of screen space be

exposed at the same time. To make sure that this is true, whenever a window be-

comes exposed, the system deexposes any of its exposed siblings that it overlaps.

(Note: This is not true for temporary windows).

The window system uses conformal indirect arrays for its screen arrays. This

means that the bit-array in which a window saves its bits when it is not visible

does not have to be the full width of the screen; it is just the width of the win-

dow, rounded up to the next multiple of 32 bits. Screen arrays do not use multi-

level indirection; the screen array of a nonscreen sheet always indirects either to a

bit-save array or to the screen array of its screen. The screen array of a screen is

always a displaced array to the hardware screen buffer.

11.2.6. Window Exposure and Output

The main reason for worrying about whether a window is exposed or not is in or-

der to figure out whether it should be allowed to type out. If a window is not ex-

posed, either its superior has no screen-array (so there is no place for its output to

go), or it is not ready to be exposed at all (so it is supposed to be hidden). Nor-

mally, when a process tries to do output to a window that is not exposed, by send-

ing stream messages (such as :tyo and :string-out), the process waits in a state

called Output Hold; the process continues to wait until the window becomes ex-

posed again, at which time it proceeds with its typeout. The term "typeout" refers

not only to character output, but to any form of modification of the window’s con-

tents, including drawing of graphics.

This is the normal case that you run into most of the time. However, there are

some exceptions to this rule.

A process trying to output to a window does not actually decide to wait in the

Output Hold state based on whether or not the window is exposed. There is actu-

ally a flag in each window, called the ������ ���� ����, that is really being checked

to see whether output can go ahead. The output hold flag is cleared when the win-

dow is exposed and set when the window is deexposed, and output is held when

341
February 2018 Using the Window System

this flag is set. The complexity comes from other things besides exposing that

clear this flag.

When a process attempts to type out on a window which is deexposed and has its

output hold flag set, what happens depends on the window’s ��������� ������� ���

����. The deexposed typeout action can be any of certain keyword symbols, or it

can be a list; it indicates an action that should be taken when there is an attempt

to type out to a deexposed window. After the action is taken, if the output hold

flag is still set, the process will wait for it to clear. The interesting thing is that

the action may affect the value of the output hold flag.

By default, the deexposed typeout action is :normal, which means that no special

action should be taken; hence the process will wait for the window to become ex-

posed.

If the deexposed typeout action is :expose, however, then the action will be to send

the window an :expose message. This may expose the window (if the superior has

a screen-array), and if it does expose the window then the output hold flag will be

cleared and typeout will be able to proceed immediately. If the superior is the

screen, the :expose option provides a very different user interface from the

:normal option.

If the deexposed typeout action is :permit, that means that typeout should be per-

mitted even though the window is not exposed, as long as the window has a screen

array; that is, it may type out on its own bit-save array even though it is not ex-

posed. The next time the window is exposed the updated contents will be retrieved

from the bit-save array. The action for :permit is to turn off the output hold flag

if the window has a screen array. This mode has the disadvantage that output can

appear on the window without anything being visible to the user, who might never

see what is going on, and might miss something interesting.

The deexposed typeout action may also be :notify, which means that the user

should be notified when there is an attempt to do output on the window. The ac-

tion taken is to send the :notice message to the window with the argument

:output. The default response to this is to notify the user that the window wants

to type out and to make the window "interesting" so that �������� � � can select

it. Windows in the Terminal program have :notify deexposed typeout action by de-

fault.

Another permissible value is :error, which means that an error should be sig-

nalled.

If the deexposed typeout action is not any of these keywords, then it should be a

list; the action will be to send the message specified by the first element of the

list to the window, passing the rest of the elements of the list as arguments.

There is another exception to the rule that you can only type out on exposed win-

dows: The special form tv:sheet-force-access allows you to do typeout on a window

that has a screen array even if its output hold flag is set. Note that the screen ar-

ray must be this window’s bit-save array (since the window is not exposed). What

tv:sheet-force-access does is to temporarily turn off the output hold flag while ex-

ecuting its body. This is useful for drawing things on a window while the window

342
Using the Window System February 2018

is not visible on the screen. It is better to do it this way than to use a deexposed

typeout action of :permit, in most cases, since the effect of tv:sheet-force-access

is local to the program, while the deexposed typeout action affects anything that

types out on the window. If the window does not have a screen-array, tv:sheet-

force-access doesn’t do anything at all; it just returns ������� evaluating its body.

Another way that typeout can be held up is if the window is ������. Locking is in-

dependent of the output hold flag and is not affected by the deexposed typeout ac-

tion or by tv:sheet-force-access. There are two ways that a window can be locked.

The normal form of locking is a mutual exclusion that guarantees that only one

process at a time operates on the window’s contents and attributes. If one process

is working on the window and another tries to do so, the second process will wait

until the first one is finished. In the absence of program bugs, this wait is for a

very short time and should not be noticeable.

The other form of locking is called ������������. If a window is temp-locked, then

any attempt to type out on it will wait, regardless of everything else. Temp-locking

has to do with temporary windows: See the section "Temporary Windows", page

342. The functions used to control window exposure and output are:

tv:sheet-force-access ������ &optional�������������������� &body�����

Allows typeout on ����� if it has a screen array (that is, if it is exposed or has a

bit-save array).

tv:prepare-sheet ������� &body�����

Prepares ����� for input or output.

11.2.7. Temporary Windows

Normally, when a window is exposed in an area of the screen where there are al-

ready some other exposed windows, the windows that used to be there are deex-

posed automatically by the window system. This is because the window system nor-

mally doesn’t leave two windows both exposed if they overlap. (In the absence of

temporary windows, which we are about to introduce, the system never allows two

overlapping windows to both be exposed.)

But sometimes there are windows that only get put up on the screen for a very

short time. The most obvious examples of such windows are the momentary menus

that only appear for long enough for you to select an item. It would be unfortu-

nate if every time a momentary menu appeared, the windows under it had to be

deexposed. The ones without bit-save arrays would have their screen image de-

stroyed, forcing them to regenerate it or to reappear empty. The ones with bit-save

arrays would not be damaged in this way, but they would have to be deexposed,

and deexposure is a relatively expensive operation.

This problem is solved for momentary menus by making them out of ���������

�������. In general, when you create a window, you can specify that you want it

to be a temporary window. Temporary windows work differently from other win-

dows in the following way: When a temporary window is exposed, it saves away

the pixels that it covers up. It restores these pixels when it is deexposed. These

pixels may come from several different windows. This way it doesn’t mess up the

343
February 2018 Using the Window System

area of the screen that it uses, even if it covers up some windows that don’t have

bit-save arrays.

Also, a temporary window, unlike a normal window, does not deexpose the windows

that it covers up. This way the covered windows need not try to save their bits

away in their bit-save arrays (if they have them) or ever have to try to regenerate

their contents (if they don’t). They never notice that the temporary window was

(temporarily) there.

There would be some problems if temporary windows were this simple. Suppose

there is a normal window, and a temporary window has appeared over it; some of

the contents of the normal window are being saved in an array inside the tempo-

rary window. Now, if the normal window is moved somewhere else, and possibly

becomes deexposed or is overlapped by other windows, and then the temporary

window is deexposed, the temporary window will dump back its saved bits where

the normal window used to be, even though the normal window isn’t there any

more, and so some innocent bystander will be clobbered. Furthermore, suppose

typeout were done on the normal window; we have not deexposed it, so nothing

would prevent the typeout from overwriting the temporary window, nor prevent the

typeout from being overwritten in return when the temporary window is deex-

posed. Because of problems like these, when a temporary window gets exposed on

top of some other windows, all the windows that it covers up (fully or partially)

are �����������. When a window is temp-locked, any attempt to type out on it will

wait until it is no longer temp-locked. Furthermore, any attempt to deexpose, de-

activate, move, or reposition a temp-locked window will wait until the window is

no longer temp-locked.

Because of temp-locking, you should never write a program that will put a tempo-

rary window up on the screen for a "long" time. There should be some action by

the user, such as moving the mouse, which will make the temporary window deex-

pose itself. It is best if any attempt by the user to get the system to do something

makes the temporary window go away. While the temporary window is in place, it

blocks many important window system operations over its area of the screen. The

windows it covers cannot be manipulated, and programs that try to manipulate

them will end up waiting until the temporary window goes away. Temporary win-

dows should only be used when you want the user to see something for a little

while and then have the window disappear. The temp-locking is undone when the

temporary window is deexposed.

It works fine to have two or more temporary windows exposed at a time. If you ex-

pose temporary window a and then expose temporary window b, and they don’t

overlap each other, they can be deexposed in either order, and any windows that

both of them cover up will be temp-locked until both of them are deexposed. If b

covers up a, then a will be temp-locked just like any other window, and so it will

not be possible to deexpose a until b has been deexposed.

344
Using the Window System February 2018

11.2.8. The Screen Manager

The ������ ������� is a subsystem of the window system that does various back-

ground jobs involved with keeping things straight in the window system. It has

several responsibilities. One job of the screen manager is to find any window that

is active and deexposed, but not covered up by any windows. There is no reason

for such a window not to be exposed, so the screen manager exposes it. This is

called ������������.

Another job of the screen manager is to manage those parts of the screen that are

not currently part of any exposed window. When you first start using Genera, the

entire screen is covered by a big Lisp Listener window, and the initially created

windows for Zmacs, Zmail, and so on, are all as large as the entire screen, so this

issue does not arise. Similarly, if you use [Split Screen] to divide the screen up in-

to windows, the windows will use up all of the area of the screen. However, if you

use the [Create] or [Edit Screen] commands, you can make windows of arbitrary

shapes and sizes, and you can leave parts of the screen where there is no exposed

window.

When the screen manager sees that there is such an area of the screen, it consid-

ers all of the active windows that aren’t exposed. If it finds such a window, and

that window has a bit-save array, then the screen manager displays the contents of

the bit-save array for the corresponding portion of the screen. This gives the visu-

al impression of overlapping pieces of paper on a desktop; the deexposed window is

partially covered up by the exposed windows, but you can still see those parts that

aren’t covered.

If there is more than one active deexposed window that might be displayed in a

given area of the screen, then the screen manager uses its priority ordering to de-

cide which one to display.

Usually the screen manager only displays partially visible windows that have bit-

save arrays. But if you want to make a window that doesn’t have a bit-save array

and you want the screen manager to try to display it when it is only partially ex-

posed, use the mixin tv:show-partially-visible-mixin.

The screen manager not only manages screens; it can manage any window that

has inferiors. Windows with panes are split up into windows just the same way

screens are split up into windows, and so the screen manager can do the same

thing to panes of paned windows that it does with windows directly on screens.

The action of the screen manager on the inferiors of a window is controlled by

that window’s response to the :screen-manage message; the default is to do screen

management in the same way as it is done on a screen. See the flavor tv:no-

screen-managing-mixin in �������������������������.

Suppose there is a section of the screen in which there are no exposed windows,

and more than one active, deexposed window could be exposed to fill this area, but

the two could not both be exposed (because they overlap). Which one gets to be

exposed? Here’s another issue: When the screen manager wants to display pieces

of partially visible windows, there might be more than one deexposed window that

might be displayed in a given area of the screen. Somehow the screen manager

must decide which window to display.

345
February 2018 Using the Window System

The way it decides is on the basis of a priority ordering. All of the active inferiors

of a window are maintained in a specific order, from highest to lowest priority.

When there is a section of the screen on which more than one active inferior

might be displayed, the inferior that is earliest in the ordering, and so has the

highest priority, is the one that gets displayed. This ordering is like the relative

heights of pieces of paper on a desk; the highest piece of paper at any point on

the desk is the one that you see, and all the rest are covered up.

The screen manager has a somewhat complicated algorithm for keeping track of

this ordering. Part of the algorithm involves a value kept for each window called

its ��������, which may be a fixnum or nil. The general idea is that windows with

higher numerical priority values have higher priority to appear on the screen. If a

window has priority nil, then its priority is less than that of any window with nu-

merical priority; that is, nil acts like the lowest possible number. The default val-

ue for priority is nil.

The ordering itself is not based on just the priorities. Instead, the way it works is

that the ordering is remembered, and at various times, the windows are resorted

according to the following set of rules:

1. Exposed windows go in front of nonexposed windows.

2. If two windows are both exposed or both have the same value of priority,

their order is not changed by the sorting.

3. If two nonexposed windows have different values of priority, then the one

with the higher value goes in front of the one with the lower value.�

So not only the priority values make a difference; the relative positions of windows

before the resorting matters too.

The resorting happens whenever some event occurs that might change the order-

ing. For example, when a window is exposed or deexposed, or when a window’s pri-

ority changes, the ordering it is on must be resorted. Note that the sort is ������;

that is, if we don’t have any preference for one window over another then they

keep their previous ordering. Since most of the time numerical priorities are not

used anyway (the priorities of most windows are nil), this is generally what deter-

mines the ordering. When a window is exposed, it gets pulled up to the front of

the ordering, and then as other windows later get exposed on top of it, it sinks

back down. More recently exposed windows will be closer to the front.

There is also an operation called ������� a window, which first deexposes the win-

dow, then moves it to the end of the ordering, and finally (since something inter-

esting has happened) causes the ordering to be resorted. So burying a window es-

sentially makes it be the farthest from the front of the ordering of all windows

with the same priority as it. A program usually buries its window when it thinks

that the user is not interested in that window and would prefer to see some other

windows. The [Bury] command in [Edit Screen] is a way for the user to bury a

window.

346
Using the Window System February 2018

Negative priorities have a special meaning. If the value of a window’s priority is

4294967295, then the window will not ever be visible at all even if it is only par-

tially covered; however, it will still get autoexposed. If the value of priority is

4294967294 or less, then the window will not even be autoexposed, and so it will

simply not become exposed unless sent an explicit :expose message.

(Another minor point: Windows whose area of the screen does not lie within the

boundaries of their superior cannot be exposed at all, and so the screen manager

does not try to autoexpose such windows. However, they can be partially visible.)

You may have noticed a problem that screen management can cause. Suppose you

send a :deexpose message to an exposed window. The window is no longer ex-

posed, but since it is closer to the front of the ordering, and especially if numeri-

cal priorities are not being used much, then it may end up being the foremost win-

dow in the ordering that occupies its area of the superior, and so autoexposure is

likely to expose it again immediately! If you want to do a series of deexposing and

exposing operations, they can get messed up this way by the screen manager. In

order to prevent this from happening, you can use the tv:delaying-screen-

management special form to delay the actions of the screen manager until all of

your operations have been done. In simple applications, you should not need to

send your own :deexpose messages anyway (most deexposure is done automatically

when new windows are exposed), and you should not need tv:delaying-screen-

management; explicit deexposure and delaying of screen management is mostly

used in advanced applications, and if you use these for something simple then you

are probably doing something wrong.

While screen management is delayed, notes to the screen manager telling what

areas of the screen have been played with are put on a queue. When the

tv:delaying-screen-management form is returned from, all of the entries on the

queue are examined, and the screen manager figures out all the things that need

to be done and does them all at once. So, by delaying screen management, you pre-

vent the screen manager from seeing various intermediate states and doing unnec-

essary work, which would consume computation time and make the windows on the

screen visibly undergo unnecessary contortions.

When a tv:delaying-screen-management form is exited, normally or abnormally

(that is, thrown through), the screen manager tries to run and empty the queue,

using an unwind-protect. However, under some circumstances it cannot do screen

management at this time. In these cases, it leaves the requests on the queue.

There is a background process that runs all the time, called Screen Manager

Background, that wakes up to do the screen management that these queue entries

specify, when screen management stops being delayed. So the screen management

does eventually happen, when the special form is exited and the background pro-

cess wakes up. When tv:delaying-screen-management forms are nested, only the

outermost one will do any screen management when it is exited.

This background process has another useful function, which is optional. Recall that

if a window has its deexposed typeout action set to :permit, processes can type out

on the window, but the typeout goes to the bit-save array rather than to the

screen. The screen manager background process can be told to find any such win-

dows on which some typeout has happened, and copy their partially visible parts to

347
February 2018 Using the Window System

the screen so that they can be seen. This way, you get to see the typeout that hap-

pens on the part of the window that isn’t being covered by any other windows.

The screen manager also has another job. At the same time that it does autoex-

posing, it can also select a window if there isn’t any selected window at the time.

The screen manager has a facility for ������� areas of the screen that contain no

windows or windows that are not fully exposed. See the section "Window Graying",
page 347. The screen management facilities are:

tv:delaying-screen-management

tv:screen-manage-update-permitted-windows�

11.2.9. Window Graying

Screens and frames can ���� areas that contain no windows or that contain win-

dows that are not fully exposed. To gray an area of the screen is to cover it with

a semitransparent texture pattern. There are two kinds of graying:

• ���������� ���� is used to fill in areas of the screen that don’t contain any

windows. Normally this is just the borders around the screen, but if you reshape

all the full-screen windows to be smaller, so that there is some area of the

screen that doesn’t have a window on it, the background gray appears there, al-

so. The background gray in the two areas (the part of the screen where you can

put windows and the part of the screen where you cannot put windows) joins

smoothly.

• ��������� ���� is used to fill in the visible portion of a window that is not fully

exposed. It tells you that you aren’t seeing all of this window, because another

window is covering part of it. Deexposed graying does not occur when a window

is covered by a temporary window (like a momentary menu) because such a win-

dow isn’t considered to be really deexposed and is often still a focus of the

user’s attention.�

These concepts generalize to any window, dynamic or static, that has inferiors, not

just the screen. You can make a flavor of frame that fills in any empty spots with

gray or grays over any partially exposed panes.

Both kinds of graying are implemented by the screen manager, but are affected by

messages to the screen and to the deexposed windows.

To disable both background and deexposed gray on the main screen:

(tv:set-screen-background-gray nil)

(tv:set-screen-deexposed-gray nil)�

To get a light gray on both unused areas and deexposed windows:

(tv:set-screen-background-gray tv:6%-gray)

(tv:set-screen-deexposed-gray tv:6%-gray)�

To get a light gray over deexposed windows and a darker gray in the background:

348
Using the Window System February 2018

(tv:set-screen-background-gray tv:33%-gray)

(tv:set-screen-deexposed-gray tv:6%-gray)�

11.2.9.1. Window Graying Specifications
A ������� ������������� determines what pattern to use in graying areas of the

screen that contain no windows or that contain windows that are not fully exposed.

These specifications are used as arguments to functions and messages that deal

with graying. See the section "Functions, Flavors, and Messages for Window Gray-

ing", page 349.

Following are the possible values of a specification and their meanings:

nil Disable graying. Background gray is white (in black-on-white

mode); deexposed gray is completely transparent.

Two-dimensional bit array

A stipple pattern to be replicated by bitblt.

:white Opaque white.

:black Opaque black.

Instance An object that must handle the :draw-blank-rectangle mes-

sage to draw a gray rectangle.

Function A function to be called with standard arguments to draw a

gray rectangle.

List The first element is a function to be called, and the remaining

elements are arguments to the function to be supplied after

the standard arguments.�

Following are the arguments to the :draw-blank-rectangle message and to a func-

tion to be called:

������ Horizontal size of the rectangle in pixels.

������ Vertical size of the rectangle in pixels.

����� X-position of the top left corner of the rectangle on �����.

����� Y-position of the top left corner of the rectangle on �����.

������� Starting x-coordinate of the source array.

������� Starting y-coordinate of the source array.

����� Sheet or array on which to draw the rectangle, or nil.

������ The raster to draw on, or nil. Both sheet and raster may be

specified, in which case methods of the sheet should be used to

draw on the raster.

�������� The alu to use to draw the "ones".

��������� The alu to use to draw the "zeros"�

349
February 2018 Using the Window System

The variable tv:*gray-arrays* contains a list of variables that are bound to avail-

able predefined graying specifications.

11.2.9.2. Functions, Flavors, and Messages for Window Graying
The window graying facilities are:

tv:set-screen-background-gray

tv:set-screen-deexposed-gray

:screen-manage-deexposed-gray-array

tv:gray-unused-areas-mixin

(flavor:method :gray-array-for-unused-areas tv:gray-unused-areas-mixin)

(flavor:method :gray-array-for-unused-areas tv:gray-unused-areas-mixin)

(flavor:method :set-gray-array-for-unused-areas tv:gray-unused-areas-mixin)

tv:gray-deexposed-inferiors-mixin

(flavor:method :gray-array-for-inferiors tv:gray-deexposed-inferiors-mixin)

(flavor:method :gray-array-for-inferiors tv:gray-deexposed-inferiors-mixin)

(flavor:method :set-gray-array-for-inferiors tv:gray-deexposed-inferiors-mixin)

11.2.10. Windows and Processes

The flavor tv:process-mixin creates a new process associated with each window of

the dependent flavor, that is, the flavor with which this one is mixed with. The dy-

namic window flavor dw:program-frame is one such dependent flavor. The init op-

tion :process for this flavor allows you to specify options for the process. These

are the same options that make-process has.

11.2.11. Activities and Window Selection

The concepts and facilities discussed in this section apply to both Dynamic Win-

dows and static windows.

11.2.11.1. The Selected Window and the Selected Activity
When you type characters on the keyboard, they must be directed to some window.

The window that receives keyboard input is the ���������������. No more than one

window can be selected at a time. Sometimes no window is selected, but usually

this is a brief transitional state. tv:selected-window is a variable that is bound to

the value of the currently selected window. Similarly, tv:cold-load-stream-old-

selected-window is bound to the value of tv:selected-window at the time you en-

tered the cold-load stream.

A window is selectable only if it has tv:select-mixin and tv:stream-mixin as com-

ponents (dw:dynamic-window has both). tv:select-mixin allows the window to han-

dle messages that select it. tv:stream-mixin provides the window an ��� ������,

which accumulates keyboard characters, and lets the window handle messages to

get input. tv:stream-mixin also provides the window with �������������. When in-

put editing is enabled and a reading function tries to get input from the window,

the user can edit typein before the reading function sees it. See the section "Input
from Windows", page 367.

350
Using the Window System February 2018

An �������� is a group of windows that the user regards as a single unit. Typically

an activity consists of a top-level window one that is a direct inferior of a

screen and all its direct and indirect inferior windows. An example of an activi-

ty is a top-level Lisp Listener. Sometimes an activity consists of a non-top-level

window and all its direct and indirect inferior windows. One example is a Lisp Lis-

tener inside a Split Screen frame.

The concept of activity is only partially implemented in the window system. No

separate object represents an activity. Instead, an activity is designated by a repre-

sentative window from that activity. In the usual case, where the windows in an

activity form a tree, the root of the tree serves as the representative.

The system contains several generic tools for selecting among activities: These in-

clude the ������ key, ����������, and the [Select] menu in the System Menu.

The �������� �������� is the activity that contains the selected window. When you

change the selected activity, you also change the selected window.

You usually select an activity by selecting the representative window of the activi-

ty. But this window might or might not be selectable itself; sometimes only its in-

feriors, or only some of its inferiors, can become the selected window. When you

select an activity, the representative window of the activity usually decides which

window within the activity should become the selected window.

We say that this window the one that is to become the selected window when

the activity is selected is selected �������� to its activity. When you select a win-

dow relative to its activity, you do not change the selected activity. If an activity

happens to be the selected activity, then selecting a window relative to that activi-

ty also makes that window the new selected window. If an activity is not the se-

lected activity, then selecting a window relative to that activity changes neither

the selected activity nor the selected window.

Whenever you select a window that is part of an activity, that window is selected

relative to its activity, and that activity becomes the selected activity.

11.2.11.2. Frames and Panes
A ����� is a window that is designed to contain other windows inside it. A direct

inferior window of a frame is called a ����. Many activities consist of a frame and

its direct and indirect inferior windows. The frame is the representative window of

this kind of activity.

A window that is a direct or indirect inferior of a frame can be the �������������

of the frame. The ������������� is the window that is selected relative to the

frame. A frame usually cannot become the selected window. Instead, when you se-

lect a frame, its selected-pane becomes the selected window, unless the selected-

pane is itself a frame. In that case the selected-pane of the selected-pane becomes

the selected window.

You can change the selected-pane of a frame without selecting the activity that the

frame represents. The next time that activity is selected, the new selected-pane be-

comes the selected window. If that activity happens to be the selected activity,

then changing the selected-pane of the frame causes the new selected-pane to be-

come the selected window.

351
February 2018 Using the Window System

If you select a window that is a pane of a frame, that window becomes the select-

ed-pane of the frame, and the activity that the frame represents becomes the se-

lected activity.

For more about panes and frames, including constraint frames, see the section

"Frames", page 393.

11.2.11.3. Messages About Window Selection
These are all the messages having to do with window selection:

:alias-for-selected-windows

:name-for-selection

:selectable-windows

:select-relative

:inferior-select

:select-pane

:selected-pane

(flavor:method :selected-pane tv:basic-constraint-frame)

:mouse-select

:select

:deselect

11.2.11.4. Flavors Related to Window Selection
The flavors related to window selection are:

tv:select-mixin

tv:select-relative-mixin

tv:dont-select-with-mouse-mixin

tv:basic-frame

tv:pane-mixin

tv:pane-no-mouse-select-mixin�

11.2.11.5. Selecting a Window Temporarily
These functions can be used to select a window temporarily:

tv:window-call-relative

tv:window-call

tv:window-mouse-call�

11.2.12. Window Status

The following methods respectively determine and set the status of a window.

They may be used with static or Dynamic Windows.

(flavor:method :status tv:essential-activate)

(flavor:method :set-status tv:essential-activate)�

352
Using the Window System February 2018

11.3. Window Flavors and Messages

11.3.1. Overview of Window Flavors and Messages

In this section we present the actual messages that can be sent to windows to ex-

amine and alter their state and to get them to do things. Just how a window re-

acts to a message depends on what flavor it is an instance of, and so we will also

explain the various flavors that exist. This section also explains how to create new

windows, and how to compose new flavors of windows by mixing together existing

flavors.

Windows have a wide variety of functions, and can respond to any of a large set of

messages. To help you find your way around among all the messages, this chapter

groups together messages that deal with the same facet of the functionality of

windows. Here is a summary of the various groups of messages that are docu-

mented.

First of all, a window can be used as if it were the screen of a display computer

terminal. You can output characters at a cursor position, move the cursor around,

selectively clear parts of the window, insert and delete lines and characters, and so

on, by sending stream messages to the window. This way, windows can act as out-

put streams, and any function that takes a stream for its argument (such as print

or zl:format) can be passed a window.

Characters can be drawn in any of a large set of ����� (typefaces). Prior to Genera

7.0, fonts for character output to a window were manipulated directly through var-

ious font messages. Currently, only a couple of these messages are supported. The

preferred interface to character fonts is the ��������� ����� system. Each window

has a default character style, which you can specify as an init option. See the init

option (flavor:method :default-character-style tv:sheet) in ���� ��������� �������

����. To override the default style, you can use one of several character style

macros, see the section "Controlling Character Style", page 71. For more informa-

tion on character styles generally, see the section "Character Styles" in ���������

�����������������������������.

Windows do useful things when you try to run the cursor off the right or bottom

edges; they also have a facility called ���� ���������� to stop characters from com-

ing out faster than you can read them.

In addition to characters, you can also display graphics (pictures) on windows.

There are functions to draw lines, circles, triangles, rectangles, arbitrary polygons,

circle sectors, and cubic splines.

A window can also be used for reading in characters from the keyboard; you do

this by sending it stream input messages (such as :tyi and :listen). This way, win-

dows can act as input streams, and any function that takes a stream for its argu-

ment (such as zl:read or zl:readline) can be passed a window. Each window has

an ���������� holding characters that have been typed at the window but not read

yet, and there are messages that deal with these buffered characters. You can �����

�������� ����� into a window’s I/O buffer; frequently two processes communicate

by one process’s forcing keyboard input into an I/O buffer which another process is

reading characters from.

353
February 2018 Using the Window System

Each window can have any number of ��������. The kind of blinker that you see

most often is a blinking rectangle the same size as the characters you are typing;

this blinker shows you the cursor position of the window. In fact, a window can

have any number of blinkers; they need not follow the cursor (some do and some

don’t) and they need not actually blink (some do and some don’t). For example, the

editor shows you what character the mouse is pointing at; this blinker looks like a

hollow rectangle. The arrow that follows the mouse is a blinker, too. Blinkers are

used to add visible ornaments to a window; a blinker is visible to the user, but

while programs are examining and altering the contents of a window the blinkers

all go away. This means that blinkers do not affect the contents of the window as

seen from programs; whenever a program looks at a window, the blinkers are all

turned off. The reason for this is so that you can draw characters and graphics on

the window without having to worry whether the flashing blinker will overwrite

them. If you have anything that should appear to the user but not be visible to the

program, then it should be a blinker. The window system provides a few kinds of

blinkers, and you can define your own kinds. Blinkers are instances of flavors, too,

and have their own set of messages that they understand.

Any program can use the mouse as an input device. The window system provides

many ways for you to get at the mouse. Some of them are very easy to use, but

don’t have all the power you might want; others are somewhat more difficult to

use but give you a great deal of control. The window system also takes responsibil-

ity for figuring out which of many programs have control over the mouse at any

time.

There are a large number of messages for manipulating the size and position of a

window. You can specify these numerically, ask for the user to tell you (using the

mouse), ask for a window to be near some point or some other window, and so on.

A window’s area of the screen is divided into two parts. Around the edges of the

window are the four �������; while the margins can have zero size, usually there

is a margin on each edge of the window, holding a border and sometimes other

things, such as a label. The rest of the window is called the ������; regular char-

acter drawing and graphics drawing all occur on the inside part of the window.

You have a great deal of control over what goes in the margins of a window. Con-

trol can be exercised either by mixing in different flavors that put different things

in the margins or by specifying parameters such as the width of the borders or

the text to appear in the label.

You can create windows with several panes (inferior windows). These are called

������, and there are messages that deal specifically with frames, their configura-

tion, and their inferiors.

Sometimes a background process wants to tell the user something, but it does not

have any window on which to display the information, and it does not want to pop

one up just for one little message. A facility is provided wherein the process can

send such ������������ messages to the selected window, and it will find some way

to get the message to the user. Different windows do different things when some-

one tries to use them for notification.

354
Using the Window System February 2018

Screens are windows themselves; they also have extra functions that windows don’t

have, since they do not have superiors and since they correspond to actual pieces

of display hardware. Screens can be either black-and-white or color. Color screens

have more than one bit for each pixel, and most operations on windows do some-

thing reasonable on color screens. But the extra bits give you extra flexibility, and

so there are some more powerful things you can do to manipulate colors. Color

screens also have a ����� ���, that specifies which values of the pixels display

which colors.

There are also messages for changing the status of windows: whether they are ac-

tive, exposed, or selected. There are several options to exactly how exposure and

deexposure should affect the screen. You can also ask windows to refresh their

contents, kill them, and so on. There are also ways to deal with the screen man-

ager, including messages to examine and alter priorities, and other functions and

variables and flavors for affecting what the screen manager does.

You can define your own fonts, and/or convert fonts from other formats to the Lisp

Machine’s format. Font characters have various attributes such as their height,

baseline, left kern, and so on.

The status line at the bottom of the screen shows the user something about the

state of the Lisp Machine. There are several functions for controlling just what it

does and for getting things to be displayed in it.

The window system provides a facility called ��� �������. An I/O buffer is a general

purpose first-in first-out ring buffer, with various useful features. Programs can

use I/O buffers for anything else, too; it need not even have anything to do with

the window system.

There are some interrelationships between windows and processes. Exactly how

processes and windows relate depends on the flavor of the window, and, as usual,

there are several messages to manipulate the connections.

11.3.2. Getting a Window to Use

11.3.2.1. Flavors of Basic Windows
Many programs never need to create any new windows. Often, all you are interest-

ed in doing is sending messages to *standard-output* and *standard-input* and

performing the extended stream operations offered by windows to read and type

characters, position the cursor (and other things that you do on display terminals),

and draw graphics. Other programs want to create their own windows for various

reasons; a common way to organize an interactive system in Genera is to create a

process that runs the command loop of the system, and have it use its own window

or suite of windows to communicate with the user. This kind of system is what the

editor and Zmail use, and it is very convenient to deal with.

Whichever of these you use, it is important for you to know what flavor of window

you are getting. Some flavors accept certain messages that are not handled by

others. The details of different flavors’ responses to the same message may vary in

accordance with what those flavors are supposed to be for. The following is a dis-

cussion of window flavors.

355
February 2018 Using the Window System

The most primitive flavor of window is called tv:minimum-window; it is the basic

flavor on which all other window flavors are built, and it contains the absolute

minimum amount of functionality that a window must have to work. tv:minimum-

window itself is built on a number of other flavors that provide the "essential" at-

tributes of windows. For reference, tv:minimum-window is defined as follows (ig-

noring defflavor options):

(defflavor tv:minimum-window ()

 (tv:essential-expose tv:essential-activate

 tv:essential-set-edges tv:essential-mouse

 tv:essential-window))�

tv:essential-window, in turn, is built on the base flavor for all windows, tv:sheet.

There is another flavor called tv:window, which is built on tv:minimum-window

and has about six mixins that do a variety of useful things. When you cold boot a

Lisp Machine, the window you are talking to is of flavor tv:lisp-listener, which is

built on tv:window and has three more mixins. tv:window has what you need to

do the normal things that are done with windows; tv:minimum-window is missing

messages for character output and input, selection, borders, labels, and graphics,

and so there isn’t much you can do with it. Anything built on tv:window, includ-

ing Lisp Listeners, will be able to accept all the basic messages.

Some programs may benefit from more carefully tailored mixings of flavors. For

the benefit of programmers who want to do this, we specify below, with each mes-

sage and init option, which flavor actually handles it. If you are just using

tv:window then you don’t really care exactly what mixin specific features are in;

you just need to know which ones are in tv:window. With the discussion of each

flavor or group of messages, we will say which relevant flavors are in tv:window

and which are not. For reference, tv:window is defined (ignoring defflavor op-

tions) as follows:

(defflavor tv:window ()

 (tv:stream-mixin tv:borders-mixin tv:label-mixin

 tv:select-mixin tv:graphics-mixin tv:minimum-window))�

So, if you use tv:window then you have all the above mixins, and can take advan-

tage of their features.

For information on Dynamic Window flavors, see the section "Window Substrate

Facilities", page 415.

11.3.2.2. Creating a Window
If you want to create your own window, static or dynamic, you use the tv:make-

window function. Never try to instantiate a window flavor yourself with make-

instance; always use tv:make-window which takes care of a number of internal

system issues.

These are the facilities for creating windows:

tv:make-window

(flavor:method :init tv:sheet)

356
Using the Window System February 2018

(flavor:method :blinker-p tv:sheet)

(flavor:method :default-character-style tv:sheet)

(flavor:method :save-bits tv:sheet)

(flavor:method :superior tv:sheet)

(flavor:method :activate-p tv:essential-window)

(flavor:method :expose-p tv:essential-window)

tv:defwindow-resource�

11.3.3. Character Output to Windows

The information included in this section applies to both Dynamic Windows and

static windows.

11.3.3.1. How Windows Display Characters
A window can be used as if it were the screen of a display computer terminal, and

it can act as an output stream. The flavor tv:sheet implements the messages of

the Genera output stream protocol. It implements a large number of optional mes-

sages of that protocol, such as :insert-line. The tv:sheet flavor is a component of

all windows. Every window has a current ������ ��������; its main use is to say

where to put characters that are drawn. The way a window handles the messages

asking it to type out is by drawing that character at the cursor position, and mov-

ing the cursor position forward past the just-drawn character.

In the messages below, the cursor position is always expressed in "inside" coordi-

nates; that is, its coordinates are always relative to the top-left corner of the in-

side part of the window, and so the margins don’t count in cursor positioning. The

cursor position always stays in the inside portion of the window--never in the mar-

gins. The point ����� is at the top-left corner of the window; increasing � coordi-

nates are further to the right and increasing � coordinates are further towards the

bottom. (Note that � increases in the down direction, not the up direction!)

To draw a character "at" the cursor position basically means that the top-left

corner of the character will appear at the cursor position; so if the cursor position

is at position ����� and you draw a character, it will appear at the top-left corner

of the window. (Things can actually get more complicated when fonts with left-

kerns are used.)

When a character is drawn, it is combined with the existing contents of the pixels

of the window according to an ��� ��������. For a description of the different alu

functions, see the section "Graphic Output to Windows", page 361. When charac-

ters are drawn, the value of the window’s ��������� is the alu function used. Nor-

mally, the ��������� says that the bits of the character should be bit-wise logically

��ed with the existing contents of the window. This means that if you type a char-

acter, then set the cursor position back to where it was and type out a second

character, the two characters will both appear, ��ed together one on top of the

other. This is called overstriking.

The ��������� ����� of characters output to the window is gotten by merging the

character style specified for the output against the window’s ������� ��������� �����.

The resulting style maps to a particular font. (For more information on character

357
February 2018 Using the Window System

styles, see the section "Character Styles" in ��������� ������ ���� ��������

��������. For more on specifying output character styles, see the section "Control-

ling Character Style", page 71. To specify a window’s default character style, see

the init option (flavor:method :default-character-style tv:sheet) in ���� ���������

����������. Details of fonts are gone into later. See the section "TV Fonts", page

370. For now, it is only important to understand what the ��������������� and �����

������ of the window are; these two units are used by many of the messages docu-

mented in this section.

Character-width is the ���������� attribute the width of a space character of

the font currently being used for character output, that is, the ������� ����. The

line-height is the sum of the ��� of the window and the �����������s of the current

font. The ��� is an attribute of the window that controls how much vertical spac-

ing there is between successive lines of text. That is, each line is as tall as the

font is, plus vertical spacing added between lines by controlling the ��� of the

window.

In some fonts, all characters have the same width; these are called �����������

�����. The default character style for the system, (:fix :roman :normal), maps to a

fixed-width font (fonts:cptfont) for character output to windows. In other fonts,

each character has its own width; these are called �������������� �����. In a vari-

able-width font, expressing horizontal positions in numbers of characters is not

meaningful, since different characters have different widths. Some of the functions

below do use numbers of characters to designate widths; there are warnings along

with each such use explaining that the results may not be meaningful if the cur-

rent font has variable width.

Typing out a character does more than just drawing the character on the screen.

The cursor position is moved to the right place; nonprinting characters are dealt

with reasonably; if there is an attempt to move off the right or bottom edges of

the screen, the typeout wraps around appropriately; ���� breaks are caused at the

right time if ��������������� is enabled. Here is the complete explanation of what

typing out a character does. You may want to remind yourself how the Symbolics

character set works. See the section "The Character Set" in ��������� ������

���� �������� ��������. You don’t have to worry much about the details here, but

in case you ever need to know, here they are. If you aren’t interested, skip ahead

to the definitions of the messages.

First of all, as was explained earlier, before doing any typeout the process must

wait until it has the ability to output. See the section "Window Exposure and Out-

put", page 340. The output hold flag must be off and the window must not be

temp-locked.

Before actually typing anything, various exceptional conditions are checked for. If

an exceptional condition is discovered, a message is sent to the window; the mes-

sage keyword is the name of the condition. Different flavors handle the various ex-

ceptions different ways; you can control how exceptions are handled by what fla-

vors your window is made of. First, if the �-position of the cursor is less than one

line-height above the inside bottom edge of the window, an :end-of-page-exception

happens. The handler for this exception in the tv:sheet flavor moves the cursor

position to the upper-left-hand corner of the window and erases the first line, do-

ing the equivalent of a :clear-rest-of-line operation.

358
Using the Window System February 2018

Next, if the window’s ���� ���� is set, a :more-exception happens. The ���� ����

gets set when the cursor is moved to a new line (for example, when a #\return is

typed) and the cursor position is thus made to be below the ���� ���� of the win-

dow. (If tv:more-processing-global-enable is nil, this exception is suppressed and

the ���� ���� is turned off.) The :more-exception handler in the tv:sheet flavor

does a :clear-rest-of-line operation, types out **MORE**, waits for any character

to be typed, restores the cursor position to where it originally was when the

:more-exception was detected, does another :clear-rest-of-line to wipe out the

MORE, and resets the ���������. The character read in is ignored.

Note that the ���� ���� is only set when the cursor moves to the next line, be-

cause a #\return is typed, after a :line-out, or by the :end-of-line-exception han-

dler described below. It is not set when the cursor position of the window is ex-

plicitly set (for example, with :set-cursorpos); in fact, explicitly setting the cursor

position clears the ���� ����. The idea is that when typeout is being streamed out

sequentially to the window, :more-exceptions happen at the right times to give the

user a pause in which to read the text that is being typed, but when cursor posi-

tioning is being used the system cannot guess what order the user is reading

things in and when (if ever) is the right time to stop. In this case it is up to the

application program to provide any necessary pauses.

The algorithm for setting the ���� ���� is too complicated to go into here in all

its detail, and you don’t need to know exactly how it works, anyway. It is careful

never to overwrite something before you have had a chance to read it, and it tries

to do a **MORE** only if a lot of output is happening. But if output starts hap-

pening near the bottom of the window, there is no way to tell whether it will just

be a little output or a lot of output. If there’s just a little, you would not want to

be bothered by a **MORE**. So it doesn’t do one immediately. This may make it

necessary to cause a **MORE** break somewhere other than at the bottom of the

window. But as more output happens, the position of successive **MORE**s is mi-

grated and eventually it ends up at the bottom.

Finally, if there is not enough room left in the line for the character to be typed

out, an :end-of-line-exception happens. The handler for this exception in the

tv:sheet flavor advances the cursor to the next line just as typing a #\return char-

acter does normally. This may, in turn, cause an :end-of-page-exception or a

:more-exception to happen. Furthermore, if the ����� ������ ��������� ���� is on,

then before going to the next line, an exclamation point in font zero is typed at

the cursor position. When this flag is on, :end-of-line-exceptions are caused a lit-

tle bit earlier, to make room for the exclamation point.

The way the cursor position goes to the next line when it reaches the right edge

of the window is called ���������� ����������. You can make windows that trun-

cate lines instead of wrapping them around by using tv:truncating-lines-mixin.

After checking for all these exceptions, the character finally gets typed out. If it is

a printing character, it is typed in the current font at the cursor position, and the

cursor position is moved to the right by the width of the character. If it is one of

the format effectors #\return, #\tab, and #\back-space, it is handled in a special

way to be described in a moment. All other special characters have their names

typed out in tiny letters surrounded by a lozenge, and the cursor position is moved

359
February 2018 Using the Window System

right by the width of the lozenge. If an undefined character code is typed out, it is

treated like a special character; its code number is displayed in a lozenge.

#\tab moves the cursor position to the right to the next tab stop, moving at least

one character-width. Tab stops are equally spaced across the window. The distance

between tab stops is ���������� times the ��������������� of the window. ����������

defaults to 8 but can be changed.

Normally #\return moves the cursor position to the inside left edge of the window

and down by one line-height, and clears the line. It also deals with more process-

ing and the end-of-page condition as described above. However, if the window’s ���

���������������� is on, the #\return character is not regarded as a format effector

and is displayed as "return" in a lozenge, like other special characters.

If the character being typed out is a #\back-space, the result depends on the value

of the window’s �������������������������������. If the flag is 0, as is the default,

the cursor position is moved left by one character-width (or to the inside left edge,

whichever is closer). If the flag is 1, #\back-spaces are treated like all other spe-

cial characters.

11.3.3.2. Messages to Display Characters on Windows
These are the messages used to display characteres on windows:

(flavor:method :tyo tv:sheet)

(flavor:method :string-out tv:sheet)

(flavor:method :line-out tv:sheet)

(flavor:method :fresh-line tv:sheet)

(flavor:method :insert-char tv:sheet)

(flavor:method :insert-string tv:sheet)

(flavor:method :insert-line tv:sheet)

(flavor:method :set-default-character-style tv:sheet)

11.3.3.3. Messages to Read or Set Cursor Position
These are the messages used to read or set the cursor position:

(flavor:method :read-cursorpos tv:sheet)

(flavor:method :set-cursorpos tv:sheet)

(flavor:method :home-cursor tv:sheet)

(flavor:method :home-down tv:sheet)�

11.3.3.4. Messages to Remove Characters from Windows
These are the messages used to remove characters from windows:

(flavor:method :refresh tv:sheet)

(flavor:method :clear-char tv:sheet)

(flavor:method :clear-rest-of-line tv:sheet)

(flavor:method :clear-rest-of-window tv:sheet)

(flavor:method :clear-window tv:sheet)

360
Using the Window System February 2018

(flavor:method :delete-char tv:sheet)

(flavor:method :delete-string tv:sheet)

(flavor:method :delete-line tv:sheet)�

11.3.3.5. Messages About Character Width and Cursor Motion
These are the messages that have to do with character width and cursor motion:

(flavor:method :character-width tv:sheet)

(flavor:method :compute-motion tv:sheet)

(flavor:method :string-length tv:sheet)�

11.3.3.6. Window Attributes for Character Output
The following messages and initialization options initialize, get, and set various

window attributes which are relevant to the typing out of characters.

(flavor:method :more-p tv:sheet)

(flavor:method :more-p tv:sheet)

(flavor:method :set-more-p tv:sheet)

tv:autoexposing-more-mixin

(flavor:method :vsp tv:sheet)

(flavor:method :vsp tv:sheet)

(flavor:method :set-vsp tv:sheet)

(flavor:method :reverse-video-p tv:sheet)

(flavor:method :set-reverse-video-p tv:sheet)

(flavor:method :deexposed-typeout-action tv:sheet)

(flavor:method :deexposed-typeout-action tv:sheet)

(flavor:method :set-deexposed-typeout-action tv:sheet)

(flavor:method :deexposed-typein-action tv:sheet)

(flavor:method :deexposed-typein-action tv:sheet)

(flavor:method :set-deexposed-typein-action tv:sheet)

(flavor:method :right-margin-character-flag tv:sheet)

(flavor:method :backspace-not-overprinting-flag tv:sheet)

(flavor:method :cr-not-newline-flag tv:sheet)

(flavor:method :tab-nchars tv:sheet)�

11.3.3.7. Line-Truncating Windows
These facilities control how lines are truncated in windows:

tv:truncatable-lines-mixin

tv:line-truncating-mixin

tv:truncating-lines-mixin

tv:truncating-window

(flavor:method :truncate-line-out tv:sheet)

(flavor:method :set-truncate-line-out tv:sheet)�

361
February 2018 Using the Window System

11.3.4. Graphic Output to Windows

The facilities in this section can be used with both Dynamic Windows and static

windows. For information on graphics functions introduced in Genera 7.0: See the

section "Creating Graphic Output", page 139.

11.3.4.1. How Windows Display Graphic Output
A window can be used to draw graphics (pictures). There is a set of messages for

drawing lines, circles, sectors, polygons, cubic splines, and so on, implemented by

the flavor tv:graphics-mixin. The tv:graphics-mixin flavor is a component of the

tv:window and dw:dynamic-window flavors. Therefore, the messages documented

below work on windows of these flavors or built on these flavors. (For information

on a corresponding set of graphics functions: See the section "Creating Graphic

Output", page 139.)

There are also some messages in this section that are in tv:sheet or tv:stream-

mixin rather than tv:graphics-mixin, because they are likely to be useful to any

window that can draw characters, but such windows might not want the full func-

tionality of tv:graphics-mixin. These messages are :draw-rectangle, and the

:bitblt message and its relatives. (If you are building on tv:window anyway, this

doesn’t affect you, since tv:window includes both of these flavors.)

The cursor position is not used by graphics messages; the messages explicitly spec-

ify all relevant coordinates. All coordinates are in terms of the inside size of the

window, just like coordinates for typing characters; the margins don’t count. Re-

member that the point ����� is in the upper left; increasing � coordinates are �����

on the screen, not higher. Coordinates are always integers.

As with typing out text, before any graphics are typed the process must wait until

it has the ability to output. The output hold flag must be off and the window must

not be temp-locked. The other exception conditions of typing out are not relevant

to graphics.

All graphics functions ���� to the inside portion of the window. This means that

when you specify positions for graphic items, they need not be inside the window;

they can be anywhere. Only the portion of the graphic that is inside the inside

part of the window will actually be drawn. Any attempt to write outside the inside

part of the window simply won’t happen.

There are a few simple microcoded primitives for drawing graphics. They can be

used for drawing pictures into Lisp arrays. However, when drawing on windows

you should send the documented messages rather than directly calling the mi-

crocode primitives because these messages provide several essential services which

are too complex for the microcode, such as protecting blinkers from being affected

from drawing, and locking out other processes.

11.3.4.2. Alu Functions
Most of the messages that produce graphic output on windows take an ��� argu-

ment, which controls how the bits of the graphic object being drawn are combined

with the bits already present in the window. In most cases this argument is op-

tional and defaults to the window’s char-aluf, the same alu function as is used to

362
Using the Window System February 2018

draw characters, which is normally inclusive-or. The following variables have the

most useful ��� functions as their values:

tv:alu-ior

tv:alu-andca

tv:alu-xor

tv:alu-seta

tv:alu-and�

11.3.4.3. Drawing Points on Windows
These methods have to do with drawing points on windows.

(flavor:method :point tv:graphics-mixin)

(flavor:method :draw-point tv:graphics-mixin)�

Also, see the function graphics:draw-point.

11.3.4.4. Copying Bit Rectangles to and from Windows
These methods are for copying bit rectangles to and from windows:

(flavor:method :bitblt tv:sheet)

:draw-1-bit-raster

(flavor:method :bitblt-from-sheet tv:sheet)

(flavor:method :bitblt-within-sheet tv:sheet)�

The function tv:make-sheet-bit-array is useful for creating arrays that are bit-

blt’ed into and out of windows.

11.3.4.5. Drawing Characters and Strings on Windows
These methods draw characters or strings on windows:

(flavor:method :draw-char tv:sheet)

(flavor:method :draw-string tv:graphics-mixin)�

Also see the functions graphics:draw-string, graphics:draw-image,

graphics:draw-string-image and graphics:draw-glyph.

11.3.4.6. Drawing Lines on Windows
These methods draw lines on windows:

(flavor:method :draw-line tv:graphics-mixin)

(flavor:method :draw-lines tv:graphics-mixin)

(flavor:method :draw-dashed-line tv:graphics-mixin)

(flavor:method :draw-curve tv:graphics-mixin)

(flavor:method :draw-closed-curve tv:graphics-mixin)

(flavor:method :draw-wide-curve tv:graphics-mixin)�

Also, refer to the graphics drawing functions described in "Drawing Functions".

363
February 2018 Using the Window System

11.3.4.7. Drawing Polygons and Circles on Windows
These methods are used to draw polygons and circles on windows:

(flavor:method :draw-rectangle tv:sheet)

(flavor:method :draw-triangle tv:graphics-mixin)

(flavor:method :draw-circle tv:graphics-mixin)

(flavor:method :draw-circular-arc tv:graphics-mixin)

(flavor:method :draw-filled-in-circle tv:graphics-mixin)

(flavor:method :draw-filled-in-sector tv:graphics-mixin)

(flavor:method :draw-regular-polygon tv:graphics-mixin)�

Also, refer to the graphics drawing functions described in "Drawing Functions".

11.3.4.8. Drawing Splines on Windows
There are two ways to draw splines: (flavor:method :draw-cubic-spline

tv:graphics-mixin) is the older way, and graphics:draw-cubic-spline the preferred

way.

11.3.4.9. Primitives for Drawing onto Arrays
The following functions are primitives for drawing pictures onto arrays. You

should only use them on arrays and not directly on windows.

sys:%draw-rectangle

sys:%draw-line

sys:%draw-triangle�

11.3.5. Notifications and Progress Indicators

This section applies to both static and Dynamic Windows.

11.3.5.1. Overview of Notifications
Notifications are messages that a process sends to the user asynchronously to in-

form the user of some change in the state of the process. Some examples:

• By default the garbage collector notifies the user as storage is used up and

when the dynamic garbage collector flips and flushes oldspace.

• If a window’s deexposed typeout action is :notify, the user is notified when an

attempt is made to type out on that window.

• Converse messages can be received as notifications.�

A process uses tv:notify to notify the user. This function constructs a notification

and saves it on a queue. A central delivery process takes notifications from the

queue and delivers them to the user. This process first gives the process associat-

ed with the selected window a chance to accept the notification itself. If the pro-

cess associated with the selected window does not accept the notification within a

short time, the delivery process usually tries to display the notification itself, in ei-

ther the selected window or a pop-up window.

364
Using the Window System February 2018

The notification delivery process tries to give the user process a chance to accept

the notification by storing the notification in a locative obtained by sending the

:notification-cell message to the selected window. If the user process wants to ac-

cept notifications, it usually checks the contents of this cell as part of the :input-

wait wait function. The user process sends the :receive-notification message to

the window to accept the notification. When the user process wants to display a

notification it usually calls sys:display-notification. By default, if the user process

does not accept a notification, the notification delivery process displays the notifi-

cation in a pop-up window. The user process can use the tv:with-notification-

mode special form to control what happens to notifications it does not accept.

All notifications received since cold booting are displayed in a scroll window ob-

tained by pressing �������� or by calling zl:display-notifications. You can display

some or all notifications by using the Show Notifications command.

11.3.5.2. Notifying the User
The function tv:notify issues to the user an asynchronous notification, which is

delivered by a central notification delivery process.

11.3.5.3. Receiving and Displaying Notifications
When a process notifies the user, the central notification delivery process gives the

process associated with the selected window a chance to accept the notification be-

fore the delivery process tries to display the notification itself. The notification de-

livery process stores the notification in a locative obtained by sending the

:notification-cell message to the selected window, unless a notification is already

there. In that case the notification delivery process usually tries to display the no-

tification itself.

A user process that wants to accept notifications should send the selected window

a :notification-cell message to find the locative that might contain a notification.

The process should wait (usually in an :input-wait wait function) until the locative

contains something other than nil. A user process that does not want to accept no-

tifications and does not want pop-up notification windows to occur can set the vari-

able tv:*allow-pop-up-notifications* to nil. See the section "Pop-up notifications",
page 365. The :notification-cell message to an interactive stream returns the loca-

tive in which the notification delivery process stores notifications. When a notifica-

tion cell contains a notification, a process can accept the notification by sending

the selected window a :receive-notification message. If the process wants to dis-

play the notification, it usually passes it on to the function

zl:display-notifications.

Following is a simple example of a command loop that waits for input, a notifica-

tion, or a new selected-pane. When a notification arrives, it displays it in a pane

reserved for notifications. When input arrives, it just displays a representation of

the input in the selected pane.

 (defun my-top-level (frame)

 (let ((notification-pane (send frame :get-pane ’notification-pane)))

 (error-restart-loop ((error sys:abort) "My top level")

 (let ((selected-pane (send frame :selected-pane))

365
February 2018 Using the Window System

 (note))

 (when selected-pane

 (send selected-pane :input-wait nil

#’(lambda (note-cell)

 (declare (sys:downward-function))

 (or (neq selected-pane (send frame :selected-pane))

(not (null (location-contents note-cell)))))

 (send selected-pane :notification-cell))

 (cond

 ((neq selected-pane (send frame :selected-pane)))

 ((setq note (send selected-pane :receive-notification))

 (sys:display-notification notification-pane note :stream))

(t

 (let ((char (send selected-pane :any-tyi-no-hang)))

 (cond

 ((null char))

 ((fixp char)

 (format selected-pane "~&Character: ~C" char))

 ((listp char)

 (format selected-pane "~&Blip: ~S" char))

 (t (format selected-pane

 "~&Unknown object: ~S" char)))))))))))�

After storing a notification in the selected window’s notification cell, the notifica-

tion delivery process gives the process associated with the selected window some

time to accept the notification. The amount of time is determined by the variable

tv:*notification-deliver-timeout*.

If the process associated with the selected window does not accept a notification

within the specified time, or if the window’s notification cell already contains a

notification, the window’s ������������ ���� determines what the delivery process

does with the notification. You can use the :notification-mode message to get the

notification mode and the :set-notification-mode message to set it.

If you want to execute some code with a stream’s notification mode bound to some

value, use the special form tv:with-notification-mode.

Pop-up notifications

When a notification is displayed in a pop-up window, the user is alerted with a

beep and given some time to notice the beep and stop typing. Until that time

elapses, all typein is directed to the previously selected window, except that the

user can press ����� to deexpose the pop-up window immediately. The amount of

time is determined by the variable tv:unexpected-select-delay.

After the select delay, typing any character or selecting another window deexposes

the pop-up window. If a "window of interest" was supplied as the first argument to

tv:notify, a message is displayed that informs the user that ������������ or a

mouse click on the pop-up window selects the window of interest. If another notifi-

cation arrives while the pop-up window is exposed, the notification is displayed on

366
Using the Window System February 2018

the window. If after a time the user has typed nothing, the pop-up window is deex-

posed automatically. The amount of time the pop-up window remains exposed is de-

termined by the variable tv:*notification-pop-down-delay*.

If pop-up notifications are not desired, they can be suppressed by setting the value

of tv:*allow-pop-up-notifications* to nil, with, for example,

(setq tv:*allow-pop-up-notifications* nil)�

11.3.5.4. Progress Indicator Facilities
Facilities in this category of basic output facilities provide a way of communicating

the progress of some operation to your users:

 tv:noting-progress

 tv:note-progress

 tv:dolist-noting-progress

 tv:dotimes-noting-progress

Progress is indicated by the advance of a progress bar in the lower, right corner

of the screen or, alternatively, by a wide bar across the entire width of the screen.

(Which is determined by the setting of the "Progress area" option in the Set

Screen Options command.) Also displayed is a string naming the operation being

noted.

The general-purpose facility is tv:noting-progress, within which the tv:note-

progress function is used. tv:note-progress is the one that decides when and how

much progress has occurred. This is shown in the following example:

(tv:noting-progress ("Working Away By Fifths")

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 1 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 2 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 3 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 4 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 5 5)

 (sleep 1))

367
February 2018 Using the Window System

tv:dolist-noting-progress and tv:dotimes-noting-progress implement the Common

Lisp special forms zl:dolist and zl:dotimes in a noting-progress environment. They

take care of most simple cases.

11.3.6. Input from Windows

The material presented in this section applies to both static and Dynamic Win-

dows.

11.3.6.1. Windows as Input Streams
A window can be used as if it were the keyboard of a computer terminal, and it

can act as an input stream. The flavor tv:stream-mixin implements the messages

of the Genera input stream protocol. The tv:stream-mixin flavor is a component of

the tv:window and dw:dynamic-window flavors.

tv:stream-mixin includes si:interactive-stream, and windows support all the oper-

ations that interactive streams in general do. See the section "Interactive
Streams", page 495. Windows have specialized versions of some input operations

(see the section "Messages for Input from Windows", page 368).

You do input from windows rather than only from the keyboard so that many pro-

grams can share the keyboard without getting in each other’s way. If two process-

es try to read from the keyboard at the same time, they can do it by going

through windows. Characters from the keyboard go only to the selected window,

and not to any of the others; this way, you can control which process you are typ-

ing at, by selecting the window you are interested in.

If a process tries to do input from a window that does not have any characters in

its input buffer, what happens depends on the window’s ��������� ������ ������. It

may be either :normal or :notify. If the deexposed typein action is :normal, and/or

the window is exposed, then the process waits until something appears in the in-

put buffer. If it is :notify and the window is not exposed, the user is notified with

a message such as "Process X wants typein", and the window is "made interesting"
so that ������������ can select it.

Reading characters from a window normally returns an integer that represents a

character in the Symbolics character set, possibly with extra bits that correspond

to the �������, ����, �����, and ����� keys. For information on the format of

such integers and the symbolic names of the bit fields, see the section "The Char-

acter Set" in ���������������������������������������.

Note that reading characters from a window does not echo the characters; it does

not type them out. If you want echoing, you can echo the characters yourself, or

call the higher-level functions such as zl:tyi, zl:read, and zl:readline; these func-

tions accept a window as their stream argument and will echo the characters they

read.

Every window (that has tv:stream-mixin as a component) has an ��� ������ that

holds characters that are typed by the user before any program reads the charac-

ters. When you type a character, it enters this buffer, and stays there until a pro-

gram tries to read characters from this window. There are some messages that

368
Using the Window System February 2018

deal with the I/O buffer, letting you clear it and ask whether there is anything in

it; see the section "Messages for Input from Windows", page 368.

Normally, integers get into the I/O buffer because characters were typed on the

keyboard. However, you can also get any Lisp object into a window’s I/O buffer un-

der program control by sending a :force-kbd-input message to the window. One

common use of this feature is for the mouse process to tell a user process about

activity on the mouse buttons. That is how characters with the %%kbd-mouse bit

can get read from the window. It is possible to put Lisp objects other than inte-

gers into an I/O buffer; by convention, such objects are usually lists whose first el-

ement is a symbol saying what kind of a "message" this object is. (Such lists are

sometimes called �����.) You can also get the mouse to send blips instead of inte-

gers, in order to find out the mouse position at the time of the click. Using the

mouse is explained in the section "Mouse Input" .

You can explicitly manipulate I/O buffers in order to get certain advanced func-

tionality by using the :io-buffer init option and the :io-buffer and :set-io-buffer

messages. For example, you can make several windows use the same I/O buffer;

this is often used to make panes of a paned window all share the same I/O buffer.

You can also put properties on the I/O buffer’s property list; this lets you request

various special features.

The console hardware actually sends codes to Genera whenever a key is pressed or

lifted; thus, Genera knows at all times which keys are pressed and which are not.

You can use the tv:key-state function to ask whether a key is down or up. Also,

you can arrange for reading from a window to read the raw hardware codes exact-

ly as they are sent by putting a non-nil value of the :raw property on the property

list of the I/O buffer; however, the format of the raw codes is complicated and de-

pendent on the hardware implementation. It is not documented here.

The window system intercepts some characters specially. Some are intercepted

when the user process is about to read the character from a window; others are

intercepted as soon as they are typed. In the first category, the io-buffer-output-

function of the I/O buffer defaults to tv:kbd-default-output-function, which inter-

cepts certain characters when they are read. The value of the variable sys:kbd-

intercepted-characters is a list of characters that are intercepted and not re-

turned as input from the window. These characters default to #\abort, #\m-abort,

#\suspend, and #\m-suspend. For more information, see the section "Intercepted
Characters", page 497.

The second category of specially handled characters is those handled �������������

��. See the section "Asynchronous Characters", page 369.

11.3.6.2. Messages for Input from Windows
Windows support all the input operations that interactive streams in general do

(see the section "Messages for Input from Interactive Streams", page 496).

Windows have specialized versions of some of these operations, mainly involved in

reading characters from I/O buffers. These are:

(flavor:method :any-tyi tv:stream-mixin)

369
February 2018 Using the Window System

(flavor:method :any-tyi-no-hang tv:stream-mixin)

(flavor:method :untyi tv:stream-mixin)

(flavor:method :listen tv:stream-mixin)

(flavor:method :clear-input tv:stream-mixin)�

11.3.6.3. SELECT and FUNCTION Keys

These facilities can be used to control the ������ and �������� keys:

tv:add-function-key ��������������������������� &rest��������

Adds ���� to the list of keys that can follow the �������� key.

tv:*function-keys*

An alist, each entry of which describes a subcommand of the �������� key.

tv:add-select-key ���� ������ ���� &optional ��������� t� ��������� &rest �����

�����

Adds ���� to the list of keys that can follow the ������ key.

tv:*select-keys*

An alist, each entry of which describes a subcommand of the ������ key. Obsolete

as of Genera 7.3 Ivory.

sys:set-select-key-activity ������������������ &key�����������

11.3.6.4. Asynchronous Characters
The �������� and ������ keys are always intercepted as soon as they are typed;

they cause the Keyboard process to take special action to handle the command

that the user is giving. You can add your own �������� and ������ commands,

using the functions tv:add-function-key and tv:add-select-key. See the section

"������ and �������� Keys", page 369.

Other characters can also be intercepted as soon as they are typed. A special sys-

tem process called the keyboard process calls a user-defined function as soon as

the key is pressed. The main process of the program is left undisturbed. This func-

tion runs in parallel with the main program and could communicate with it.

Asynchronous character handling is available to any window that includes

tv:stream-mixin. The window has a list that associates keyboard characters with

functions. The default list contains �������, ���������, ���������, and ��������

����. The default actions are the same as those of the corresponding keys without

�� modifiers, except that the window’s process is sent an :interrupt message so

that the actions take place immediately.

The keyboard process checks each character coming in to see if it is defined as an

asynchronous character for the selected window. When it is, the keyboard process

calls the associated function in the context of the keyboard process.

The function that runs as a result of an asynchronous character is running in the

keyboard process. It is called with two arguments, the character and self. It should

be very short and must not do any I/O. An error in one of these functions would

break the keyboard process and the keyboard along with it and you would have to

warm boot. To avoid any possibility of errors, you can have the function create a

370
Using the Window System February 2018

new process with process-run-function and make the new process handle the real

work.

You can set up your own handling of asynchronous characters by using the

:asynchronous-character-p, :handle-asynchronous-character, :add-

asynchronous-character, and :remove-asynchronous-character messages and the

:asynchronous-characters init option for si:interactive-stream. See the section

"Interactive-Stream Operations for Asynchronous Characters", page 497.

11.3.7. TV Fonts

11.3.7.1. Using TV Fonts
In Genera, characters can be typed out in any of a number of different typefaces.

Some text is printed in characters that are small or large, boldface or italic, or in

different styles altogether. Each such typeface is called a ����. A font is conceptu-

ally an array, indexed by character code, of pictures showing how each character

should be drawn on the screen. The Font Editor (FED) is a program that allows

you to create, modify, and extend fonts: See the section "Font Editor" in �������

��������.

A font is represented internally as a Lisp object. Each font has a name. The name

of a font is a symbol, usually in the fonts package, and the symbol is bound to the

font. A typical font name is tr8. In the initial Lisp environment, the symbol

fonts:tr8 is bound to a font object whose printed representation is something like:

#�

The interface to fonts is provided by ��������� ������ (for more information: See the

section "Character Styles" in ��������� ������ ���� �������� ��������.) You can

(indirectly) control which font is used when output is done to a window by specify-

ing the default character style for that window: See the init option (flavor:method

:default-character-style tv:sheet) in ���� ��������� ����������. Additional control

over character styles is provided by several output macros: See the section "Con-

trolling Character Style", page 71.

The character style resulting from merging the output character style against a

window’s default character style maps to a particular font. This is true of both

static and Dynamic Windows. This font is the ������� ���� for the window; to ac-

cess it you can use the :current-font message. To discover what font corresponds

to a particular character style, use the function si:backtranslate-font.

When you create a font of your own, there are basically two ways you can make

use of it: 1) for defining a new character style; and 2) as a collection of glyphs for

graphics output. To define a new character style and associate your font with it,

use the function si:define-character-style-families: See the section "Mapping a

Character Style to a Font" in ��������� ������ ���� �������� ��������. To draw

a glyph included in a font array, use graphics:draw-glyph: See the function

graphics:draw-glyph in ���� ��������� ����������. One additional facility provided

for interfacing with TV fonts is the :baseline method of tv:sheet.

371
February 2018 Using the Window System

11.3.7.2. Standard TV Fonts
You can use Show Font ���� in the Lisp Listener or the List Fonts (���) command

in Zmacs to get a list of all the fonts that are currently loaded into the Lisp envi-

ronment. The fonts package contains the names of all fonts. Here is a list of some

of the useful fonts:

fonts:cptfont This is the default font, used for almost everything.

fonts:jess14 This is the default font in menus. It is a variable-

width rounded font, slightly larger and more attractive

than medfnt.

fonts:cptfonti This is a fixed-width italic font of the same width and

shape as fonts:cptfont, the default screen font. It is

most useful for italicizing running text along with

fonts:cptfont.

fonts:cptfontcb This is a fixed-width bold font of the same width and

shape as fonts:cptfont, the default screen font.

fonts:medfnt This is a fixed-width font with characters somewhat

larger than those of cptfont.

fonts:medfnb This is a bold version of medfnt. When you use Split

Screen, for example, the [Do It] and [Abort] items are

in this font.

fonts:hl12i This is a variable-width italic font. It is useful for

italic items in menus; Zmail uses it for this in several

menus.

fonts:tr10i This is a very small italic font. It is the one used by

the Inspector to say "����������" and "����������".

fonts:hl10 This is a very small font used for nonselected items in

Choose Variable Values windows.

fonts:hl10b This is a bold version of hl10, used for selected items

in Choose Variable Values windows.

11.3.7.3. Attributes of TV Fonts
Fonts, and characters in fonts, have several interesting attributes.

Character Height Font Attribute

One attribute of each font is its ��������� ������. This is a nonnegative integer

used to figure out how tall to make the lines in a window. Each window has a cer-

tain ���� ������. The line height is computed by examining each font in the font

map, and finding the one with the largest character height. This largest character

height is added to the vertical spacing (in pixels) between the text lines (���) spec-

ified for the window, and the sum is the line height of the window. The line

height, therefore, is recomputed every time the font map is changed or the ��� is

372
Using the Window System February 2018

set. This ensures that any line has enough room to display the largest character of

the largest font and still leave the specified vertical spacing between lines. One ef-

fect of this is that if you have a window that has two fonts, one large and one

small, and you do output in only the small font, the lines are still spaced far

enough apart to accommodate characters from the large font. This is because the

window system cannot predict when you might, in the middle of a line, suddenly

switch to the large font.

Baseline Font Attribute�

Another attribute of a font is its ��������. The baseline is a nonnegative integer

that is the number of raster lines between the top of each character and the base

of the character. (The base is usually the lowest point in the character, except for

letters that descend below the baseline, such as lowercase p and g.) This number

is stored so that when you are using several different fonts side-by-side, they are

aligned at their bases rather than at their tops or bottoms. So when you output a

character at a certain cursor position, the window system first examines the base-

line of the current font, then draws the character in a position adjusted vertically

to make the bases of the characters all line up.

Character Width Font Attribute

The ��������� ����� can be an attribute either of the font as a whole, or of each

character separately. If there is a character width for the whole font, it is as if

each character had that character width separately. The character width is the

amount by which the cursor position should be moved to the right when a charac-

ter is output on the window. This can be different for different characters if the

font is a variable-width font, in which a W might be much wider than an i. Note

that the character width does not necessarily have anything to do with the actual

width of the bits of the character (although it usually does); it is merely defined to

be the amount by which the cursor should be moved.

Left Kern Font Attribute�

The ���� ���� is an attribute of each character separately . Usually it is zero, but it

can also be a positive or negative integer. When the window system draws a char-

acter at a given cursor position, and the left kern is nonzero, the character is

drawn to the left of the cursor position by the amount of the left kern, instead of

being drawn exactly at the cursor position. In other words, the cursor position is

adjusted to the left by the amount of the left kern of a character when that char-

acter is drawn, but only temporarily; the left kern only affects where the single

character is drawn and does not have any cumulative effect on the cursor position.

Fixed-width Font Attribute�

A font that does not have separate character widths for each character and does

not have any nonzero left kerns is called a ����������� font. The characters are all

the same width and so they line up in columns, as in typewritten text. Other fonts

are called �������������� because different characters have different widths and

373
February 2018 Using the Window System

things do not line up in columns. Fixed-width fonts are typically used for pro-

grams, where columnar indentation is used, while variable-width fonts are typically

used for English text, because they tend to be easier to read and to take less space

on the screen.

Blinker Width and Blinker Height Font Attributes

The ������� ����� and ������� ������ are two nonnegative integers that tell the

window system an attractive width and height to make a rectangular blinker for

characters in this font. These attributes are completely independent of all other at-

tributes and are only used for making blinkers. Using a fixed width blinker for a

variable-width font causes problems; the editor actually readjusts its blinker width

as a function of what character it is on top of, making a wide blinker for wide

characters and a narrow blinker for narrow characters. The easiest thing to do is

to use the blinker width as the width of the blinker. This works well with a fixed-

width font.

Chars-exist-table Font Attribute

The ����������������� is nil if all characters exist in a font, or an sys:art-boolean

array. This table is not used by the character-drawing software; it is for informa-

tional purposes. Characters that do not exist have pictures with no bits "on" in

them, just like the Space character. Most fonts implement most of the printing

characters in the character set, but some are missing some characters.

11.3.7.4. Format of TV Fonts
The array leader of a font is a structure defined by zl:defstruct. Here are the

names of the accessors for the elements of the array leader of a font:

zl:font-name

zl:font-char-height

zl:font-char-width

zl:font-baseline

zl:font-char-width-table

zl:font-left-kern-table

zl:font-blinker-width

zl:font-blinker-height

zl:font-chars-exist-table

zl:font-raster-height

zl:font-raster-width

zl:font-indexing-table

11.3.8. Blinkers

Each static or Dynamic Window can have any number of ��������. The kind of

blinker that you see most often is a blinking rectangle the same size as the char-

acters you are typing; this blinker shows you the cursor position of the window. In

fact, a window can have any number of blinkers. They need not follow the cursor

(some do and some don’t); the ones that do are called ��������� blinkers; the oth-

ers have their position set by explicit messages.

374
Using the Window System February 2018

Also, blinkers need not actually blink; for example, the mouse arrow does not

blink. A blinker’s ���������� may be any of the following:

:blink The blinker should blink on and off periodically. The rate at which

it blinks is called the �����������, and is an integer giving the num-

ber of 60ths of a second between when the blinker turns on and

when it turns off.

:on �� t The blinker should be visible but not blink; it should just stay on.

:off �� nil The blinker should be invisible.�

Usually only the blinkers of the selected window actually blink; this is to show you

where your typein will go if you type on the keyboard. The way this behavior is

obtained is that selection and deselection of a window have an effect on the visibil-

ity of the window’s blinkers.

When the window is selected, any of its blinkers whose visibility is :on or :off has

its visibility set to :blink. Blinkers whose visibility is t or nil are unaffected (that

is the difference between t and :on, and between nil and :off); blinkers whose visi-

bility is :blink continue to blink.

Each blinker has a ���������� ����������, which should be one of the symbols above;

when a window is deselected, the visibilities of all blinkers that are blinking

(whose visibility is currently :blink) are set to the deselected visibility.

Most often, blinkers have visibility :on when their window is not selected, and visi-

bility :blink when their window is selected. In this case, the deselected visibility is

:on.

Blinkers are used to add visible ornaments to a window; a blinker is visible to the

user, but while programs are examining and altering the contents of a window the

blinkers all go away. The way this works is that before characters are output or

graphics are drawn, the blinker gets turned off; it comes back later. This is called

������� the blinker. You can see this happening with the mouse blinker when you

type at Genera. To make this work, blinkers are always drawn using exclusive

ORing. See the variable tv:alu-xor in �������������������������.

Every blinker is associated with a particular window. A blinker cannot leave the

area described by its window; its position is expressed relative to the window.

When characters are output or graphics are drawn on a window, only the blinkers

of that window and its ancestors are opened (since blinkers of other windows can-

not possibly be occupying screen space that might overlap this output or graphics).

The mouse blinker is free to move all over whatever screen it is on; it is therefore

associated with the screen itself, and so must be opened whenever anything is

drawn on any window of the screen.

The window system provides a few kinds of blinkers. Blinkers are implemented as

instances of flavors, too, and have their own set of messages that they understand,

which is distinct from the set that windows understand.

Positions of blinkers are always expressed in pixels, relative to the inside of the

window (that is, the part of the window that doesn’t include the margins).

375
February 2018 Using the Window System

11.3.8.1. General Blinker Operations
These are the general blinker operations:

tv:make-blinker

(flavor:method :x-pos tv:blinker)

(flavor:method :y-pos tv:blinker)

(flavor:method :read-cursorpos tv:blinker)

(flavor:method :set-cursorpos tv:blinker)

(flavor:method :follow-p tv:blinker)

(flavor:method :set-follow-p tv:blinker)

(flavor:method :visibility tv:blinker)

(flavor:method :set-visibility tv:blinker)

(flavor:method :deselected-visibility tv:blinker)

(flavor:method :deselected-visibility tv:blinker)

(flavor:method :set-deselected-visibility tv:blinker)

(flavor:method :half-period tv:blinker)

(flavor:method :half-period tv:blinker)

(flavor:method :set-half-period tv:blinker)

(flavor:method :set-sheet tv:blinker)

tv:sheet-following-blinker

tv:turn-off-sheet-blinkers�

11.3.8.2. Specialized Blinkers
These are the specialized blinkers:

tv:rectangular-blinker

(flavor:method :width tv:rectangular-blinker)

(flavor:method :height tv:rectangular-blinker)

(flavor:method :set-size tv:rectangular-blinker)

tv:hollow-rectangular-blinker

tv:box-blinker

tv:ibeam-blinker

(flavor:method :height tv:ibeam-blinker)

tv:character-blinker

(flavor:method :font tv:character-blinker)

(flavor:method :char tv:character-blinker)

(flavor:method :set-character tv:character-blinker)�

11.3.9. Mouse Input

11.3.9.1. Introduction
The "Mouse Input" section describes the mouse process and mouse facilities in the

pre-Genera 7.0 context of static windows. In this context, the mouse process has

broader responsibilities than it does in Dynamic Windows, and many applications

have included considerable amounts of code running in the mouse process in addi-

tion to that running in the user process. Coordinating the two processes is some-

times tricky, and the facilities described for "grabbing the mouse", "usurping the

376
Using the Window System February 2018

mouse", and so on are helpful in providing more control in the user process. (See

the sections "Grabbing the Mouse" and "Usurping the Mouse".)

In Dynamic Windows, the mouse process has fewer duties, being responsible pri-

marily for communicating to the user process where the mouse cursor is and

whether any actions involving the mouse have occurred. With Dynamic Windows

and the presentation-type system, mouse sensitivity of displayed items is a built-in

feature. Facilities in Dynamic Windows forming the interface to the mouse process

are dw:tracking-mouse and the mouse handler facilities (see the section "Pro-

gramming the Mouse: Writing Mouse Handlers", page 221).

11.3.9.2. Handling the Mouse
Along with the keyboard, the mouse can be used by any program as an input de-

vice. The functions, variables, and flavors described in the sections under "Mouse

Input" allow you to use the mouse to do some simple things. To get advanced

mouse behavior in your own programs, such as the way the editor gets the mouse

to put a box around the character being pointed at, you must extend the window

system by writing your own methods, which is beyond the scope of this document.

Of course, you can invoke the built-in choice facilities, such as menus and multi-

ple-choice windows. These high-level facilities are described elsewhere. See the sec-

tion "Window System Choice Facilities", page 419.

The window system includes a process called Mouse that normally ������ the mouse.

To track the mouse means to examine the hardware mouse interface, noting how

the mouse is moving, and adjust Lisp variables and the mouse blinker to follow

the position being indicated by the user. The mouse process also keeps track of

which window ���� the mouse at any time. For example, when the mouse enters

an editor window, the editor window becomes the owner. To indicate this, the

mouse process changes the blinker from a northwest arrow to a northeast arrow.

In general, the window that owns the mouse is the window that is under the

mouse; but since the windows are arranged in a hierarchy, generally a window, its

superior, its superior’s superior, and so on, are all under the mouse at the same

time. So the window that owns the mouse is really the lowest window in the hier-

archy (farthest in the hierarchy from the screen) that is visible (it and all its an-

cestors are exposed). If you move the window to part of the screen occupied by a

partially visible window, one of its ancestors (often the screen itself) becomes the

owner. The screen handles single-clicking on the Left button by selecting the win-

dow under it, allowing you to select partially visible windows with the mouse.

In general, the mouse process decides how to handle the mouse based on the fla-

vor of the window that owns the mouse. Some flavors handle the mouse them-

selves, running in the mouse process, in order to be able to put boxes around

things, usually to indicate what would happen if you were to click a button. (This

has changed in Dynamic Windows; see the section "Introduction to Mouse Input",
page 375.)

As noted, to do this you must extend the window system, creating your own meth-

ods to be run in the mouse process; that is beyond the scope of this document.

The flavor of the window owning the mouse is also what usually controls the ef-

fect of clicking the mouse buttons. There are three ways for you to use the mouse

without writing your own methods.

377
February 2018 Using the Window System

• You can mix in flavors to your window to tell the mouse process to let you know

when the mouse is clicked.

• You can watch the mouse moving and watch the buttons, letting the mouse pro-

cess do the tracking.

• You can turn off the mouse process and do your own tracking.�

You must choose one of these three ways to use the mouse; you cannot mix them.

Note that you can also use various high-level facilities to get certain specific

mouse behavior: for example, you can create windows with mouse-sensitive items

(like the List Buffers (���) command in the Editor), menus, and multiple-choice

windows.

Several of the following facilities are methods for tv:essential-mouse. This is a

component flavor of both tv:window and dw:dynamic-window. These are the sub-

strate facilities for handling the mouse:

tv:mouse-sheet

(flavor:method :handle-mouse tv:essential-mouse)

(flavor:method :mouse-moves tv:essential-mouse)

(flavor:method :set-mouse-position tv:essential-mouse)

(flavor:method :who-line-documentation-string tv:sheet)

tv:mouse-warp

tv:mouse-set-blinker-cursorpos

sys:mouse-wakeup

tv:window-under-mouse

11.3.9.3. Mouse Blips
Mouse blips are lists inserted into the input buffer of a window when the mouse is

clicked within that window. (Do not confuse these blips with presentation blips

generated by translating mouse handlers when the mouse is clicked on a presenta-

tion in a Dynamic Window: see the section "Presentation Input Blip Facilities",
page 254.) The list contains five elements:

1. The keyword :mouse-button.

2. A mouse character corresponding to which button (Left, Middle, Right) was

clicked.

3. The window that received the blip.

4. The x-coordinate of the mouse cursor when the mouse was clicked.

5. The y-coordinate of the mouse cursor when the mouse was clicked.�

Blips representing mouse clicks are sent by the :mouse-click method of

tv:essential-mouse, a component of tv:minimum-window. You can receive mouse

378
Using the Window System February 2018

blips by sending the window a :list-tyi or :any-tyi message. (For an example, see

the section "Mouse Characters", page 378.)

:mouse-click� ������������������of�tv:essential-mouse

Called by the :mouse-buttons method of tv:essential-mouse, which is

called by the default mouse handler when mouse buttons are pushed. ����

���� is a structure representing the buttons pushed; use reader macros like

#\Mouse-R to handle these structures in your program. (See the section

"Mouse Characters", page 378.) � and � represent the position of the mouse

at the time of the click, in the window’s outside coordinates.

If the click is #\sh-Mouse-R, the :mouse-buttons method pops up a system

menu. Otherwise, if the window has an I/O buffer, :mouse-click sends it a

blip of the form (:mouse-button ������� ������ � �). In addition, if the

click is #\Mouse-L, the window is selected.

:mouse-click methods are combined using :or combination, so the :mouse-

click method of tv:essential-mouse runs only if no earlier method handles

the message (and all earlier methods return nil). This allows a method to

intercept only certain clicks and return non-nil, and to pass on other clicks

and return nil.

11.3.9.4. Mouse Characters
Mouse characters are implemented as structures, not character objects, but the

printed representation is similar. #\Mouse-L, #\Mouse-M, and #\Mouse-R corre-

spond to Left, Middle and Right clicks. Mouse characters can be qualified by shift

keys. For example, #\c-Mouse-M indicates a Middle click with the ������� key

pressed.

Mouse characters prefixed with sh-, such as #\sh-Mouse-R, can be generated by

the user in two ways.

• Pressing the ����� key while clicking the Right mouse button.

• Clicking the Right mouse button twice in rapid succession. �

(The latter interpretation is possible only if the variable tv:mouse-double-click-

time has not been set to nil.)

Because mouse characters are not implemented as other characters, they require

their own set of manipulation functions. For example, the function char-mouse-

equal compares mouse characters and the predicate mouse-char-p determines

whether an object is a mouse character. char-mouse-equal checks that its argu-

ments are really mouse characters and signals an error otherwise. You can also

use eql, which is slightly faster, to compare mouse characters, when you do not re-

quire the argument checking. char-mouse-equal and mouse-char-p are commonly

used when handling mouse blips, as shown in the following example:

379
February 2018 Using the Window System

(defun get-mouse-char ()

 (let (blip mouse-char)

 (setq blip (send *graphics-window* :list-tyi))

 (setq mouse-char (second blip))

 (if (mouse-char-p mouse-char)

(cond ((char-mouse-equal mouse-char #\mouse-l)

 (left-click-function))

 ((char-mouse-equal mouse-char #\mouse-r)

 (right-click-function))

 (t (send *graphics-window* :beep)))

(send *graphics-window* :beep))))

These are the mouse character functions:

char-mouse-equal

mouse-char-p

char-mouse-button

char-mouse-bits

make-mouse-char

11.3.9.5. Grabbing the Mouse
When the mouse is grabbed, the mouse process is told that no window owns the

mouse, and it changes the mouse blinker back to the default (a northeast arrow).

The mouse process continues to track the mouse, and your process can now watch

the position and the buttons by using the variables and functions described below.

(The corresponding facility for Dynamic Windows is dw:tracking-mouse: see the

function dw:tracking-mouse in �������������������������.)

These are the facilities to use with the mouse grabbed:

tv:with-mouse-grabbed

tv:with-mouse-grabbed-on-sheet

tv:with-mouse-and-buttons-grabbed

tv:with-mouse-and-buttons-grabbed-on-sheet

sys:mouse-x

sys:mouse-y

tv:mouse-last-buttons

tv:mouse-wait

tv:wait-for-mouse-button-down

tv:wait-for-mouse-button-up

tv:mouse-button-encode

tv:who-line-mouse-grabbed-documentation

11.3.9.6. Usurping the Mouse
You can tell the mouse process not to do anything, and track the mouse in your

own process. This is called �������� the mouse. The mouse blinker disappears, so

if you want any visual indication of the mouse to appear, you must do it yourself.

380
Using the Window System February 2018

Here are the facilities to use:

tv:with-mouse-usurped

tv:mouse-input

sys:mouse-buttons

11.3.9.7. Controlling the Mouse Outside a Window
These are the facilities for controlling the mouse outside a window:

tv:hysteretic-window-mixin

(flavor:method :hysteresis tv:hysteretic-window-mixin)

(flavor:method :hysteresis tv:hysteretic-window-mixin)

(flavor:method :set-hysteresis tv:hysteretic-window-mixin)

11.3.9.8. Scaling Mouse Motion
The following two variables apply to Dynamic Windows as well as static windows.

tv:mouse-x-scale-array

tv:mouse-y-scale-array�

11.3.10. The Keyboard

Another way of using the keyboard, different from reading a stream of input char-

acters from a window, is to treat it as a "random access" device and look at the

instantaneous state of particular keys.

One application for checking the state of keys is in user interfaces where the ac-

tion of mouse clicks is modified by the shift keys on the keyboard; you can have

one hand on the mouse and the other on the keyboard. You can use the variables

tv:mouse-double-click-time and tv:*mouse-incrementing-keystates* to augment

or replace double clicks with shifted clicks.

Mouse characters can be modified with the modifier keys �������, ����, �����,

and �����, just as keyboard characters can. Which of these keys modify mouse

characters depends on the value of the variable tv:*mouse-modifying-keystates*.

The editor considers each modified mouse click to be a separate command. You can

bind commands to particular modified mouse clicks. You can also use Install Mouse

Macro (���) with modified mouse clicks to increase the number of mouse macros

available.

You can use login-forms in an init file to set the variables tv:mouse-double-click-

time, tv:*mouse-incrementing-keystates*, and tv:*mouse-modifying-keystates*

and customize the behavior of the mouse.

381
February 2018 Using the Window System

tv:key-state� ����������������

Returns t if the keyboard key named �������� is currently pressed, nil if it

is not.

�������� may be the symbolic name of a modifier key, from the table be-

low, or a character object. Modifier keys that come in pairs have three sym-

bolic names; one for the left-hand key, one for the right-hand key, and one

for both, which is considered to be pressed if either member of the pair is.

The modifier key names are:

:shift :left-shift :right-shift

:symbol :left-symbol :right-symbol

:control :left-control :right-control

:meta :left-meta :right-meta

:super :left-super :right-super

:hyper :left-hyper :right-hyper

:caps-lock :repeat :mode-lock

tv:mouse-double-click-time� ��������

The maximum period of time (in microseconds) between mouse clicks for

which the clicks are interpreted as a double click instead of two single

clicks. Default: 200000 (decimal). If you set this to nil, disabling double

clicking entirely, mouse response time improves slightly in static windows

and appreciably in Dynamic Windows. This is the recommended setting. �

tv:*mouse-incrementing-keystates*� ��������

A list of names of keys, acceptable to tv:key-state. If one or more of these

keys are pressed, single mouse clicks are interpreted as double clicks. De-

fault: (:shift). �

tv:*mouse-modifying-keystates*� ��������

A list of names of keys acceptable to tv:key-state. If one or more of these

keys are pressed, sets the corresponding modifier bits in the mouse charac-

ter. Default: (:control :meta :super :hyper). If a key appears as an ele-

ment of both this list and the list that is the value of tv:*mouse-

incrementing-keystates*, the modifier bit is set and the click is interpret-

ed as a double click. �

11.3.11. Window Sizes and Positions

The messages and init options in this section are used to examine and set the

sizes and positions of windows, both static and dynamic. There are many different

messages, which lets you express things in different forms that are convenient in

varying applications. Usually, sizes are in units of pixels. However, sometimes we

382
Using the Window System February 2018

refer to widths in units of characters and heights in units of lines. The number of

horizontal pixels in one character is called the character-width, and the number of

vertical pixels in one line is called the line-height.

See the section "Character Output to Windows", page 356.

A window has two parts: the inside and the margins. The margins include borders,

labels, and other things; the inside is used for drawing characters and graphics.

Some of the messages below deal with the outside size (including the margins) and

some deal with the inside size.

Since a window’s size and position are usually established when the window is

created, we will begin by discussing the init options that let you specify the size

and position of a new window. To make things as convenient as possible, there are

many ways to express what you want. The idea is that you specify various things,

and the window figures out whatever you leave unspecified. For example, you can

specify the right-hand edge and the width, and the position of the left-hand edge

will automatically be figured out. If you underspecify some parameters, defaults

are used. Each edge defaults to being the same as the corresponding inside edge

of the superior window; so, for example, if you specify the position of the left edge,

but don’t specify the width or the position of the right edge, then the right edge

will line up with the inside right edge of the superior. If you specify the width but

neither edge position, the left edge will line up with the inside left edge of the

superior; the same goes for the height and the top edge.

In order for a window to be exposed, its position and size must be such that it fits

within the ������ of the superior window. If a window is not exposed, then there

are no constraints on its position and size; it may overlap its superior’s margins,

or even be outside the superior window altogether.

All positions are specified in pixels and are relative to the ������� of the superior

window.

11.3.11.1. Initializing Window Size and Position
The following options set various position and size parameters. The size and posi-

tion of the window are computed from the parameters provided by these and other

options, and the set of defaults described above. Note that all edge parameters are

relative to the ������� of the superior window.

(flavor:method :left tv:sheet)

(flavor:method :x tv:sheet)

(flavor:method :top tv:sheet)

(flavor:method :y tv:sheet)

(flavor:method :position tv:sheet)

(flavor:method :right tv:sheet)

(flavor:method :bottom tv:sheet)

(flavor:method :width tv:sheet)

(flavor:method :height tv:sheet)

(flavor:method :size tv:sheet)

(flavor:method :inside-width tv:sheet)

(flavor:method :inside-height tv:sheet)

383
February 2018 Using the Window System

(flavor:method :inside-size tv:sheet)

(flavor:method :edges tv:sheet)

(flavor:method :character-width tv:sheet)

(flavor:method :character-height tv:sheet)

(flavor:method :integral-p tv:sheet)

(flavor:method :edges-from tv:essential-window)

(flavor:method :minimum-width tv:essential-window)

(flavor:method :minimum-height tv:essential-window)

tv:set-default-window-size�

11.3.11.2. Messages for Window Size and Position
Many messages that change the window’s size or position take an argument called

������. The reason that this argument exists is that certain new sizes or positions

are not valid. One reason that a size may not be valid is that it may be so small

that there is no room for the margins; for example, if the new width is smaller

than the sum of the sizes of the left and right margins, then the new width is not

valid. Another reason a new setting of the edges may be invalid is that if the win-

dow is exposed, it is not valid to change its edges in such a way that it is not en-

closed inside its superior. In all of the messages that take the ������ argument, ���

���� may be either nil or :verify. If it is nil, that means that you really want to

set the edges, and if the new edges are not valid, an error should be signalled. If

it is :verify, that means that you only want to check whether the new edges are

valid or not, and you don’t really want to change the edges. If the edges are valid,

the message will return t; otherwise it will return two values: nil and a string ex-

plaining what is wrong with the edges. (Note that it is valid to set the edges of a

deexposed inferior window in such a way that the inferior is not enclosed inside

the superior; you just can’t expose it until the situation is remedied. This makes it

more convenient to change the edges of a window and all of its inferiors sequen-

tially; you don’t have to be careful about what order you do it in.)

These messages are used to examine or change the size or position of a window:

(flavor:method :change-of-size-or-margins tv:sheet)

(flavor:method :size tv:sheet)

(flavor:method :set-size tv:essential-set-edges)

(flavor:method :inside-size tv:sheet)

(flavor:method :set-inside-size tv:essential-set-edges)

(flavor:method :size-in-characters tv:sheet)

(flavor:method :set-size-in-characters tv:sheet)

(flavor:method :position tv:sheet)

(flavor:method :set-position tv:essential-set-edges)

(flavor:method :edges tv:sheet)

(flavor:method :set-edges tv:essential-set-edges)

(flavor:method :margins tv:sheet)

(flavor:method :left-margin-size tv:sheet)

(flavor:method :top-margin-size tv:sheet)

(flavor:method :right-margin-size tv:sheet)

(flavor:method :bottom-margin-size tv:sheet)

384
Using the Window System February 2018

(flavor:method :inside-edges tv:sheet)

(flavor:method :center-around tv:essential-set-edges)

(flavor:method :expose-near tv:essential-set-edges)�

11.3.12. Window Margins, Borders, and Labels

There is a distinction between the inside and outside parts of the window. The

part of the window that is not the inside part is called the �������. There are

four margins, one for each edge. The margins sometimes contain a ������, which

is a rectangular box drawn around the outside of the window. Borders help the

user see what part of the screen is occupied by which window. The margins also

sometimes contain a �����, which is a text string. Labels help the user see what a

window is for.

A label can be inside the borders or outside the borders (usually it is inside). In

general, there can be lots of things in the margins; each one is called a ������

����. Borders and labels are two kinds of margin items. In any flavor of window,

one of the margin items is the innermost; it is right next to the inside part of the

window. Each successive margin item is outside the previous one; the last one is

just inside the edges of the window. Each margin item is created by a flavor’s be-

ing mixed in. You can control which margin items your window has by which fla-

vors you mix in, and you can control their order by the order in which you mix in

the flavors. Margin item flavors closer to the front of the component flavor list are

further outside in the margins. The tv:window flavor has as components

tv:borders-mixin and tv:label-mixin, in that order, and so the label is inside the

border. You can ask for the size of the margins with the :margins message.

Here is a list of the margin facilities that you can mix in. With few exceptions, all

of these facilities are intended for static windows, not dynamic ones. For informa-

tion on equivalent facilities for use with Dynamic Windows: See the section "Win-

dow Substrate Facilities", page 415. More detailed information is available in the

reference documentation for dw:dynamic-window: See the flavor dw:dynamic-

window in �������������������������.

tv:margin-space-mixin

(flavor:method :margin-space tv:margin-space-mixin)

(flavor:method :margin-space tv:margin-space-mixin)

(flavor:method :set-margin-space tv:margin-space-mixin)�

11.3.12.1. Window Borders
Here is a list of facilities for creating window borders.

tv:borders-mixin

(flavor:method :borders tv:borders-mixin)

(flavor:method :set-borders tv:borders-mixin)

(flavor:method :border-margin-width tv:borders-mixin)

(flavor:method :border-margin-width tv:borders-mixin)

(flavor:method :set-border-margin-width tv:borders-mixin)�

385
February 2018 Using the Window System

11.3.12.2. Window Labels
Of the following facilities, only the :name and :label init options and the :name

method apply to Dynamic Windows; the rest are intended for static windows. For

information on equivalent facilities intended for use with Dynamic Windows: See

the section "Window Substrate Facilities", page 415.

tv:label-mixin

(flavor:method :name tv:sheet)

(flavor:method :name tv:sheet)

(flavor:method :label-size tv:label-mixin)

(flavor:method :set-label tv:label-mixin)

tv:top-box-label-mixin

tv:changeable-name-mixin

(flavor:method :set-name tv:changeable-name-mixin)

tv:delayed-redisplay-label-mixin

(flavor:method :delayed-set-label tv:delayed-redisplay-label-mixin)

(flavor:method :update-label tv:delayed-redisplay-label-mixin)

11.3.13. Text Scroll Windows

11.3.13.1. Concepts
A ���� ������ ������ maintains and displays an ordered list of Lisp objects, one on

each line. The caller inserts objects into or deletes objects from the list by sending

messages, and the window dynamically redisplays to show the changes. If there are

more items in the list than lines in the window, the text scroll window displays

some portion of the items. The portion that is shown is controlled by ��������� the

window. The caller scrolls the window by sending messages, and the user scrolls it

by using the mouse scroll bar.

11.3.13.2. Text Scroll Window Flavors
tv:text-scroll-window is the most basic text scroll window mixin. It simply displays

the items and allows you to scroll the window using the mouse against the left

edge.

tv:function-text-scroll-window lets you provide a function to print an item, replac-

ing prin1, to give you finer control over how each item is displayed.

tv:mouse-sensitive-text-scroll-window makes the items displayed on the window

sensitive to mouse clicks.

tv:margin-scrolling-with-flashy-scrolling-mixin provides the ���� �����/���� ���

��� facility.

Basic Use of Text Scroll Windows

You can use any of the usual options to tv:make-window to control such parame-

ters as the size and shape of the window. When the window is first created, its

item list is empty and it displays as an empty window. Here is a list of other facil-

ities that you can use for scrolling windows.

386
Using the Window System February 2018

tv:text-scroll-window

(flavor:method :insert-item tv:text-scroll-window)

(flavor:method :append-item tv:text-scroll-window)

(flavor:method :delete-item tv:text-scroll-window)

(flavor:method :replace-item tv:text-scroll-window)

(flavor:method :set-items tv:text-scroll-window)

(flavor:method :items tv:text-scroll-window)

(flavor:method :number-of-items tv:text-scroll-window)

(flavor:method :top-item tv:text-scroll-window)

(flavor:method :last-item tv:text-scroll-window)

(flavor:method :put-item-in-window tv:text-scroll-window)

(flavor:method :put-last-item-in-window tv:text-scroll-window)

(flavor:method :item-value tv:text-scroll-window)

(flavor:method :scroll-to tv:basic-scroll-bar)

Example of a Text Scroll Window

This example creates a small text scroll window in the upper left corner of

the screen and uses most of the text scroll window methods. It

then leaves the window on the screen so that you can also scroll the window using

the mouse. Reselect the original window to deexpose it.

(defflavor test-window ()

 (tv:text-scroll-window tv:window)

)

(defvar *test-window*

(tv:make-window ’test-window

:edges ’(0 0 400 100)

387
February 2018 Using the Window System

:expose-p nil))

(defun test-basic-scroll-window ()

 ;; Initialize window

 (send *test-window* :set-items 0) ; Clear the items

 (send *test-window* :expose)

 (send *test-window* :scroll-to 0 :absolute) ; Scroll to the top

 ;; Demonstrate appending of items to the end of the list

 (loop for i from 0 to 10

do

 (send *test-window* :append-item (list ’appended i))

 (process-sleep 60 (format nil "appending ~d" i)))

 ;; Demonstrate absolute scrolling

 (loop for i from 1 to 10 by 2

do

 (send *test-window* :scroll-to i :absolute)

 (process-sleep 60 (format nil "scrolled to item ~d" i)))

 ;; Scroll to a arbitrary point in the middle of the item list

 (send *test-window* :scroll-to 3 :absolute)

 ;; Demonstrate insertion of items

 (loop for i from 1 to 10

for j from 10 by -1

do

 (send *test-window* :insert-item j (list ’inserted i))

 (process-sleep 60 (format nil "inserting ~d at ~d" i j)))

388
Using the Window System February 2018

;; Demonstrate replacement of items

 (loop for i from 1

for j from 1 by 3

until (> j (send *test-window* :number-of-items))

do

 (send *test-window* :replace-item j (list ’replaced i))

 (process-sleep 60 (format nil "replacing ~d at ~d" i j)))

 ;; Scroll to bottom of item list

 (send *test-window* :put-last-item-in-window)

 (process-sleep 60 "put last item in window")

 ;; Demonstrate relative scrolling

 (loop until (zerop (send *test-window* :top-item))

do

 ;; Scroll back two items

 (send *test-window* :scroll-to -2 :relative)

 (process-sleep 60 "scrolled back 2"))

 ;; Demonstrate deletion of items

 (loop until (< (send *test-window* :number-of-items) 10)

 do

 (send *test-window* :delete-item 0)

 (process-sleep 60 "deleting the first item")))�

Formatting Text Scroll Window Items

The simple tv:text-scroll-window calls prin1 on each item to display it on a line

of the screen. tv:function-text-scroll-window lets you provide a function of your

own to replace prin1.

When the window displays a line, the function is called with four arguments:

• The item to be printed.

• An object associated with the window. See the method (flavor:method :set-

print-function-arg tv:function-text-scroll-window) in �������������������������.

• The window itself.

• The number of the item in the window’s item list.�

When the function is called, the window’s cursor is positioned to the beginning of

the appropriate line on the window, so you can just send stream output messages

to the window (the third argument). Do ��� output the new-line character to the

window.

Here is a list of facilities that you can use to format text scroll window items.

tv:function-text-scroll-window

389
February 2018 Using the Window System

(flavor:method :set-print-function tv:function-text-scroll-window)

(flavor:method :print-function tv:function-text-scroll-window)

(flavor:method :set-print-function-arg tv:function-text-scroll-window)

(flavor:method :print-function-arg tv:function-text-scroll-window)

Example of Formatting Text Scroll Window Items

Change the previous example (see the section "Example of a Text Scroll Window", page 386.) as follo
ws:

(defflavor test-window ()

 (tv:function-text-scroll-window tv:window)

)

.

.

.

(defun test-basic-scroll-window ()

 (send *test-window* :set-print-function

#’(lambda (item object window number)

 (format window "~:r item which was ~a."

 (second item)

 (first item))))

 (send *test-window* :set-items 0)

.

.

.

Mouse-Sensitive Items in Text Scroll Windows

The flavors tv:mouse-sensitive-text-scroll-window and tv:mouse-sensitive-text-

scroll-window-without-click allow you to create ��������������� �����; that is, re-

gions of each line can be made sensitive to mouse clicks.

Note that the word "item" is being used in two ways. One "item" of the item list

is displayed on every line, but each line might have many "mouse-sensitive items"
on it.

When the mouse is clicked, a ���� is forced into the window’s input buffer. The el-

ements of the blip are:

• The type of the mouse-sensitive-item.

• The "item" which the "mouse-sensitive item" was in.

390
Using the Window System February 2018

• The window itself.

• The mouse click character. See the section "The Character Set" in ���������

�����������������������������.

Here is a list of facilities to use for creating mouse-sensitive items in text scroll

windows.

tv:mouse-sensitive-text-scroll-window

tv:mouse-sensitive-text-scroll-window-without-click

:print-item

(flavor:method :item tv:mouse-sensitive-text-scroll-window-without-click)

(flavor:method :mouse-sensitive-item tv:mouse-sensitive-text-scroll-window-without-click)

tv:sensitive-item-types

tv:displayed-item-item

tv:displayed-item-type

Example of Mouse-Sensitive Items in Text Scroll Windows

This example creates a frame with a text scroll window and a plain window as

panes. Clicks on the text scroll window display the blips on the plain window and

toggle the mouse-sensitivity of the items.

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

(defflavor test-pane ()

 (tv:mouse-sensitive-text-scroll-window

 tv:pane-no-mouse-select-mixin

 tv:window)

 (:default-init-plist

 :sensitive-item-types :sensitive-type-p))

(defmethod (:print-item test-pane) (item ignore ignore)

 (send self :item item :whole-item

 #’(lambda (item window)

 (send window :item item :first-part

 #’(lambda (item window)

 (format window "~r" (car item))))

 (format window " and ")

 (send window :item item :second-part

 #’(lambda (item window)

 (format window "~r" (cdr item)))))))

391
February 2018 Using the Window System

(defmethod (:who-line-documentation-string test-pane) ()

 (let ((superior (send self :superior)))

 (format nil "L: Turn left ~:[on~;off~]; ~

 M: Turn whole item ~:[on~;off~]; R: Turn right ~:[on~;off~]"

 (send superior :left)

 (send superior :both)

 (send superior :right))))

(defmethod (:sensitive-type-p test-pane) (mouse-sensitive-item)

 (let ((superior (send self :superior)))

 (case (tv:displayed-item-type mouse-sensitive-item)

 (:first-part (send superior :left))

 (:whole-item (send superior :both))

 (:second-part (send superior :right)))))

(defflavor test-frame ((left t) (both t) (right t))

 (tv:select-mixin

 tv:process-mixin

 tv:bordered-constraint-frame-with-shared-io-buffer)

 :settable-instance-variables

 (:default-init-plist

 :panes

 ’((display-pane tv:window-pane)

 (scroll-pane test-pane))

 :constraints

 ’((only . ((scroll-pane display-pane)

 ((scroll-pane .4))

 ((display-pane :even)))))

 :selected-pane ’display-pane

 :configuration ’only

 :process ’(main-loop)))

(defun main-loop (frame)

 (send frame :main-loop))

392
Using the Window System February 2018

(defmethod (:main-loop test-frame) ()

 (let* ((scroll-pane (send self :get-pane ’scroll-pane))

 (display-pane (send self :get-pane ’display-pane))

 (*terminal-io* display-pane))

 (loop for i from 1 to 5

 do

 (loop for j from 10 to 50 by 10

 do

 (send scroll-pane :append-item (cons i j))))

 (error-restart-loop ((sys:abort error)

 "Silly program top level")

 (let ((blip (send display-pane :list-tyi)))

 (format t "~&Blip received was: ~% ~s" blip)

 (case (if (eq (first blip) :mouse-button)

 (second blip)

 (fourth blip))

 (#\mouse-l (setq left (not left)))

 (#\mouse-m (setq both (not both)))

 (#\mouse-r (setq right (not right))))))))

(defvar *test-frame*

 (tv:make-window ’test-frame

 :expose-p t))

Flashy Scrolling in Text Scroll Windows

To scroll a display with the familiar ���� ����� and ���� ����� style scrolling,

use tv:margin-scrolling-with-flashy-scrolling-mixin.

When this flavor is used, tv:borders-mixin should be included in the flavor defini-

tion before tv:margin-scrolling-with-flashy-scrolling-mixin. If it isn’t, the ����

����� and ���� ����� messages appear outside the borders.

If a label is required, tv:top-box-label-mixin should be placed after tv:borders-

mixin and before tv:margin-scrolling-with-flashy-scrolling-mixin to put the label

in the right place.

Here is a list of facilities for flashy scrolling within text scroll windows.

tv:margin-scrolling-with-flashy-scrolling-mixin

(flavor:method :margin-scroll-regions tv:margin-scroll-mixin)

(flavor:method :flashy-scrolling-region tv:flashy-scrolling-mixin)

Example of Flashy Scrolling in Text Scroll Windows

Alter the previous example (See the section "Example of Mouse-Sensitive Items in

Text Scroll Windows", page 390.) as follows:

393
February 2018 Using the Window System

(defflavor test-pane ()

 (tv:borders-mixin

 tv:top-box-label-mixin

 tv:margin-scrolling-with-flashy-scrolling-mixin)

 tv:mouse-sensitive-text-scroll-window

 tv:pane-no-mouse-select-mixin

 tv:window)

 (:default-init-plist

 :sensitive-item-types :sensitive-type-p

 :margin-scroll-regions ’(:top :bottom)))�

11.3.14. Typeout Windows

Here is a list of facilities that you can use for controlling typeout windows.

tv:window-with-typeout-mixin

(flavor:method :typeout-window tv:essential-window-with-typeout-mixin)

tv:typeout-window

tv:typeout-window-with-mouse-sensitive-items

tv:temporary-typeout-window

tv:with-terminal-io-on-typeout-window

11.3.15. Scrolling Windows

Use these flavors to control how scrolling occurs in windows.

tv:basic-scroll-bar

tv:margin-scroll-mixin

tv:flashy-scrolling-mixin

11.3.16. Frames

The concepts and facilities discussed in this section apply generally to Dynamic

Window-based frames created with the Frame-Up Layout Designer and dw:define-

program-framework. (For an overview of these facilities and references to addi-

tional documentation, see the section "Defining Your Own Program Framework",
page 97.) In particular, the subsections on specifying panes and constraints, speci-

fication examples, and frame messages are relevant:

See the section "Specifying Panes and Constraints", page 396.

See the section "Examples of Specifications of Panes and Constraints", page

398.

See the section "Messages to Frames", page 405.�

A ����� is a window that is divided into subwindows, using the hierarchical struc-

ture of the window system. The subwindows are called �����. The panes are the

inferiors of the frame, and the frame is the superior of each pane. Several heavily

394
Using the Window System February 2018

used systems programs use frames. For example, Inspector windows are frames.

The default Inspector window has six panes: the interaction pane on top, the histo-

ry pane and command menu pane below it, and three Inspect panes below that.

The Window Debugger and Zmacs also use frames. In Zmacs, each new editor win-

dow is a pane of the Zmacs Frame. Zmail uses frames heavily.

From these examples, you can see some of the things that frames are good for. In

general, by using a frame as a user interface to an interactive subsystem, you get

a convenient way to put many different things on the screen, each in its own

place. Generally you can split up the frame into areas in which you can display

text or graphics, areas where you can put menus or other mouse-sensitive input

areas, and areas to interact with, in which keyboard input is echoed or otherwise

acknowledged.

If you use [Edit Screen] to change the shape of an Inspector or Window Debugger

frame, the shapes of the panes are all changed so that the proportions come out

looking as they are supposed to. If you play around with [Edit Screen] enough, you

can even see the menus reformat themselves (changing their numbers of rows and

columns) in order to keep all of their items visible. The way all this works is that

the positions and shapes of the panes, instead of being explicitly specified in units

of pixels, are specified symbolically. When the window changes shape, the symbolic

description is elaborated again in light of the new shape, and the panes are re-

shaped appropriately.

This set of symbolic descriptions is called a set of constraints, and the kind of

frame that implements the constraint mechanism is a flavor called tv:basic-

constraint-frame. While there are other, more basic frame flavors, you cannot use

them alone; you must write a new flavor that includes the more basic frame fla-

vors in its components, and has new methods. Since writing new methods is be-

yond the scope of this document, we will simply explain how to use constraint

frames.

When you make a constraint frame, you specify the configuration of panes within

the frame by creating list structure to represent the layout. The format of this list

structure is called the constraint language. It lets you say things like "give this

pane one third of the remaining room, then give that pane 17 pixels, and then di-

vide what remains between these two panes, evenly." The constraint language is

fairly complex. For full details, see the section "Specifying Panes and Constraints",
page 396. In general, a frame can have many different ��������������. Each config-

uration is described in the constraint language, and each specifies one way of

splitting up the frame. While the program is running, it can switch a frame from

one configuration to another. Some panes may appear in more than one configura-

tion, but other panes may be left out of one configuration, and may only be visible

when the frame is switched to another configuration. For example, in Zmail, when

you click on [Mail], the frame changes to a new configuration showing the Head-

ers and Mail panes.

395
February 2018 Using the Window System

11.3.16.1. Flavors for Panes and Frames
To have a frame with panes, you must have a frame, which is a window, and you

must have panes, each of which is a window. The flavor of each pane of a frame

must have, as one of its components, the flavor tv:pane-mixin. Some system facili-

ties provide flavors for you that already have this flavor mixed in. For example,

the flavor tv:command-menu-pane is a flavor that consists of tv:command-menu

and tv:pane-mixin. (This is the kind of menu most often used in frames; menus

are a higher-level facility.) In general, you can take any flavor of window that you

might want to use in a pane, and make a new flavor suitable to actually be a pane

simply by mixing in tv:pane-mixin.

(For information on Dynamic Window-based frames and related facilities, see the

section "Defining Your Own Program Framework", page 97.)

The flavor of the frame itself might be any of several flavors. The simplest flavor

of constraint frame is tv:constraint-frame.

Here is a list of flavors for use with panes and frames.

tv:pane-mixin

tv:pane-no-mouse-select-mixin

tv:window-pane

tv:basic-frame

tv:constraint-frame

tv:bordered-constraint-frame

Bordered constraint frames are used most often. Usually, each of the panes has

borders, and the frame does too. A reason for this is that when two of the panes

are right next to each other, as they usually are, their borders are side by side,

and so look like a double-thick line. In order to make the edges of the panes that

are at the edge of the frame (rather than up against another pane) look as if they

are the same thickness, the frame has a border itself.

It is common in frame-oriented interactive subsystems for all of the panes to use

the same I/O buffer. The reason for this is that such subsystems are usually orga-

nized as a single process that reads commands and executes them. But with a

many-paned frame, there may be many windows (each pane is a window) at which

characters might be typed or mouse-clicks might be clicked. When the process is

waiting for its next command, it would be inconvenient for it to have to wait for

the complex condition that any of these windows has input available in its I/O

buffer. Instead, since the command stream is only one serial stream of commands

anyway, it is common to have all the panes of a frame share the same I/O buffer.

What happens when many windows share an I/O buffer is that any characters

typed at any of them, or any mouse-clicks that generate forced keyboard input, are

all put into the same I/O buffer, in the chronological order in which they are gen-

erated. The process then does successive :tyi stream operations from any pane of

the frame, and it receives anything that has been typed at any pane. When the I/O

buffer is shared like this, it doesn’t matter which pane is selected: All the charac-

ters go to the same place anyway, and the information as to which pane was typed

396
Using the Window System February 2018

at is lost. However, the forced keyboard input generated by mouse clicks at a facil-

ity that is designed to be used as a pane of a frame (tv:command-menu-pane for

instance) will return all useful and relevant information to the sender of the :tyi

message, including which pane the mouse was pointing at when it was clicked.

To have all of the panes share the same I/O buffer, use one of the following fla-

vors:

tv:constraint-frame-with-shared-io-buffer

tv:bordered-constraint-frame-with-shared-io-buffer

(flavor:method :io-buffer tv:constraint-frame-with-shared-io-buffer)

11.3.16.2. Specifying Panes and Constraints
When you create a constraint frame, you must supply two initialization options.

The :panes option specifies what panes you want the frame to have, and the

:configurations option specifies the set of constraints for each of the configura-

tions that the window may assume. For the purposes of these two options, windows

are given internal names, which are Lisp symbols, used only by the flavors and

methods that deal with constraint frames. These names are not used as the actual

names of the windows (as in the :name message).

These facilities specify the panes of a constraint frame, and the constraint lan-

guage.

(flavor:method :panes tv:basic-constraint-frame)

(flavor:method :configurations tv:basic-constraint-frame)

:layout Constraint Frame Specification

A configuration is itself a stack. Thus, the symbol that names a configuration

must appear in that configuration’s :layout list as the name of either a row or a

column.

A configuration specification includes a list of layout specifications, introduced by

the keyword :layout. Each layout specification defines one row, column, or fill.

(The panes are defined by the :panes init option to the frame. See the init option

(flavor:method :panes tv:basic-constraint-frame) in �������������������������.)

A layout specification for a ��� takes the following form:

(���� :row ����� �����...)

���� is a symbol, the name of the row. �����, �����, and so on are symbols, the

names of the members of the row. The members are listed in left-to-right order.

A layout specification for a ������ takes the following form:

(���� :column ����� �����...)

���� is a symbol, the name of the column. �����, �����, and so on are symbols,

the names of the members of the column. The members are listed in top-to-bottom

order.

397
February 2018 Using the Window System

A layout specification for a ���� takes one of the following forms. In each of these

���� is a symbol, the name of the fill.

(���� :fill :white) The area is filled with zero pixels (normally displayed as

white).

(���� :fill :black) The area is filled with one pixels (normally displayed as black).

(���� :fill �����) The area is filled with the contents of the array, using bitblt.

You probably want to use backquote (‘) to create the configura-

tion description and insert the array at the appropriate point.

(���� :fill ������) The symbol should be the name of a function of six arguments.

The function is expected to fill the rectangle that has been al-

located to this part of the section with some pattern. The fol-

lowing values are passed to the function:

���������������

This is an internal data structure. You should not need

to do anything with this argument.

����������

X-coordinate of the top left corner of the rectangle to

be filled.

����������

Y-coordinate of the top left corner of the rectangle to be

filled.

����� Width in pixels of the rectangle to be filled.

������ Height in pixels of the rectangle to be filled.

������������

This is a two-dimensional array into which the function

should write the pattern it wants to put into the win-

dow.�

(���� :fill ����) This is similar to the case in which ������� is a symbol, but it

lets you pass extra arguments. The first element of the list is

the function to be called, and that function is passed all of the

objects in the rest of the list, after the six arguments enumer-

ated above.�

:sizes Constraint Frame Specification

A configuration specification includes a list of size specifications, introduced by the

keyword :sizes. Each size specification defines how a stack is divided up among its

members; it controls the width of each member of a row, or the height of each

member of a column. No size specification exists for fills and panes.

A size specification is a list whose first element is the name of the relevant stack.

The remaining elements consist of groups of ����������� separated by the keyword

398
Using the Window System February 2018

:then. The groups are processed sequentially; all the constraints in a group are

processed in parallel. Each constraint allocates some of the space available in a

stack to a single member of that stack. (This space is width if the stack is a row,

height if the stack is a column). After one group has been processed, the amount

of space available is decreased by the sum of the space that was allocated, and

then the next group is processed. This is the meaning of the parallel versus se-

quential distinction.

The division of constraints into groups matters when a constraint specifies the size

of a member as some fraction of the space available. For example, suppose two

constraints each specify that a member is to receive 50% of the available space. If

these two constraints are in the same group (processed in parallel) they will allo-

cate 100% of the space. If they are in separate groups (processed sequentially) they

will allocate 75% of the space, and the first member will be twice as large as the

second member. The first member gets 50% of the total space, then the second

member gets 50% of what remains, which is 25% of the total space.

Note that the order of the constraints in a size specification is unrelated to the ac-

tual order of the members on the screen, which is controlled solely by the layout

specification.

A constraint can take any of several forms. In each case the constraint is a list

whose first element is the name of the member (a symbol). Here is a list of con-

straints.

"Integer Constraint Size Specification"
"Fraction Constraint Size Specification"
":even Constraint Size Specification"
":ask Constraint Size Specification"
":ask-window Constraint Size Specification"
":funcall Constraint Size Specification"
":eval Constraint Size Specification"
":limit Constraint Size Specification"

11.3.16.3. Examples of Specifications of Panes and Constraints
The first set of examples below, 1-6, is meant to give you a feel for the basics of

constraint-frame specification. These are followed by two, more complex examples.

Additional examples can be found in the files sys:examples;constraint-frame-

language-1.lisp, -2.lisp, and -3.lisp. Also, note that for Dynamic Window-based

frames you can use the Frame-Up Layout Designer to help with the initial specifi-

cation of a variety of layouts. (See the section "Defining Your Own Program

Framework", page 97.)

Example 1

;;; Two windows of equal size, one on top of the other.

399
February 2018 Using the Window System

(defflavor cframe1 ()

 (tv:bordered-constraint-frame)

 :settable-instance-variables

 (:default-init-plist

 :panes ‘((pane-1 tv:window-pane

 :blinker-p nil

 :label "Pane-1 label")

 (pane-2 tv:window-pane

 :blinker-p nil

 :label "Pane-2 label"))

:configurations

 ‘((config1 (:layout (config1 :column pane-1 pane-2))

 (:sizes (config1 (pane-1 :even) (pane-2 :even)))))

 :configuration ’config1))

Example 2

;;; Two windows of equal size, side by side

(defflavor cframe2 ()

 (tv:bordered-constraint-frame)

 :settable-instance-variables

 (:default-init-plist

 :panes ‘((pane-1 tv:window-pane

 :blinker-p nil

 :label "Pane-1 label")

 (pane-2 tv:window-pane

 :blinker-p nil

 :label "Pane-2 label"))

:configurations

 ‘((config1 (:layout (config1 :row pane-1 pane-2))

 (:sizes (config1 (pane-1 :even) (pane-2 :even)))))

 :configuration ’config1))

Example 3

;;; Here we have created a constraint frame with two

;;; possible configurations. You can switch between these

;;; configurations at run time.

400
Using the Window System February 2018

(defflavor cframe3 ()

 (tv:bordered-constraint-frame)

 :settable-instance-variables

 (:default-init-plist

 :panes ‘((pane-1 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-1 label")

 (pane-2 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-2 label"))

:configurations

 ‘((config1 (:layout (config1 :column pane-1 pane-2))

 (:sizes (config1 (pane-1 :even) (pane-2 :even))))

 (config2 (:layout (config2 :row pane-1 pane-2))

 (:sizes (config2 (pane-1 :even) (pane-2 :even)))))

 :configuration ’config1))

;;; Before going on with more complex constraint frames,

;;; you have to know how to access the various panes of a

;;; constraint frame and how to tell the window to change

;;; to a different configuration. Notice what happens to

;;; the circle drawn in Pane-2.

(defvar *win* (tv:make-window ’cframe3))

(defun one ()

 (let ((first-pane (send *win* :get-pane ’pane-1))

(second-pane (send *win* :get-pane ’pane-2)))

 (send *win* :set-configuration ’config1)

 (send *win* :expose)

 (send *win* :send-all-panes :clear-window)

 (send first-pane :draw-circle 500 100 20)

 (send second-pane :draw-circle 600 100 20)

 (sleep 2)

 (send *win* :set-configuration ’config2)))

Example 4

;;; Now lets try organizing the panes in interesting patterns.

;;; For this we will need additional panes. Also notice in

;;; config3 that you don’t always have to use all the panes

;;; defined.

401
February 2018 Using the Window System

(defflavor cframe4 ()

 (tv:bordered-constraint-frame)

 :settable-instance-variables

 (:default-init-plist

 :panes ‘((pane-1 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-1 label")

 (pane-2 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-2 label")

 (pane-3 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-3 label")

 (pane-4 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-4 label"))

:configurations

 ‘((config1 (:layout (config1 :column pane-1 row-panes)

 (row-panes :row pane-2 pane-3 pane-4))

 (:sizes (row-panes (pane-2 :even)

(pane-3 :even) (pane-4 :even))

 (config1 (pane-1 :even)

 (row-panes :even))))

 (config2 (:layout (config2 :row pane-1 column-panes)

 (column-panes :column pane-2 pane-3 pane-4))

 (:sizes (column-panes (pane-2 :even)

(pane-3 :even) (pane-4 :even))

 (config2 (pane-1 :even)

 (column-panes :even))))

 (config3 (:layout (config3 :row pane-1 pane-2 pane-4))

 (:sizes (config3 (pane-1 :even)

(pane-2 :even) (pane-4 :even)))))

 :configuration ’config1))

;

;;; Display all configurations of any constraint frame that is

;;; the value of *WIN*. This function is useful for Examples 4,

;;; 5, and 6.

;

(defvar *win* (tv:make-window ’cframe4))

402
Using the Window System February 2018

(defun display-all-configs ()

 (let ((configurations (loop for thing in (send *win* :constraints)

 collect (car thing))))

 (loop for config in configurations

 do

 (print config)

 (sleep 2)

 (send *win* :set-configuration config)

 (send *win* :expose)

 (sleep 3)

 (send *win* :bury))))

Example 5

;;; Now we turn our attention to controlling the sizes of

;;; the panes. In place of :EVEN, if you put a integer it

;;; will allocate that many pixels. If you put a fraction

;;; 0.2 the pane will be allocated that percent of the room

;;; remaining to be allocated. A size value of 10 :lines

;;; or 20 :characters will create a pane large enough to hold

;;; them.

(defflavor cframe5 ()

 (tv:bordered-constraint-frame)

 :settable-instance-variables

 (:default-init-plist

 :panes ‘((pane-1 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-1 label")

 (pane-2 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-2 label")

 (pane-3 tv:window-pane

 :blinker-p nil

 :save-bits t

 :label "Pane-3 label")

 (pane-4 tv:window-pane

 :blinker-p nil

403
February 2018 Using the Window System

 :save-bits t:configurations

 ‘((config1 (:layout (config1 :row pane-1 pane-2 pane-3))

 (:sizes (config1 (pane-1 200)

 :then (pane-2 200)

 :then (pane-3 :even))))

 (config2 (:layout (config2 :row pane-1 pane-2 pane-3))

 (:sizes (config2 (pane-1 0.5)

 :then (pane-2 0.5)

 :then (pane-3 :even))))

 (config3 (:layout (config3 :row pane-1 pane-2 pane-3))

 (:sizes (config3 (pane-1 50 :characters)

 :then (pane-2 50 :characters)

 :then (pane-3 :even))))

 (config4 (:layout (config4 :column pane-1 pane-2 pane-3 pane-4))

 (:sizes (config4 (pane-1 200)

 :then (pane-2 0.5)

 :then (pane-3 5 :lines)

 :then (pane-4 :even)))))

 :configuration ’config1))

Example 6

;;; You might want to try reshaping the window by clicking on

;;; the system menu choice "Edit Screen" and then on "Reshape".

;;; You should notice two things:

;;; 1) The panes adjust themselves to fit into the space given.

;;; 2) If you make the window small enough the panes will

;;; become uselessly small.

;;;

;;; To give your constraint frame size limits try the following:

(defflavor cframe6 ()

 (tv:bordered-constraint-frame)

 :settable-instance-variables

 (:default-init-plist

 :panes ‘((pane-1 tv:window-pane

 :blinker-p nil

 :label "Pane-1 label")

 (pane-2 tv:window-pane

 :blinker-p nil

 :label "Pane-2 label"))

:configurations

 ‘((config1 (:layout (config1 :column pane-1 pane-2))

 (:sizes (config1 (pane-1 :limit (5 10 :lines) :even)

 (pane-2 :even)))))

 :configuration ’config1))

404
Using the Window System February 2018

Following are two examples of configuration definitions, slightly edited from the

system source code.

Example 7

;;;Here is how the Font Editor (FED) used to specify its

;;;standard configuration. This code is extracted from a

;;;source file with package zl:fed and base 8.(defmethod (fed :before :init) (init-plist)

 ...

 (setf (get init-plist :configurations)

‘((:standard

 (:layout

 (:standard :column character-pane prompt-pane top-section)

 (top-section :row fed-pane other-slab)

 (other-slab :column

draw-mode-menu

command-menu-1

command-menu-2

command-menu-3

status-pane

alphabet-menu

param-chvv

register-pane))

 (:sizes

 (other-slab (draw-mode-menu :ask :pane-size)

:then (command-menu-1 :ask :pane-size)

:then (command-menu-2 :ask :pane-size)

:then (command-menu-3 :ask :pane-size)

:then (status-pane 3 :lines)

:then (alphabet-menu :ask :pane-size)

:then (param-chvv 5 :lines)

:then (register-pane :even))

 (top-section (other-slab :limit (24 144 :characters prompt-pane)

 0.3)

 :then (fed-pane :even))

 (:standard

 (character-pane :ask :wanted-size)

 :then (prompt-pane 4 :lines)

 :then (top-section :even))))

 (:wide ...))))

Example 8

;;;Here is how an early implementation of the

;;;Document Examiner specified its frame configuration.

;;;This code is extracted from a source file with package

405
February 2018 Using the Window System

;;;sage and base 10.(defconst *dex-frame-constraints*

 ’((main

 (:layout

 (main :column top-part bottom-part)

 (top-part :row title&viewer-pane candidates-and-bookmarks)

 (bottom-part :row command-pane menu-pane)

 (title&viewer-pane :column title-pane viewer-pane)

 (candidates-and-bookmarks :column candidate-pane bookmark-pane))

 (:sizes

 (main (bottom-part 4 :lines command-pane)

 :then (top-part :even))

 (bottom-part (command-pane 660)

 :then (menu-pane :even))

 (top-part (title&viewer-pane 660)

:then (candidates-and-bookmarks :even))

 (title&viewer-pane (title-pane 0 :lines) ;label only

 :then (viewer-pane :even))

 (candidates-and-bookmarks (candidate-pane 0.5)

:then (bookmark-pane :even))))))(defmethod (:init de

x-frame :before) (plist)

 (unless (variable-boundp tv:panes)

 (setq tv:panes *dex-frame-panes*))

 (unless (get plist :configurations)

 (setf (get plist :configurations) *dex-frame-constraints*))

 ...)

11.3.16.4. Messages to Frames
Here is a list of messages to frames.

:select-pane

:selected-pane

(flavor:method :selected-pane tv:basic-constraint-frame)

(flavor:method :get-pane tv:basic-constraint-frame)

(flavor:method :pane-name tv:basic-constraint-frame)

(flavor:method :send-pane tv:basic-constraint-frame)

(flavor:method :send-all-panes tv:basic-constraint-frame)

(flavor:method :configuration tv:basic-constraint-frame)

(flavor:method :configuration tv:basic-constraint-frame)

(flavor:method :set-configuration tv:basic-constraint-frame)

(flavor:method :constraints tv:basic-constraint-frame)

For information on select menus and frames, see the message :name-for-selection

in �������������������������.

11.3.16.5. Specifying Panes and Constraints in Non-Dynamic Windows
This section gives the complete rules for specifying the panes of a constraint

frame, and for the constraint language, in releases before the introduction of Dy-

namic Windows. The specification method described in this section is obsolete but

406
Using the Window System February 2018

supported for compatibility. (The function,tv:back-convert-constraints can be used

to convert from the earlier specification form to the later.)

When you create a constraint frame, you must supply two initialization options.

The :panes option specifies what panes you want the frame to have, and the

:constraints option specifies the set of constraints for each of the configurations

that the window may assume.

When you use the following two options, windows are given internal names, which

are Lisp symbols, used only by the flavors and methods that deal with constraint

frames. These names are not used as the actual names of the windows (as in the

:name message).

(flavor:method :panes tv:basic-constraint-frame)

(flavor:method :constraints tv:basic-constraint-frame)

A configuration-description-list is a list of configuration-descriptions. There is one

configuration-description in the list for each of the possible configurations that the

frame can assume. Each configuration is named by a symbol, called the configura-

tion-name. A configuration-description-list is an alist that associates the configura-

tion-descriptions with the names. It looks like this:

((�������������������� . ���������������������������)

 (�������������������� . ���������������������������)

 ...)�

Each configuration-description describes the layout of the panes in a single config-

uration. The description has two parts. The first part specifies the order in which

the windows appear, and the second part specifies how the sizes are computed.

Actually, in addition to windows, there can also be ������� in the configuration-

descriptor. A dummy is used either to hold empty space that is not used by any

window, or it can reserve a region of space to be divided up by another configura-

tion-description.

A configuration-description splits up one of the dimensions of a rectangular area

into many parts. Such an area is called a �������. Which of the two dimensions is

being split up is determined by the ��������. If the stacking is :vertical then the

section is being split up vertically; that is, the parts are stacked on top of each

other. If the stacking is :horizontal then the section is being split up horizontally;

that is, the parts are side-by-side. The stacking of the top-level configuration-

descriptions in the :constraints option is always :vertical, but there can be more

configuration-descriptions nested inside of them, and these can have either stack-

ing.

Each part has a name, represented as a symbol. A part may either hold an actual

pane, or it may hold something else; if it holds something else, it is called a ����

�� part. Dummy parts can be further subdivided into more panes and dummies us-

ing another constraint-description, or their pixels can be blank or filled with some

pattern.

A configuration-description looks like this:

(�������� . ������������������)�

407
February 2018 Using the Window System

�������� is a list of names of panes and of dummies, each represented by a sym-

bol; the order of this list is the order that the panes and dummies appear in the

space being split up by the configuration-description. For vertical stacking the list

goes top to bottom. For horizontal stacking the list goes left to right. A ��������

���������� is a list of ������������. Each description describes either exactly one

pane or one dummy. A configuration-description must have one description for

each element of the �������� list.

All of the descriptions in a description-group are processed together ("in parallel");
each of the description-groups is processed in turn, starting with the first one. By

grouping the descriptions this way, you can control which constraints are elaborat-

ed together and which are elaborated at different times; when two constraints are

elaborated at different times you can control which one is elaborated first. The

reason that the ordering-list in the configuration-description is separate from the

description-groups is so that the order in which the panes and dummies appear in

the frame can be independent of the order in which their constraints are elaborat-

ed.

Each description describes one pane or one dummy. We’ll get back to dummies

later. A description that describes a pane looks like this:

(��������� . ����������)�

��������� is the name of the pane being described; ���������� is the constraint

that describes the pane. We will return later to what descriptions of dummies look

like. The constraint will be elaborated, and will yield a size in pixels; this size will

be used for the width or height being computed.

Finally we get to constraints themselves. The basic form of a constraint is as fol-

lows:

(��� ����� ����� ...)�

��� may be an integer, a flonum, or one of various keyword symbols. Each type of

constraint may take arguments, whose meaning depends on which kind of con-

straint this argument is passed to.

While descriptions of panes do not have the same format as descriptions of dum-

mies, the same kind of constraints are used in both of them. So all the formats

given below may be used inside the descriptions of either panes or dummies.

Any constraint may, optionally, be preceded by a :limit clause. If a constraint has

a :limit clause, the constraint looks like:

(:limit ������������������� ��� ����� ����� ...)�

The :limit clause lets you set a minimum and a maximum value that will be ap-

plied to the size computed by the constraint. If the constraint returns a value

smaller than the minimum, then the minimum value will be used; if it returns a

value larger than the maximum, then the maximum value will be used. The ������

������������� is normally a two-element list, whose elements are integers giving the

minimum and maximum values in pixels. If the list has a third element, it should

be one of the symbols :lines or :characters, and it means that the integers are in

units of lines or characters, computed by multiplying by the line-height or char-

width of the pane. If there is a fourth element, it should be the name of a pane,

408
Using the Window System February 2018

and that pane’s line-height or char-width is used instead of that of the pane being

constrained. (If this constraint applies to a dummy instead of a pane, and the third

element of the list is present, then the fourth must be present as well, since dum-

mies do not have their own line-height or char-width.)

The following Lisp objects may be used as values of ��� in a constraint. Note: The

:funcall and :eval constraints are rarely used and you probably don’t need to wor-

ry about them. The other kinds are used frequently.

������� This lets you specify the absolute size. The value computed by the con-

straint is simply this integer. Optionally, an argument may be given: it may

be the symbol :lines or the symbol :characters, meaning that the integer is

in units of lines or characters, and should be computed by multiplying by

the line-height or char-width of the window. If a second argument is also

present, it should be the name of a pane, and that pane’s line-height or

char-width is used instead of that of the pane being constrained. (If this

constraint applies to a dummy instead of a pane, and the first argument is

given, then the second must be present as well, since dummies do not have

their own line-height or char-width.)

������This lets you specify that a certain fraction of the remaining space should

be taken up by this window. Optionally, an argument may be given: It may

be :lines or :characters, and it means to round down the size of the pane

to the nearest multiple of the pane’s line-height or char-width. A second ar-

gument may be given; it is just like the second argument when ��� is an

integer.

The distinction between descriptors in the same group and descriptors in

different groups is important when you use this kind of constraint. If you

have one descriptor group with two descriptors, both of which requests 0.2

of the remaining space, then both panes will get the same amount of space.

However, if you have the same two descriptors but put them in successive

descriptor groups, then the first one will get 0.2 of the remaining space,

and then the second one will get 0.2 of what remains after the first one

was allocated; thus, the second pane will be smaller than the first pane. In

other words, the amount of space remaining is recomputed at the end of

each descriptor group, but not at the end of each descriptor.

:even This constraint has a special restriction: You can only use it for descriptors

in the last descriptor group of a configuration. Furthermore, if any of the

descriptors in that group use :even, then ��� of the descriptors in the group

���� use :even. The meaning is that all of the panes in the last descriptor

group evenly divide all of the remaining space.

It is usually a good idea to use :even for at least one pane in every config-

uration, so that the entire frame will be taken up by panes that all fit to-

gether and extend to the borders of the frame. :even is careful to choose

exactly the right number of pixels to fill the frame completely, avoiding

roundoff errors that might cause an unsightly line of one or a few extra

pixels somewhere.

409
February 2018 Using the Window System

Remember that just because the :evens must be in the last descriptor

group does not mean that the panes that they apply to must be at the bot-

tom or right-hand end of the frame! The ordering of the panes in the frame

is controlled by the ordering list, not by the order in which the descriptors

appear.

:ask This constraint lets you ask the window how much space it would like to

take up. The format of a constraint using :ask is as follows:

(:ask ������������ ����� ����� ���)�

A message whose name is ������������ and whose arguments are some ex-

tra arguments passed by the constraint mechanism followed by �����, �����,

and so on, is sent to the pane; its answer says how much space the pane

should take up. Note that �����, and so on, are not forms: They are the val-

ues of the arguments themselves (that is, they are not evaluated; if you

want to compute them, you must build the constraint language description

at run-time, which is usually written using a backquoted list).

The arguments that are actually sent along with the message are the same

as the arguments passed when you use the :funcall option except that the

��������������� is not passed; see below. You don’t have to worry about

these unless you want to define your own methods to be used by :ask con-

straints, and definition of new methods is generally beyond the scope of

this document anyway.

Various different flavors of windows accept some messages suitable for use

with :ask. By convention, several kinds of windows, such as menus, accept

a message called :pane-size. For example, the :pane-size method for menus

figures out how much space in the dimension controlled by the :ask con-

straint is needed to display all the items of the menu, given the amount of

space available in the other dimension. No arguments are specified in the

constraint. Another useful message, handled by tv:pane-mixin (and there-

fore by ��� panes) is :square-pane-size (also with no arguments), which

makes the window take up enough room to be square.

:ask-window

This constraint is a variation on :ask. Its format is:

(:ask ��������� ������������ ����� ����� ���)�

It works like :ask except that the message is sent to the pane named �����

���� instead of the pane being described. This is primarily used for dum-

mies, when the size of a dummy should be controlled by the needs of a

pane inside it.

:funcall

This constraint lets you supply a function to be called, which should com-

pute the amount of space to use. The format is:

(:funcall �������� ����� ����� ���)�

The specified �������� is called. It is first passed six arguments from inside

the workings of constraint frames, and then the �����, �����, and so on,

values. The six arguments are:

410
Using the Window System February 2018

���������������

This is an internal data structure. [Not yet documented; you should

not need to look at this anyway.]

���������������

The amount of width remaining to be used up at the time this de-

scription is elaborated, after all of the panes in previous description

groups and all of the earlier panes in this description group are al-

located.

����������������

Like ���������������, but in the height direction.

�����������

The amount of width remaining to be used up by all of the parts of

this description group. This is the amount of room left after all of

the panes in previous description groups have been allocated but

none of the panes in this description group have been allocated.

������������

Like �����������, but in the height direction.

��������

Either :vertical or :horizontal, depending on the current stacking.�

:eval This is like :funcall, but instead of providing a function and arguments,

you provide a form. The format is:

(:eval ����)�

The six special values that are passed as arguments when the :funcall con-

straint-type is used can be accessed by ���� as the values of the following

special variables:

tv:**constraint-node**

tv:**constraint-remaining-width**

tv:**constraint-remaining-height**

tv:**constraint-total-width**

tv:**constraint-total-height**

tv:**constraint-stacking**�

This finishes the discussion of descriptions of panes. Descriptions of dummies are

different; they may be in any of several formats, identified by the following key-

words:

:blank This description is used if you want this part of the section to be filled up

with some constant pattern. The format of the description is:

(���������� :blank ������� . ����������)�

The ���������� is used to figure out the size of the part of the section, in

the usual way. ������� may be any of the following:

:white The part is filled with zeroes.

411
February 2018 Using the Window System

:black The part is filled with the maximum value that the pixels can hold

(if the pixels are one bit wide, as on a black-and-white TV, this val-

ue is 1).

��������

The part is filled with the contents of the array, using the bitblt

function.

��������

The symbol should be the name of a function of six arguments. The

function is expected to fill up the rectangle that has been allocated

to this part of the section with some pattern. The following values

are passed to the function:

���������������

This is an internal data structure. [Not yet documented; you

should not need to look at this anyway.]

����������

����������

�����

������

These four arguments tell the function the position and size

of the rectangle that it should fill.

������������

This is a two-dimensional array into which the function

should write the pattern it wants to put into the window.�

������ This is similar to the case in which ������� is a symbol, but it lets

you pass extra arguments. The first element of the list is the func-

tion to be called, and that function is passed all of the objects in the

rest of the list, after the six arguments enumerated above.�

:horizontal or :vertical

This description is used if you want to subdivide the part into more panes

and dummies, using a configuration-description. If you use :vertical, it will

be split up with vertical stacking, and if you use :horizontal, it will be

split up with horizontal stacking. You must use only the opposite kind of

stacking from the kind currently happening; that is, successive levels of

configuration-description must use alternating kinds of stacking. The format

is as follows:

(���������� :horizontal ���������� . �������������������������)

or

(���������� :vertical ���������� . �������������������������)�

����������, as usual, specifies the size of this part; it can be in any of the

formats given above. Note that in this format, ���������� appears as an ele-

ment of a list rather than as the tail of a list, and so the printed represen-

tation of the list will include a pair of parentheses around the constraint.

������������������������� tells how this part is subdivided into parts of its

own.�

412
Using the Window System February 2018

11.3.16.6. Examples of Specifications of Panes and Constraints for Non-Dynamic
Windows
This section gives some examples of specifications of panes and constraints in the

constraint language used before Dynamic windows. The full description of how to

use constraint frames, including the full constraint language, is rather complicat-

ed. For complete specifications of the pre-Dynamic windows language, see the sec-

tion "Specifying Panes and Constraints in Non-Dynamic Windows", page 405.

The following form creates a constraint frame with two panes, one on top of the

other, each of which takes up half of the frame.

(tv:make-window ’tv:constraint-frame

’:panes

 ’((top-pane tv:window-pane)

 (bottom-pane tv:window-pane))

’:constraints

 ’((main . ((top-pane bottom-pane)

 ((top-pane 0.5))

 ((bottom-pane :even))))))�

Two initialization options were given to the tv:constraint-frame flavor: the :panes

option and the :constraints option. The meaning of the :panes specification is:

"This frame is made of the following panes. Call the first one top-pane; its flavor

is tv:window. Call the second one bottom-pane; its flavor is tv:window". The

meaning of the :constraints specification is: "There is just one configuration de-

fined for this pane; call it main. In this configuration, the panes that appear are,

in order from top to bottom, top-pane and bottom-pane. top-pane should use up

0.5 of the room. bottom-pane should use up all the rest of the room."

This example demonstrates some more features:

(tv:make-window

 ’tv:bordered-constraint-frame

 ’:panes

 ’((graphics-pane tv:window-pane

 :label nil :blinker-p nil)

 (message-pane tv:window-pane

 :label "Message Pane" :blinker-p nil)

 (interaction-pane tv:window-pane))

 ’:constraints

 ’((main . ((interaction-pane graphics-pane message-pane)

 ((message-pane 4 :lines))

 ((graphics-pane 400))

 ((interaction-pane :even))))))�

This frame has a border around the edges (because of the flavor of the frame it-

self), and it has three panes. The panes are given some initialization options

themselves. The topmost pane is interaction-pane, graphics-pane is in the middle,

and message-pane is on the bottom. message-pane is four lines high, graphics-

pane is 400 pixels high, and interaction-pane uses up all remaining space.

413
February 2018 Using the Window System

Here is a window that has two possible configurations. In the first one, there are

three little windows across the top of the frame and a big window beneath them;

in the second one, the same big window is at the top of the frame, and underneath

it is a strip split between a menu and another window.

(tv:make-window

 ’tv:bordered-constraint-frame

 ’:panes

 ’((huey tv:window-pane)

 (dewey tv:window-pane)

 (louie tv:window-pane)

 (main-pane tv:window-pane)

 (random-pane tv:window-pane)

 (menu tv:command-menu-pane

 :item-list ("Foo" "Bar" "Baz")))

 ’:constraints

 ’((first-config . ((top-strip main-pane)

 ((top-strip :horizontal (.3)

 (huey dewey louie)

 ((huey :even)

 (dewey :even)

 (louie :even))))

 ((main-pane :even))))

 (second-config . ((main-pane bottom-strip)

((bottom-strip :horizontal (.2)

 (random-pane menu)

 ((menu :ask :pane-size))

 ((random-pane :even))))

((main-pane :even))))))�

In this example, the frame has two different configurations. When the frame is

first created, it will be in the first of the configurations listed, namely first-config.

In this configuration, the top three-tenths of the frame are split equally, horizon-

tally, between three windows, and the rest of the frame is occupied by main-pane.

The frame can be switched to a new configuration using the :set-configuration

message. If we switch it to second-config, then main-frame will appear on top of

a strip one-fifth of the height of the window. This strip will contain a menu on the

right that is just wide enough to display the strings in the menu’s item list, and

another pane using up the rest of the strip. When the configuration of the window

is switched, main-pane must be reshaped.

Another thing to notice is that the list of items in the menu was present in the

:panes option, rather than a form to be evaluated. If the list had been in a vari-

able, it would have been necessary to write the :panes option using backquote, like

this:

414
Using the Window System February 2018

 ’:panes

 ‘((huey tv:window-pane)

 (dewey tv:window-pane)

 (louie tv:window-pane)

 (main-pane tv:window-pane)

 (random-pane tv:window-pane)

 (menu tv:command-menu-pane

 :item-list ,the-list-of-items))�

For an explanation of how to use menus, see the section "Window System Choice

Facilities", page 419.

Following is the last example, using the :configurations init option instead of the

:constraints option used before Dynamic windows:

(tv:make-window

 ’tv:bordered-constraint-frame

 ’:panes

 ’((huey tv:window-pane)

 (dewey tv:window-pane)

 (louie tv:window-pane)

 (main-pane tv:window-pane)

 (random-pane tv:window-pane)

 (menu tv:command-menu-pane

 :item-list ("Foo" "Bar" "Baz")))

 ’:configurations

 ’((first-config (:layout

 (first-config :column top-strip main-pane)

 (top-strip :row huey dewey louie))

 (:sizes

 (top-strip (huey :even) (dewey :even) (louie :even))

 (first-config (top-strip 0.3)

 :then (main-pane :even))))

 (second-config (:layout

 (second-config :column main-pane bottom-strip)

 (bottom-strip :row random-pane menu))

 (:sizes

 (bottom-strip (menu :ask :pane-size)

 :then (random-pane :even))

 (second-config (bottom-strip 0.2)

 :then (main-pane :even))))))�

For a description of the constraint language used in Release 6.0, see the section

"Specifying Panes and Constraints", page 396.

In this example, the window is divided into two windows, side by side.

415
February 2018 Using the Window System

(tv:make-window

 ’tv:bordered-constraint-frame

 ’:edges ’(100 100 600 600)

 ’:panes

 ’((left tv:window-pane)

 (right tv:window-pane))

 ’:constraints

 ’((main . ((whole-thing)

 ((whole-thing :horizontal (:even)

 (left right)

 ((left :even)

 (right :even))))))))�

This example also points out that constraint frames are windows too, and you can

use init options acceptable to tv:minimum-window with them. In this case, we

give the edges of the frame as a whole, in absolute numbers. Remember that

frames are ��� built out of tv:window.

11.4. Window Substrate Facilities

The facilities described in this section represent only that fraction of the window

substrate that are specific to dynamic windows and not to static windows. The dic-

tionary entry for dw:dynamic-window provides references to other relevant sec-

tions. See the flavor dw:dynamic-window in �������������������������.

The following table lists the Dynamic Window substrate facilities:

Dynamic Window Facilities

 dw:dynamic-window

 dw:margin-borders

 dw:margin-white-borders

 dw:margin-whitespace

 dw:margin-drop-shadow-borders

 dw:margin-ragged-borders

 dw:margin-label

 dw:margin-scroll-bar

 (flavor:method :set-margin-components dw:margin-mixin)

 (flavor:method :set-borders dw:margin-mixin)

 (flavor:method :set-label dw:margin-mixin)

 (flavor:method :delayed-set-label dw:margin-mixin)

 (flavor:method :update-label dw:margin-mixin)

 dw:set-default-end-of-page-mode

Dynamic Frame Facilities

 dw:program-frame�

dw:dynamic-window is the basic window flavor in the Dynamic Window substrate.

It is the dynamic equivalent of tv:window, the basic static window flavor. Unlike

416
Using the Window System February 2018

tv:window, however, dw:dynamic-window has built into it a variety of desirable

window features. dw:dynamic-window also refers to a resource of Dynamic Win-

dows.

The basic Dynamic Window flavor supports an output-history, that is, presentation

recording, is scrollable, includes a visible scroll bar, has a label, and is surrounded

by a simple, one-pixel-wide border. The last three attributes the scroll bar, la-

bel, and border are margin components made available via a single mixin flavor,

dw:margin-mixin.

Most of the remaining Dynamic Window facilities listed in the above table relate

to margin components. They provide a set of flavors and methods allowing you to

customize the appearance of your program’s windows, from a variety of border de-

signs to labels and scroll bars. The following example shows how to make a Dy-

namic Window with a customized set of margin components:

(defun dynamic-window-margin-example ()

 (let ((test (tv:make-window ’dw:dynamic-window

 :edges-from :mouse

 :margin-components

 ’((dw:margin-borders :thickness 1)

 (dw:margin-white-borders :thickness 3)

 (dw:margin-borders :thickness 10)

 (dw:margin-white-borders :thickness 8)

 (dw:margin-borders :thickness 3)

 (dw:margin-whitespace :margin

 :left :thickness 10)

 (dw:margin-scroll-bar)

 (dw:margin-whitespace :margin

 :bottom :thickness 7)

 (dw:margin-scroll-bar :margin :bottom)

 (dw:margin-whitespace :margin :left

 :thickness 10)

 (dw:margin-label :margin :bottom

 :style (:sans-serif

 :italic :normal))

 (dw:margin-whitespace :margin :top

 :thickness 10)

 (dw:margin-whitespace :margin :right

 :thickness 13))

 :expose-p t

 :mouse-blinker-character #\mouse:fat-circle)))

 (send test :set-label "Margin Test Window")))�

When you create this window and run the mouse cursor over it, you will notice

the cursor changing shape. The shape, in this case a "fat circle", is specified via

the :mouse-blinker-character init option. Other available mouse blinker characters

are listed in the section that follows.

417
February 2018 Using the Window System

Additional Dynamic Window methods are included in the program output category,

because of their usefulness in that context. See the section "Controlling Location

and Other Aspects of Output", page 84.

Dynamic frame facilities considered to be substrate-level are limited to

dw:program-frame. This is the building-block flavor used by the Frame-Up Layout

Designer and dw:define-program-framework to create program frames. For an

overview of these facilities and some frame functions, see the section "Defining

Your Own Program Framework", page 97.) Also, as is the case with Dynamic Win-

dows generally, static window system facilities for programming with frames are

applicable to dynamic frames as well. See the section "Frames", page 393.

dw:program-frame is also a window resource.

11.4.1. Mouse-Blinker Characters

Through the :mouse-blinker-character init option to dw:dynamic-window, the

mouse blinker, when moved over a Dynamic Window, can assume any of the

shapes available in the mouse font (fonts:mouse). To see the glyphs included in

this font, use the Show Font Command Processor command on "mouse". Each

glyph in the font maps to a unique mouse-blinker character. The following lists

these in the order in which they appear in the font:

#\mouse:Up-Arrow

#\mouse:Right-Arrow

#\mouse:Down-Arrow

#\mouse:Left-Arrow

#\mouse:Vertical-Double-Arrow

#\mouse:Horizontal-Double-Arrow

#\mouse:NW-Arrow

#\mouse:Times

#\mouse:Fat-Up-Arrow

#\mouse:Fat-Right-Arrow

#\mouse:Fat-Down-Arrow

#\mouse:Fat-Left-Arrow

#\mouse:Fat-Double-Vertical-Arrow

#\mouse:Fat-Double-Horizontal-Arrow

#\mouse:Paragraph

#\mouse:NW-Corner

#\mouse:SE-Corner

#\mouse:Hourglass

#\mouse:Circle-Plus

#\mouse:Paintbrush

#\mouse:Scissors

#\mouse:Trident

#\mouse:NE-Arrow

#\mouse:Circle-Times

#\mouse:Big-Triangle

#\mouse:Medium-Triangle

418
Using the Window System February 2018

#\mouse:Small-Triangle

#\mouse:Inverse-Up-Arrow

#\mouse:Inverse-Down-Arrow

#\mouse:Filled-Lozenge

#\mouse:Dot

#\mouse:Fat-Times

#\mouse:Small-Filled-Circle

#\mouse:Filled-Circle

#\mouse:Fat-Circle

#\mouse:Fat-Circle-Minus

#\mouse:Fat-Circle-Plus

#\mouse:Down-Arrow-To-Bar

#\mouse:Short-Down-Arrow

#\mouse:Up-Arrow-To-Bar

#\mouse:Short-Up-Arrow

#\mouse:Boxed-Up-Triangle

#\mouse:Boxed-Down-Triangle�

Note that mouse-blinker characters are non-printing; that is, they are intended for

on-line use only.

419
February 2018 Window System Choice Facilities

12. Window System Choice Facilities�

12.1. The Choice Facilities

The Genera window system contains a variety of facilities to allow the user to

make choices interactively. These all work by displaying some arrangement of

items in a window. By pointing to an item with the mouse and pressing a mouse

button, the user selects the item. The choice facilities are implemented in and ac-

cessed with the Flavors feature of Lisp.

12.1.1. Overview of the Choice Facilities

This section is a capsule description of the choice facilities. This should familiarize

you with the possibilities, thereby helping you to decide which facility is appropri-

ate to your application, without reading through each detailed description. (For an

overview of choice facilities intended for use with Dynamic Windows, see the sec-

tion "Using Presentation Types for Input", page 34.)

12.1.1.1. List of Choice Facilities
Here is a brief explanation of each of the choice facilities.

������������

This facility puts a menu with items on the screen. The user is forced to

make a choice among the items. (The menu does not disappear until a

choice has been made.) See the section "Instantiable Pop-up and Momentary

Menus", page 432.

���������������

Momentary menus appear on the screen with a list of choices. The user

does not have to make a choice, however. By moving the mouse outside of

the menu, the user can make the menu disappear. See the section "Basic

and Mixin Pop-up and Momentary Menus", page 432.

�������������

Command menus are used when you want to pass a command to your own

controlling process from a menu. The command is sent to the process via

an input buffer that can be shared with other windows or processes. This

way, the controlling process can be looking in the buffer for commands

from several windows as well as for keyboard input. See the section "Com-

mand Menus", page 438.

�����������������������

A dynamic item list menu is provided for menus whose items change over

time. The item list is updated whenever the menu is displayed. Both mo-

mentary and pop-up dynamic item list menus are available. See the section

"Dynamic Item List Menus", page 442.

420
Window System Choice Facilities February 2018

��������������

Multiple menus are provided for situations in which the user can select ����

���� items at a time. The selected items are displayed in inverse video. ����

���� ������� allow the user to specify operations on all the items selected.

Both momentary and pop-up multiple menus are available. see the section

"Multiple Menus", page 445.

��������������������������

This facility provides for menus with several columns. The user picks one

item from each column. Special choices [Do It] and [Abort] are used to exe-

cute the choices and and deactivate the menu, respectively. See the section

"The Multiple Menu Choose Facility", page 449.

���������������������

This facility displays a menu in which each item is displayed on a separate

line. Each item is associated with several yes/no choices, in ������ �����. By

pointing to a box and pressing the left mouse button, the user complements

the yes/no state of the choice box for that item. Constraints can be imposed

among the choices for an item, ensuring, for example, that if one box is se-

lected, the others are automatically deselected. See the section "The Multi-

ple Choice Facility", page 451.

����������������������

Each item is associated with a value printed next to it. Many different

types of values can be specified, or the programmer can create new types.

In operation, users select items and then alter the values associated with

the item. See the section "The Choose Variable Values Facility", page 455.

������������

The user option facility is based on the choose variable values facility. It is

used to keep track of options to a program of the sort that users would

want to specify once and then save. The option list can be associated with

particular programs. See the section "The User Option Facility", page 463.

�������������������������������

Mouse-sensitive behavior underlies all of the choice facilities. This mixin fa-

cility lets areas of the screen be sensitive to the mouse. Moving the mouse

into such an area causes a box to be drawn around it. At this point, click-

ing the mouse invokes a user-defined operation. See the section "The

Mouse-Sensitive Items Facility", page 470.

��������������

Windows can be augmented with choice boxes in their margins. Choice box-

es give the user a few mouse-sensitive points that are independent of any-

thing else in the window. Margin choices can be added to any flavor of win-

dow in a modular fashion. See the section "The Margin Choice Facility",
page 477.

421
February 2018 Window System Choice Facilities

12.1.2. Standard and Customizable Facilities

From the programmer’s viewpoint, there are two ways of invoking the choice facil-

ities.

• �������� facilities are provided with a reasonable set of defaults predefined in

the system code. They are invoked with a simple function call.

• ������������ facilities require you to provide more specifications, but they allow

more flexibility in the layout and behavior of the facilities. Customizable facili-

ties are manipulated by the Flavor system, and include instantiable, basic, and

mixin flavors.�

Many of the documented choice facilities are provided in both standard and cus-

tomizable forms.

12.1.3. Choice Facilities Use the Flavor System

The window system and the choice facilities are implemented using the Flavor sys-

tem in Lisp. When a menu is instantiated, users communicate with it by pressing

mouse buttons (sometimes called "mouse-clicking"), or by typing in values. Inter-

nally, programs communicate with a menu by sending it a message using the send

function of Lisp.

Useful �������������� ������������� ������� (hereafter called ���������� �������) and

�������� associated with each flavor are specified in this document.

12.1.3.1. Combining Choice Facilities
Since the choice facilities are implemented with the Flavor system, many of the

behaviors listed previously can be integrated into one menu by means of flavor

combination.

For example, one menu might include both of these features:

• Pop-up behavior, meaning that the window does not disappear until a choice has

been made.

• Multiple menu behavior, allowing several menu items to be selected.�

12.1.3.2. Instantiable, Basic, and Mixin Flavors
Each choice facility is based on either an ������������� a ������ or a ����� flavor.

Even the standard choice facilities (invoked by simple Lisp function calls) are

based on these flavors.

Instantiable flavors are self-contained objects that are ready to be invoked. Instan-

tiable facilities are built out of the basic and mixin facilities. An example of an in-

stantiable facility is the tv:momentary-menu flavor.

Basic flavors (often denoted by the prefix basic- in the code) define a whole family

of related flavors. Most of the basic flavors are noninstantiable and merely serve

422
Window System Choice Facilities February 2018

as a base on which to build other flavors. An example of a noninstantiable basic

facility is the tv:basic-mouse-sensitive-items flavor.

Mixin flavors (often denoted by the suffix -mixin in the code) define a particular

feature of an object. A mixin flavor cannot be instantiated, because it is not a

complete object. An example of a mixin flavor is tv:dynamic-multicolumn-mixin.

In the descriptions of the different choice facilities that follow, the instantiable fla-

vors will be discussed first, followed by the basic and mixin flavors.

12.1.3.3. Modifying the Choice Facilities
Although this document explains how to combine the features of the different

choice facilities to suit different applications, it does not tell you how to modify

the facilities provided with the system, except in the simplest of ways. In order to

change the basic behavior of the choice facilities you will need to read some of the

code that implements the facility in question. (For example, you should study win-

dow instance variables and internal messages that you might want to put daemons

on or redefine.)

12.1.4. The User’s Process and the Mouse Process

An asynchronous process called the ������ ������� handles interaction with the

mouse. Some portions of these choice facilities execute in the process that calls

them, while other portions execute in the mouse process. For example, when menu

items are displayed on the screen and the mouse points to them, a box is drawn

around the items. This drawing is performed by the mouse process.

This document does not attempt to explain the details of how the mouse and the

window system interact. Indeed, the choice facilities are supposed to shield the

user from such details, and they can be used effectively with no knowledge of how

they are implemented internally.

However, the cases in which a portion of a facility runs in the mouse process are

noted where they occur in this text. Excepting these cases, you can freely use side-

effects (both special variables and throw), and not worry about errors in your pro-

gram corrupting the system.

The choice facilities described in this document respond to messages sent by the

mouse process. For example, :mouse-buttons, :mouse-click, and :mouse-select are

all handled by any flavor built on tv:menu.

12.2. Introduction to the Menu Facilities

From the user’s point of view, a ���� is a group of choices, each identified by a

word or short phrase. To see an example of a menu, click the right mouse button

while pressing the ����� key in a Lisp Listener; this should cause the System

menu to appear (Figure 22).

You can select one of the choices by moving the mouse near it, which causes it to

be highlighted (a box appears around it), and then clicking any mouse button.

423
February 2018 Window System Choice Facilities

Figure 22. System menu.�

What happens when you select one of the choices depends on the particular type of

menu. Typically the choices in a menu might be commands to some program or

choices on which a command should operate.

The window system software automatically chooses the arrangement of the choices

and the size and shape of the window. Naturally, there are ways for programmers

to control these parameters if they desire. See the section "Init-plist Options for

tv:menu", page 482.

The inverse-video ����� ������������� ���� is provided near the bottom of the

screen in order to convey the meaning of the mouse buttons at a given time. For

example, in the System menu, with the mouse positioned over the "Create" item,

the mouse documentation line normally displays the following text:

Create a new window. Flavor of window selected from a menu.�

The abbreviations L, M, and R stand for the left, middle, and right mouse buttons,

respectively. The numeral 2 indicates a quick double click of the mouse button.

(Note that the "double-click" effect can also be obtained by clicking once on the

mouse while holding down the ����� key.)

12.2.1. Components of a Menu

It is important to understand the terminology for describing a menu. The compo-

nents of a menu are shown in Figure 23.

12.2.2. Menu Items

From the viewpoint of the programmer, a menu has a list of ������ each item rep-

resents one of the displayed choices. The user chooses an item, and then the pro-

gram executes it.

An item, then, has three parts:

424
Window System Choice Facilities February 2018

Label

yes no

Do it Abort

.

..
.
..

attaches to a menu

Multiple Choice Menu

Margin

menu item
menu item
menu item
menu item
menu item
menu item

menu item

menu item

Figure 23. Components of a menu.�

• A representation in the item list

• A displayed representation

• A specified action when it is executed; this can include a value (or values) to re-

turn as well as side-effects�

12.2.3. The Form of a Menu Item

Generally speaking, a menu item can take any of several forms, noted in the list

below. In practice, you find these forms in the specification of particular item

types, described in the next section.

425
February 2018 Window System Choice Facilities

a string or a symbol

The string or symbol is both what is displayed and what is returned. There

are no side-effects when the item is executed. (Note: nil is not a valid

menu item.)

a cons This is like an alist entry. The car is a string or symbol to display and the

cdr is what to return. The cdr must be atomic to distinguish this case

from the remaining ones. There are no side-effects.

a list (���� �����)

Another form of alist entry. ���� is a string or a symbol to display, and

����� is any arbitrary object to return. There are no side-effects when the

item is executed.

a list (���� ���� ��� ������� ���� ������� �������)

This is the "general list" form, described in more detail below. ���� is a

string or a symbol to display. ���� is a keyword symbol specifying what to

do when the item is executed, and ��� is an argument to it. The �������

are keyword symbols specifying additional features desired, and the ���� fol-

lowing them are arguments to those options.�

12.2.3.1. Types of Menu Items
Each menu item is an instance of a particular ����� In most menus, you may not

want to explicitly specify the type of the menu item. This is because in simple

menus all the menu items are of the same type. Your code (which processes the

selected items) presumably knows this type.

It is possible to specify the type of the menu items, however. This provides anoth-

er dimension of flexibility in menu design. Since items of different types can be in-

termingled in a single menu, selecting different items can generate a variety of in-

teresting effects. For example, some items can return a value, while others can

generate new menus or perform other computations.

12.2.3.2. The "General List" Form of Item
To specify the type of an item, use the "general list" form of item.

��

As described, an ��� (argument) field follows each type specification. The prede-

fined types of menu items and the meaning of their arguments are listed here.

:value ��� is what to return when the item is executed. There are no side-effects.

:eval ��� is a form to be evaluated in null environment. Its value is returned.

:funcall

��� is a function of no arguments to be called. Its value is returned.

:funcall-with-self

Like the :funcall item type, :funcall-with-self calls a function. However,

the specified function is called with one argument: self, that is, the menu

itself.

426
Window System Choice Facilities February 2018

An example demonstrates its use:

;;; Specify the item list

...

;;; Specify the :funcall-with-self item

("Option 1" :funcall-with-self do-option-1)

...

(defun do-option-1 (menu)

 ;; send the :option-1 message

 (send menu ’:option-1))

:no-select

This item cannot be selected. Moving the mouse near it does ��� cause it to

be highlighted. This is useful for putting comments, headings, and blank

spaces into menus. ��� is ignored, but it must be present for syntactic con-

sistency.

:kbd ��� is sent to the selected window via the :force-kbd-input message. Typi-

cally it is either a character code that is to be treated as if it were typed

in from the keyboard, or a list that is a command to the program. It is al-

most always preferable to use a command menu rather than :kbd menu

items. See the section "Command Menus", page 438.

:menu ��� is a new menu to choose from; it is sent a :choose message and the re-

sult is returned. Normally ��� would be a momentary menu. If ��� is a

symbol it gets evaluated.

:buttons

��� is a list of three menu items. The item actually chosen (that is, the

item to be executed) is one of these three, depending on which mouse but-

ton was clicked. The order in the list is (���� ������ �����).

:window-op

��� is a function of one argument. The argument is a list of three elements: the

window the mouse was in before this menu was exposed and the X and Y

coordinates of the mouse at that time. For a description of the tv:window-

hacking-menu-mixin: See the section "Basic and Mixin Pop-up and Momen-

tary Menus", page 432. This type is not useful unless the tv:window-

hacking-menu-mixin is present in the window flavor. �

12.2.3.3. Menu Item Options
Menu item options follow the arguments in the "general list" form of item. They

have two purposes:

• Specifying the character style of a menu item

• Specifying the ������������������������������� associated with an item�

The menu item option keywords are as follows:

427
February 2018 Window System Choice Facilities

:character-style

This keyword is followed by a character style specification. The item is dis-

played in that character style, merged against the menu’s default character

style.

The :character-style option is for use with static-window-based menu facil-

ities. For dw:menu-choose menu items and the alist-member presentation

type, use the :style option instead.

:style This keyword is followed by a character style specification. The item is dis-

played in that character style, merged against the menu’s default character

style.

The :style option is for use with Dynamic Window-based menu facilities,

dw:menu-choose and alist-member in particular. For static-window-based

facilities, use the :character-style option instead.

:documentation

This keyword is followed by a string that briefly describes this menu item.

When the mouse is pointing at this item, so that it is highlighted, the doc-

umentation string is displayed in the documentation line at the bottom of

the screen. It is considered good practice to include documentation for all

menu items.�

An example of the use of menu item options is shown here:

("Item 2" :value 1.5 :documentation "Costs $1.50"

 :character-style (nil :bold nil))�

The character style of the displayed item will be of the same family and size as

the default character style for the menu, but its face will be bold.

12.2.4. Choosing and Executing

After an item has been chosen, it is ��������� Executing a menu item does what

the item type tells it to do. Depending on the type of item being executed, execut-

ing produces a value, performs a side-effect, or both.

Execution always takes place in the user process (rather than the mouse process).

Thus, execution can depend on the special-variable environment and can perform

actions that take a long time, interact with the user, or depend on being able to

use the mouse.

The responsibility for executing the chosen menu item rests with either the system

or the programmer, depending on how the menu is used. The tv:menu-choose

function and the :choose message execute the chosen item and return its �����, or

they return nil if no item was chosen. When using command menus the chosen

���� is returned to the user program. See the section "Command Menus", page

438. The user program can execute it by sending the :execute message. See the

section "Useful tv:menu Messages", page 433.

The importance of executing menu items depends on the function of the menu.

Some menus contain items that act as "nouns". The user simply chooses one out of

428
Window System Choice Facilities February 2018

a group of similar items. In this case, executing the item serves only to translate

from the item list. The item list contains the printed representation displayed in

the menu and the documentation displayed in the mouse documentation line. For

this kind of item, the :value item type is often used.

Other menus contain items that act more like "verbs". The program operating the

menu might not be aware of the details of each item; it simply allows the user to

choose one and then executes it. In this case, most of the complicated behavior is

within the menu item. Typically, the :eval or :funcall item type is used.

12.3. The Geometry of a Menu

A menu has a �������� that controls its size, its shape, and the arrangement of

displayed choices. The creator of a menu may specify some aspects of the geometry

explicitly, leaving other aspects to be given by the system according to default

specifications.

There are two ways the choices can be displayed. They can be shown in an array

of rows and columns, or they can be in a "filled" format with as many to a line as

will reasonably fit. Filled format is specified by giving zero as the number of

columns.

The geometry of a menu is represented by a list of six elements:

��������

The number of columns (0 for filled format).

����� The number of rows.

�������������

The ������ ����� of the window, in units of the screen (pixels). If you set

the size or edges of the window the inside width is remembered here and

acts as a constraint on the menu afterwards.

��������������

The ������ ������ of the window, in pixels. If you set the size or edges of

the window the inside height is remembered here and acts as a constraint

on the menu afterwards.

��������������

The maximum (inside) width of a window, in pixels. The window system

prefers to choose a tall skinny shape rather than exceed this limit.

���������������

The maximum (inside) height of a window, in pixels. The system prefers to

choose a short fat shape rather than exceed this limit. If both the maxi-

mum width and the maximum height are reached, the system displays only

some of the menu items and enables scrolling to make the rest accessible.�

Values of nil for parts of the geometry can be specified to leave that part uncon-

strained.

429
February 2018 Window System Choice Facilities

12.3.1. Geometry Init-plist Options�

The init-plist options listed here initialize the geometry of any menu built on the

tv:menu flavor.

(flavor:method :geometry tv:menu)

(flavor:method :rows tv:menu)

(flavor:method :columns tv:menu)

(flavor:method :fill-p tv:menu)

12.3.2. Geometry Messages

These messages may be sent to any flavor of menu to access and manipulate its

geometry:

(flavor:method :geometry tv:menu)

(flavor:method :current-geometry tv:menu)

(flavor:method :set-geometry tv:menu)

(flavor:method :fill-p tv:menu)

(flavor:method :set-fill-p tv:menu)

Note that the messages :set-default-character-style and :set-item-list (which do

what they say) also cause the geometry of a menu to be recomputed.

12.3.3. Geometry Example 1: A Multicolumned menu

It is not necessary to explicitly specify all six values for the geometry list. In the

following example, only the ������� value is supplied, and a one-column menu is

specified. The rest of the geometry values are computed by using the column value

to constrain the system-default settings.

(setq geometry-list (list 1))�

Figures 24a and 24b show the result of setting the geometry of a menu first to a

one-column form (a), then a multicolumn format (b, using the three-column code

example below). In the example, the variable result holds the value of the item se-

lected by the mouse.

The code used to generate Figure 24b is next.

;;; Geometry Example 1

430
Window System Choice Facilities February 2018

(a) (b)

Figure 24. Adjusting a menu’s column geometry. (a) One column (b) Three

columns�

;;; First element in the geometry list specifies three columns

(setq geometry-list (list 3))

;;; Make the menu

(setq my-menu (tv:make-window ’tv:momentary-menu

’:label ’(:string " Selection"

 :character-style (:swiss :bold :normal))

 ’:geometry geometry-list

 ’:borders 3

 ’:item-list ’(("First" :value 100)

 ("Second" :value 200)

 ("Third" :value 300)

 ("Fourth" :value 400)

 ("Fifth" :value 500)

 ("Sixth" :value 600)

 ("None" :value 0))))�

;;; Expose the window, make a choice,

;;; and leave the value in the variable "result"

(setq result (send my-menu ’:choose))�

12.3.4. Geometry Example 2: Retrieving Geometry Information�

Figure 25 is an example of a simple menu from which we would like to retrieve

geometry information.

The code that produced Figure 25 uses the :current-geometry message, which re-

trieves a description of a menu’s geometry. Border and character-style specifica-

tions are used to customize the menu. (A list of the loaded screen fonts is accessi-

ble by using List Fonts ����� in the Zmacs editor.)

;;; Menu Geometry Example 2

431
February 2018 Window System Choice Facilities

Figure 25. Simple menu from which geometry information is obtained.�

;;; z is an instance of a momentary window created

;;; by the make-window function

(setq z (tv:make-window ’tv:momentary-menu

 ’:borders 6

 ’:label ’(:string " Select Color of Issue "

 :character-style (:swiss :italic :normal))))

;;; item-list is a list of menu items

(setq item-list ’("Blue" "Red" "Yellow" "Green" "Orange"))

;;; This sends a message to set up an item list

(send z ’:set-item-list item-list)�

The next expression interrogates the menu and returns a list that describes its

geometry. The list is returned in geometry-facts. (Nothing in particular is done

with geometry-facts in this example).

(setq geometry-facts (send z ’:current-geometry))�

The final expression exposes the menu, allows a choice to be made, and returns

the selected string in the variable result.

(setq result (send z ’:choose))�

12.4. Momentary and Pop-up Menus

A momentary menu appears on the screen with a list of items. The user does not

have to make a choice, however. By moving the mouse outside the menu, the menu

is made to disappear.

By contrast, a pop-up menu forces the user to make a choice. The menu does not

disappear until an item has been selected.

12.4.1. The Standard Momentary Menu Interface

The standard form of a choice facility provides a simple function-call mechanism

for invoking it without specifying its details. The standard momentary menu inter-

face is based on this function:�

432
Window System Choice Facilities February 2018

tv:menu-choose

12.4.2. Standard Momentary Menu Example

The following code is an example of how to instantiate a simple momentary menu.

Once the menu pops up, the user can make a choice with the mouse. (Any mouse

button selects the chosen item.) The ��������� is a list of menu items in the "gener-
al list" form. The price variable is set to the value of the selected item, specified

in the item list.

(setq item-list

 ’(("Meat and potatoes" :value 3.49 :documentation "Costs $3.49")

 ("Fish and chips" :value 3.79 :documentation "Costs $3.79")

 ("Hash" :value 1.49 :documentation "Costs $1.49")

 ("Chicken stew" :value 2.99 :documentation "Costs $2.99")))

(setq price (tv:menu-choose item-list "F & T Diner "))�

12.4.3. The tv:mouse-y-or-n-p Facility

One of the simplest choice facilities in the system is based on the tv:menu-choose

function. This function is useful for quick yes-or-no queries in a user interface:

tv:mouse-y-or-n-p

12.4.4. Basic and Mixin Pop-up and Momentary Menus

The ����� and ����� flavors for ordinary kinds of menus are listed in this section.

They cannot be instantiated themselves but they are the building blocks of the in-

stantiable menus.�

tv:basic-menu

tv:basic-momentary-menu

tv:window-hacking-menu-mixin

12.4.5. Instantiable Pop-up and Momentary Menus

The instantiable menu flavors are listed below. Two of the most important menu

flavors are tv:menu and tv:momentary-menu , since many other menu flavors are

built on them. For a diagram of the flavor network on which tv:menu and

tv:momentary-menu are built, see the section "The Flavor Network of tv:menu",
page 480. For an enumeration of many of tv:menu’s init-plist options and mes-

sages, see the section "Init-plist Options for tv:menu", page 482 , and see the sec-

tion "Messages Accepted by tv:menu", page 483.

tv:menu

tv:momentary-menu

tv:pop-up-menu

tv:momentary-window-hacking-menu

tv:momentary-menu

433
February 2018 Window System Choice Facilities

12.4.6. Useful tv:menu Init-plist Options

This is a list of some of the most frequently used init-plist options for the

tv:menu flavor and menu flavors built on it, such as tv:momentary-menu and

tv:pop-up-menu. For a list of more window-related init-plist options associated

with any flavor built on tv:menu, see the section "Init-plist Options for tv:menu",
page 482.

(flavor:method :borders tv:menu)

(flavor:method :default-character-style tv:menu)

(flavor:method :item-list tv:menu)

(flavor:method :label tv:menu)

(flavor:method :vsp tv:menu)

See the section "Geometry Init-plist Options", page 429.

12.4.7. Useful tv:menu Messages

This is a list of some useful window and menu-related messages associated with

the tv:menu flavor and any flavor built on it. For a list of more window-related

messages to tv:menu, see the section "Messages Accepted by tv:menu", page 483.

(flavor:method :choose tv:menu)

(flavor:method :execute tv:menu)

(flavor:method :deactivate tv:menu)

12.4.8. tv:momentary-menu Example 1: Simple Momentary Menu

An example of a simple momentary window with three items in it from which to

select is shown in Figure 26.

Figure 26. Momentary menu example.�

The code to produce such a menu is given next. (In the example, there are no ac-

tions specified when an item is selected.)

;;; Momentary Menu Example 1

434
Window System Choice Facilities February 2018

;;; z is an instance of a momentary menu created by the

;;; make-window function

(setq z (tv:make-window ’tv:momentary-menu

 ’:label ’(:string "Select one"

 :style (:swiss :bold :normal))))

;;; item-list is a list of menu items

(setq item-list ’("Montmorillonite" "Hectorite" "Beidellite"))

;;; This passes a message to set up an item list

(send z ’:set-item-list item-list)

;;; The :choose message exposes the window and allows the mouse

;;; to select an item. choice holds the result.

(setq choice (send z ’:choose))�

12.4.9. tv:momentary-menu Example 2: Item List as Init-plist Option

Another way to set up the item list is to specify it as an init-plist option.

;;; Example 2

;;; Shows use of the init-plist to specify items

(setq z (tv:make-window ’tv:momentary-menu

’:label " New Selection "

 ’:item-list ’("First" "Second" "Third")))

(setq choice (send z ’:choose))

12.4.10. tv:momentary-menu Example 3: Centered Label and Use of General List
Items�

In Example 3, two new principles are shown. First, in order to have a centered la-

bel for the menu, the new flavor momentary-menu-with-centered-label is created.

Second, the "general list" form of item list is used. See the section "The "General

List" Form of Item", page 425. This allows your program to invoke an operation or

return a value when an item is selected. In the example, the variable ������ is set

to nil or one of the numbers 1.0, 2.0, or 3.0, depending upon the action taken by

the user.

The :documentation option keyword has the following effect. When an item with

the :documentation keyword is pointed at by the mouse, the specified documenta-

tion string appears in the inverse-video mouse documentation line at the bottom of

the screen.

435
February 2018 Window System Choice Facilities

;;; Example 3

;;; Shows use of flavor mixing and "general list" menu items

;;; Define a flavor with the centered-label-mixin

(defflavor momentary-menu-with-centered-label ()

 (tv:centered-label-mixin tv:momentary-menu))

;;; Create an instance of the window

(setq z (tv:make-window

 ’momentary-menu-with-centered-label

 ’:label "Selection"

 ’:item-list ’(("Orange" :value 1.0

 :documentation "Select orange.")

 ("Red" :value 2.0

 :documentation "Select red.")

 ("Yellow" :value 3.0

 :documentation "Select yellow."))))

(setq choice (send z ’:choose))�

12.4.11. tv:momentary-menu Example 4: Using the Mouse Buttons�

The general list form can include choices that depend on the three mouse buttons.

:buttons is a menu item type that takes three arguments (���� ������ �����), each

of which specifies what to do if a particular button is pressed. If any argument to

:buttons is nil , a click on that button is ignored. See the section "Types of Menu

Items", page 425. An example demonstrates its use.

;;; Example 4, shows the use of different mouse buttons

;;; Specify the item list

(setq button-list

 ’(("One Item, Three Ways"

 :buttons ((l :eval (print "left"))

 (m :eval (print "middle"))

 (r :eval (print "right")))

 :documentation

 "L: Print left, M: Print middle, R: Print right")))

;;; Make the menu

(setq menu-1 (tv:make-window ’tv:momentary-menu

 ’:label "Test Buttons"

 ’:item-list button-list))

;;; Expose the window and choose

(setq choice (send menu-1 ’:choose))

436
Window System Choice Facilities February 2018

12.4.12. tv:pop-up-menu Example

Since a pop-up menu does not operate as automatically as a momentary menu, it

requires a slightly different treatment. The normal mode of operation is to allow

:choose to activate and expose it, and then send it a :deactivate message when

done. This does not "destroy" the menu, it just makes sure it does not appear on

the screen.

Figure 27 shows a simple example of a pop-up menu. We use the "general list"
form of item to invoke a function that exposes a second menu and stores the re-

sults of the two selections in the variables drink and price.

Figure 27. Pop-up menu example.�

The code that generated Figure 27 follows.

;;; Pop-up menu example

(defvar drink nil)

(defvar grapefruit "Grapefruit Juice")

(defvar orange "Orange Juice")

(defvar apple "Apple Juice")

;;; This function dispatches according to the kind of

;;; juice selected, and calls the second menu

(defun juice (fruit)

 (selectq fruit

 (gr (setq drink grapefruit))

 (oj (setq drink orange))

 (ap (setq drink apple)))

 (setq price (send two ’:choose)))

;;; This function handles the no-juice item

(defun no-juice ()

 (setq drink nil))

437
February 2018 Window System Choice Facilities

;;; This the first menu, a pop-up menu that allows the user

;;; to select a juice

(setq one (tv:make-window

 ’tv:pop-up-menu

 ’:label "Juice selection"

 ’:borders 3

 ’:item-list ’(("Grapefruit" :eval (juice ’gr))

 ("Orange" :eval (juice ’oj))

 ("Apple" :eval (juice ’ap))

 ("None" :funcall no-juice))))

;;; This is the second menu, a momentary menu that allows the user

;;; to select a size of drink

(setq two (tv:make-window

 ’tv:momentary-menu

 ’:label "What size please?"

 ’:borders 3

 ’:item-list

’(("Dinky" :value .5

 :documentation "Smallest size costs 50 cents.")

 ("Large" :value 1.0

 :documentation "Actually medium size, costs $1.")

 ("Jumbo" :value 1.5

 :documentation "Big, costs $1.50.")

 ("None" :value 0

 :documentation "Cheapest selection by far."))))

;;; Operate the menu; explicit exposing and

;;; deactivating are necessary for pop-up menus

(defun operate ()

 (send one ’:expose-near ’(:mouse))

 (send one ’:choose)

 (send one ’:deactivate))

;;; Invoke the juice selection menu

(operate)�

Another way to implement this example would have been to use the :menu item

type to invoke the second menu. See the section "Types of Menu Items", page 425.

438
Window System Choice Facilities February 2018

12.5. Command Menus

Command menus are used when a menu does not stand alone but is part of a

frame of several window panes, which can include other menus. The entire frame

is controlled by a single process; each frame sends �������� (or �����) to the con-

trolling process from a menu. (For Dynamic Window-based frames, various high-

level facilities are available for creating command menus: See the section "Manag-

ing the Command Processor", page 43.)

In order to understand the operation of a command menu, it is necessary to under-

stand the difference between a menu item and a menu item’s value.

12.5.1. Menu Items and Menu Values

A menu item consists of a list supplied by the programmer in the item list of a

menu specification. In most menus, your program rarely receives menu items back

from the window system; usually the ������ of the items are returned. There are

two exceptions to this situation:

• Certain messages deal explicitly with items, such as the :item-list message,

which returns the list of items associated with a menu.

• In command menus, your program receives a command (or blip) back from the

window system. The blip contains an entire item as well as other information

(explained in the next section). You send the :execute message to the menu to

extract the item’s value and perform side-effects.�

12.5.2. Command Blips

Since the :choose message (which gets a value and not an item) does not operate

on a command menu, the command is sent to the user process through an ��� ����

��� associated with the menu. (Many windows have an I/O buffer associated with

them. See the section "Overview of Window Flavors and Messages", page 352.)

Your controlling process can be looking in its I/O buffer for commands from sever-

al windows as well as for keyboard input.

The command chosen by the user is sent to the I/O buffer as a list in the follow-

ing form:

 (:menu ������������������������������)�

Note: The button-mask is a bit mask with a bit for each button on the mouse.

This provides the option of taking different actions depending on which mouse but-

ton was pressed. The bit assignments are as follows:

 1 Left button

 2 Middle button

 4 Right button�

439
February 2018 Window System Choice Facilities

12.5.3. Responsibilities of Your Program

Your program is responsible for performing each of the actions that the :choose

message would normally do, including the following:

• Deciding where to put the menu. Usually this is specified in the definition of

the frame, via :panes and :constraints specifications in a tv:bordered-

constraint-frame-with-shared-io-buffer flavor.

• Exposing the menu. Usually the command menu is part of a frame and the en-

tire frame is exposed.

• Receiving a choice from the mouse. This is received via an I/O operation like

the :any-tyi message.

• Executing the choice. Example: (send ������ ’:execute �����������)

• Deciding whether to deactivate the frame. This is not normally performed on an

individual command menu pane.�

12.5.4. Command Menu Mixins

Here is a list of command menu mixin flavors.

tv:command-menu-mixin

tv:command-menu-abort-on-deexpose-mixin

12.5.5. Instantiable Command Menus

Here is a list of instantiable command menu flavors.

tv:command-menu

tv:command-menu-pane

12.5.6. tv:command-menu Init-plist Options

This is an init option to the tv:command-menu

(flavor:method :io-buffer tv:command-menu)

Note: By making a command-menu to be a pane in a a tv:bordered-constraint-

frame-with-shared-io-buffer, you are supplied with an I/O buffer automatically.

The frame puts an :io-buffer option into the init-plist of each pane. See the sec-

tion "Frames", page 393.

440
Window System Choice Facilities February 2018

12.5.7. tv:command-menu Messages

Here is a list of tv:command-menu messages.

(flavor:method :io-buffer tv:command-menu)

(flavor:method :set-io-buffer tv:command-menu)

12.5.8. tv:command-menu Example

Figure 28 shows a simple command menu. The top pane contains a command

menu that allows the user to draw an object on the screen. The middle pane is the

drawing surface. The bottom pane is another command menu that allows the user

to refresh the drawing surface or exit.

Triangle Circle Square

Refresh Exit

Figure 28. Command menu example.�

The Lisp code to produce the window in Figure 28 is shown next.

;;; Define the frame and its panes

(setq *test-frame*

 (tv:make-window

’tv:bordered-constraint-frame-with-shared-io-buffer

;; Select the graphics pane when it is exposed

’:selected-pane ’graphics-pane

;; Specify the panes

441
February 2018 Window System Choice Facilities

’:panes�

’((lower-menu-pane

 tv:command-menu-pane

 :item-list

 (("Refresh" :value :refresh

 :documentation "Refresh graphics pane")

 ("Exit" :value :exit

 :documentation "Exit this frame.")))

 (graphics-pane tv:window :label nil :blinker-p nil)�

 (upper-menu-pane

 tv:command-menu-pane

 :item-list

 (("Triangle" :value :triangle

 :documentation "Draw a triangle.")

 ("Circle" :value :circle

 :documentation "Draw circle.")

 ("Square" :value :square

 :documentation "Draw square."))))

;; Specify the size constraints and ordering

’:constraints

’((main . ((upper-menu-pane graphics-pane lower-menu-pane)

 ;; Big enough for the menu

 ((upper-menu-pane :ask :pane-size))

 ;; Big enough for graphics pane

 ((graphics-pane :400.))

 ;; Big enough for the menu

 ((lower-menu-pane :ask :pane-size)))))))

;;; This function accesses the panes and looks for a blip

;;; in the I/O buffer. It then draws, refreshes the

;;; graphics pane, or exits

(defun work ()

 ;; Get access to the panes

 (let ((graphics-pane

 (send *test-frame* ’:get-pane ’graphics-pane))

(upper-menu-pane

 (send *test-frame* ’:get-pane ’upper-menu-pane))

(lower-menu-pane

 (send *test-frame* ’:get-pane ’lower-menu-pane)))�

 (send *test-frame* ’:expose)

 ;; blip holds the list returned by :any-tyi

 (loop as blip = (send graphics-pane ’:any-tyi)

 as result-value =

 (cond ((and (listp blip) (eq (car blip) ’:menu))

 (send (fourth blip) ’:execute (second blip)))

442
Window System Choice Facilities February 2018

 (t nil)) ;just ignore keyboard input�

 do

 ;; Check the value and draw the appropriate object

 (selectq result-value

 (:square

 (send graphics-pane ’:draw-rectangle 180. 180. 800. 110.))

 (:circle

 (send graphics-pane ’:draw-filled-in-circle 530. 200. 94.)) �

 (:triangle

 (send graphics-pane ’:draw-regular-polygon

 82. 120. 282. 120. 3))

 (:refresh

 (send graphics-pane ’:refresh))

 (:exit

 (send *test-frame* ’:deactivate)

 (return))))))

(work)

12.6. Dynamic Item List Menus

A dynamic item list menu is a menu in which the items change in between expo-

sures. You see an example of a dynamic item list menu when you click on the

[Select] item on the System menu (Figure 29). At different times, a different item

list appears, depending upon how many different processes were activated by the

user.

Figure 29. Select menu, an example of a dynamic item list menu.�

You can add an item to the menu by changing the value of the variable supplied

as the :item-list-pointer init-plist option. At appropriate times the menu checks to

see if this variable has been changed. If it has, the menu automatically updates

443
February 2018 Window System Choice Facilities

the item list. (Do not directly modify the item list yourself, as it is part of the

menu.) For a description of the times when the menu checks the state of :item-

list-pointer option, See the section "Messages to Dynamic Menus", page 443.

The dynamic item list feature is provided only for momentary and pop-up menus;

it is not available for use in menus within fixed frames.

12.6.1. Dynamic Item List Mixins

Here is a list of noninstantiable mixins for dynamic item lists.

tv:abstract-dynamic-item-list-mixin

tv:dynamic-item-list-mixin

tv:dynamic-multicolumn-mixin

12.6.2. Instantiable Dynamic Item List Menus

Here is a list of instantiable dynamic item list menus.

tv:dynamic-momentary-menu

tv:dynamic-momentary-window-hacking-menu

tv:dynamic-pop-up-menu

tv:dynamic-pop-up-command-menu

tv:dynamic-pop-up-abort-on-deexpose-command-menu

12.6.3. Init-plist Option for Dynamic Menus

The init options on this list are for use with dynamic menus.

(flavor:method :column-spec-list tv:dynamic-multicolumn-mixin)

(flavor:method :item-list-pointer tv:dynamic-...-menu)

12.6.4. Messages to Dynamic Menus

This method is a message accepted by menus with the dynamic item-list mixin.

(flavor:method :update-item-list tv:dynamic-...-menu)

12.6.5. Dynamic Menu Example

A graphic example of a dynamic-momentary-menu is given in Figure 30. The menu

is shown in its state before updating (a) and after updating (b). This is followed by

a listing of the code that produces it.

;;; Dynamic Menu Example

444
Window System Choice Facilities February 2018

Figure 30. Dynamic menu example.�

;;; Set up the initial item list and define the

;;; dynamic-item-list pointer.

(defvar pointer

’("Door Number 1"

 "Door Number 2"

 "Door Number 3"))

;;; Make the dynamic menu

(defvar doors (tv:make-window ’tv:dynamic-momentary-menu

 ’:borders 4

 ’:default-character-style

(:dutch :bold :normal)

 ’:label "CHOICES"

 ’:item-list-pointer ’pointer))

;;; Expose the menu, allowing a choice to be made

(send doors ’:choose)�

(In the example, nothing is being done with the result.)

Here is an example of dynamically updating the item list. The :update-item-list

message is sent automatically and transparently by the menu to itself. The user

does not have to explicitly send it.

;;; Add entries to the item list

(setq pointer

 (append pointer (list "Door Number 4" "Door Number 5")))

;;; Expose the menu with the new choices added

(send doors ’:choose)�

12.6.6. Adding an Item to the System Menu

Although they are not specifically a part of the dynamic item list facility, two

functions exist for adding an item (such as the name of a program) to the System

menu.

445
February 2018 Window System Choice Facilities

12.6.6.1. Adding an Item to the Programs Column
To add an item to the �������� column of the System menu, use the following

function:

tv:add-to-system-menu-programs-column

12.6.6.2. Adding an Item to the Create Column
To add an item to the ������ menu used in the System Menu and the Screen Edi-

tor, use the following function:

tv:add-to-system-menu-create-menu

12.6.6.3. tv:select-or-create-window-of-flavor Function
This function selects or creates a window of a specified flavor.

tv:select-or-create-window-of-flavor

12.7. Multiple Menus

Multiple menus allow several items to be selected at a time. The selected items

are highlighted in inverse video. Clicking the mouse on an item complements its

selected state. Clicking the default special choice [Do It] associated with a multiple

menu completes the selection, and returns the result of executing all the high-

lighted choices. The lower portion of Figure 31 is an example of a hardcopy multi-

ple menu with several items selected.

Figure 31. Hardcopy multiple menu.�

12.7.1. Multiple Menu Mixins

These are the noninstantiable flavors that add multiple menu behavior to a win-

dow.

446
Window System Choice Facilities February 2018

tv:menu-highlighting-mixin

tv:multiple-menu-mixin

12.7.2. Instantiable Multiple Menus

These are the instantiable flavors that add multiple menu behavior to a window.

tv:multiple-menu

tv:momentary-multiple-menu

12.7.3. tv:multiple-menu-mixin Init-plist Options

Use these init options with multiple menu mixins.

(flavor:method :highlighted-items tv:menu-highlighting-mixin)

(flavor:method :special-choices tv:multiple-menu-mixin)

12.7.4. tv:multiple-menu-mixin Messages

When using the following methods, note that for those requiring an item from the

menu’s item list, the item must be eq to the :item-list item, that is, the item it-

self.

(flavor:method :set-highlighted-items tv:menu-highlighting-mixin)

(flavor:method :add-highlighted-item tv:menu-highlighting-mixin)

(flavor:method :remove-highlighted-item tv:menu-highlighting-mixin)

(flavor:method :highlighted-values tv:menu-highlighting-mixin)

(flavor:method :set-highlighted-values tv:menu-highlighting-mixin)

(flavor:method :add-highlighted-value tv:menu-highlighting-mixin)

(flavor:method :remove-highlighted-value tv:menu-highlighting-mixin)

Consider the following example:

You make a menu (probably in a constraint frame description):

 ...

:panes ’(...

 (tv:command-menu-pane :item-list

(("This" :funcall this

 ("That" :funcall that)

 ("The other" :funcall the-other)))

 ...)�

Later, in some function, you want to highlight the "This" menu item. So you use

the :set-highlighted-items message:

 ...

 (send menu :set-highlighted-items

’(("This" :funcall this)))

 ...�

447
February 2018 Window System Choice Facilities

Doing this does not highlight anything. What you need to do instead is:

(defvar *item-list* ’(("This" :funcall this)

 ("That" :funcall that)

 ("The other" :funcall the-other)))

;;; make the constraint frame, but use backquote:

 ...

:panes ‘(...

 (tv:command-menu-pane :item-list ,*item-list*)

 ...)

 ...

;;; And in the function, do this:

 ...

(send menu :set-highlighted-items (list (first *item-list*)))

 ...�

12.7.5. tv:momentary-multiple-menu Example

A simple example of defining a momentary multiple menu is given in Figure 32.

The example of a Thai restaurant is used to illustrate the situation where more

than one choice is appropriate.

Figure 32. Momentary multiple menu.�

The Lisp code used to generate Figure 32 is given in this example of setting up

and using a multiple menu. The variable selections is used to contain the selected

items.

;;; Multiple Menu Example

448
Window System Choice Facilities February 2018

;;; Set up the item list. Each of the dishes has a name and

;;; a number. When selected, the names are highlighted.

(setq items ’(("Yum Hed Koong" 1)

 ("Nur Pud Nor-mai" 2)

 ("Nur Pud Pek" 3)

 ("Nam Sod" 4)

 ("Gai Pud Gra-prao" 4)

 ("Pla Preow Warn" 5)

 ("Pud Thai" 6)))

;;; This handles the "Do It" special item

(defun do-it ()

 ;; Get the names of the selected dishes

 (setq names

 (mapcar ’car (tv:menu-highlighted-items Thai-menu)))

 ;; Get the numbers of the selected dishes

 (setq selections

 (send Thai-menu ’:highlighted-values)))

;;; This handles the "None" special item

(defun none ()

 (send Thai-menu ’:set-highlighted-items nil)

 (setq selections nil)

 (setq names nil))

;;; This handles the "All" special item

(defun all ()

 ;; Make all the items selected

 (send Thai-menu’:set-highlighted-items items)

 ;; Get the names of the selected dishes

 (setq names (mapcar ’car (send Thai-menu ’:highlighted-items)))

 ;; Get the numbers of the selected dishes

 (setq selections (send Thai-menu ’:highlighted-values)))

;;; This sets up the special choice list.

;;; When one of these is selected, the menu exits.

(setq choices ’(("Do it" :eval (do-it))

("None" :eval (none))

("All" :eval (all))))

;;; This instantiates the menu

(setq Thai-menu (tv:make-window

’tv:momentary-multiple-menu

 ’:item-list items

 ’:special-choices choices))

;;; This exposes the menu, allowing choices to be made.

(send Thai-menu ’:choose)

449
February 2018 Window System Choice Facilities

12.8. The Multiple Menu Choose Facility

The multiple menu choose facility provides menus with several columns. The user

may choose one item from each column. The selected choice in each column is

highlighted with inverse video. At the bottom of the leftmost two columns are two

special choices, in italics. The [Do It] choice selects all the highlighted choices.

[Abort] deactivates the menu with no further action.

An example of the multiple menu choose facility can be displayed by clicking right

on the [Reply] item in the main Zmail window, as in Figure 33 below.

Figure 33. Multiple menu choose facility in Zmail.�

Menus of this type are operated by the :multiple-choose message rather than the

:choose message.

12.8.1. The Standard Multiple Menu Choose Function

Use these functions for a simple multiple-menu-choose menu.�

tv:multiple-menu-choose

tv:defaulted-multiple-menu-choose

12.8.2. tv:multiple-menu-choose Example

An example of a simple multiple-menu-choose menu is shown in Figure 34.

Figure 34. A standard multiple-menu-choose menu.�

The code to produce the menu in Figure 34 follows.

450
Window System Choice Facilities February 2018

;;;This sets up a three-row item list.

(setq possibilities

’((Item-AA Item-AB Item-AC)

 (Item-BA Item-BB Item-BC)

 (Item-CA Item-CB Item-CC)))

;;;Evaluate this to instantiate the menu.

(setq new-menu (tv:multiple-menu-choose

 possibilities ’(Item-AA Item-BA Item-CA)))

;;;This also sets up a three-row item list. Evaluate it then

;;;re-evaluate the form above and note the difference.

(setq possibilities

 ’(((Item-AA :value 1)(Item-AB :value 2)(Item-AC :value 3))

 (Item-BA Item-BB Item-BC)

 (Item-CA Item-CB Item-CC)))

;;;This also instantiates the menu illustrated.

;;;Notice especially the value returned for a 1st-column choice.

(setq new-menu (tv:defaulted-multiple-menu-choose

 possibilities ’(1 Item-BA Item-CA)))�

12.8.3. Multiple Menu Choose Mixin and Resource

Use these facilities for a multiple menu-choose menu.

tv:multiple-menu-choose-menu-mixin

tv:pop-up-multiple-menu-choose-resource

12.8.4. Instantiable Multiple Menu Choose Flavors

Here are two instantiable multiple menu choose flavors.

tv:multiple-menu-choose-menu

tv:pop-up-multiple-menu-choose-menu

12.8.5. tv:multiple-menu-choose-menu Example

Figure 35 shows an example of a momentary-multiple-item-list menu generated us-

ing the flavor tv:multiple-menu-choose-menu. The figure is followed by the code

that generated the menu.

;;; -*- Mode: LISP; Package: USER; Base: 10; Syntax: Zetalisp -*-

;;; Multiple-menu-choose-menu Example

451
February 2018 Window System Choice Facilities

Figure 35. Momentary multiple-menu-choose menu.

;;; Define the item list of lists

(setq items-3x3

’((Item-AA Item-AB Item-AC)

 (Item-BA Item-BB Item-BC)

 (Item-CA Item-CB Item-CC)))

;;; Specify the default, highlighted items

(setq default-items ’(Item-AA Item-BB Item-CC))

;;; Make the menu

(setq newer-menu

 (tv:make-window

 ’tv:multiple-menu-choose-menu

 ’:label

 ’(:string "Pick Any Three"

 :character-style (:swiss :bold :normal))

 ’:borders 2))

;;; Choose an item from each column; resultat holds result

(setq resultat

(send newer-menu

’:multiple-choose items-3x3 default-items))

12.9. The Multiple Choice Facility

The �������� ������ facility produces a window containing several items, one per

text line. For each item, there can be several yes/no choices for the user to make.

For an example of a multiple-choice window, try selecting the [Kill or Save

Buffers] operation in the Zmacs editor menu (see Figure 36).

Note that the window is arranged in columns, with headings at the top. The left-

most column contains the text naming each item. The remaining columns contain

small boxes (called ������������). A "no" box has a blank center, while a "yes" box

contains an "X".

452
Window System Choice Facilities February 2018

Figure 36. Multiple choice facility in the Zmacs menu.�

Pointing the mouse at a choice box and clicking the left button complements its

yes/no state. Each choice can be initialized by the program to yes or no as appro-

priate for a default set-up. Note that some items cannot allow some choices, so

there can be blank places in the array of choice boxes.

There can be constraints among the choices for an item. For example, if they are

mutually exclusive then clicking one choice box to "yes" automatically sets the oth-

er choice boxes on the same line to "no".

Several parameters are associated with a multiple-choice window:

• ��������� -- a string which is the column heading for the leftmost column.

• ��������� -- a list of representations of items. Each element is a list, (���� ����

�������). ���� is any arbitrary object. ���� is a string which names that object;

it is displayed on the left on the line of the display devoted to this item. �������

is a list of keywords representing the choices the user can make for this item.

Each element of ������� is either a symbol, �������, or a list, �������� ��������.

If ������� is present and non-nil, the choice is initially "yes"; otherwise it is ini-

tially "no".

• ������������� is a list defining all the choice keywords allowed. Each element

takes the form (������� ����). ������� is a symbol, the same as in the �������

field of an ��������� element. ���� is a string used to name that keyword. It is

used as the column heading for the associated column of choice boxes.

• An element of ������������� can have up to four additional list elements, called

������������. These control what happens to other choices for the same item

when this choice is selected by the user. Each implication can be nil, meaning

no implication, a list of choice keywords, or t meaning all other choices.

• The first implication is �����������; it specifies what other choices are also set to

"yes" when the user sets this one to "yes."

453
February 2018 Window System Choice Facilities

The second implication is �����������; it specifies what other choices are set to

"no" when the user sets this one to "yes."

The third and fourth implications are ������������ and ������������; they take ef-

fect when the user sets this choice to "no."

The default implications are nil t nil nil, respectively. In other words the de-

fault is for the choices to be mutually exclusive. (If the implications are

not specified, the defaults are rplacd’ed into the ������������� element by

the system.)�

• ����������������� -- the choices displayed in the bottom margin. When users

click on one of these they are done. The variable tv:default-finishing-choices

contains a reasonable pair of default finishing choices: [Do It] and [Abort].�

12.9.1. The Standard Multiple Choice Function

This function interface to the multiple choice facility provides all the default val-

ues needed for a simple multiple choice menu.�

tv:multiple-choose

12.9.2. tv:multiple-choose Menu Example

An example of a multiple-choice menu is shown in Figure 37.

Figure 37. Multiple choice menu example.�

The code to produce the multiple-choice menu in Figure 37 follows.

;;; Multiple Choice Example

;;; These are the possible choices the user can make

(setq choices ’(Yes No Explain))

(setq selection-item-list

 (list (list 1 " Selection 1" choices)

 (list 2 " Selection 2" choices)

 (list 3 " Selection 3" choices)

 (list 4 " Selection 4" choices)

 (list 5 " Selection 5" choices)))

454
Window System Choice Facilities February 2018

;;; Set the choice boxes

(setq selection-keyword-alist

 (list ’(Yes "Yes, please. ")

 ’(No "No, thanks. ")

 ’(Explain "What is it? ")))

;;; Expose the menu,

(setq appetizer-order-list

(tv:multiple-choose

 " Today’s selections" selection-item-list

 selection-keyword-alist))

If a selection is made for each item, an example of the values assigned to the vari-

able appetizer-order-list is the following:

((1 YES) (2 NO) (3 EXPLAIN) (4 NO) (5 NO))

If only one selection is made, the values assigned to the appetizer-order-list might

look like this:

((1 YES) (2) (3) (4) (5))

12.9.3. The Basic Multiple Choice Flavor

The default multiple-choice facility shown previously is useful for many applica-

tions, but sometimes more customization is desirable. This basic facility provides

options that allow you to tailor a multiple-choice menu to specific needs.

tv:basic-multiple-choice

12.9.4. Instantiable Multiple Choice Menu Flavors

These instantiable facilities provide options that allow you to tailor a multiple-

choice menu to specific needs.

tv:multiple-choice

tv:temporary-multiple-choice-window

tv:temporary-multiple-choice-window

12.9.5. tv:multiple-choice Menu Messages�

The following messages are useful to send to a multiple-choice window.

(flavor:method :setup tv:multiple-choice)

(flavor:method :choose tv:multiple-choice)

12.9.6. tv:multiple-choice Example

This example shows how the tv:multiple-choice flavor can be used to define a

multiple-choice menu.

455
February 2018 Window System Choice Facilities

;;; Specify the choice keywords

(setq choices ’(Yes No))

;;; Set the choice boxes

(setq x-keyword-alist

 (list ’(Yes "Yes")

 ’(No "No")))

;;; Specify the item list

(setq x-item-list

 (list (list "Blue" "Blue" choices)

 (list "Red" "Red" choices)

 (list "Yellow" "Yellow" choices)

 (list "Green" "Green" choices)))

;;; Make the window

(setq x (tv:make-window ’tv:multiple-choice))

;;; Setup the window

(send p ’:setup "Select Mode " x-keyword-alist

 tv:default-finishing-choices x-item-list)

;;; Expose the window and make a choice

(setq result (send p ’:choose))�

12.10. The Choose Variable Values Facility�

The choose-variable-values facility is used throughout the Lisp Machine system

software. The basic idea of choose-variable-values is to allow the user to interac-

tively adjust the ����� of variables used in a program. (For an overview of related

facilities intended for use with Dynamic Windows, see the section "Using Presenta-

tion Types for Input", page 34.)

More specifically, this facility displays a menu of names (standing for Lisp vari-

ables), followed by colons, and their values. After selecting a value with the left

mouse button, users can interactively modify the value of the variable. Pressing

the middle button preloads the input editor with the value of the variable, allowing

the user to edit it. After the values are modified, the user can exit the menu.

For an example of a choose-variable-values window, try the [Attributes] option of

the System menu (see Figure 38).

12.10.1. Variables and Types

Each variable has a ���� that limits the values it can assume. The way the value

is displayed and the way the user enters a new value depend on the type. The

456
Window System Choice Facilities February 2018

Figure 38. Choose-variable-values window accessed via the System menu.�

types fall into two categories:

 Those with a small number of valid values.

 Those with a large or infinite number of valid values. �

The first category displays all the choices, with the current value of the variable

in boldface. The second category displays the current value until it is selected, at

which point the value disappears until the user types in a new value. If the user

rubs out more characters than were typed in, the original value is restored.

Note that the type definition mechanism is extensible. You can define new types at

any time. See the section "Defining Choose Variable Values Types", page 465.

All variables whose values are to be chosen must be declared special, so that they

are represented by Lisp symbols and can be accessed non-locally to your program.

(Note that the compiler automatically declares certain variables to be special. Good

programming practice mandates that this should be done explicitly by the pro-

grammer.)

In most cases, the syntax for input and output is controlled by the binding of the

Lisp system variables zl:base, zl:ibase, zl:*nopoint, zl:prinlevel, zl:prinlength,

zl:package, and zl:readtable , as usual. However, the :number, :number-or-nil,

:integer, and :integer-or-nil types take a :base parameter to specify the base for

input and output. The default base is decimal.

Each line of the display is represented by an ����, which can be one of the follow-

ing:

������ The string is displayed; strings are useful for putting headings and

blank separating lines into the display.

������ The symbol is a variable whose type is :sexp; that is, its value can

be any Lisp object. The name of the variable on the display is sim-

ply its print-name.

���� in the form: (��������������������������)

• �������� is the object whose value is being chosen.

457
February 2018 Window System Choice Facilities

• ���� is optional; if it is omitted it defaults to the print-name of

��������. If ���� is supplied it can be a string, which is displayed

as the name of the variable, or it can be nil, meaning that this

line should have no variable name, but only a value.

• ���� is an optional keyword giving the type of variable; if omitted

it defaults to :expression.

• ���� are possible additional specifications dependent on ����.�

A list is the most general form of item. It is possible to omit ����

and supply ���� since ���� is always a string and ���� is always a

symbol. For example, both of the following forms are valid item

lists:

(base "Output Base" :integer)

and

(base :integer)

It is also possible to specify a locative in place of a variable. The

value displayed and modified is the contents of the cell designated

by the locative.

12.10.2. Predefined tv:choose-variable-values Variable Types

The following are the types of variables supported by default, along with any ����

that can be put in the item after the ���� keyword:

:boolean

The value of the variable is either t or nil. The choices are displayed as

"Yes" for t and "No" for nil.

:inverted-boolean

The value of the variable is either t or nil. The choices are displayed as

"Yes" for nil and "No" for t.

:expression

The value is any Lisp expression, read with zl:read and printed with prin1.

:sexp The same as :expression. This type is obsolete.

:princ The value is any Lisp expression, read with zl:read and printed with princ.�

:eval-form

The value is the result of evaluating a Lisp form, read and evaluated with

zl:read-and-eval and printed with prin1.

:choose ����������� ��������������

The value of the variable must be one of the elements of the list �����������.

Comparison is by zl:equal rather than eq. All the choices are displayed,

with the current value in boldface. A new value is entered by pointing to it

458
Window System Choice Facilities February 2018

with the mouse and clicking. �������������� is the function to print a value;

it is optional and defaults to princ.

:assoc ����������� ��������������

The displayed object is the car of one of the elements of �����������, while

the cdr of the element is the value that goes in the variable. ��������������

is the function to print a value; it is optional and defaults to princ.

:choose-multiple ����������� ��������������

This type takes arguments like the :assoc type, but permits the user to

choose more than one element in the values list. The variable is set to a

list of all the values chosen.

:menu-alist ���������

The items are specified in an ���������. See the section "Types of Menu

Items", page 425. The usual menu mechanisms for specifying the string to

display, the value to return, the function to call, and the mouse documenta-

tion work with this. :menu-alist is often used for its mouse documentation

feature.

:character

The value is an integer that is a character code. It is printed as the char-

acter name (using the ~:@c zl:format operator), and it is read as a single

keystroke.

:character-or-nil

This is an integer like :character, but nil is also allowed as the value. nil

displays as "none" and can be entered by pressing �����������.

:stringThis value is a string, printed with princ and read with zl:readline.

:string-list

This value is a list of strings, whose printed representation for input and

output consists of the strings separated by commas and optional spaces.

:string-or-nil

This value is a string or nil if the user just presses ������, ����, or ���.

:number :base ���� :or-nil ������

This value is a number. It is printed with prin1 and read with sys:read-

number. If :base is specified, the number is read and printed in base ����.

By default, the number is read and printed in decimal. If :or-nil is specified

with a value other than nil, a value of nil is accepted when the user just

presses ������, ����, or ���. nil displays as "none". The default for ������

is nil.

:number-or-nil :base ����

The same as :number :base ���� :or-nil t. This type is obsolete.

:decimal-number

The same as :number :base 10 This type is obsolete.

:decimal-number-or-nil

The same as :number :base 10. :or-nil t. This type is obsolete.

459
February 2018 Window System Choice Facilities

:integer :base ���� :or-nil ������

This value is an integer. It is printed with prin1 and read with sys:read-

integer. If :base is specified, the integer is read and printed in base ����.

By default, the integer is read and printed in decimal. If :or-nil is specified

with a value other than nil, a value of nil is accepted when the user just

presses ������, ����, or ���. nil displays as "none". The default for ������

is nil.

:date This value is a universal date-time. An ambiguous date is interpreted as be-

ing in the future. (Compare this with :past-date.)

:date-or-never

This value is a universal date-time or nil if the user types "never". An am-

biguous date is interpreted as being in the future.

:past-date

The value is a universal date-time. An ambiguous date is interpreted as be-

ing in the past.

:past-date-or-never

This value is a universal date-time or nil if the user types "never". An am-

biguous date is interpreted as being in the past.

:time-interval-or-never

The value is an integer representing the number of seconds in a time in-

terval, or nil if the user types "never". The interval is read and printed as

either "never" or alternating numbers and units of time; the units can in-

clude seconds, minutes, hours, days, weeks, or years.

:time-interval-60ths

The value is an integer representing the number of sixtieths of a second in

a time interval. The interval is read and printed as alternating numbers

and units of time; the units can include seconds, minutes, hours, days,

weeks, or years. The smallest unit read or displayed is second.

:pathname

The value is a pathname, represented as a string. The pathname read is

merged with the result of (fs:default-pathname) and has a default version

of :newest.

:pathname-or-nil

The value is a pathname, represented as a string, or nil if the user just

presses ������, ����, or ���. The pathname read is merged with the result

of (fs:default-pathname) and has a default version of :newest.

:pathname-list

The value is a list of pathnames, read as a series of pathnames separated

by commas and optional spaces, and merged with the result of (fs:default-

pathname). The default version is :newest. The list is printed as a series

of pathnames separated by commas and spaces.

:host The value is a network host, read and printed as the name of the host.

460
Window System Choice Facilities February 2018

:host-or-local

The value is a network host. It is read as the name of a host or the string

"local" to represent the local host. If the host is the local host, it is printed

as "Local"; otherwise, it is printed as the name of the host.

:host-list

The value is a list of network hosts, read as a series of host names separat-

ed by commas or spaces, and printed as a series of host names separated by

commas and spaces.

:pathname-host

The value is a pathname host, read and printed as the name of the host.

The name can be "local", "sys", or the name of another logical host as well

as the name of a physical host.

:keyword-list

The value is a list of symbols in the keyword package, read as a series of

symbol names separated by commas or spaces, and printed as a series of

symbol names separated by spaces. Symbol names are read and printed

without package prefixes (that is, not preceded by colons).

:font-list

The value is a list of fonts, read as a series of font names separated by

commas or spaces, and printed as a series of font names separated by com-

mas and spaces. Font names are read and printed without package prefixes

(that is, not preceded by fonts:).�

A :documentation specification can be inserted where a variable type would nor-

mally be expected.

:documentation ��� ���� �������

The actual type of the variable is ����. ��� is a string that is

displayed in the mouse documentation line when the mouse is

pointing at this item. The default, if no documentation is sup-

plied using the :documentation specification, depends on the

variable type. It is generally something like "Click Left to in-

put a new value from the keyboard".�

12.10.2.1. The Optional Constraint Function�

It sometimes is necessary to ensure that when one variable’s value is changed, one

or more of the others is changed as well. As an init-plist option, a choose-variable-

values window can have an associated function, which is called whenever a vari-

able’s value is changed. This function can implement constraints among the vari-

ables.

The constraint function is specified by the :function init-plist option. See the sec-

tion "tv:choose-variable-values Options" in ���� ��������� ����������. It is called

with arguments ������, ��������, ���������, and ���������. The function should re-

turn nil if just the original variable needs to be redisplayed, or t if no redisplay is

required; in this case it would usually setq several of the variables then send a

:refresh message to the window to redisplay everything.

461
February 2018 Window System Choice Facilities

12.10.3. The Standard Choose Variable Values Function

tv:chose-variable-values, the standard function interface to the choose-variable-

values feature chooses the dimensions of the window and enables scrolling if there

are too many variables to fit in the chosen height. It exposes a window and dis-

plays the values of the specified variables, permitting the user to alter them.

12.10.4. tv:choose-variable-values Examples

Here are some examples of how to call tv:choose-variable-values. The simplest

kind of example is to display some variable names and values and let the user

change them, as in Figure 39. To see how it works, point at one of the variables,

press the left mouse button, and then type in a new value and press ������. Re-

call that zl:*nopoint is a Lisp variable.

Figure 39. Choose-variable-values example 1.�

The Lisp code used to produce Figure 39 is shown here.

;;; Choose Variable Values Example 1

; Invoke the window

(tv:choose-variable-values ’(zl:base zl:ibase zl:*nopoint)

 ’:label "Number format parameters")

The same example can be done with better menu formatting in the next example

(shown in Figure 40).

Figure 40. Choose-variable-values example 2: better formatting.�

The Lisp code used to produce Figure 40 is given here.

;;; Choose Variable Values Example 2

462
Window System Choice Facilities February 2018

(tv:choose-variable-values

’((zl:base "Output Base" :number)

 (zl:ibase "Input Base" :number)

 (zl:*nopoint "Decimal Point"

 :assoc (("Yes" . nil)

 ("No" . t))))

’:label "Number format parameters")

If we had not wanted to reverse the sense of t and nil the entry for zl:*nopoint

would have been the following:

 (*nopoint "No Decimal Point" :boolean)

If we wanted to use the name of the variable as the menu item, rather than

spelling it out, we could have used the following expression:

 (*nopoint :boolean)

As another example, we consider shopping for groceries via Lisp Machine. We have

variables fish, crustaceans, seafood-specialties, lettuce, and apples. Many stores

accept coupons for discounts on purchases, so the Coupon-value variable (a float-

ing-point number) allows users to enter a dollar value representing the value of

the coupons they are redeeming.

As mentioned, clicking [Middle] on the mouse puts the variable in the input editor,

allowing you to make changes in it. In Figure 41 we display this situation and al-

low it to be modified, using several different kinds of items:

Figure 41. Choose-variable-values window: grocery store example.�

The Lisp code used to produce Figure 41 is provided next. Each "STORE" in the

example is implemented with a different variation of the choose variable value fa-

cility. Note the use of strings to provide labels for the sections, and null strings to

separate the sections with blank lines.

;;; Choose Variable Values Example 3

463
February 2018 Window System Choice Facilities

;;; Set up the variables

(setq fish ’("Salmon"))

(setq crustaceans ’("Clams"))

(setq seafood-specialties ’("Flying-fish roe"))

(setq lettuce "Boston")

(setq apples "Pippin")

(setq Coupon-value 0)

(setq result (tv:choose-variable-values

 ’("FISH STORE"

 (fish "Fish" :string-list)

 (crustaceans "Shellfish" :string-list)

 (seafood-specialties "Other Seafood" :string-list)

 ""

 "PRODUCE STORE"

 (lettuce "Lettuce" :choose ("Boston" "Red" "Iceberg"))

 (apples "Apples" :choose ("Macintosh" "Jonathan" "Pippin"))

 ""

 "VALUE OF YOUR COUPONS"

 (Coupon-value "Coupons"

:documentation

 "Click left to enter the value of your coupons."

 :number))

 ’:label "Today’s Food Selections"))

12.10.5. The User Option Facility

The user option facility provides a simple window interface that allows you to set

parameter options to your programs. The user option facility is based on the

choose-variable-values facility.

A typical use would be in a program that requires several variables to be set be-

fore it is run. In a conventional system, a standard way to alter these values

would be to alter the code, recompile the program, and then run it. By contrast,

the user option facility generates a window with the names and default values of

the variables. This gives you the option of resetting these variables before execu-

tion of the program. When the window is exited, the rest of the program runs.

For an example of a user option window, type the following function at a Lisp Lis-

tener window:

(choose-user-options zwei:*zmail-user-option-alist*)�

The choose-user-options function is also used by the Zmail Profile mode, and else-

where throughout the system.

Special forms are provided for defining options, and the choose-user-options func-

tion exists for putting all the options into a choose-variable-values window so that

the user can alter them. In addition, the current state of the options can be writ-

ten into an initialization file, or all the options can be set to their default initial

values.

464
Window System Choice Facilities February 2018

12.10.5.1. Functions for Defining User Option Variables
Use these special forms to define user option variables.

define-user-option-alist

define-user-option

12.10.5.2. Functions for Altering User Option Variables
Use these functions to alter user option variables.

choose-user-options

reset-user-options

write-user-options

12.10.6. User Options Example

Figure 42 is an example of a user option window that sets three variables of a

simple graphics program.

Figure 42. User options window example.�

The Lisp code used to produce Figure 42 is shown between the asterisk-marked

(****) lines. The rest of the code generates the graphics.

;;; User Option Example

;;;****

;;; This names the user option alist

(define-user-option-alist options)

;;; These expressions set up the options

(define-user-option (alu-function options)

tv:alu-ior :decimal-number "ALU Function")

(define-user-option (range options) 768. :decimal-number "Range")

(define-user-option (density options) 100. :decimal-number "Density")

;;; Expose the choose-option window

(choose-user-options options)

465
February 2018 Window System Choice Facilities

;;;****

;;; This is a random line-drawing function

(defun image (alu-function range density)

 (setq x (tv:make-window ’tv:window))

 ;; Temporarily select a window; the arguments

 ;; are the window x and the final action on it

 (tv:window-call (x :deactivate)

 (setq n range)

 (loop for i below density do

(send x ’:draw-lines alu-function

 (random n) (random n) (random n) (random n)

 (random n) (random n) (random n) (random n))

(send x ’:draw-circle

 (random n) (random n) (random n)))

 (send x ’:tyi)))

;;; Draw the image

(image alu-function range density)

12.10.7. Defining Choose Variable Values Types

The standard choose-variable-values facility supplies programmers with a range of

predefined types. See the section "Predefined tv:choose-variable-values Variable

Types", page 457. However, this list is extensible through two mechanisms:

1. Adding a type keyword property to a new type name

2. Adding a type decoding method�

12.10.7.1. Adding a Type Keyword Property�

The basic type definition mechanism is simple: put a tv:choose-variable-values-

keyword property on the type name. In the following example, the new type is

called new-type, the property value is ���������, and the property name is

tv:choose-variable-values-keyword.

(defprop new-type ��������� tv:choose-variable-values-keyword)�

For a discussion of the contents of ���������: See the section "Elements of the

tv:choose-variable-values-keyword Property" in ���� ��������� ����������. See the

section "Type Decoding Message", page 466.

12.10.7.2. Adding a Type Decoding Method
The second way to extend the range of standard types is to define a new flavor of

choose-variable-values window and give it a :decode-variable-type method cir-

cumventing the use of the standard variable types.

466
Window System Choice Facilities February 2018

12.10.8. Type Decoding Message

The method (flavor:method :decode-variable-type tv:basic-choose-variable-

values) must implement the :documentation keyword, which can appear in an

item where a variable type would normally appear. The system sends the :decode-

variable-type message to a choose-variable-values window when it needs to under-

stand an item. The argument of this message is a list whose car is the keyword

for the item whose cdr is a list of the arguments of the keyword. The default

method for :decode-variable-type looks for two properties on the keyword’s proper-

ty list: tv:choose-variable-values-keyword, which is a list of six values; and

tv:choose-variable-values-keyword-function.See the section "tv:choose-variable-
values Type Definition Example", page 466.

12.10.9. tv:choose-variable-values Type Definition Example

;;; Defining a Choose Variable Values Type Example

;;; Adding the type keyword property

(defvar candidate-1 nil)

(defvar candidate-2 nil)

(defvar candidate-3 nil)

;;; Set up the type list

(setq type-list ’(princ nil ("Yes" "No" "Abstain") nil nil nil))

;;; Put the type-list value on the

;;; tv:choose-variable-values-keyword property

(putprop ’mytype type-list

 ’tv:choose-variable-values-keyword)

;;; Use the newly created type

(tv:choose-variable-values

 ’((candidate-1 " John Q. Public " mytype)

 (candidate-2 " Jane Doe " mytype)

 (candidate-3 " John Blevins " mytype))

 ’:label "*** Select One Candidate ***")�

12.10.10. Defining a Choose Variable Values Window

Up to this point, an easy-to-use but limited form of the choose-variable-values facil-

ity has been discussed, namely, the standard tv:choose-variable-values function.

In order to create a new flavor of window with choose-variable-values behavior, the

����� and ������������ choose-variable-values window flavors are needed. These are

described in this section.

467
February 2018 Window System Choice Facilities

12.10.11. The Basic Choose Variable Values Flavor

tv:basic-choose-variable-values is the basic flavor that makes a window imple-

ment the choose-variable-values facility. It requires more parameter specifications

from the programmer, but it is also the most flexible.

12.10.11.1. Instantiable Choose Variable Values Flavors
Use windows with these instantiable choose-variable-values flavors as panes in a

frame and as pop-up windows.

tv:choose-variable-values-window

tv:choose-variable-values-pane

tv:temporary-choose-variable-values-window

A resource of this type of window is:

tv:temporary-choose-variable-values-window

12.10.11.2. I/O Buffers for Choose Variable Values Windows
I/O buffers can be associated with choose-variable-values windows. See the section

"Menu Items and Menu Values", page 438. A choose-variable-values window has an

I/O buffer, which the window uses to send commands (also known as �����) back to

its controlling process. As usual these commands are lists, to distinguish them

from keyboard characters that are numbers. If all panes send commands to the

same I/O buffer, then when one of these commands arrives it can be processed in

the appropriate pane. At the same time, the controlling process can be looking in

the I/O buffer for other commands from other panes and for input from the key-

board. A choose-variable-values window uses the same I/O buffer to read a new

value from the keyboard as it uses to send blips to the controlling process.

The following I/O buffer commands (blips) are sent by the choose-variable-values

window to the user process.

(:variable-choice ������ ���� ����� ����������� �������������)

This indicates that the user clicked on the value of a variable, expressing a

desire to change it. ������ is the choose-variable-values window instance,

���� is the complete item specification, ����� is the value that was clicked

on, and ����������� is the line on which the item appears in the menu; the

lines are numbered starting at 0. ������������� is the mouse character (for

example, #\mouse-m) corresponding to the gesture used for clicking.

(:choice-box ������ ���)

This indicates that the user clicked on one of the choice boxes in the bot-

tom margin. ������ is the window instance, and ��� is the choice box

specification.�

The following sequence of events is a typical model for implementing a choose-

variable-values window.

468
Window System Choice Facilities February 2018

1. Set up and expose the window. The window is gotten from the window re-

source, tv:choose-variable-values-window.

2. Loop within an :any-tyi, or tv:io-buffer-get loop, checking to see if a vari-

able-choice or a choice-box selection has been made.

3. If a choice-box selection has been made, your "choice-box handler" routine is

called. This routine returns the choice-box descriptor. If the choice-box was

an [Abort] item, your process typically sends the window the :deactivate

message.�

A function that implements the response to these commands is:

tv:choose-variable-values-process-message

12.10.12. tv:basic-choose-variable-values Init-plist Options�

The following init-plist options are relevant to choose-variable-values windows.

Note that if no dimensions are specified in the init-plist, the width and height are

automatically chosen according to the other init-plist parameters. The height is

dictated by the number of elements in the ���������. Specifying a height in the init-

plist, using any of the standard dimension-specifying init-plist options, overrides

the automatic choice of height.

����� the :stack-group option is required, unless the :setup message is used to

initialize the window. See the section "tv:choose-variable-values-window

Messages", page 468.

(flavor:method :function tv:basic-choose-variable-values)

(flavor:method :variables tv:basic-choose-variable-values)

(flavor:method :stack-group tv:basic-choose-variable-values)

(flavor:method :name-style tv:basic-choose-variable-values)

(flavor:method :value-style tv:basic-choose-variable-values)

(flavor:method :string-style tv:basic-choose-variable-values)

(flavor:method :unselected-choice-style tv:basic-choose-variable-values)

(flavor:method :selected-choice-style tv:basic-choose-variable-values)

(flavor:method :margin-choices tv:choose-variable-values-window)

(flavor:method :io-buffer tv:choose-variable-values-window)

12.10.13. tv:choose-variable-values-window Messages

The following messages are useful to send to a choose-variable-values window.

(flavor:method :setup tv:choose-variable-values-window)

(flavor:method :set-variables tv:choose-variable-values-window)

(flavor:method :appropriate-width tv:choose-variable-values-window)

(flavor:method :adjust-geometry-for-new-variables tv:choose-variable-values-window)

(flavor:method :redisplay-variable tv:choose-variable-values-window)

469
February 2018 Window System Choice Facilities

12.10.14. tv:choose-variable-values-window Example

As we have discussed, in the simplest mode of operation, the tv:choose-variable-

values function takes care of creating the window and establishes all necessary

communication with it. When you make a choose-variable-values window (as in the

example below), you need to handle the communication yourself, using the informa-

tion given below. An example of a situation in which this is necessary is when you

have a frame, some panes of which are choose-variable-values windows.

Figure 43. Example of making a choose-variable-values menu.�

The Lisp code used to generate Figure 43 is given next.

;;; Choose Variable Values Example 4

;;; In this example, the user specifies the number of

;;; instrumentalists of each kind needed to define an orchestra.

(defvar contrabass 2)

(defvar cello 2)

(defvar viola 4)

(defvar violin 4)

(defvar flute 4)

(defvar trumpet 2)

(defvar harp 1)

(defvar percussion 2)

;;;; Define the variable list

(defvar instrument-list

 ’((contrabass "Contrabass" :number)

 (cello "Cello" :number)

 (viola "Viola" :number)

 (violin "Violin" :number)

 (flute "Flute" :number)

 (trumpet "Trumpet" :number)

 (harp "Harp" :number)

 (percussion "Percussion" :number)))

470
Window System Choice Facilities February 2018

;;; Define the margin choice list

(defvar margin-list ’(("Done" nil

 tv:choose-variable-values-choice-box-handler nil nil)))

;;; Make the window

(defvar choix

(tv:make-window ’tv:choose-variable-values-window))

;;; This function sets up the window, exposes it,

;;; and calls appropriate routines

(defun display ()

 (let ((base 10.) (ibase 10.)) ; Set the base to 10

 (send choix ’:setup

instrument-list

"Define Orchestra"

nil

margin-list)

 ;; The :setup message is normally followed by the

 ;; :adjust-geometry-for-new-variables message in order

 ;; to coordinate the size of the window with the number

 ;; of variables. The numerical argument (180.) tells

 ;; it to adjust the width of the window to the precise

 ;; size I want it to be. I could also have sent

 ;; the :appropriate-width message.

 (send choix ’:adjust-geometry-for-new-variables 180.)

 (send choix ’:set-position 200. 200.)

 (tv:window-call (choix :deactivate)

 ;; blip holds the list returned by :any-tyi

 ;; Look for a :choice-box blip

 (loop as blip = (send choix ’:any-tyi)

 until (eq (car blip) ’:choice-box)

 do (tv:choose-variable-values-process-message

 choix blip)))))

In order to invoke this menu, type the following form at the Lisp input editor:

(display)

The results are stored in contrabass, cello, viola, and the other instrument vari-

ables.

12.11. The Mouse-Sensitive Items Facility�

The mouse-sensitive items facility is related to certain choice facilities such as the

pop-up menus described previously. Like these facilities, the mouse is used to point

at an object on the screen, and a box is drawn around an object when the mouse

is over it. (Mouse sensitivity is a basic feature of Dynamic Windows and the pre-

sentation-type system. For an introduction to these facilities, see the section

"Overview of User Interface Programming Facilities", page 5.)

471
February 2018 Window System Choice Facilities

In contrast to a menu, in which mouse-sensitive behavior is limited to a relatively

permanent item list, mouse-sensitive items are not a permanent part of a window.

They disappear if the screen is cleared, for example. A main feature of a mouse-

sensitive window is that graphical objects and text can be intermingled. The

graphical objects themselves can be made mouse-sensitive. See the section "Mouse-

Sensitive Areas Example", page 476.

For an example of mouse-sensitive items, try the [List Buffers] command in the

Zmacs editor command menu (Figure 13.3.1.2). Move the mouse over the list of

buffers and click Right. Another menu, keyed from a mouse-sensitive-item, is ex-

posed.

Figure 44. Mouse-sensitive items.�

Mixing tv:basic-mouse-sensitive-items into a window flavor equips the window

with mouse-handling according to the paradigm described in this section. Mouse-

sensitive items are something you add in when defining your own window, rather

than a complete facility. Consequently, there is no instantiable version.

����� The word "typeout" appears here and there in the mouse-sensitive items fa-

cility for historical reasons. Often mouse-sensitive items are typed out on top of

some other display, such as an editor buffer. However, the mouse-sensitive-item fa-

cility has nothing to do with the �������������� facility. See the section "Typeout

Windows", page 393.

Use the following mixin flavor to create mouse-sensitive areas on the screen:

tv:basic-mouse-sensitive-items

12.11.1. Attributes of a Mouse-sensitive Item

A mouse-sensitive item has three main attributes:

• A ���� -- a keyword that controls what you can do to it

• An ���� -- an arbitrary Lisp object associated with it

472
Window System Choice Facilities February 2018

• A ����������� ���� of the window -- typically something is displayed in that area

at the same time as a mouse-sensitive item is created, using normal stream out-

put to the window. �

Unlike things such as menu items, mouse-sensitive items are not a permanent

property of the window. They are just as ephemeral as the displayed text. This

means they go away if you clear the window or if typeout wraps around and types

over them.

12.11.2. Associating Actions with Mouse-sensitive Items

The :item-type-alist init-plist option specifies an alist that associates actions with

types of items. Each element of the list contains the following elements:

• A ������������ -- for example, :value

• A ����������������� -- for example, a function name

• A ������������� ������ -- displayed in the mouse documentation line when the

mouse is pointing at an object of this type

• A ���� �� ��� ��� ���������� -- (the default doesn’t necessarily have to be a mem-

ber of this list) This list is in the form of menu items, so typically each element

is (name . operation) where the user sees the string ���� but the program

identifies the operation by the symbol ���������. In most cases ��������� is a

function to be called, but it can be any atom. �

Here is an example of an item-type-alist:

((zwei:file

 zwei:find-defaulted-file

 "Left: Find file this file. Right: menu of Load, Find, Compare."

 ("Load" :value zwei:load-defaulted-file

 :documentation "Load this file.")

 ("Find" :value zwei:find-defaulted-file

 :documentation "Find file this file.")

 ("Compare" :value zwei:srccom-file

 :documentation "Compare file with newest version (srccom)."))

 (zwei:function-name

 zwei:edit-definition

 "Left: Edit function. Right: menu (Arglist, Edit, Disassemble, Document.)."

 ("Arglist" :value zwei:typeout-menu-arglist

 :documentation "Print arglist for this function.")

 ("Edit" :value zwei:edit-definition

 :documentation "Edit this function.")

 ("Disassemble" :value zwei:do-disassemble

 :documentation "Disassemble this function.")

 ("Documentation" :value zwei:typeout-long-documentation

 :documentation "Print long documentation for this function.")))�

473
February 2018 Window System Choice Facilities

The tv:item-type-alist instance-variable can be initialized via the init-plist when

the window is created. Normally, you do not create this alist directly. Instead, you

use tv:add-typeout-item-type to build it up incrementally. See the section

"tv:basic-mouse-sensitive-items Messages and Functions", page 473.

12.11.2.1. Mouse Behavior�

The mouse works with a mouse-sensitive item in the following manner:

• Mouse-left -- Perform the default operation

• Mouse-right -- Pop up a menu of all the operations. Selecting one of these items

performs it.

• Mouse-right-twice -- Call the System menu.

• Other mouse clicks and clicking on an item whose type is not in the type alist --

Cause a beep (the screen flashes) and generate an error.�

Performing an operation means that a command (also known as a ����) is sent to

the controlling process through the :force-kbd-input message to the window. This

command is a list (:typeout-execute ��������� ����), where ��������� is the opera-

tion and ���� is the arbitrary object remembered by the mouse-sensitive item. The

ramifications of this, and how the ��������� is performed, are up to the application

program.

You can use the tv:add-typeout-item-type special form to declare information

about a mouse-sensitive type by adding an entry to an alist kept in a special vari-

able. This alist can be put into the item-type alist of a mouse-sensitive window.

12.11.3. tv:basic-mouse-sensitive-items Init-plist Options

Use this init option with tv:add-typeout-item-type.

(flavor:method :item-type-alist tv:basic-mouse-sensitive-items)

12.11.4. tv:basic-mouse-sensitive-items Messages and Functions

The following messages are useful to send to a window with mouse-sensitive items.

To create and display a list of mouse-sensitive items, use the function si:display-

item-list.

(flavor:method :item tv:basic-mouse-sensitive-items)

(flavor:method :primitive-item tv:basic-mouse-sensitive-items)

si:display-item-list

474
Window System Choice Facilities February 2018

12.11.5. tv:basic-mouse-sensitive-items Example

An example of a mouse-sensitive items window is shown in Figure 45. It shows

four mouse-sensitive items in a window. One of the items has been selected. Some

graphic figures (not mouse-sensitive) have also been drawn in the window. For a

description of the graphics operations, see the section "Graphic Output to

Windows", page 361.

The point of this figure is to show how in mouse-sensitive windows (unlike in reg-

ular menus) graphics and text can be intermingled. Notice the technique of com-

bining the mixin flavors tv:borders-mixin and tv:top-box-label-mixin before

tv:window to generate the boxed-in label at the top of the window.

Figure 45. Mouse-sensitive items example.�

In Figure 46 one of the items [Triangle] has been selected, causing a menu of al-

ternative actions to the the default action (default function) to appear next to it.

Figure 46. Result of selecting a mouse-sensitive item.�

The Lisp code used to produce Figure 46 is listed next.

;;; Mouse-sensitive Example

;;; The functions called by the menus do nothing except increment

;;; some values. Check their values after instantiating the

;;; window to verify that the values were incremented. Also

;;; look at the value of the variable "blip".

475
February 2018 Window System Choice Facilities

;;; Initialize variables

(zl:defconst c1 0)

(zl:defconst c2 0)

(zl:defconst default 0)

(defvar alist-alpha nil)

;;; Define a new flavor of window, with a

;;; centered top-label and a mouse-sensitive-item mixin

(defflavor new ()

 (tv:centered-label-mixin

 tv:borders-mixin tv:top-box-label-mixin

 tv:basic-mouse-sensitive-items

 tv:window))

;;; These define mouse-sensitive items

(tv:add-typeout-item-type alist-alpha

 :new-type "Exit" (exit)

 nil "Exit and kill window")

(tv:add-typeout-item-type alist-alpha

 :new-type "Function2" (function2)

 t "Add one to c2")

(defun function2 ()

 (setq c2 (+ 1 c2)))

(tv:add-typeout-item-type alist-alpha

 :new-type "Function1" (function1)

 nil "Add one to c1")

(defun function1 ()

 (setq c1 (+ 1 c1)))

;;; Make the mouse-sensitive window

(defvar sensitive-window

(tv:make-window

 ’new ; This is the flavor specification

 ’:borders 2

 ’:top 200.

 ’:bottom 310.

 ’:right 488.

 ’:width 316.

 ’:blinker-p nil

 ’:label ’(:string "SHAPES"

 :character-style (:fix :roman :very-large))

 ’:item-type-alist alist-alpha))

476
Window System Choice Facilities February 2018

;;; Expose the window and draw the objects

(defun set-up ()

 (tv:window-call (sensitive-window :deactivate)

 (send sensitive-window ’:item ’:new-type " Circle ")

 (send sensitive-window ’:item ’:new-type "Triangle ")

 (send sensitive-window ’:item ’:new-type " Rectangle ")

 (send sensitive-window ’:item ’:new-type " Polygon ")

 (send sensitive-window ’:draw-filled-in-circle 30. 50. 18.)

 (send sensitive-window ’:draw-triangle 79. 36. 116. 36. 97. 68.)

 (send sensitive-window ’:draw-rectangle 40. 32. 164. 36.)

 (send sensitive-window

 ’:draw-regular-polygon 265. 34. 288. 40. 5.)

 ;; blip holds the list returned by :any-tyi

 (loop as blip = (send sensitive-window ’:any-tyi)

 ;; Invoke the operation returned by the blip

 ;; unless the operation is (exit)

 until (equal (cadr blip) ’(exit))

 do (eval (cadr blip)))))

; Do it

(set-up)

12.11.6. Mouse-Sensitive Areas Example

In Figure 47, we show how ����� of the screen can be made mouse-sensitive, al-

lowing the mouse to be used to select graphical entities, as well as text items.

Figure 47. Mouse-sensitive areas example.�

To make the shapes mouse-sensitive, within the function set-up, add several lines

of Lisp code after the following line:

(send sensitive-window ’:draw-regular-polygon 250. 34. 272. 40. 5.)�

Next is the code to add to set-up.

(defun set-up ()

 .

 .

 .

477
February 2018 Window System Choice Facilities

;; The boxes are associated with the graphic area

(send sensitive-window

 ’:primitive-item ’:new-type ’box-1 10. 30. 52. 74.)

(send sensitive-window

 ’:primitive-item ’:new-type ’box-2 77. 31. 120. 72.)

(send sensitive-window

 ’:primitive-item ’:new-type ’box-3 160. 31. 201. 72.)

(send sensitive-window

 ’:primitive-item ’:new-type ’box-4 250. 31. 295. 75.)

 .

 .

 .

)

12.12. The Margin Choice Facility�

A window can be augmented with choice boxes in its bottom margin using the fla-

vor tv:margin-choice-mixin. See the section "The Multiple Choice Facility", page

451. Margin choice boxes give the user a few labelled mouse-sensitive points that

are independent of anything else in the window. Thus margin-choices can be added

to any flavor of window in a modular fashion. They are commonly used to imple-

ment "confirmation" choices (for example, [Do It] and [Abort]) following another

selection.

Margin choices are not a complete choice facility and consequently do not come

supplied in an instantiable version. The margin choice facility must be combined

with another window flavor. For an example of a window with margin choices (as

well as choice boxes in its interior), try the [Kill or Save Buffers] operation in the

Zmacs editor menu (refer to Figure 33 shown previously, page 449.)

12.12.1. The tv:margin-choice-mixin Flavor

Use this mixin flavor to provide choice boxes in a window’s margin.

tv:margin-choice-mixin

12.12.2. tv:margin-choice-mixin Init-plist Option

Use this init option to create a line of choice boxes in a window’s margin.

(flavor:method :margin-choices tv:margin-choice-mixin)

478
Window System Choice Facilities February 2018

12.12.3. tv:margin-choice-mixin Messages

Use this method to change the set of margin choices.

(flavor:method :set-margin-choices tv:margin-choice-mixin)

12.12.4. tv:margin-choice-mixin Example

A simple example of the margin choice facility is shown in Figure 48. In the ex-

ample, the user can select one of three actions to be taken within a graphics win-

dow.

Figure 48. Example of a margin choice facility added to a window.�

The Lisp code used to produce Figure 48 is listed below.

;;; Margin Choice Facility Example

;;; Draws shapes or aborts based on the margin-choice selection.

;;; Specify the margin choice-box descriptors

(defvar choice-box-1 ’(" Circle" nil shape-handler x y

 (:draw-filled-in-circle 70. 75. 38.)))

(defvar choice-box-2 ’("Rectangle" nil shape-handler x y

 (:draw-rectangle 70. 70. 170. 50.)))

(defvar choice-box-3 ’(" Abort" nil Abort-handler x y))

(defvar margin-list (list choice-box-1 choice-box-2 choice-box-3))

479
February 2018 Window System Choice Facilities

;;; Name of the window we create

(defvar test-window)

;;; Mixin the margin-choice facility with a window

(defflavor window-with-margin-choices ()

(tv:borders-mixin tv:margin-choice-mixin tv:window))

;;; Define a handler for the choice boxes that draw shapes

(defun shape-handler (window choice-box region y-pos)

 y-pos ;not used, suppress compiler warning

 ;; Make just this box be lit

 (clear-other-choice-boxes choice-box)

 ;; Erase the window

 (send window :clear-window)

 ;; Refresh the margin so new choice box X’s are displayed

 (send (tv:margin-region-function region) :refresh window region)

 ;; Draw the shape the user requested

 (apply window (nth 5 choice-box)))

;;; Define a handler for the "Abort" box

(defun Abort-handler (window choice-box region y-pos)

 y-pos ;not used, suppress compiler warning

 ;; Make just this box be lit

 (clear-other-choice-boxes choice-box)

 ;; Refresh the margin so new choice box X’s are displayed

 (send (tv:margin-region-function region) :refresh window region)

 ;; Remove the window from the screen

 (send window :deactivate))

;;; This function clears the non-selected choice boxes

;;; and sets the selected one

(defun clear-other-choice-boxes (selected-box)

 (dolist (box margin-list)

 (setf (tv:choice-box-state box) (eq box selected-box))))

480
Window System Choice Facilities February 2018

;;; Test the window.

(defun Shapes (&optional (test-window (tv:make-window

’window-with-margin-choices

:borders 2

:label nil

:vsp 2 ; vertical spacing

:top 200.

:bottom 500.

:right 650.

:width 410.

:margin-choices margin-list

:blinker-p nil)))

 (send Test-Window :Expose))

;;; Type (SHAPES) to try this out.�

12.13. The Flavor Network of tv:menu

tv:menu is the basis of many of the choice facilities described in this text.

tv:menu is itself built on a network of flavors, shown in this diagram.

tv:momentary-menu has a different network, which gives the flavor its own be-

havior. tv:command-menu is based on both tv:menu and the tv:command-menu-

mixin. Knowing the derivation of these flavors can be useful in investigating all

the available options and in modifying them for special applications.

481
February 2018 Window System Choice Facilities

482
Window System Choice Facilities February 2018

12.14. Init-plist Options for tv:menu

This is a list of some useful window-oriented init-plist options accepted by the

tv:menu flavor and flavors built on it. It is not meant to be a comprehensive list.

Use the Flavor Examiner to find out all the init-plist options of a particular flavor.

Most of these options are also documented elsewhere: See the section "Using the

Window System", page 333.

(flavor:method :activate-p tv:menu)

(flavor:method :borders tv:menu)

(flavor:method :bottom tv:menu)

(flavor:method :character-height tv:menu)

(flavor:method :character-width tv:menu)

(flavor:method :columns tv:menu)

(flavor:method :default-character-style tv:menu)

(flavor:method :edges tv:menu)

(flavor:method :edges-from tv:menu)

(flavor:method :expose-p tv:menu)

(flavor:method :fill-p tv:menu)

(flavor:method :geometry tv:menu)

(flavor:method :height tv:menu)

(flavor:method :inside-height tv:menu)

(flavor:method :inside-size tv:menu)

(flavor:method :inside-width tv:menu)

(flavor:method :item-list tv:menu)

(flavor:method :label tv:menu)

(flavor:method :left tv:menu)

(flavor:method :minimum-height tv:menu)

(flavor:method :minimum-width tv:menu)

(flavor:method :name tv:menu)

(flavor:method :position tv:menu)

(flavor:method :reverse-video-p tv:menu)

(flavor:method :right tv:menu)

(flavor:method :rows tv:menu)

(flavor:method :screen tv:menu)

(flavor:method :top tv:menu)

(flavor:method :vsp tv:menu)

(flavor:method :width tv:menu)

(flavor:method :x tv:menu)

(flavor:method :y tv:menu)

483
February 2018 Window System Choice Facilities

12.15. Messages Accepted by tv:menu

These are some of the messages (arranged in alphabetical order) accepted by menu

flavors built on tv:menu. The list is not meant to be comprehensive. Use the Fla-

vor Examiner to find out all the messages accepted by a particular flavor. Most of

these messages are also documented elsewhere: See the section "Using the Window

System", page 333.

(flavor:method :deactivate tv:menu)

(flavor:method :deexpose tv:menu)

(flavor:method :expose tv:menu)

(flavor:method :refresh tv:menu)

(flavor:method :set-default-character-style tv:menu)

(flavor:method :set-edges tv:menu)

(flavor:method :set-item-list tv:menu)

(flavor:method :set-label tv:menu)

484
Window System Choice Facilities February 2018

485
February 2018 Scroll Windows

13. Scroll Windows

13.1. Introduction to Scroll Windows

Scroll windows are a flavor of window provided by the Genera window system to

facilitate building programs that display information that updates itself, changes

its format, responds to the mouse, and shows other evidences of "live" behavior. To

see many examples of this type of window, press ������ � to invoke the Peek

subsystem, and observe the behavior of its various displays as the objects they rep-

resent change state.

The basic service performed by scroll windows is that of ���������. You provide a

scroll window with a data structure defining what is to be displayed and how to

display it. This is very different from other windows that you simply �������� to

display text (and sometimes graphics) by telling them what to display. While a

normal window simply draws what it has been asked to display, a scroll window re-

members ��� ���������� ����� what it is now displaying, when instructed to do so.

Also, a scroll window knows how to ������ its display, changing only those por-

tions of the display that need changing. This is very much like what a real-time

editor does when you change text. (Redisplay facilities for Dynamic Windows are

introduced in another section; see the section "Displaying Output: Replay, Redis-

play, and Formatting", page 281.)

A typical use of scroll windows is to display a structured representation of some

data structure in your program. By clicking on mouse-sensitive items, you can ask

to "display more detail" about some item on display. Your program and the scroll

window would negotiate to display the more detailed items under the selected item,

and move other items around. The file system editor and the Window hierarchy

display in Peek do this. Another typical use is to display data about activity in the

Lisp Machine going on simultaneously in other processes, while you watch the dis-

play. Such a display might have lines consisting of fixed text followed by numbers

or strings that are the "values" of the quantities being "watched". For instance,

some lines of such a display might read as follows:

 Total polyhedra measured 603

 Global eccentricity (av.) .82%�

while you watched; the numbers change (������) as the program measures new

polyhedra.

Note that "scroll windows" have nothing, in particular, to do with the concepts of

scrolling of windows in general and of mouse scrolling commands in particular.

The name "scroll window" is something of a misnomer and a historical accident.

Scrolling is not really what is important about scroll windows: the important thing

that they provide is a convenient mechanism for getting information to redisplay.

Scroll window displays are exciting and enjoyable to watch and use, and add a

touch of class to any program that uses them.

486
Scroll Windows February 2018

13.2. Basics of Scroll Windows

The flavor of scroll window most often used is tv:scroll-window. You can call

tv:make-window to make a scroll window. There is also tv:basic-scroll-window

that contains nothing more than the feature of being a scroll window, and can be

used to build more highly specialized flavors. You might also be interested in

tv:scroll-window-with-typeout. It provides an inferior typeout window should ran-

dom program output occur directed at it.

The various fields to be displayed are described by �����. Each item corresponds to

some logical portion of the display, always an integral number of lines. Items often

contain other items (in a hierarchical fashion), and items can be added and re-

moved from items dynamically (which, as is the whole point of scroll windows,

causes the objects on display to appear and reappear when the scroll window’s dis-

play is �����������).

A scroll window displays exactly one ��������� ����. The top-level item is simply an

item corresponding to ��� the data to be displayed in in the scroll window. You

normally create and set the top-level item just once, when you create and initialize

the scroll window. When you have constructed the top-level item, you hand it to

the scroll window using this message:

(flavor:method :set-display-item tv:basic-scroll-window)

The display created by the items given to a scroll window may well be larger than

the physical dimensions of the window. Scroll windows handle this elegantly by

showing only a portion of the total display, and allowing the user to scroll the data

of the display in the window by using the mouse scrolling commands.

You cause a redisplay by sending the window this message:

(flavor:method :redisplay tv:basic-scroll-window)

There are two types of items: ���� ����� and ���� �����. A line item describes infor-

mation to be displayed on exactly one line of the display; that is, if the portion of

the display controlled by a certain line item is visible in the window, then it uses

up exactly one line of the window, and all of the information of the line item must

fit in that line. Drawing a line item must not ever try to move to the next line

(you shouldn’t use ������ characters).

A line item is built up of a sequence of �������. Each entry is responsible for con-

trolling how one field of the line is drawn. The entries in a line item can be any

mixture of constant strings or dynamically updated quantities. The descriptions of

the dynamic quantities provide instructions for obtaining and displaying their val-

ues. The formats of these descriptions are given below. When the window is asked

to redisplay, all of the dynamic entries of the line items on display are computed

according to these instructions, and the fields of the line to which they correspond

are dynamically and incrementally updated if they need to be.

List items describe multiple-line objects to be displayed. A list item is little more

than a list of other items, themselves line items or list items. A list item is dis-

487
February 2018 Scroll Windows

played by displaying all of the elements in it, in the order in which they appear in

the list. The way you insert and remove lines of the display is by adding elements

to and deleting elements from list items.

A list item is simply a Lisp list. Its first element is a ���� ����������, specifying

some advanced options to be discussed below, and its remaining elements are the

items logically comprising the list item. In most cases, the list item plist may be

left empty (that is, nil).

13.3. Constructing Items

Line items are constructed by a specialized function, described below. List items

are constructed by the standard Lisp list-building functions.

13.3.1. Constructing Line Items

Line items are constructed with the following function:

tv:scroll-parse-item

The line item spec consists of two portions: ������ ��������������� that are optional,

and �������, specifying the fields to be displayed, in the order they are to be dis-

played on the line. The global line attributes are keyword/value pairs of elements.

The first even-numbered element of the line item spec that is not a symbol is the

first entry (all keywords are symbols). nils are ignored in any position of the line

item spec; this sometimes makes the specs easier to construct. Every occurrence of

nil is deleted from the spec before further processing.

Here is a simple call to tv:scroll-parse-item.

(tv:scroll-parse-item

’:mouse ’(DOUGHNUTS)

"Number of doughnuts: "

’(:symeval food:doughnut-holes nil ("~D")))�

Here the global line attributes are present, and consist of the following:

 ’:mouse ’(DOUGHNUTS)�

There are two entries:

 "Number of doughnuts: "�

 (:symeval food:doughnut-holes nil ("~D"))

In the above example, the :mouse global line attribute makes the line displayed by

this line item be mouse-sensitive, and the data item (DOUGHNUTS) will be en-

coded in the blip fed to the window’s input buffer when this line is clicked upon.

The meanings of the various global line attributes will be discussed in detail later.

488
Scroll Windows February 2018

There will be two fields displayed on this line: the fixed string

"Number of Doughnuts: ", and the value of the global variable food:doughnut-

holes. The latter value will be displayed as a decimal number (the "~d" is a

zl:format control string), immediately after the "Number of doughnuts: " string,
on the same line.

Whenever the window displaying this item is asked to redisplay, the displayed val-

ue of food:doughnut-holes will be updated if the value of that variable has

changed.

13.3.1.1. Line Item Entries
An ����� in a line item spec can either specify a constant string to be displayed, or

it can specify how to find a value to be displayed. There are four types of entries:

������� �������� ��������� and �����. An entry is ordinarily represented as a list,

whose first element is one of the keywords :string , :symeval, :function, or

:value.

There are two exceptions. First, when an entry is to be made mouse-sensitive, two

extra elements are included at the front of the list. See the section "Mouse Sensi-

tivity", page 491. Secondly, there are shorthand forms for some of the formats;

they are listed in the table below.

Here are the four types of entries, and their respective formats:

:string

Format: (:string ������)

 Shorthand format: �������

where ������ is a string. This entry will display as the string, occupying as

much of the line as it takes up.

:symeval

Format: (:symeval ������ ����� (���������� ���� ��������))

 Shorthand format: �������

where ������ is a symbol to be evaluated to produce the value to be dis-

played. The syntax ������ is equivalent to

(:symeval ������ nil ("~A" base *nopoint))�

The third and fourth elements of the entry are optional. ����� specifies the

field width in characters, on the line, to be allocated to the displayed data.

If omitted, or given as nil, as much space as needed will be allocated. If a

value is given, it must be a positive number that must fit in the window’s

line length. The printed representation of the value should not use more

than this many characters.

489
February 2018 Scroll Windows

The value is printed using the format function. The fourth element of the

entry is a list, whose first element specifies the format control string to be

used. If there is no fourth element, "~a" is used. The second and third ele-

ments of this last element of the entry (which are also optional) give the

values of the global variables zl:base and zl:*nopoint to be set up when

format is called. If not given, the current values of these variables at re-

display time will be used.

Note that if you use the shorthand form of the :symeval entry type as the

first entry in the line item spec, it will be mistaken for a keyword in the

global line attributes. If you want the first entry to be a :symeval entry,

you must use the longer syntax.

Here are some examples of :symeval entries:

(:symeval number-of-dogs) ; Just display the value.

number-of-dogs ; (The same.)

(:symeval number-of-dogs 6 ("~S")) ; Use six columns and

 ; use slashification.�

:function

Format: (:function �������� ������� ����� (���������� ���� ��������))

 Shorthand format: (lambda)

 Shorthand format: (named-lambda)

 Shorthand format: <������������������������������>�

This is the most general type of entry. It specifies a function to be called

at redisplay time, and the actual arguments to which it is to be applied. If

obtaining the data to be displayed for an entry involves any action more

complicated than the evaluation of a variable, you will need a :function en-

try. �������� specifies the function to be called. It may be a symbol, lambda

expression, or named-lambda expression, or compiled code object. It will be

applied to ������� at redisplay time to produce the value to be displayed.

Keep in mind that ������� is a list of actual values, ��� a list of forms to be

evaluated. If ������� is not given, it is assumed to be nil. It is often useful

to use the backquote list-templating facility to create :function entries

whose argument lists contain actual data objects obtained at the time

tv:scroll-parse-item is called. See the section "Backquote-Comma Syntax" in

���������������������������������������.

�����, ����������, ����, and �������� are optional, and have the same mean-

ing as they do with :symeval entries.

In the shorthand forms, in which only a function is supplied, ������� is as-

sumed nil and default assumptions about the printing format are made as

for :symeval entries.

Here are some examples of :function entries:

490
Scroll Windows February 2018

(:function #’compute-number-of-items ’(dogs))

(:function #’compute-number-of-items ’(dogs) 6 ("~S"))

(lambda () (compute-number-of-cats))�

:value

Format: (:value ����� ����� (���������� ���� ��������))�

:value entries are a trick to obtain multiple results or decompose struc-

tured results from functions. Since :function entries can return only one

value to be displayed, it is more difficult to display a complicated result, or

multiple values returned by a function, than to display a single result.

Scroll windows provide a one-hundred element array in which functions

called by :function entries may store extra results. :value accesses ele-

ments of this array for display: ����� is a number that specifies what ele-

ment of the array to access. By using this array as a temporary holding

place, values computed by a :function entry early in the line item can be

accessed by :value and :function entries later in the line item.

The array can also be accessed via the accessor tv:value from functions in

:function entries. This accessor is applied to the array element index into

the array tv:value in question. zl:setf may be used to store values into this

array.

�����, ����������, ����, and �������� are optional, and have the same mean-

ing as they do with :symeval entries.

Here is an example of the use of a :value entry. We wish to display a line

item that contains two constant strings and two variable fields. The line

will represent the result of calling a function, current-horse-lister, that re-

turns lists such as:

(Seabiscuit Silver Horace)�

This function interrogates the state of some horse-processing system that is

assumed to be running and continually processing horses. We wish to dis-

play on one line the number of horses currently being processed, and the

actual list of their names.

A first attempt might look like

(tv:scroll-parse-item

 "Number of horses :"

’(:function (lambda ()

 (length (current-horse-lister)))

 5

 ("~5D"))

"Their names: "

’(:function #’current-horse-lister))�

491
February 2018 Scroll Windows

Although this will produce a display of the right format, it is inadequate

because it calls current-horse-lister twice. It is possible that between the

two calls to current-horse-lister the set of horses may have changed. Or

we could be dealing with a function that has side effects, and must not be

called twice if we really only want one answer. :value solves this problem.

Here is the correct code.

(tv:scroll-parse-item

 "Number of horses :"

’(:function

 (lambda ()

 (setf (tv:value 0)

 (current-horse-lister))

 (length (tv:value 0)))

 5 ("~5D"))

"Their names: "

’(:value 0))�

In this example, element 0 of the array is used to save the horse list be-

tween the display of the second and fourth entries in this item.

You should not use tv:value except for this purpose, and you should only

expect its values to be saved during the display of one line item. It cannot

be counted on to retain values between displays of different items, or repet-

itive displays of one item.�

13.3.1.2. Mouse Sensitivity
Entire line items or individual entries in a line item may be made mouse-sensitive.

This means that the display corresponding to the item or entry will be highlighted

as the user moves the mouse over it, and if the user clicks on it, the program con-

trolling the scroll window will be notified.

If you want to use any of the mouse sensitivity features, you must include the fla-

vor tv:scroll-mouse-mixin in the flavor of window to be used. This mixin is not in-

cluded in tv:scroll-window. (Note: this has nothing to do with mouse scrolling; the

name means that it is the flavor of the scroll facility that deals with the mouse.)

To make a line item mouse-sensitive, put a specification of the form

:mouse �������

or

 :mouse-self �������

in the global line attributes of the line item spec when constructing the line item.

������ must be a list (actually, a cons). When a mouse-sensitive item is clicked on,

the scroll window’s handler, running in the mouse process, does one of the things

described below, depending on the car of ������.

If the car of ������ is nil, ������ is interpreted as a menu item. Clicking causes an

:execute message is sent to the window, with ������ as its argument. Only those

menu item types that produce side effects are meaningful here (that is, :funcall,

492
Scroll Windows February 2018

:eval, :kbd, :menu, and :buttons). You can also use :documentation to provide a

string to be displayed in the mouse documentation window in the who-line. Note

that the car of ������ is not significant to :execute. For example:

(tv:scroll-parse-item

 ’:mouse ’(nil :eval (set-balance 0)

 :documentation "Set the balance to zero.")

 "Current balance: " balance)�

When you move the mouse over this line of the display, the entire line is high-

lighted, and the documentation string appears in the who line. If you click on the

line, the function set-balance is applied to 0.

If the car of ������ is a symbol other than nil, that symbol is looked up in the ����

�����, which is an association list. If the car is found, an :execute message is sent

to the window. The argument to the message is the list

(nil �� . ������)�

where �� is the cadr of the entry found in the type alist for the car of ������. The

type alist can be set with the :set-type-alist message, or initialized with the :type-

alist init option.

If the car of ������ is not found in the type alist (which will happen if you aren’t

using the alist feature) and is not nil, a blip of the form

(���� ������ ������ ������)�

is forced into the window’s input buffer. Here, ���� is the car of ������, ������ is

the window itself, and ������ is a mouse button encoding. See the section "The

Character Set" in ��������� ������ ���� �������� ��������. This is the standard

way to "read" the event of clicking on a sensitive item. The doughnut example

above used this technique, putting blips of type DOUGHNUT in its input stream.

:mouse-self is just like :mouse, except that before returning the line item,

tv:scroll-parse-item walks over ������, and substitutes the actual line item that it

constructed for all occurrences of the symbol self in ������, so you can access its

array leader. See the section "Line Item Array Leaders", page 493.

Individual entries in a line item can be made mouse-sensitive, as well. To make an

entry mouse-sensitive, express it in the standard form, that is, (as opposed to the

shorthand form), as follows:

 (:string "Differential Amplifiers")�

Then place either of the following at the head of the list:

 :mouse �������

or

 :mouse-item �������

The new entry will precede what was there before. For example:

 (:mouse (nil :menu parts-menu

 :documentation "Pop up a menu of parts.")

 :string "Differential Amplifiers")�

:mouse acts just like it does for entire line items, and ������ has precisely the

493
February 2018 Scroll Windows

same interpretation. Instead of :mouse-self, use :mouse-item to get the substitu-

tion feature: for mouse-sensitive entries, the ���� (that is, the item for the whole

line) is substituted for all occurrences of the symbol item in ������ if :mouse-item

is employed.

13.3.1.3. Line Item Array Leaders�

You can use the array leader of a line item for arbitrary data storage. You can use

:mouse-self or :mouse-item to get the items back at mousing time. Scroll windows

use the first few entries in the array leader of a line item for its own purposes.

The index of the first item available for your use is stored in the variable

tv:scroll-item-leader-offset.

To specify that you want array leader space to be reserved at line item creation

time, you must use the :leader global line attribute. Its formats are

 :leader �����

 :leader ����������

���� is the amount of array leader to be reserved for your purposes, and ��������� is

a list of elements to be placed at line item creation time in as many array leader

elements as they require.

13.3.2. Constructing List Items

List items are normally constructed with the function list. The first element of a

list item is the list item plist, and the rest of the elements are items that make up

the list item.

Here is an example of constructing a list item for a three-line display:

(list () ;list item plist

 (tv:scroll-parse-item ...)

 (tv:scroll-parse-item ...)

 (tv:scroll-parse-item ...))�

The list item plist is a list of alternating keyword symbols and values. There are

two defined keywords, as follows:

:pre-process-function

The :pre-process-function keyword takes any function object as an argu-

ment. This function is called at redisplay time, with the entire list item as

as its one argument. Its returned value is ignored. The idea of this is to al-

low you to compute, at redisplay time, whether or not you still want all the

items currently in the list item to remain in it, or want to add new ones

and so on. Your "pre-process function" will have to walk over the cdr of the

list item, and be aware that lists therein are list items and arrays are line

items in whose array leader you may have stored identifying information

meaningful to you.

:function

(Not to be confused with the :function entry type in line items.) The

:function keyword takes any function object as an argument. When it is

494
Scroll Windows February 2018

time to redisplay this list item, the function is called to process every item

of this list item, and the returned value of the function is rplaca’ed back

into the list item before the redisplay is done. This processing occurs �����

the pre-process function, if any, has been called.

The idea of the :function list item property is to allow scroll window redis-

play to actually cause your subsystem to update its own data. Some subsys-

tems might want or require this, although it is very uncommon.

The function is called on three arguments: �������������, ��������, and �����.

������������� is the particular constituent item of the list item, �������� is

an internal item index, and ����� is a locative to the list item plist of the

current list item. The result of �������� is rplaca’ed back into the list item

when �������� returns.�

13.4. Virtual List Maintenance

An elegant facility to construct and maintain list items is provided by tv:scroll-

maintain-list. If you intend to construct displays in which lines and subdisplays

dynamically appear and disappear, you probably want to use this facility to con-

struct and update list items. It uses the list item plist facilities described above

for its implementation.

The function tv:scroll-maintain-list constructs (and returns to you) a list item

that updates itself to represent some object of yours and its inferior objects every

time the scroll window is asked to redisplay. You provide tv:scroll-maintain-list

with two functions, one (the ���� ��������) that will be called at redisplay time to

produce some object of yours corresponding to a set of your objects that require

associated displays, and a second (the ���� ��������) that, given an object of yours,

produces the display item (line or list) representing it.

As just described, the set of objects is expected to be a list of your objects.

tv:scroll-maintain-list will ask for it at each redisplay, and cdr down it, applying

your item function to get display items. It is also possible to return a set of your

objects in some other form than a list; in this case, you must provide a �������

�������� that knows how to extract the next object, the "rest" of the set, and tell

whether the end has been reached.

Here is an example of code to construct a list item that displays the contents of a

Lisp list on separate lines. The variable *important-data* contains the list.

(tv:scroll-maintain-list

 #’(lambda () *important-data*) ; The init-fun.

 #’(lambda (list-element) ; The item-fun.

 ;; Create an item from the list element.

(tv:scroll-parse-item

 ‘(:string ,(format nil "~S" list-element)))))�

495
February 2018 Interactive Streams

14. Interactive Streams

14.1. Introduction to Interactive Streams

An interactive stream is a bidirectional stream designed for interaction with hu-

man users. It supports input editing, which lets the user edit input before a func-

tion that reads from the stream sees it. Interactive streams are built on the flavor

si:interactive-stream, which in turn includes one of the following mixins:

si:display-input-editor, si:printing-input-editor, or si:half-duplex-input-editor.

To find out whether or not a stream is interactive, send the stream an

:interactive message.

Interactive streams are generally connected to a terminal of some kind. Windows

built on tv:stream-mixin are one kind of interactive stream (see the section "Input
from Windows", page 367). Remote terminals are another (see the section "Remote

Login" in ��������).

Some reading functions can be used to get input from both interactive and nonin-

teractive streams; others are designed to read only from interactive streams. See

the section "Input Functions for Interactive Streams", page 496.

Interactive streams support general operations on input and output streams. For

more information on these operations, see the section "Stream Operations" in ����

������ ������ ���� ����������� ����������. Interactive streams also have spe-

cialized input operations, mainly to handle interactions with the input editor. See

the section "Messages for Input from Interactive Streams", page 496. They also in-

tercept some characters when read and maintain a list of characters to be handled

asynchronously. See the section "Intercepted Characters", page 497. See the section

"Interactive-Stream Operations for Asynchronous Characters", page 497. (Remote

terminals do not handle asynchronous characters.)

Some interactive streams can display mouse-sensitive items. See the section "Inter-
active Streams and Mouse-Sensitive Items", page 498.

For information on the program interface to the input editor, see the section "The

Input Editor Program Interface", page 498.

The command processor is a utility that reads commands from an interactive

stream. For more information, see the section "Communicating with Genera" in

������ ������ ����� and see the section "Managing the Command Processor", page

43.

One common use for interactive streams is to ask a question of the user. See the

section "Querying the User", page 508.

496
Interactive Streams February 2018

14.2. Input Functions for Interactive Streams

The general reading functions like zl:read, zl:readline, and zl:read-delimited-

string can be used to read from either interactive or noninteractive streams. See

the section "Input Functions" in ��������� ������ ���� ����������� ����������.

The functions described here are designed to read only from interactive streams.

The functions that read Command Processor commands, cp:read-command and

cp:read-command-or-form, are described elsewhere:

See the section "Managing the Command Processor", page 43. See the section "Ta-

ble of Basic Command Facilities", page 66. Other input functions and facilitites for

interactive streams are:

sys:read-character

zl:read-expression

zl:read-form

zl:*read-form-edit-trivial-errors-p*

zl:*read-form-completion-alist*

zl:*read-form-completion-delimiters*

read-or-end

zl:read-or-character

zl:read-and-eval

zl:readline-no-echo

14.3. Messages for Input from Interactive Streams

All interactive streams that is, streams that have the flavor component

si:interactive-stream support these input operations. Some streams have spe-

cialized versions of some operations, partly because different kinds of streams have

different sources of input when input is to come from the stream instead of the in-

put buffer. Windows, for example, take input from an I/O buffer. See the section

"Messages for Input from Windows", page 368. The messages for input from inter-

active streams are:

(flavor:method :any-tyi si:interactive-stream)

(flavor:method :any-tyi-no-hang si:interactive-stream)

(flavor:method :tyi si:interactive-stream)

(flavor:method :tyi-no-hang si:interactive-stream)

(flavor:method :list-tyi si:interactive-stream)

(flavor:method :untyi si:interactive-stream)

(flavor:method :listen si:interactive-stream)

(flavor:method :clear-input si:interactive-stream)

(flavor:method :line-in si:interactive-stream)

(flavor:method :string-in si:interactive-stream)

(flavor:method :string-line-in si:interactive-stream)

497
February 2018 Interactive Streams

14.4. Intercepted Characters

Interactive streams specially intercept some characters. Some are intercepted when

some user process is about to read the character from a stream; others are inter-

cepted as soon as they are typed. This section describes the first kind of intercep-

tion. For information on asynchronously intercepted characters, see the section

"Asynchronous Characters", page 369 and see the section "Interactive-Stream Oper-

ations for Asynchronous Characters", page 497.

The value of the variable sys:kbd-intercepted-characters is a list of characters

that are intercepted and not returned as input from the stream. These characters

default to #\ABORT, #\M-ABORT, #\SUSPEND, and #\M-SUSPEND. Following

are the standard actions to be taken when these characters are intercepted:

#\ABORT Signal sys:abort

#\M-ABORT Reset the current process

#\SUSPEND Call the break function

#\M-SUSPEND Break to the Debugger�

By convention, programs are all expected to use the ����� key as a command to

abort things in some appropriate sense for that program. If you do not do anything

special, ����� is intercepted automatically. Most interactive programs just set up

restart handlers for sys:abort. But some programs may want to do something spe-

cific when the user presses ����� (or �������).

You can replace the system default action by binding the variable sys:kbd-

intercepted-characters. By default, this variable is bound to the value of sys:kbd-

standard-intercepted-characters. If you want the system to intercept only the

standard abort characters, you can bind this variable to the value of sys:kbd-

standard-abort-characters. If you want the system to intercept only the standard

break characters, you can bind this variable to the value of sys:kbd-standard-

suspend-characters.

14.5. Interactive-Stream Operations for Asynchronous Characters

The keyboard process intercepts some characters as soon as they are typed. See

the section "Asynchronous Characters", page 369. All interactive streams maintain

a list of characters to be handled asynchronously. Remote terminals, however, do

not handle asynchronous characters.

You can set up your own handling of asynchronous characters by using the

:asynchronous-character-p, :handle-asynchronous-character, :add-

asynchronous-character, and :remove-asynchronous-character messages and the

:asynchronous-characters init option for si:interactive-stream.

498
Interactive Streams February 2018

14.6. Interactive Streams and Mouse-Sensitive Items�

Some windows support mouse sensitivity. They can display representations of items

in such a way that moving the mouse onto the item causes it to be highlighted,

and clicking the mouse on the item does something with the item. One example is

the basic mouse-sensitive items facility. See the section "The Mouse-Sensitive

Items Facility", page 470. (Note that the referenced section and the facilities dis-

cussed here are based on static windows. Mouse sensitivity is a built-in feature of

Dynamic Windows and the SemantiCue input system. See the section "Using Pre-

sentation Types for Input", page 34.)

The fundamental message that creates and displays a mouse-sensitive item is

:item. All interactive streams support this message, whether or not they support

mouse sensitivity. If they do not support mouse sensitivity, they just display a

printed representation of the item.

Any interactive stream can also display an ordered list of items, using the function

si:display-item-list. This displays each item by sending an :item message to the

stream.

14.7. The Input Editor Program Interface

14.7.1. How the Input Editor Works

The input editor is a feature of all interactive streams, that is, streams that con-

nect to terminals. Its purpose is to let you edit minor mistakes in typein. At the

same time, it is not supposed to get in the way; Lisp is to see the input as soon as

you have typed a syntactically complete form. The definition of "syntactically com-

plete form" depends on the function that is reading from the stream; for zl:read,

it is a Lisp expression. This section describes the general protocol used for com-

munication between the input editor and reading functions such as zl:read and

zl:readline.

By ������� �������� we mean a function that reads a number of characters from a

stream and translates them into an object. For example, zl:read reads a Lisp ex-

pression and returns an object. zl:readline reads a line of characters and returns a

string as its first value. Reading functions do not include the more primitive :tyi

and :any-tyi stream operations, which take and return one character or blip from

the stream.

The tricky thing about the input editor is the need for it to figure out when you

are all done. The idea of an input editor is that as you type in characters, the in-

put editor saves them up in an ����� ������ so that if you change your mind, you

can edit them and replace them with different characters. However, at some point

the input editor has to decide that the time has come to stop putting characters

into the input buffer and let the reading function start processing the characters.

This is called "activating".

499
February 2018 Interactive Streams

The right time to activate depends on the function calling the input editor, and de-

termining it may be very complicated. If the function is zl:read, figuring out when

one Lisp expression has been typed requires knowledge of all the various printed

representations, what all currently defined reader macros do, and so on. The input

editor should not have to know how to parse the characters in the input buffer to

figure out what the caller is reading and when to activate; only the caller should

have to know this. The input editor interface is organized so that the calling func-

tion can do all the parsing, while the input editor does all the handling of editing

commands, and the two are kept completely separate.

Following is a summary of how the input editor works. The input editor used to be

called the rubout handler, and some operations and variables still have "rubout-
handler" in their names.

When a reading function is called to read from a stream that supports the :input-

editor operation, that function "enters" the input editor. It then goes ahead

:tyi’ing characters from the stream. Because control is inside the input editor, the

stream echoes these characters so the user can see the input. (Normally echoing is

considered to be a higher-level function outside of the province of streams, but

when the higher-level function tells the stream to enter the input editor it is also

handing it the responsibility for echoing). The input editor is also saving all these

characters in the input buffer, for reasons disclosed in the following paragraph.

When the reading function decides it has enough input, it returns and control

"leaves" the input editor. That was the easy case.

If you press ������ or a keystroke that represents another editing command, the

input editor processes the command and lets you insert characters before the last

one in the line. The input editor modifies the input buffer and the screen accord-

ingly. Then, when you type the next nonediting character at the end of the line, a

throw is done, out of all recursive levels of zl:read, reader macros, and so forth,

back to the point where the input editor was entered. Now the zl:read is tried

over again, rereading all the characters you had typed and not rubbed out, but not

echoing them this time. When the saved characters have been exhausted, addition-

al input is read from you in the usual fashion.

The input editor has options that can cause the throw to occur at other times as

well. With the :activation option, when you type an activation character a throw

occurs, a rescan is done if necessary, and a final blip is returned to the reading

function. With the :preemptable and :command options, a blip or special charac-

ter in the input stream causes control to be returned from the input editor imme-

diately, without a rescan. These options let you process mouse clicks or special

keystroke commands as soon as they are read.

The effect of all this is a complete separation of the functions of input editing and

parsing, while at the same time mingling the execution of these two functions in

such a way that input is always "activated" at just the right time. It does mean

that the parsing function (in the usual case, zl:read and all macro-character defi-

nitions) must be prepared to be thrown through at any time and should not have

nontrivial side-effects, since it may be called multiple times.

500
Interactive Streams February 2018

If an error occurs while inside the input editor, the error message is printed and

then additional characters are read. When you press ������, it rubs out the error

message as well as the last character. You can then proceed to type the corrected

expression; the input is reparsed from the beginning in the usual fashion.

14.7.2. Invoking the Input Editor

The variable sys:rubout-handler indicates the current state of input editing. This

variable is not nil if the current process is already inside the input editor.

The input editor is invoked on a stream when the stream receives an :input-editor

message. The :input-editor and :tyi methods of si:interactive-stream contain the

code of the input editor. The :input-editor method initializes the input editor, es-

tablishes its catch, and then calls back to the reading function with sys:rubout-

handler bound to :read. When the reading function sends the :tyi or :any-tyi

message, input is taken from the input buffer. If no input is available, the editing

or :tyi portion of the input editor is invoked, and sys:rubout-handler is bound to

:tyi.

The first argument to the :input-editor message is the function that the input edi-

tor should call to do the reading, and the rest of the arguments are passed to that

function. If the reading function returns normally, the values returned by the

:input-editor message are just those returned by the reading function. If the input

editor returns by throwing out of the reading function, the return values depend

on which option caused the input editor to throw: See the option :full-rubout in

���� ��������� ����������. See the option :preemptable in ���� ��������� ����������.

See the option :command in �������������������������.

The input editor can take a series of options. These are specified dynamically by

the special forms with-input-editing-options and with-input-editing-options-if.

For a description of the options: See the section "Input Editor Options", page 501.

This example illustrates the use of the :command, :preemptable, and :prompt in-

put editor options. It is a simple command loop that reads different kinds of com-

mands typed Lisp expressions, single-keystroke commands, and mouse clicks.

The Lisp expressions are read using the read-or-end function. You can provide

four kinds of input:

����� ������

��� Exit the command loop

Lisp form Print form on next line

Mouse click Display type of click and mouse coordinates

Single-key command Display keystroke�

The predicate for detecting a single-keystroke command simply checks for the Su-

per bit. In a more complex program, it might look up the character in a command

table.

501
February 2018 Interactive Streams

(defun command-char-p (c) (char-bit c :super))

(defun command-loop ()

 (loop

 do (multiple-value-bind (value flag)

 (with-input-editing-options

 ((:command ’command-char-p)

(:preemptable :blip)

(:prompt "Command loop input: "))

 (read-or-end))

 (selectq flag

 (:end

 (format t "Done")

 (return t))

 (:blip

 (selectq (car value)

 (:mouse-button

 (destructuring-bind (click nil x y) (cdr value)

 (format t "~C click at ~D, ~D" click x y)))

 (otherwise (format t "Random blip -- ~S" value))))

 (:command

 (format t "Execute ~:C command" (second value)))

 (otherwise

 (format t "~&Value is ~S" value))))))�

To write a reading function that invokes the input editor, you should use the with-

input-editing special form instead of sending the :input-editor message directly.

Such functions as zl:read and zl:readline use this special form to provide input

editing.

14.7.3. Input Editor Options

The input editor can take a series of options, specified by the special forms with-

input-editing-options and with-input-editing-options-if. These options are listed

next. Their descriptions are in �������������������������.

:full-rubout

If the user rubs out all the characters that were typed, control is returned from

the input editor immediately.

:pass-through

The characters in ���������� are not to be treated as special by the input editor.

:prompt

When it is time for the user to be prompted, the input editor displays �������

������.

:reprompt

When it is time for the user to be reprompted, the input editor displays �������

������.

502
Interactive Streams February 2018

:complete-help

When the user presses ����, the input editor types out a message determined by

�����������.

:partial-help

When the user presses ����, the input editor first types out a message determined

by �����������.

:merged-help

When the user presses ����, the input editor types out a message determined by

the arguments.

:brief-help

When the user presses ����, the input editor displays a message determined by

����������� on the same line as the typein.

:initial-input

When the input editor is entered, ������ is inserted into the input buffer as if the

user had typed it.

:input-history-default

Specifies ������ as the default to be yanked by �����. ������ is temporarily placed

at the head of the input history.

:blip-handler

Specifies a function to handle blips received while inside the input editor.

:do-not-echo

The characters in ���������� are interpreted as activation characters and are not

echoed.

:activation

For each character typed, the input editor invokes �������� with the character as

the first argument and ��������� as the remaining arguments.

:preemptable

A blip in the input stream causes control to be returned from the input editor im-

mediately.

:no-input-save

The input editor does not save the scanned contents of the input buffer on the in-

put history when returning from the reading function.

:command

This option is used to implement nonediting single-keystroke commands.

:editor-command

This option lets you specify your own input editor editing commands.

:input-wait

When the input editor waits for input, it sends the stream an :input-wait message

with the arguments to the :input-wait option as arguments.

:input-wait-handler

When the input editor is waiting for input it sends the stream an :input-wait

message.

503
February 2018 Interactive Streams

:suppress-notifications

If a notification is received while in the input editor, and ���� is supplied as nil,

the input editor itself handles the notification, regardless of any other way you

have specified that notifications should be handled.

:notification-handler

If a notification is received while in the input editor, �������� is called to handle

it.

14.7.4. Displaying Prompts in the Input Editor

The input editor options :prompt and :reprompt and the functions zl:readline-no-

echo and sys:read-character take ������ arguments that let you specify an input

editor prompt. ������ can be nil, a string, a function, a symbol other than nil, or

a list (for the input editor options, the list is an &rest argument):

nil No prompt is displayed.

string A format control string to be passed to format with one argu-

ment, the stream on which the prompt is displayed.

function or symbol other than nil

A function to display the prompt. The function should take two

arguments: the first is the stream on which the prompt is dis-

played, and the second is a keyword that indicates the origin of

the function call.

list If the first element is nil, no prompt is displayed. If the first

element is a string, it is a format control string to be passed

to format with the remaining elements of the list as argu-

ments. If the first element is a function or a symbol other

than nil, it is a function to display the prompt. The first argu-

ment to the function is the stream on which the prompt is

displayed. The second argument is a keyword that indicates the

origin of the function call. The remaining arguments are the

remaining elements of the list.�

When a function is called to display the prompt, the second argument to the func-

tion is a keyword that indicates the origin of the function call:

������� ��������������������

:prompt :input-editor method of si:interactive-stream, when the input

editor is entered

:restore :restore-input-buffer method of si:interactive-stream

:finish-typeout :finish-typeout method of si:interactive-stream

:refresh Body of the input editor, when the user presses �������

:erase-typeout Body of the input editor, when the user presses �����

504
Interactive Streams February 2018

14.7.5. Displaying Help Messages in the Input Editor

The input editor options :brief-help, :partial-help, and :complete-help and the

functions zl:readline-no-echo and sys:read-character take ���� arguments that let

you specify input editor help messages. ���� can be a string, a function, a symbol,

or a list (for the input editor options, the list is an &rest argument):

string A format control string to be passed to format with one argu-

ment, the stream on which the help message is displayed.

function or symbol A function to display the help message. The function should

take one argument, the stream on which the help message is

displayed.

list If the first element is a string, it is a format control string to

be passed to format with the remaining elements of the list as

arguments. If the first element is a function or a symbol, it is

a function to display the help message. The first argument to

the function is the stream on which the help message is dis-

played, and the remaining arguments are the remaining ele-

ments of the list.�

14.7.6. Examples of Use of the Input Editor

This series of examples shows several different ways of using the input editor,

gradually increasing in complexity. The examples are also available in the file

sys: examples; interaction.lisp.

We refer to functions whose names begin with "read-" as "reading functions" or

"readers", since they read individual characters and construct a Lisp object as a

returned value. Examples of readers the Lisp system provides are read, readline,

and read-delimited-string. read returns Lisp objects of many types. readline and

read-delimited-string return strings.

read-two-lines-1 reads two lines of input from the console. You type each line in

its own editing context. After you enter the first line by pressing ������, ����, or

���, you can no longer rub out or otherwise edit any of the characters in the first

line. You can type and edit only the second line at that point.

(defun read-two-lines-1 () (list (readline) (readline)))�

read-two-lines-2 lets you edit both lines in a single context by using the with-

input-editing special form. Even after entering the first line you can edit it. For

example, the ��� input editor command moves the cursor to the first character of

the first line. read-two-lines-2 also adds a stream parameter so that you can read

from different streams without having to bind *standard-input*. You can also use

this function for reading from noninteractive streams, such as file streams.

(defun read-two-lines-2 (&optional (stream *standard-input*))

 (with-input-editing (stream) (list (readline stream) (readline stream))))�

read-two-lines-3 demonstrates the use of the :prompt input editor option and the

:end-activation option for with-input-editing. When you invoke this function on

505
February 2018 Interactive Streams

an interactive stream you receive a prompt. This prompt is redisplayed if typeout

to the stream occurs. This might happen if you press ���� or the window receives

a notification.

The :end-activation option defines #\end as an activation character. This lets you

activate previous input to read-two-lines-3, after yanking and editing it, by press-

ing ���. The :prompt and :end-activation options have no effect on the behavior

of the function for noninteractive streams.

(defun read-two-lines-3 (&optional (stream *standard-input*))

 (with-input-editing-options ((:prompt "Type two lines: "))

 (with-input-editing (stream :end-activation)

 (list (readline stream) (readline stream)))))�

read-n-lines is like read-two-lines except that you specify the number of lines to

be read using the n-lines argument. It also uses a prompt function instead of a

string to generate the prompt.

(defun read-n-lines-prompt (stream ignore n-lines)

 (format stream "Type ~R line~:P:~%" n-lines))

(defun read-n-lines (n-lines &optional (stream *standard-input*))

 (with-input-editing-options ((:prompt ’read-n-lines-prompt n-lines))

 (with-input-editing (stream :end-activation)

 (loop repeat n-lines collect (readline stream)))))�

Next is an example of a simple sentence parser. It builds a list of strings and sym-

bols that represent the words and punctuation marks of the sentence. A sentence

may be any number of lines long. It is delimited by a period or a question mark.

Words are delimited by a space, newline, or punctuation mark. This is also an ex-

ample of a reading function written entirely in terms of :tyi as the primitive input

operation.

506
Interactive Streams February 2018

(defun read-sentence-1 (&optional (stream *standard-input*))

 (with-input-editing-options ((:prompt "Type a sentence: "))

 (with-input-editing (stream)

 (loop named sentence

 with sentence = nil

 for word = (make-array 20. :type art-string :fill-pointer 0)

 do (loop for char = (send stream :tyi)

 do

 (cond ((memq char ’(#\space #\return #/. #/? #/,))

(if (not (equal word ""))

 (push word sentence))

(selectq char

 ((#\space #\return #/,)

 (return))

 (#\.

 (push :period sentence)

 (return-from sentence (nreverse sentence)))

 (#\?

 (push :question-mark sentence)

 (return-from sentence (nreverse sentence)))))

 (t (array-push-extend word char))))))))�

Following is a different sentence parser that calls read-delimited-string to accu-

mulate characters into a string. It uses the :end-activation option for with-input-

editing so that previous input to read-sentence-2 can be yanked, edited, and acti-

vated using the ��� key. When it detects incorrect uses of punctuation, it calls

user::parse-ferror to signal an error caught by the input editor.

507
February 2018 Interactive Streams

(defun read-sentence-2 (&optional (stream *standard-input*))

 (with-input-editing-options ((:prompt "Type a sentence: "))

 (with-input-editing (stream :end-activation)

 (loop with sentence = nil

 do (multiple-value-bind (word nil delimiter)

 (read-delimited-string

 ’(#\space #\return #/. #/? #/, #/: #/;) stream)

 (if (not (equal word ""))

 (push word sentence))

 (cond ((memq delimiter ’(#\space #\return)))

 ((null sentence)

(if (eq delimiter #\end)

 (return nil)

 (sys:parse-ferror

 "The punctuation mark /"~C/" occurred at the ~

 beginning of the sentence."

 delimiter)))

 ((symbolp (car sentence))

(sys:parse-ferror

 "The punctuation mark /"~C/" was typed after a ~@∧."
 delimiter (car sentence)))

 (t (selectq delimiter

 (#/,

 (push ’:comma sentence))

 (#/:

 (push ’:colon sentence))

 (#/;

 (push ’:semicolon sentence))

 (#/.

 (push ’:period sentence)

 (return (nreverse sentence)))

 (#/?

 (push ’:question-mark sentence)

 (return (nreverse sentence)))))))))))�

Sometimes an error in parsing is detected not by the function that invokes the in-

put editor, but by some function that it calls. In the next example, read-time in-

vokes time:parse-universal-time to do its parsing. If we did not use the condition-

case form in read-time, we would enter the Debugger when time:parse-universal-

time encountered incorrect input. The condition-case form encapsulates the origi-

nal error in one of flavor zl:parse-ferror so that the input editor catches it. Alter-

nately, we could define time:parse-error to be a subflavor of sys:parse-error.

508
Interactive Streams February 2018

(defun read-time (&optional (stream *standard-input*))

 (with-input-editing (stream :line)

 (let ((string (readline-or-nil stream)))

 (when string

(condition-case (error)

 (time:parse-universal-time string)

 (time:parse-error

 (sys:parse-ferror "~A" error)))))))�

14.7.7. Input Editor Messages to Interactive Streams

These are the input editor messages that can be sent to interactive streams:

(flavor:method :input-editor si:interactive-stream)

(flavor:method :start-typeout si:interactive-stream)

si:*typeout-default*

(flavor:method :finish-typeout si:interactive-stream)

(flavor:method :rescanning-p si:interactive-stream)

(flavor:method :force-rescan si:interactive-stream)

(flavor:method :replace-input si:interactive-stream)

(flavor:method :read-bp si:interactive-stream)

(flavor:method :noise-string-out si:interactive-stream)

14.8. Querying the User�

The following functions provide a convenient and consistent interface for asking

questions of the user. Questions are printed and the answers are read on the

stream *query-io*, which normally is synonymous with *terminal-io* but can be

rebound to another stream for special applications.

y-or-n-p

zl:y-or-n-p

yes-or-no-p

zl:yes-or-no-p

fquery

prompt-and-read

define-prompt-and-read-type�

509
February 2018 Digital Audio Facilities

15. Digital Audio Facilities�

15.1. Introduction to the Digital Audio Facilities�

The 3600-family audio facilities consist of two 16-bit digital audio channels and

supporting microcode. The facilities read arrays of samples from memory and feed

them to the console at a rate of 50,000 pairs of samples per second. This rate is

controlled in hardware by a crystal. When active, the audio microcode reads a pair

of samples from main memory every 20 microseconds, supplying one 16-bit value to

each channel.

In the standard console, the samples are sent to a 12-bit digital-to-analog converter

(DAC). The signal emanating from the DAC is routed to a small speaker and an

8-ohm headphone jack, as well as a low-level analog output compatible with stan-

dard "auxiliary" inputs to consumer audio equipment. In the standard console, the

monaural output sound is produced by combining the two DAC channels and rout-

ing the signal through a simple two-pole low-pass filter at 8 KHz.

The audio microcode also supports a ��������� �������� The polyphony feature al-

lows the use of the audio facility for the performance of music, obviating the need

to generate samples for an entire performance.

The digital audio facilities are demonstrated through several code examples. See

the section "Examples of Using the Audio Facilities", page 520.

The code examples are distributed in the following file:

SYS:EXAMPLES;AUDIO-EXAMPLES.LISP.�

Note: the digital audio facility works only on 3600-family computers.

15.2. Setting the Console Volume

Use this function to check and set the volume (loudness) of the console audio.

sys:console-volume &optional����������sys:*console*�

Returns the current volume setting for the console.

15.3. Microcode Support for the Digital Audio Facilities

15.3.1. The Audio Microtask

This section discusses the microcode interface, that is, the formats of commands

and samples interpreted by the audio microcode. This is the lowest-level interface

to this facility, and only the barest primitives are described here.

510
Digital Audio Facilities February 2018

The audio microcode runs in its own ��������� and thus operates parallel with the

execution of Lisp. The audio microtask is either ������ or ������� at any time.

Since the microtask scheduler works according to a priority queue, when the audio

task is active, it "wakes up" every 20 microseconds, and executes, preempting Lisp,

until it either outputs an audio sample pair or stops. The generation of audio sam-

ples is not affected by the behavior of Lisp programs, including the masking of

process preemption, and so forth.

When active, the audio microtask follows a ������� ����, or program of its own,

consisting of ����� ��������, stored by the programmer in main memory before

the audio microcode is started. The command list is stored in sequential ��������

memory locations (although it can contain "jumps"). Each command occupies one

or more 3600 words. The words are expected to be fixnums. The 32 data bits of

each fixnum contain the data interpreted by the audio microtask. The commands

include directives to control the flow of the command list as well as directives to

output data to the console DAC. The audio microcode also maintains a ������

������� to facilitate generation of repetitive or continuous waveforms. See the sec-

tion "Looping Through Audio Command Lists", page 519.

The audio microtask is started by the execution of the %audio-start instruction by

Lisp; the evaluation of the form (sys:%audio-start) effects this. When this instruc-

tion is executed, the audio microtask fetches the physical address of the beginning

of the command list from the variable sys:%audio-command-pointer. Therefore,

this variable must be set to the physical address of the beginning of the command

list ����� to the execution of the form (sys:%audio-start). The audio microcode

stops when it encounters an explicit command to this effect in its command list.

The audio microtask is coded for real-time performance; it does no validity check-

ing, and issues no diagnostics. If you program the audio microtask via the tech-

niques described in this document, it is your responsibility, as always, to create

valid programs. In the case of the digital audio facilities, however, the result of an

invalid program could be a machine halt or destruction of the integrity of virtual

memory, or both. If certain bit patterns are interpreted as audio commands, they

can modify storage locations. Save your editor buffers often when debugging code

for the audio microcode.

15.3.2. Sample Format

Each sample pair is expected to be a fixnum. The 32 data bits of each fixnum in-

clude two samples, one for each channel. The sample pair is read by the audio mi-

crotask in one operation, and the samples are sent to each channel in parallel.

Each sample is a 16-bit unsigned integer, one in the lower (bits 0-15) half word

(channel 0), and one in the upper (bits 16-31) half word (channel 1).

A sample value of 0 produces the lowest analog output voltage, and a sample value

of all 1s (65535, octal 177777) produces the highest. A voltage of zero is represent-

ed by the midpoint value, 32768 (octal 100000).

Channel 0 is currently supplied with analog output hardware in the console; Chan-

nel 1 is not. The digital-to-analog converter in the console is only of 12-bit preci-

sion, and thus, it ignores the low 4 bits of Channel 0 samples.

511
February 2018 Digital Audio Facilities

15.3.3. Audio Command Format

Audio commands occupy one or more words of sequential physical memory. The

command words are expected to be fixnums. The fixnum data (32 bits) for each

command is described in this section.

The format of the first word of each command is as follows, described by byte

specifiers in the sys package:

%%audio-command-op

A 4-bit ������ selecting the action to be performed by the au-

dio microcode. Each of the currently assigned opcodes is de-

scribed elsewhere. See the section "Audio Command Opcodes",
page 511. See the section "Polyphony Command Opcodes", page

515.

%%audio-command-arg

A 28-bit quantity, whose meaning differs for each opcode.

When the contents of this field, known as the �������, is de-

scribed as an �������, it must be a physical address. The usual

way to obtain such a physical address is via the function

si:%vma-to-pma (which does a virtual-to-physical translation).

This function is given a fixnum virtual memory address. The

usual way to derive such addresses, which are usually refer-

ences to array element cells, is via the %pointer and aloc

functions. A physical address computed from a virtual address

in this way cannot be validly used unless the relevant virtual

address has been wired in advance. See the section "Notes on

Wired Structures", page 515.�

15.3.3.1. Audio Command Opcodes
These are the valid opcodes of audio commands, with the exception of those com-

mands associated with the polyphony feature. See the section "The Polyphony Fea-

ture", page 513. The descriptions tell what action is performed by the audio micro-

task when a command having this opcode is encountered by the microtask. The op-

codes are listed under the the name of the system constant (also in the sys pack-

age) that gives the opcode value.

%audio-command-stop

Causes the audio microtask to halt execution. No more com-

mands are fetched, or samples sent to the console, until the

next execution of the sys:%audio-start instruction. The

operand is ignored.

%audio-command-jump

Causes the audio microtask to fetch its next instruction not

from the next sequential location, but from the physical ad-

dress that is the value of the operand. Sequential execution of

commands continues at that physical address.

512
Digital Audio Facilities February 2018

%audio-command-load-repeat

Loads the repeat register with the value of the operand. The

operand is an unsigned 28-bit number to be loaded into the re-

peat register, not an address. See the description of the %au-

dio-command-loop opcode for the use of this register.

%audio-command-loop

Decrements the repeat register by 1. If the result is greater

than zero, the operand is interpreted as a jump address, and

execution of commands continues at that address, as with %au-

dio-command-jump. Otherwise, if the result is less than or

equal to zero, command execution continues with the next se-

quential command.

%audio-command-samples

Designates a vector of sample pairs to be sent to the console.

The operand is the physical address of the first sample pair;

the remaining samples are fetched from successive words of

physical memory. The word in the command stream after the

%audio-command-samples command contains a fixnum that is

the count of the number of sample pairs to be fetched and sent

to the console before the execution of %audio-command-

samples terminates, and the microtask proceeds to the next se-

quential command. The %audio-command-samples command is

thus a two-word command.

%audio-command-zero

A synchronization primitive. The operand is the �������� ad-

dress of a cell, usually an array element. The audio microcode

stores a fixnum zero in that cell as the result of executing the

command having the opcode %audio-command-zero. The soft-

ware can use this facility to test if the audio microtask has

passed a given point in its command list. This enables the soft-

ware to ascertain when it is safe to unwire or reuse data

structures containing audio commands and/or samples. It is im-

portant to remember that the audio task, when active, locks

out Lisp execution until it either sends a sample or goes idle.

For example, if %audio-command-zero is immediately followed

by %audio-command-stop, the observation of the zeroed cell

by Lisp software implies that the microtask has already read,

interpreted, and executed the %audio-command-stop.

%audio-command-immediate

Designates a vector of sample pairs to be sent to the console.

Unlike %audio-command-samples, the sample pairs appear in

the command list, in consecutive physical memory locations im-

mediately following the the %audio-command-immediate com-

mand word. The operand of %audio-command-immediate is a

number, which is the count of sample pairs. That number of

sample pairs is fetched from the command list and sent to the

513
February 2018 Digital Audio Facilities

console, one every 20 microseconds (at a 50 KHz sampling

rate). Execution of the command list proceeds with the next

command after the vector of sample pairs, after all samples

have been sent to the console.

It is critically important that the operand is equal to the num-

ber of samples provided, lest commands be interpreted as sam-

ples or vice versa.

15.3.4. The Polyphony Feature

The polyphony feature of the Symbolics audio microcode provides a way to gener-

ate polyphonic music in real time. There is no need to precompute the samples

and store them before playback from disk. The polyphony feature can produce six

������, where a voice is a rhythmically independent sequence of musical notes.

Each voice can be assigned a predefined, programmer-specified waveform, which

determines the spectrum and the amplitude of the notes that appear in that voice,

regardless of their pitch (frequency). The waveform specification determines the

shape and amplitude of ��� ����� only of the waveform. This waveform is repeated

at different frequencies to produce musical tones.

The polyphony feature is not intended as a general-purpose music synthesis facili-

ty. For example, no control over the amplitude envelopes (attack, decay, and so

forth) of the sounds produced is provided. The polyphony feature is intended for

use in music system prototyping, that is, composition research, music editing pro-

grams, and so forth. Nevertheless, the square-envelope notes it produces are not

very different from those produced by some electronic organs. When properly pro-

grammed and amplified, the digital audio facility is capable of reasonably authentic

performance of much of the organ literature.

15.3.4.1. Operation of Polyphony
The basic function of the polyphony feature is to generate, in parallel, six separate

wave signals, usually of different frequencies, and sum them, at the sampling

times of the audio facility. The audio microcode accomplishes this by maintaining,

for each voice, a ���������, a ����������������, and an ���������.

The wavetable for each voice consists of 1024 fixnums stored in consecutive loca-

tions in physical memory, defining the �������� for notes in that voice. The

fixnums constitute �����������, which digitally describe the waveform of the voice.

The detailed interpretation of the wave values is as follows: Each fixnum

wavetable element is interpreted as the algebraic sum of the wave values for the

channels 0 and 1, channel 1 having been shifted 16 bits left. In detail, the value

for channel 0 is a 32-bit signed (31 bits and sign, 2’s complement) value between -

2**15 and 2**15-1, inclusive. The value for channel 1, also in the range -2**15 to

2**15-1, is shifted left 16 bits and added algebraically to the value for channel 0.

The resulting number (which is always a fixnum) is the value of the wavetable

entry. Note that this is not the same format as that of audio samples used by oth-

er parts of the audio facility.

514
Digital Audio Facilities February 2018

When polyphony is running (that is, when the audio microtask is interpreting the

command %audio-command-polyphony), one value from each of the six tables is

extracted, and these values are added algebraically. The resulting value is then

offset by 2**15 �� ���� ��������, and the resulting two halfwords are sent as audio

samples to the two audio channels.

You must ensure that the sum of the values from each table never exceeds the

range -2**15 to 2**15-1 for either channel. The audio microcode clips or overflows

into the other channel if this range is exceeded.

Associated with each voice is also a counter/pointer called the ��������� ������.

This quantity is a 32-bit unsigned number. The high-order ten bits of the

wavetable cursor for each voice constitute an index, which selects the entry of its

wavetable to be summed into the audio sample to be produced. The low bits are

used to measure the passage of time, overflowing into the high bits 1024 times per

cycle of that voice.

Also associated with each voice is a quantity called an ���������. The increment is

a 32-bit fixnum. It controls the frequency, or pitch, of the note in each voice, by

controlling the rate of incrementing of the wavetable cursor for that voice. When

the command %audio-command-polyphony is being interpreted by the audio mi-

crotask, the increment for each voice is added to the wavetable cursor for that

voice, and the resulting quantity is made the new wavetable cursor. (This addition

is performed ����� the wavetable sample is extracted). Thus, when this repeated ad-

dition produces enough change in the value of the wavetable cursor such that the

top ten bits are affected, a different wavetable entry for that voice is fetched at

the next sampling time. Note that continued incrementing in this manner "wraps

around". In this way, the wavetable cursor is way reset to the beginning of the

wavetable, after the last entry in the wavetable has been used.

The following function (available in the audio package) computes the increment

for a voice from the frequency:

 (defun frequency-polyphonic-increment (frequency)

 (round (* frequency (float 1_32.)) audio:*sample-rate*))�

You simultaneously establish the increment and wavetable location for a voice by

the audio command %audio-command-load-voice. You instruct the polyphony facil-

ity to output samples by the audio command %audio-command-polyphony. This

command uses all of the wavetables and increments previously established by %au-

dio-command-load-voice, and outputs as many samples as requested, one every 20

microseconds, generated by summing entries from the six wavetables, incrementing

the six wavetable cursors by the six associated increments as each sample is gen-

erated.

Note: changing the wavetable and/or increment for a voice does not affect any oth-

er voice in any way. Since the audio microtask is awakened by an external timer,

and runs until it either outputs a sample pair or stops, no discontinuity in notes

played by other voices is observed when %audio-command-load-voice is interpret-

ed to change the note in one voice.

515
February 2018 Digital Audio Facilities

Polyphony Command Opcodes

%audio-command-load-voice

Establishes a wavetable and increment for one voice of the

polyphony feature The operand is the physical address of the

base of the wavetable for the voice. The word in the command

stream after %audio-command-load-voice is, in its 32 data

bits, the increment for the voice. The low three (that is, the

least significant) bits of this increment are the binary number

of the voice whose wavetable and increment are to be estab-

lished. %audio-command-load-voice is effectively a two-word

command.

When polyphony is being performed, the audio microcode uses,

for each voice, the wavetable and increment established for

that voice. There is no way to assert that a voice does not ex-

ist, or has no wavetable, or no increment. A valid wavetable

and increment must be established for each of the polyphonic

voices before %audio-command-polyphony is executed by the

audio microcode, regardless of whether that voice is needed for

the performance of the particular composition.

%audio-command-load-voice does not affect the value of the

wavetable cursor for the voice involved.

%audio-command-polyphony

The operand is an unsigned 28-bit number. The audio mi-

crocode sends out that many samples, one each 20 microsec-

onds, generated from the currently established wavetables of

the polyphony feature. The wavetable cursors of each voice

used by the polyphony feature are incremented by the incre-

ment established for that voice as each sample is sent out. The

values of the increments and the wavetable cursors are not re-

set in any way by either the start of %audio-command-

polyphony, or its completion. �

15.3.5. Simple Tone Generation with sys:%beep and sys:%slide

Use these functions to generate tones on 3600-family consoles.

sys:%beep

sys:%slide

15.3.6. Notes on Wired Structures

The audio microtask fetches commands from sequential locations of physical mem-

ory. Branch addresses in the command list are physical addresses. Audio sample

data pointed to by the command list are also described by physical address.

Wavetables used by the polyphony feature are also described and accessed by phys-

ical address.

516
Digital Audio Facilities February 2018

The audio microtask does not perform virtual address translation. Thus, the com-

mand list and sample data must be stored in data structures �����, or locked, in

main memory. That is, they must be prevented from being paged out or moved by

the Genera system. As a digital audio programmer, you must therefore be aware of

page boundaries.

Audio command lists and sample vectors must be stored in wired pages consecu-

tive in main memory, or scattered throughout main memory. If commands are

stored in pages scattered throughout main memory, jumps must be programmed at

the end of each page, to send the audio microcode on to the next page. If sample

vectors are stored in pages scattered throughout main memory, you must use a

separate %audio-command-samples command to describe the samples on each

page. Wavetables for the polyphony feature must be in consecutive locations in

main memory.

It is conventional to use Lisp arrays as the data structure containing audio com-

mands, samples, and wavetables. Any type of array is usable for this purpose. art-q

arrays allow one audio command or sample pair per element, and are also the only

type of array whose elements can validly be addressed by the zl:aloc function.

15.3.6.1. Lisp Primitives for Wiring Memory
The relevant Lisp primitives to wire data structures for the digital audio facility

are storage:wire-structure, storage:wire-words, and storage:wire-consecutive-

words. storage:wire-words wires any extent of virtual memory into physical mem-

ory, although the page frames into which successive pages are wired cannot be

contiguous. storage:wire-consecutive-words also wires any extent of virtual memo-

ry into physical memory, but successive pages are guaranteed to be stored in suc-

cessive page frames in physical memory. storage:wire-structure wires an entire

structure (a convenience device to avoid having to calculate the location and extent

of the virtual memory occupied by a structure) in the manner of storage:wire-

words.

Since commands must be stored in consecutive locations in physical memory,

storage:wire-consecutive-words suggests itself as the natural primitive for this

application. However, success of this primitive depends on the availability of con-

secutive page frames of main memory not already containing wired pages, and it is

thus less likely to succeed as more pages are wired. Use of storage:wire-structure

and storage:wire-words for audio data does not encounter this problem, but re-

quires explicit programmer handling of page boundaries, as outlined previously.

sys:%find-structure-header and sys:%structure-total-size are used to find the vir-

tual memory location and extent of whole arrays or other structures to be wired.

storage:page-array-calculate-bounds can be used to calculate the virtual memory

location and extent of portions of array that are to be be wired, when

storage:wire-words or storage:wire-consecutive-words is used. sys:%pointer-

difference can also be used to determine the length of the extent, in words, be-

tween two addresses obtained via these primitives or the zl:aloc function.

Structures, or portions thereof, wired by any of these primitives, should be un-

wired by storage:unwire-structure or storage:unwire-words (as appropriate) only

after it has been ensured (via the techniques described) that the audio microtask

is not fetching commands or samples from these structures.

517
February 2018 Digital Audio Facilities

15.4. Lisp Primitives for the Digital Audio Facilities

15.4.1. Functions, Variables, and Macros for Digital Audio�

This section describes the functions, variables, and macros available to the Lisp

programmer to aid in programming the 3600-family Digital Audio Facilities. All of

these objects are tools for programming the audio microtask. Therefore, this sec-

tion assumes that you already understand the microcode capabilities. See the sec-

tion "Microcode Support for the Digital Audio Facilities", page 509.

All of the digital audio functions, variables, and macros appear in the audio pack-

age. Several comprehensive examples of their use are provided in the file

sys:examples;audio-examples.lisp. See the section "Examples of Using the Audio Fa-

cilities", page 520.

These Lisp tools assume the existence of an audio ������� �����, in which audio

microtask commands are placed, and out of which they are executed by the audio

microtask. A macro (audio:with-audio) manages the wiring and unwiring of com-

mand arrays within the scope of a program.

A default audio command array is provided as part of these audio support primi-

tives. All of these primitives, however, allow the specification of any suitable user-

provided array as a command array. Such an array must be a nonindirect, single-

dimensional sys:art-q array, with a fill pointer, allocated in a static area (such as

audio:audio-area).

Command arrays, as all arrays, are finite in extent. Carefully planned synchroniza-

tion techniques must be utilized to allow uninterrupted sound to be produced from

a single command array that is being serially reused for sequences of audio com-

mands. See the section "Examples of Using the Audio Facilities", page 520.

15.4.2. Digital Audio Parameters�

These are the critical constants of the audio facility.

audio:*sample-rate*

audio:*number-of-polyphonic-voices*

sys:%%audio-increment-integer

15.4.3. Testing for the Existence of Audio

Use this variable to test for the existence of audio on a 3600-family machine.

audio:audio-exists

15.4.4. The Audio Wrapping Form

Use this macro to prepare an audio command array. The macro globally binds

scheduler parameters to allow process generating audio commands to gain control

when necessary.

518
Digital Audio Facilities February 2018

audio:with-audio

15.4.5. Building Audio Command Lists

The functions listed in this section prepare arguments for, build, and store audio

commands in a command array. They assume that the fill pointer of the array de-

scribes the next available location in the array, and they update the fill pointer as

needed. The array must be wired, as some of these functions compute and store

physical addresses of locations in the command array. Calling these functions does

not produce sound. Sound is produced when the audio facility is directed (via

audio:audio-start) to a command list produced by calling these functions.

The fill pointer of the array defines a logical pointer called the ����� �����. The

function audio:audio-index (which defines a location accessible with zl:setf) is

used to access this index (for example, for use as an argument to a later function

call).

The current implementation uses command arrays that are wired into successive,

contiguous page frames of physical memory. The exclusive use of these primitives

hides this implementation detail. Do not perform calculations on audio indices. In-

stead, request them whenever needed via audio:audio-index, and use them only as

arguments to the primitives provided.

Use of the macro audio:with-audio is the recommended way to establish the prop-

er context in which these functions can be validly used. Each of them takes an op-

tional argument, which specifies the command array in question. This argument

always defaults to the facility’s default command array.

audio:audio-index

audio:audio-room

audio:audio-limit

audio:push-audio-jump

audio:push-audio-zero-flag

audio:push-audio-load-voice

audio:push-audio-polyphony

audio:modify-audio-command-arg

15.4.6. Storing Samples

The functions and macros described in this section place audio sample pairs into

the command program. These commands can be either immediate (%audio-

command-immediate) or stored elsewhere (%audio-command-samples).

audio:push-array-of-audio-samples

audio:computing-immediate-audio-samples

audio:push-immediate-audio-sample

519
February 2018 Digital Audio Facilities

15.4.7. Looping Through Audio Command Lists

These two macros facilitate the use of %audio-command-loop to create loops in

audio command lists. Keep in mind that the audio microcode does not support

nested loops.

audio:audio-loop

audio:set-audio-repeat-count

15.4.8. Synchronization Flags

These functions allocate, in the command array specified, locations to be used as

synchronization flags (for %audio-command-zero), and allow the flags to be wait-

ed for and reset. The "reset", or "normal", state of these flags, is non-zero. The au-

dio microcode "sets" them, by setting them to zero, when a %audio-command-zero

is executed. By means of these flags, the real-time progress of the audio microtask

can be monitored.

audio:reserve-audio-flags

audio:wait-for-audio-flag

15.4.9. Starting and Stopping the Audio Microtask

These functions are used to start and stop the audio microtask.

audio:audio-start

audio:audio-stop

15.4.10. Conversions Between Sample Formats

The following functions encode and decode sample pairs. They are provided to hide

the internal representation of sample pairs. Some of these "functions" are actually

implemented as macros to help make code that prepares audio samples as fast as

possible.

These functions convert between three formats of samples, �����, ������, and ����

���. Float and fixnum formats describe channel values. Sample format is the actual

format of sample pairs stored in command arrays and sample arrays.

Fixnum format consists of integers in the range -1**15 ≤ � < 1**15. Float format

consists of floating numbers and float channels are in the range -1.0 ≤ � < 1.0. You

must ensure that a float format value is never +1.0.

audio:float-channel-fix

audio:fix-channel-float

audio:fix-sample

audio:float-sample

audio:sample-channels

audio:sample-add-fix

audio:sample-add-float

audio:sample-add-sample

520
Digital Audio Facilities February 2018

15.4.11. Conversions for the Polyphony Feature�

These functions convert between fixnum and float format channel values and the

values stored in wavetables used by the polyphony feature. See the section "The

Polyphony Feature", page 513.

audio:fix-polyphonic-wave-table-entry

audio:float-polyphonic-wave-table-entry

audio:polyphonic-wave-table-entry-channels

15.4.12. Computing Polyphonic Increments

This function computes the appropriate wavetable increment to specify the fre-

quencies in polyphonic textures.

audio:frequency-polyphonic-increment

15.5. Examples of Using the Audio Facilities

This chapter presents seven program examples that use the digital audio facilities,

in both real-time and non-real-time synthesis applications.

15.5.1. Sine Wave Example

This example generates a sine wave at a specified frequency.

521
February 2018 Digital Audio Facilities

(defun sine-wave (frequency)

 (audio:with-audio () ;Set up the audio environment

 (let* ((start (audio:audio-index)) ;Get the current (starting) index

 (samples-per-cycle (round audio:*sample-rate* frequency))

 ;; Spread out several cycles to get a more accurate

 ;; frequency. Extra factor of 2 makes sure there is room.

 (number-of-cycles (max 1 (floor (audio:audio-limit) (* samples-per-cycle 2))))

 ;; Actual number of samples we are going to produce

 (number-of-samples (* samples-per-cycle number-of-cycles)))

 ;; Make sure we have room to play this frequency

 (when (> (+ number-of-samples 2) (audio:audio-limit))

(ferror "Frequency too low"))

 ;; This form allows us to compute number-of-samples inline

 ;; (as opposed to computing them in a separate array). If we

 ;; didn’t know how many samples we were going to produce we could

 ;; supply NIL for number-of-samples and the form will keep track

 ;; and adjust the command array when the form is exited. Since we

 ;; do supply the number of samples, the form will check to make

 ;; sure we supply exactly that many. This helps us to avoid writing

 ;; incorrect audio programs.

 (audio:computing-immediate-audio-samples (number-of-samples)

(loop for sample-number below number-of-samples

 as phase =

 ;; This is the phase (angle) that is passed to sin

 ;; to get the sine wave. (This will cons double-floats in

 ;; systems where cl:pi is a double-float.)

 (// (* 2 cl:pi sample-number number-of-cycles)

 number-of-samples)

 as sample =

 ;; Take the sin of the phase. Also multiply it

 ;; by something less than 1 so we never get a

 ;; value of 1.0 (a restriction, see

 ;; documentation). Take the resulting floating

 ;; point number in the range [-1.0, +1.0) and

 ;; create a ’sample.’

 (audio:float-sample (* (sin phase) 0.9))

 do ;; Now actually push the sample into the command array.

 (audio:push-immediate-audio-sample sample)))

 ;; All of the samples are computed and an appropriate command has

 ;; been generated to output them. Now we cause a jump back to the

 ;; beginning to keep the sound going.

 (audio:push-audio-jump start)

 ;; The program is complete, we can now start the audio facility.

 (audio:audio-start start)

 ;; When you’ve heard enough, just type anything. with-audio

 ;; supplies code to turn off the audio facility when exited and do

 ;; other bookkeeping.

 (tyi))))�

522
Digital Audio Facilities February 2018

15.5.2. Sawtooth Wave Example

This is roughly the same as sine wave, but instead produces a sawtooth and only

generates one cycle for it.

(defun saw-wave (frequency)

 (audio:with-audio ()

 (let* ((start (audio:audio-index))

 (samples-per-cycle (round audio:*sample-rate* frequency)))

 (audio:computing-immediate-audio-samples (samples-per-cycle)

(loop for sample-number below samples-per-cycle

 as value =

 ;; create a sawtooth value in the range [-1.0,1.0).

 ;; Note this can never be exactly 1.0 since

 ;; sample-number never quite gets as large as

 ;; samples-per-cycle.

 (- (// (* 2.0 sample-number) samples-per-cycle) 1.0)

 do (audio:push-immediate-audio-sample (audio:float-sample value)))

(audio:push-audio-jump start)

(audio:audio-start start)

(tyi)))))

15.5.3. Square Wave Example�

This example demonstrates yet another type of waveform: a square wave. The

audio:audio-loop form is also exemplified.

523
February 2018 Digital Audio Facilities

(defun square-wave (frequency)

 (audio:with-audio ()

 (let* ((start (audio:audio-index))

 (samples-per-cycle (round audio:*sample-rate* frequency))

 ;; Compute the number of samples for the high value and

 ;; low value. Divide them as evenly as possible.

 (samples-first-half (// samples-per-cycle 2))

 (samples-second-half (- samples-per-cycle samples-first-half)))

 ;; Create a loop that will repeat samples-first-half times. If we

 ;; weren’t sure how many times we want to repeat, we could specify

 ;; NIL and then use set-audio-repeat-count to set the count.

 (audio:audio-loop (samples-first-half)

;; Compute 1 value (the high value) for output.

(audio:computing-immediate-audio-samples (1)

 (audio:push-immediate-audio-sample (audio:float-sample 0.9))))

 ;; Do the same for the second half.

 (audio:audio-loop (samples-second-half)

(audio:computing-immediate-audio-samples (1)

 (audio:push-immediate-audio-sample (audio:float-sample -0.9))))

 ;; Jump back to the beginning so we get more than one cycle.

 (audio:push-audio-jump start)

 (audio:audio-start start)

 (tyi))))�

15.5.4. Beep Example

This is basically a modified square-wave.

(defun %beep-ignoring-most-issues (frequency duration)

 (audio:with-audio ()

 (let* ((start (audio:audio-index))

 (samples-per-cycle (sys:round audio:*sample-rate* frequency))

 (samples-first-half (// samples-per-cycle 2))

 (samples-second-half (- samples-per-cycle samples-first-half)))

 ;; Can’t nest loops, so we have to do the outer loop with a jump

 ;; and bash the location when time has elapsed.

 (audio:audio-loop (samples-first-half)

(audio:computing-immediate-audio-samples (1)

 (audio:push-immediate-audio-sample (audio:float-sample 0.9))))

 (audio:audio-loop (samples-second-half)

(audio:computing-immediate-audio-samples (1)

524
Digital Audio Facilities February 2018

 (audio:push-immediate-audio-sample (audio:float-sample -0.9))))�

 ;; This is the tricky part. We need to put a jump to the

 ;; beginning, but we need to know where it is so we can cause it

 ;; to fall through. We also need a flag so we know when the audio

 ;; has stopped so we can exit. If we simply exited without

 ;; waiting, the with-audio form could turn off the sound prematurely.

 (let* (;; get the index that we will eventually bash and put in a

 ;; jump back to the start.

 (jump-index (prog1 (audio:audio-index) (audio:push-audio-jump start)))

 ;; reserve (and reset) an audio flag.

 (flag-index (audio:reserve-audio-flags 1))

 ;; reserve-audio-flags puts in a jump command around the

 ;; flags it reserves, so we could have gotten the

 ;; fall-through index after pushing the jump command.

 ;; Anyway, get the index of the fall-through location.

 (fall-through-index (audio:audio-index)))

;; When we bash the jump command the microcode will jump to here

;; instead, which will cause the flag to get zeroed and the

;; audio facility to stop. Both events happen atomically as far

;; as Lisp can tell because no samples are output in the

;; intervening time.

(audio:push-audio-zero-flag flag-index)

(audio:push-audio-stop)

;; Start the audio

(audio:audio-start start)

;; Wait the appropriate number of microseconds.

(loop with start-time = (sys:%microsecond-clock)

 until

 (≥ (%32-bit-difference (sys:%microsecond-clock) start-time) duration))
;; Here is where we bash the argument of the jump command to

;; instead jump to the fall-through code.

(audio:modify-audio-command-arg fall-through-index :index jump-index)

;; Wait for the microcode to get to the flag and stop before we exit.

(audio:wait-for-audio-flag flag-index "%BEEP")))))�

15.5.5. Non-real-time Synthesis Example�

Certain kinds of very high quality sound cannot be generated in real time (one

sample computed every 20 microseconds). Small pieces (pieces that can fit in phys-

ical memory) can be computed and then played later.

525
February 2018 Digital Audio Facilities

(defun play-audio-sample-array

 (array &optional (from 0) (to (array-active-length array)))

 (audio:with-audio ()

 ;; with-wired-structure wires the structure on entry

 ;; and unwires on exit. External sample arrays must be wired.

 (si:with-wired-structure array

 (let* ((flag-index (audio:reserve-audio-flags 1))

 (start (audio:audio-index)))

;; Cause the samples to be played. If we supplied a non-NIL

;; immediate-p argument, we wouldn’t have to wire the

;; structure, since the samples would be put in the command

;; array which is already wired. However, most command arrays

;; are not very large and probably couldn’t hold all the

;; samples. It’s a tradeoff.

(audio:push-array-of-audio-samples array from to)

;; When the microcode finishes the samples, cause it to clear

;; the flag and stop.

(audio:push-audio-zero-flag flag-index)

(audio:push-audio-stop)

;; Start it up and wait for it to finish.

(audio:audio-start start)

(audio:wait-for-audio-flag flag-index "Play samples")))))

15.5.6. Playing Large Pieces Example�

Larger pieces (those that are too big to fit in physical memory) can still be played.

This program plays data that is stored on the FEP filesystem. Storage must be on

the FEP filesystem for several reasons. The digital audio system must produce da-

ta at the rate of one sample every 20 microseconds (including all overhead). This

is 1.6 megabits per second, which is a small factor away from raw disk speed. Af-

ter overhead, this is getting close to the limits of the system. The LMFS file sys-

tem incurs too much overhead. Also, we cannot copy (as LMFS would try to do if

we used :string-in into an array) and we cannot spend time wiring buffers (as we

would need to do with LMFS if we used :read-input-buffer).

The FEP filesystem allows us to do disk direct memory access (DMA) directly into

a buffer that we can keep wired. We can also setup the audio facility to point to

these buffers (using push-array-of-audio-samples) once so we do not have to do it

often.

The macro with-multi-disk-buffering takes care of multibuffering bookkeeping.

The user decides how many pages to devote to each buffer and the number of

buffers. Disk arrays (the buffers) are allocated and wired on entry and unwired on

exit.

526
Digital Audio Facilities February 2018

(defmacro with-multi-disk-buffering

 ((npages nbuffers) (array-of-buffers size-of-each-buffer) &body body)

 "npages and nbuffers are inputs, array-of-buffers and size-of-each-buffer are outputs"

 ‘(let ((,array-of-buffers (make-array ,nbuffers))

 (,size-of-each-buffer (* ,npages 288.)))

 (unwind-protect

 (progn (loop for .idx. below ,nbuffers

 as .buffer. = (allocate-resource ’si:disk-array

 (+ ,size-of-each-buffer 288.))

 do (setf (aref ,array-of-buffers .idx.) .buffer.)

 (si:wire-structure .buffer.))

 ,@body)

 (loop for .idx. below ,nbuffers

 as .buffer. = (aref ,array-of-buffers .idx.)

 do (when (si:structure-wired-p .buffer.)

 (si:unwire-structure .buffer.))

 (deallocate-resource ’si:disk-array .buffer.)))))

The function play-disk-file is the workhorse. There are many "if we are fast

enough" clauses in this example. As long as there is not much other activity (espe-

cially paging activity) we usually are fast enough.

(defun play-disk-file (pathname)

 (setq pathname (fs:merge-pathnames pathname "FEP:>↔.mus.newest"))

 ;; get the FEP file opened.

 (with-open-file (file pathname :direction :block

:if-exists :overwrite

:if-does-not-exist :error)

 ;; These numbers were picked after much experimentation and tuning.

 (let* ((npages 40.) (nbuffers 8))

 (audio:with-audio ()

(with-multi-disk-buffering (npages nbuffers) (buffers buffer-size)

 ;; allocate a flag for each buffer for synchronization.

 (let* ((flags (audio:reserve-audio-flags nbuffers))

 (start (audio:audio-index)))

 ;; build the audio program. Push each buffer as an array of

 ;; samples and then cause the flag associated with the

 ;; buffer to be zeroed.

 (loop for buffer below nbuffers

 do (audio:push-array-of-audio-samples (aref buffers buffer)

 0 buffer-size) (audio:push-audio-zero-flag

 (+ flags buffer)))�

527
February 2018 Digital Audio Facilities

 ;; Loop back to the beginning. To play new data (if we are

 ;; fast enough, there /will/ be new data in the buffers).

 (audio:push-audio-jump start)

 ;; n-queued is the number of buffers filled with valid data

 ;; that the microcode can use. (The microcode will use

 ;; all of them, but if we are fast enough we can keep them full.)

 ;; We fill up all the buffers and then start the audio facility.

 ;; This is done by an interaction with need-to-start and n-queued.

 ;; (There is also provision for small files.) When all the buffers

 ;; are queued, we need to wait for the microcode to finish

 ;; the next one before we can do disk dma into it.

 (loop with n-queued = 0

 with need-to-start = t

 with n-file-blocks = (sys:ceiling (send file :length) 1152.)

 with current-file-block = 0

 initially (format t "~&~F seconds~%"

 (// (* n-file-blocks 288.) audio:*sample-rate*))

 as blocks-this-whack =

 ;; This is the number of blocks to do this time

 ;; around. It is at most the number of pages of

 ;; buffering. It is also at most the number of

 ;; blocks remaining in the file.

 (min npages (- n-file-blocks current-file-block))

 for buffer-number =

 ;; This is the current buffer number we are going

 ;; to try to fill. It is gets incremented modulo

 ;; the number of buffers.

 0 then (\ (1+ buffer-number) nbuffers)

 as flag-index = (+ flags buffer-number)

 do ;; If all the buffers are queued, or if the end of

 ;; the file has been reached, wait for the

 ;; microcode to finish the buffer and then count it

 ;; as dequeued.

 (when (or (= n-queued nbuffers) (zerop blocks-this-whack))

 (audio:wait-for-audio-flag flag-index "Play disk file")

 (decf n-queued))

 ;; If we have some blocks to queue, make sure the

 ;; flag for this buffer is reset, read in the

 ;; blocks from the FEP file, increment the block

 ;; pointer into the file, and count another buffer

 ;; as queued.

 (when (not (zerop blocks-this-whack))

 (audio:reset-audio-flag flag-index)

 (send file :block-in current-file-block blocks-this-whack

 (aref buffers buffer-number))

 (incf current-file-block blocks-this-whack)

 (incf n-queued))�

528
Digital Audio Facilities February 2018

 ;; If the audio facility hasn’t been started and

 ;; all buffers are filled, start the audio facility

 ;; (and remember we did start it).

 (when (and need-to-start

(or (= n-queued nbuffers)

 (≥ current-file-block n-file-blocks)))
 (audio:audio-start start)

 (setq need-to-start nil))

 until

 ;; We are finished when nothing is queued and we are

 ;; at the end of the file.

 (and (zerop n-queued)

 (≥ current-file-block n-file-blocks)))))))))

15.5.7. Polyphony Example

This is a simple muse. It uses roughly the same multibuffering strategy as the

disk example, so that portion will not be commented as heavily. (See the section

"Playing Large Pieces Example", page 525.) The muse muses some number of voic-

es (user specified) between 1 and 6. All voices start at DO (C). Each step (approxi-

mately every 1/4 second) causes each voice to wander randomly between 2 diatonic

tones below the previous value and 2 diatonic tones above the previous value.

;;; Figure out how large wave tables are in this release.

(defconst *samples-per-polyphonic-wave-table*

 (expt 2 (byte-size sys:%%audio-increment-integer)))

;; This is the wave-array for the muse.

;; It is big enough to ensure that there will be at least

;; *samples-per-polyphonic-wave-table* consecutive wired words.

(defvar *muse-wave-array*

(make-array (+ *samples-per-polyphonic-wave-table* sys:page-size -1)

 :initial-value 0 :area audio:audio-area))

529
February 2018 Digital Audio Facilities

(defun polyphonic-muse (&optional (n-voices 4) &aux address wired)

 (check-arg n-voices (and (fixp n-voices)

(≤ 1 n-voices audio:*number-of-polyphonic-voices*))
 "an integer between 1 and 6")

 (audio:with-audio ()

 (unwind-protect

 (let ((offset-to-page

 ;; This is how one gets to the number of Qs

 ;; to the beginning of a page boundary

 (ldb sys:%%vma-word-offset

 (- sys:page-size

(ldb sys:%%vma-word-offset

(%pointer (locf (aref *muse-wave-array* 0))))))))

;;; Wire words of the wave table, starting at

 ;;; the location computed above.

(setq address (locf (aref *muse-wave-array* offset-to-page)))

(si:wire-consecutive-words

 address ;where

 samples-per-polyphonic-wave-table) ;how many, one per word.

(setq wired t) ;Set a reminder to unwire it...�

530
Digital Audio Facilities February 2018

;; Set up the muse wave array for a 1/6 (minus a bit) amplitude

;; sinewave (sawtooth doesn’t seem to sound good here). 1/6

;; allows all six voices to proceed without overflow. The

;; "minus a bit" avoids clipping at 1.0.

(loop for index below *samples-per-polyphonic-wave-table*

 do (setf (aref *muse-wave-array* (+ index offset-to-page))

 (audio:float-polyphonic-wave-table-entry

 (// (sin (// (* 2.0 si:pi index)

 samples-per-polyphonic-wave-table)) 6.2))))

;; Initialize each voice to a reasonable value. It is essential

;; that each voice gets a proper wave-array pointer and

;; increment value. An increment value of 0 will cause the

;; pointer never to be incremented. (This isn’t strictly true,

;; since the voice number is stored in the low 3 bits, but this

;; advances the pointer very slowly.)

(let ((start (audio:audio-index)))

 (loop for voice below audio:*number-of-polyphonic-voices*

 do

 (audio:push-audio-load-voice voice *muse-wave-array* offset-to-page 0))

 (audio:push-audio-stop)

 (audio:audio-start start)

 ;; put the audio index back to the start

 (setf (audio:audio-index) start))

(loop with nbuffers = 4

 with n-queued = 0

 with need-to-start = t

 with flags = (audio:reserve-audio-flags nbuffers)

 with start = (audio:audio-index)

 with chords-per-whack =

;; Take the room remaining, divide by the level of

;; buffering and then divide by the sum of [2 locations

;; per voice for the push-audio-load-voice command, one

;; for the push-audio-polyphony command, and one for a

;; possible flag or jump].

(// (audio:audio-room) nbuffers (+ (* n-voices 2) 1 1))

 with half-tone-offsets =

;; 0 (and the multiples of 12) are DO. The other

;; numbers are offsets (from 0) to consecutive notes in

;; the diatonic scale.

’(-25. -24. -22. -20. -19. -17. -15. -13.

 -12. -10. -08. -07. -05. -03. -01.

 000. +02. +04. +05. +07. +09. +11.

 +12. +14. +16. +17. +19. +21. +23.

 +24. +26. +28. +29. +31. +33. +35.)

 with half-tone-offsets-length = (length half-tone-offsets)�

531
February 2018 Digital Audio Facilities

 with voice-indices =

;; A list, one element for each voice, starting at middle DO.

(make-list n-voices

 :initial-value (find-position-in-list 000. half-tone-offsets))

 for buffer-number = 0 then (\ (1+ buffer-number) nbuffers)

 until (kbd-tyi-no-hang) ; Stop when user hits a key

 do

 (when (≥ n-queued nbuffers)
 ;; this also resets the flag

 (audio:wait-for-audio-flag (+ flags buffer-number) "Muse")

 (decf n-queued))

 ;; If this is buffer zero, make sure we are back to the start.

 (when (zerop buffer-number)

 (setf (audio:audio-index) start))

 ;; setup the chords for this buffer

 (loop repeat chords-per-whack

do ;; update each voice

 (loop for voice-indices-scan on voice-indices

 as old-index = (car voice-indices-scan)

 as new-index =

(let ((index (+ old-index (random 5) -2)))

 ;; clip at the boundaries of the list

 (cond ((< index 0) 1)

 ((≥ index half-tone-offsets-length)
 (- half-tone-offsets-length 2))

 (T index)))

 do (setf (car voice-indices-scan) new-index))

 ;; And queue the new values to polyphony facility

 (loop for index in voice-indices

 for voice-number upfrom 0

 as half-tone-offset = (nth index half-tone-offsets)

 as octave-offset = (// half-tone-offset 12.0)

 as frequency-factor = (expt 2.0 octave-offset)

 as frequency = (* 256.0 frequency-factor)

 do (audio:push-audio-load-voice

 voice-number *muse-wave-array* offset-to-page

 (audio:frequency-polyphonic-increment frequency)))

 ;; Do polyphony for 1/4 second

 (audio:push-audio-polyphony (sys:round audio:*sample-rate* 4)))

 ;; synchronize this buffer

 (audio:push-audio-zero-flag (+ flags buffer-number))

 (incf n-queued)

 (when (and (≥ n-queued nbuffers) need-to-start)
 (audio:push-audio-jump start)

 (audio:audio-start start)

 (setq need-to-start nil))))

 (when wired

(si:unwire-words address *samples-per-polyphonic-wave-table*)))))�

532
Digital Audio Facilities February 2018

533
February 2018 Dates and Times

16. Dates and Times�

16.1. Representation of Dates and Times

The time package contains a set of functions for manipulating dates and times:

finding the current time, reading and printing dates and times, converting between

formats, and other miscellany regarding peculiarities of the calendar system. It al-

so includes functions for accessing a Symbolics machine’s microsecond timer.

Times are represented in two different formats by the functions in the time pack-

age. One way is to represent a time by many numbers, indicating a year, a month,

a date, an hour, a minute, and a second (plus, sometimes, a day of the week and

time zone). The year is relative to 1900 (that is, if it is 1984, the ���� value would

be 84); however, the functions that take a year as an argument will accept either

form. The month is 1 for January, 2 for February, and so on. The date is 1 for the

first day of a month. The hour is a number from 0 to 23. The minute and second

are numbers from 0 to 59. Days of the week are fixnums, where 0 means Monday,

1 means Tuesday, and so on. A time zone is specified as the number of hours west

of GMT; thus in Massachusetts the time zone is 5. Any adjustment for daylight

saving time is separate from this.

This "decoded" format is convenient for printing out times in a readable notation,

but it is inconvenient for programs to make sense of these numbers, and pass

them around as arguments (since there are so many of them). So there is a second

representation, called Universal Time, which measures a time as the number of

seconds since January 1, 1900, at midnight GMT. This "encoded" format is easy to

deal with inside programs, although it doesn’t make much sense to look at (it

looks like a huge integer). So both formats are provided; there are functions to

convert between the two formats; and many functions exist in two forms, one for

each format.

Symbolics hardware includes a timer that counts once every microsecond. It is con-

trolled by a crystal and so is fairly accurate. The absolute value of this timer

doesn’t mean anything useful, since it is initialized randomly; what you do with

the timer is to read it at the beginning and end of an interval, and subtract the

two values to get the length of the interval in microseconds. These relative times

allow you to time intervals of up to an hour (32 bits) with microsecond accuracy.

Symbolics keeps track of the time of day by maintaining a "timebase", using the

microsecond clock to count off the seconds. When the machine first comes up, the

timebase is initialized by querying hosts on the local network to find out the cur-

rent time.

A similar timer counts in 60ths of a second rather than microseconds; it is useful

for measuring intervals of a few seconds or minutes (or hours, which are longer

than the microsecond timer’s range) with less accuracy. Periodic housekeeping

functions of the system are scheduled based on this timer.

534
Dates and Times February 2018

16.2. Getting and Setting the Time

Use these functions for getting and setting the time.

get-decoded-time Returns the current time in decoded time format.

time:get-time Gets the current time, in decoded form.

get-universal-time Returns the current time, in Universal Time form.

time:set-local-time &optional���������

Set the local time to ��������.

16.2.1. The 3600-family Calendar Clock

3600 family and XL400 machines have a calendar clock that operates independent-

ly of the other hardware timers. When you cold boot and the machine fails to get

the time from the network, it asks you to type in the time. If the calendar clock

has been set, it uses the calendar clock reading as the default for the time you

specify. If the calendar clock has not been set, it offers to set it to the time you

type in. See the function time:initialize-timebase in �������������������������.

You can also set the calendar clock yourself using time:set-calendar-clock and

read it using time:read-calendar-clock.

Embedded systems use the clock on the embedding host as a calendar clock. Addi-

tionally, UX400 systems use the clock on the Ivory board as a backup for the clock

on the embedding host.

16.2.2. Elapsed Time in Seconds

Rather than calendrical date/times, the following functions deal with elapsed time

in seconds, 60ths of seconds, or microseconds. These functions are used for many

internal purposes where the idea is to measure a small interval accurately, not to

depend on the time of day or day of month.

time

zl:time

time-lessp

time-difference

time-increment

time-elapsed-p

time:microsecond-time

time:fixnum-microsecond-time

16.2.3. Elapsed Time in Internal Time Units

One internal time unit is 1024 microseconds. These three functions use this inter-

nal time unit:

535
February 2018 Dates and Times

get-internal-real-time

get-internal-run-time

internal-time-units-per-second

16.3. Printing Dates and Times

The functions in this section create printed representations of times and dates in

various formats, and send the characters to a stream. To any of these functions,

you may pass nil as the ������ parameter, and the function will return a string

containing the printed representation of the time, instead of printing the charac-

ters to any stream.

time:print-current-time &optional���������zl:standard-output�

Prints the current time, formatted as in 11/25/83 14:50:02, to

the specified stream.

time:print-time ������� ������� ����� ��� ����� ���� &optional �������

zl:standard-output����������(get-universal-time)�

Prints the specified time, formatted as in 11/25/83 14:50:02, to

the specified stream.

time:print-universal-time �� &optional���������zl:standard-output����������

Prints the specified time, formatted as in 11/25/83 14:50:02, to

the specified stream.

time:print-current-date &optional���������zl:standard-output�

Prints the current time, formatted as in Friday the twenty-

fifth of November, 1988; 3:50:41 pm, to the specified stream.

time:print-date ������� ������� ����� ��� ����� ���� ��������������� &optional

��������zl:standard-output�

Prints the specified time, formatted as in Friday the twenty-

fifth of November, 1983; 3:50:41 pm, to the specified stream.

time:print-universal-date �� &optional���������zl:standard-output����������

Prints the specified time, formatted as in Friday the twenty-

fifth of November, 1983; 3:50:41 pm, to the specified stream.

time:print-brief-universal-time �� &optional ������� zl:standard-output� �������

(get-universal-time)�

Like time:print-universal-time except that it omits seconds

and only prints those parts of �� that differ from ������, a uni-

versal time that defaults to the current time.�

zl:format accepts some directives for printing dates and times.

536
Dates and Times February 2018

16.4. Reading Dates and Times

The functions listed in this section accept most reasonable printed representations

of date and time and convert them to the standard internal forms. The following

are representative formats that are accepted by the parser:

"March 15, 1960" "15 March 1960" "3//15//60" "3//15//1960"

"3-15-60" "3-15" "15-March-60" "15-Mar-60" "March-15-60"

"1960-3-15" "1960-March-15" "1960-Mar-15"

"1130." "11:30" "11:30:17" "11:30 pm" "11:30 am" "1130" "113000"

"11.30" "11.30.00" "11.3" "11 pm" "12 noon"

"midnight" "m" "Friday, March 15, 1980" "6:00 gmt" "3:00 pdt"

"15 March 60" "15 March 60 seconds"

"fifteen March 60" "the fifteenth of March, 1960;"

"one minute after March 3, 1960"

"two days after March 3, 1960"

"Three minutes after 23:59:59 Dec 31, 1959"

"now" "today" "yesterday" "two days after tomorrow"

"one day before yesterday" "the day after tomorrow"

"five days ago"�

The parsing functions accept date strings in ISO standard format. These strings

are of the form "yyyy-mm-dd", where:

yyyy Four digits representing the year

mm The name of the month, an abbreviation for the month, or one

or two digits representing the month

dd One or two digits representing the day

Following are some restrictions on strings to be parsed:

• You cannot represent any year before 1900.

• A four-digit number alone is interpreted as a time of day, not a year. For exam-

ple, "1954" is the same as "19:54:00" or "7:54 pm", not the year 1954.

• The parser does not recognize dates in European format. For example,

"3//4//85" or "3-4-85" is always the same as "March 4, 1985", never

"April 3, 1985". A string like "15//3//85" is an error. In such strings, the first

integer is always parsed as the month and the second integer as the day.�

Here are the functions:

time:parse ������ &optional ������ 0� ��� �������� t� ��������� �������������� �����

��t�

Interprets ������ as a date and/or time, and return seconds,

minutes, hours, date, month, year, day-of-the-week, daylight-

savings-time-p, and relative-p.

537
February 2018 Dates and Times

time:parse-universal-time ������������������� &optional ������ 0� ��� �������� t�

��������� �������������� ������������������� ���������������

��������������������������t�

The same as time:parse except that it returns one integer,

representing the time in Universal Time, and the ����������

value.

time:parse-universal-time-relative ��������� ������������������� &optional ���������

t�

Like time:parse-universal-time, except that ��������� is parsed

relative to �������������������.

time:parse-present-based-universal-time �������������������

Like time:parse-universal-time, except that missing compo-

nents in ����������������� are defaulted to the beginning of the

smallest unsupplied unit of time.

16.5. Reading and Printing Time Intervals

Several functions read and print time intervals. They convert between strings of

the form "3 minutes 23 seconds" and integers representing numbers of seconds.

si:parse-interval-or-never ������

Returns an integer if ������ represents an interval, or nil if

������ represents "never".

time:print-interval-or-never �������� &optional���������zl:standard-output�

Prints the representation of �������� as a time interval onto

������.

sys:read-interval-or-never &optional��������������

Reads a line of input from ������ (using zl:readline) and calls

si:parse-interval-or-never on the resulting string.

16.6. Time Conversions

Use these functions and this variable to convert between universal time and decod-

ed time.

decode-universal-time �������������� &optional�����������time:*timezone*�

Given a universal time, returns nine values for the correspond-

ing decoded time: second (0-59); minute (0-59); hour (0-23);

date (1-31); month (1-12); year (A.D.); day-of-week (0[Monday]-

6[Sunday]); a flag (t or nil) indicating whether daylight sav-

ings time is in effect; and the timezone (hours west of GMT).

time:decode-universal-time �������������� &optional�����������time:*timezone*�

Converts �������������� into its decoded representation.

538
Dates and Times February 2018

encode-universal-time ������������������������������������ &optional���������

Given a time in decoded time format, returns the correspond-

ing universal time (plus or minus seconds since midnight, Jan-

uary 1, 1900 GMT).

time:encode-universal-time ������� ������� ����� ��� ����� ���� &optional �����

����

Converts the decoded time into Universal Time format and re-

turns the Universal Time as an integer.

time:*timezone* The time zone in which this Symbolics machine resides, ex-

pressed in terms of the number of hours west of GMT this

time zone is.

16.7. Internal Time Functions

These functions provide support for functions that deal with dates and time. Some

user programs might need to call them directly, so they are listed here.

time:initialize-timebase &optional �� ������������ (not (or time:*initialize-

timebase-from-calendar-clock* (global:string-equal (scl:send

net:*local-site* :standalone) "yes")))�
Initializes the timebase.

time:daylight-savings-p &optional������������������time:*timezone*�

Returns t if daylight savings time is currently in effect.

time:month-length ����������

Returns the number of days in �����; you must supply a ����

in case the month is February.

time:leap-year-p ����

Returns t if ���� is a leap year.

time:verify-date ������������������������������

Returns nil if the day of the week of the date specified by ���,

�����, and ���� is the same as ���������������; otherwise, re-

turns a string that contains a suitable error message.

time:day-of-the-week-string ��������������� &optional�������’:long�

Returns a string representing the day of the week.

time:month-string ����� &optional�������’:long�

Returns a string representing the month of the year.

time:timezone-string &optional ��������� time:*timezone*� �������������������

(time:daylight-savings-p time:timezone)� ��������������� �����

�����

Returns the printed representation of a timezone; the default

timezone is the current one for the user’s site.

539
February 2018 Dates and Times

For more information on functions that deal with dates and times:

See the section "Getting and Setting the Time", page 534.
See the section "Elapsed Time in Seconds", page 534.
See the section "Elapsed Time in Internal Time Units", page 534.
See the section "Printing Dates and Times", page 535.
See the section "Reading Dates and Times", page 536.
See the section "Reading and Printing Time Intervals", page 537.
See the section "Time Conversions", page 537.�

540
Dates and Times February 2018

541
February 2018 Zwei Internals

17. Zwei Internals�

17.1. Introduction to Zwei Internals

Zmacs, the Genera editor, is built on a large and powerful system of text-

manipulation functions and data structures, called ����.

Zwei is not an editor itself, but rather a system on which other text editors are

implemented. For example, in addition to Zmacs, the Zmail mail reading system al-

so uses Zwei functions to allow editing of a mail message as it is being composed

or after it has been received. The subsystems that are established upon Zwei are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as text in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp environment,

many of the commands available as Zmacs commands are available in other editing

contexts as well.

17.2. Stream facility for editor buffers

zwei:with-editor-stream opens a stream to an editor buffer; it is analogous to

with-open-file for files. zwei:open-editor-stream also opens a stream to an editor

buffer; it is analogous to open for files.

17.2.1. The zwei:with-editor-stream macro

zwei:with-editor-stream takes the same keyword options as zwei:open-editor-

stream.

On exit, it sends a :force-redisplay message to the stream, which causes the edi-

tor to do any necessary redisplay. See the section "Keyword Options", page 542.

17.2.2. The zwei:open-editor-stream function

zwei:open-editor-stream takes the same keyword options as zwei:with-editor-

stream.

You can send a :force-redisplay message at any time while the stream is open.

See the section "Keyword Options", page 542.

542
Zwei Internals February 2018

17.2.3. Keyword Options

zwei:with-editor-stream and zwei:open-editor-stream both recognize the same set

of keyword options. Some of the options are mutually exclusive and some are in-

terdependent.

You specify where to find the text by using one of the following keywords,

whichever is appropriate to the situation. The keywords appear here in priority or-

der. When the options specify several of these, one from the top of the list over-

rides one from further down in the list, regardless of what order the keywords ap-

pear in the options list.

:interval

:buffer-name

:pathname

:window

:start�

The options refer to an object called a ��. This is a Zwei data structure for repre-

senting a particular position in a buffer.

������ ������������������

:buffer-name The full name of a buffer to use for the stream.

(zwei:with-editor-stream

 (foo ’:buffer-name (send zwei:*interval* ’:name))

 ...)�

The buffer does not need to exist (see :create-p). The following

example creates a Zmacs buffer named temp and opens the

stream foo to it. �

(zwei:with-editor-stream (foo "temp")

 ...)�

:create-p Specifies what to do when the buffer does not exist. This ap-

plies only in conjunction with :buffer-name or :pathname with

:load-p.

����� �������

:ask Queries the user before creating the buffer.

:error Signals an error and provides proceed types

for creating it or supplying an alternate.

t Creates the buffer.

:warn Notifies the user that a buffer is being cre-

ated (the default).�

:defaults Specifies the pathname defaults against which a :pathname

option would be merged. These are necessary in case reprompt-

ing needs to occur. The default is nil, meaning to use the de-

fault defaults. This option applies only in conjunction with

:pathname.

543
February 2018 Zwei Internals

:end Specifies the conditions for terminating the stream (the "end of
file" condition).
����� �������

bp Stops when this buffer bp is reached.

:end Stops at the end of the buffer (the default).

This applies only if :start was also a bp.

:mark Stops when it reaches the mark. This op-

tion requires that you use the :window op-

tion as well.

:point Stops when it reaches point. This option re-

quires that you use the :window option as

well.�

:hack-fonts Specifies how to treat font shifts in the buffer.

����� �������

nil Ignores font shifts (the default).

t Provides full font support. Encodes font

shifts on both input and output using ep-

silons, as would go to a file.�

:interval Specifies a Zwei interval to use for the stream.

:kill Specifies what to do with the buffer before using it as a

stream.

����� �������

nil No action (the default)

t Deletes all the text currently in the desig-

nated part of the buffer.�

:load-p Specifies whether to read the file specified by :pathname into

the editor before using the buffer as a stream. (This is analo-

gous to Find File in Zmacs.) This works only from within

Zmacs.

����� �������

nil No action (the default)

t Loads the file into the editor.�

:no-redisplay Suppresses the redisplay of any windows associated with the

interval being written into.

(zwei:with-editor-stream

 (standard-output :buffer-name "Herald" :no-redisplay t)

 (print-herald))�

544
Zwei Internals February 2018

:ordered-p States whether :start and :end are guaranteed to be in for-

ward order. The default is nil. This applies only when :start

and :end are bps or :point and :mark.

:pathname Specifies a pathname to use for the stream. This can be a

pathname object or any file spec that can be coerced to a path-

name by fs:parse-pathname.

:start Specifies where to start the stream with respect to the buffer

contents.

����� �������

:append Starts at the end of the buffer. (Same as

:end.)

:beginning Starts at the beginning of the buffer.

bp Starts with this bp.

:end Starts at the end of the buffer (the de-

fault). (Same as :append.)

:mark Starts at the mark, which does not move as

a result. This requires a Zmacs window.

:point Starts at point, which does not move as a

result. This requires that you use the

:window option as well.

:region Starts at point and ends at mark (or vice

versa, depending on the ordering). This re-

quires that you use the :window option as

well. It ignores any :end in this case. �

:window Specifies a Zmacs window as the stream source.�

zwei:with-editor-stream does not currently interlock to prevent simultaneous ac-

cess to a single buffer by multiple processes. Neither does anything else. Trying to

access the same buffer with several processes simultaneously is not guaranteed to

work.

17.3. Making Standalone Editor Windows

You can create an editor window with the following properties:

• Is standalone, that is, has its own process.

• Does not necessarily have the buffer structure of Zmacs.

• Uses a pop-up window in place of the minibuffer.

• Uses its own command table.�

To create such a window, follow this procedure:

545
February 2018 Zwei Internals

Start with zwei:standalone-editor-frame. Send it an :edit message to make it edit.

It does not have its own process by default; you can mix tv:process-mixin with it

and make that process send the :edit message if you want it to have its own pro-

cess.

For example:

;;; -*- Syntax: Zetalisp; Base: 10; Mode: LISP; Package: ZWEI -*-

(defun funny-edit (string)

 (let ((window (tv:make-window ’standalone-editor-window :label "Funny Little Editor"

:height 400.

;; do this if you want its own command table

#+ignore #+ignore :*comtab* *some-comtab*)))

 (let ((string (catch ’abort-standalone-edit

 (edstring string window))))

 string)))�

Compile this, and do (zwei:funny-edit "any string"), and you will get a stand-

alone editor, primed with the string. It has a pop-up/pop-down minibuffer for ���

commands and the like. Press ��� to exit and return the current text from the

buffer, as a string.

A slightly more elaborated version of this is used as the patch-comment editor un-

der the ��� Finish Patch interface. Some of the main points of that:

• As given, the only way to abort out of the standalone editor is with ���������,

which is way too big a hammer. You can create a comtab for the standalone ed-

itor, say, zwei:*some-comtab*, and prime it with an existing Zwei command,

zwei:com-standalone-abort. Of course, you can also add custom commands for

the little editor:

 (setq *some-comtab*

(set-comtab "Funny Little Editor"

 ’(#\abort com-standalone-abort)))

 (set-comtab-indirection *some-comtab* *standalone-comtab*)�

• If this is going to be used repeatedly, you will want to use a window resource

instead of consing a new window each time.

• You may want to define your own window flavor on zwei:standalone-editor-

window and define special methods on it.

• All this is obvious in the source for zwei:edit-patch-comment-immediately and

related stuff, in SYS:ZWEI;PATED.LISP.�

Two other useful messages:

:set-interval-string

Inserts a string in the editor.

:interval-string Returns a string to the caller when :edit returns.

546
Zwei Internals February 2018

For providing a special comtab, you can initialize the instance variable

zwei:*comtab* by using the :*comtab* keyword in the init plist.

You can exit from this kind of editor by using ���.

547
February 2018 Index

�

Index

#/Back-Space, 356
#/Return, 356
#/Tab, 356
%%kbd-mouse bit, 376
%%kbd-mouse-button field, 376
(flavor:method :any-tyi-no-hang tv:stream-

mixin), 368
(flavor:method :any-tyi tv:stream-mixin), 368
(flavor:method :clear-history dw:dynamic-

window), 84
(flavor:method :clear-input tv:stream-mixin),

368
(flavor:method :clear-region dw:dynamic-

window), 84
(flavor:method :clear-window dw:dynamic-

window), 84
(flavor:method :delete-displayed-presentation�

dw:dynamic-window), 84
(flavor:method :listen tv:stream-mixin), 368
(flavor:method :set-viewport-position�

dw:dynamic-window), 84
(flavor:method :untyi tv:stream-mixin), 368
(flavor:method :visible-cursorpos-limits�

dw:dynamic-window), 84
(flavor:method :with-output-recording-disabled�

dw:dynamic-window), 84
(flavor:method :x-scroll-position dw:dynamic-

window), 84
(flavor:method :x-scroll-to�

dw:dynamic-window), 84
(flavor:method :y-scroll-position dw:dynamic-

window), 84
(flavor:method :y-scroll-to�

dw:dynamic-window), 84
abbreviating-output function, 92
:abbreviation-for type expansions and handler

performance, 255
[Abort], 449, 451
Accelerating Commands, 63
accelerator table, 59
accept, 11, 16, 34

548
Index February 2018

accept and present, relationship of, 11
accept function, 39
accept-from-string, 34
accept-from-string function, 40
accept-from-string., 16
Accepting Multiple Objects, 36
Accepting Single Objects, 34
accepting user input, 16
:accept-values pane type, 14
Accept Values Pane, 99
accessing a particular pane of a program frame,

127
Accessing Program Frame Objects, 127
action, 222
actions, 12
Actions and Translations, 12
Actions Versus Translations, 228
:activation option, 502
active inferiors of windows, 335, 337, 344
active windows, 335
Activities and Window Selection, 349
Adding an Item to the Create Column, 445
Adding an Item to the Programs Column, 445
Adding an Item to the System Menu, 444
Adding a Type Decoding Method, 465
Adding a Type Keyword Property, 465
adding item to menu, 442
Adding the Help-Program to Your Framework, 127
Advanced Graphic Output Facilities, 171
Advanced Transformation Facilities, 171
A Hierarchy of Presentation Types for Application

Programs, 185
alist-member, 28, 426
:alu, 164
Alu Functions, 361
alu functions, 356, 361
amplitude envelopes, 513
and, 28
anti-aliasing, 154
A Program Frame with More Than One

Configuration, 325
A Program-Framework Extended Example, 130
array as pattern in dummy description, 405
:ask Constraint Size Specification, 405
:ask-window Constraint Size Specification, 405
:assoc tv:choose-variable-values variable type,

457

549
February 2018 Index

Associating Actions with Mouse-sensitive Items,
472

Asynchronous Characters, 369
Attributes of a Mouse-sensitive Item, 471
Attributes of TV Fonts, 371
Audio Command Format, 511
audio command lists, 515
Audio command lists, 509
Audio Command Opcodes, 511
Augmenting the Top-Level Tools: Extending User

Interface Features, 184
autoexposure, 344
:backspace-not-overprinting-flag init option for

tv:sheet, 356
baseline, 372
Baseline Font Attribute, 372
Basic and Mixin Pop-up and Momentary Menus,

432
Basic Drawing Facilities, 142
Basic Facilities for Program Output, 70
Basic flavors, 421
Basic Graphic Output Facilities, 142
Basics of Scroll Windows, 486
Basic Use of Text Scroll Windows, 385
Beep Example, 523
:bevel, 160
:bind-line-height, 71
:bitblt message, 361
bit-save array, 336, 337
:black pattern in dummy description, 405
:blank dummy description, 405
:blink blinker visibility, 373
blinker height, 373
Blinkers, 373
blinkers, 352
blinker width, 373
Blinker Width and Blinker Height Font Attributes,

373
blink rate, 373
:blip-handler option, 502
blips, 367, 438, 467, 473
boolean, 28
:boolean tv:choose-variable-values variable

type, 457
bordered constraint frames, 395
borders, 352, 384
bp Zwei data structure, 542
:brief-help option, 502

550
Index February 2018

:buffer-name option for zwei:open-editor-stream,
542

:buffer-name option for zwei:with-editor-stream,
542

Building Audio Command Lists, 518
building transforms, 171
[Bury] Edit Screen menu item, 344
burying windows, 344
button-mask, 438
:buttons, 435
:buttons menu item type, 425, 435, 491
change in window shape, 393
changing the name of a pane in Frame-Up, 122
changing the status of windows, 352
character, 28
:character tv:choose-variable-values variable

type, 457
character attributes, 371
character-face-or-style, 28
character height, 371
Character Height Font Attribute, 371
:character-or-nil tv:choose-variable-values

variable type, 457
character output facilities, 70
Character Output to Windows, 356
character-style, 28
:character-style menu item option, 426
character style font interface, 370
character-style-for-device, 28
character width, 356, 372
character-width, 381
Character Width Font Attribute, 372
char-aluf, 356, 361
char-height attribute, 356
char-mouse-equal function, 378
Chars-exist-table Font Attribute, 373
char-width attribute, 356
:choice-box I/O buffer command, 467
choice boxes, 419, 451
choice boxes in bottom of margin, 477
Choice Facilities Use the Flavor System, 421
:choose message, 427, 438
:choose tv:choose-variable-values variable type,

457
choose-user-options function, 463
Choose Variable Values, 419
Choosing and Executing, 427

551
February 2018 Index

Choosing the Best Graphic Output Technique for
Your Application, 169

:clear-between-cursorposes, 167
:clear-history method of dw:dynamic-window, 95
:clear-region method of dw:dynamic-window, 95
:clear-rest-of-line, 167
:clear-rest-of-window, 167
:clear-window method of dw:dynamic-window,

95
clipping, 361
Clipping Functions and the Mask Option, 167
clipping output to lie within a specified figure, 167
clipping output to lie within a specified path, 167
:closed, 165
collecting continuations, 89
:color, 163
coloring, 163
color map, 352
color screens, 352
columns, 428
column-wise vs. row-wise layout in tables, 88
Combining Choice Facilities, 421
command, 438, 473
:command option, 502
command array, 518
command arrays, 517
Command Blips, 438
Command Errors, 124
:command-evaluator, 98
command loop, 8
:command-menu pane type, 14
Command Menu Mixins, 439
Command Menu Pane, 99
Command Menus, 419, 438
command operands, 12
Command Processor, 8
Command Processor command definition, 47
Command Processor Facilities, 13
command recognition, 43
Commands and Command Menus, 317
command sentence, 8
command table, 43
Command Table "Colon Full Command", 61
Command Table "Global", 63
Command Table "Input Editor Compatibility", 63
Command Table "Marked Text", 62
Command Table "Standard Arguments", 61
Command Table "Standard Scrolling", 61

552
Index February 2018

Command Table "Unshifted Arguments", 62
Command Table "User", 63
command table hierarchy, 59
command table name, 59
comma-separated items, 73
Common Lisp presentation types, 28
compatibility with X windows, 154
compiled object code as line item entry, 488
compile-flavor-methods, 99
:complete-help option, 502
Complex Formatting of Accepting-Values Queries,

38
components of a menu, 423
Components of a Menu, 423
composing transforms, 171
compound objects, 224
compound presentation types, 28
Computing Polyphonic Increments, 520
:*comtab* keyword, 544
Concepts, 333, 385
conditional newlines, 92
configuration-description-list, 405
cons as menu item, 424
constraint frame, 393, 396, 405
constraint language, 393, 396, 405
:constraints init option for tv:basic-constraint-

frame, 412
Constructing Items, 487
Constructing Line Items, 487
Constructing List Items, 493
context-dependent mouse sensitivity, 10
context-presentation-type, 222
continuations, 290
Controlling Character Style, 71
Controlling Line Output, 72
Controlling Location and Other Aspects of Output,

84
Controlling the Mouse Outside a Window, 380
control of the mouse, 17
control-u-argument-command, 61
Conversions Between Sample Formats, 519
Conversions for the Polyphony Feature, 520
converting vector data into user coordinates, 175
:coordinate-mode :center, 154
:coordinate-mode :integer, 154
coordinate system, 142
Coordinate System Facilities, 142
coordinate systems of output devices, 142

553
February 2018 Index

Coordinate Transformation Facilities, 142
coordinate transformation operator, 142
Copying Bit Rectangles to and from Windows, 362
cp:*command-table* variable, 67
cp:*default-command-accelerator-echo*

variable, 67
cp:*last-command-values* variable, 67
cp:*command-table*, 59, 64
cp:*last-command-values*, 65
cp:command-in-command-table-p, 59
cp:command-table, 59
cp:define-command, 13
cp:define-command-accelerator, 63, 125
cp:delete-command-table, 59
cp:execute-command, 64
cp:find-command-table, 59
cp:install-commands, 59
cp:make-command-table, 59
cp:read-accelerated-command, 314
cp:build-command function, 138
cp:choose-command-arguments function, 67
cp:command presentation type, 67
cp:command-in-command-table-p function, 67
CP Commands to Show Presentation Types and

Handlers, 264
cp:command-table-delete-command-name

function, 66
cp:command-table-delete-command-symbol

function, 67
cp:command-table-install-command generic

function, 67
cp:define-command function, 47, 66
cp:define-command-accelerator function, 66
cp:delete-command-table function, 66
cp:execute-command function, 66
cp:find-command-table function, 66
cp:install-commands function, 66
cp:make-command-table function, 66
cp:read-accelerated-command function, 328
:create-p option for zwei:open-editor-stream, 542
:create-p option for zwei:with-editor-stream, 542
Create Program Definition, 122
[Create] System menu item, 334
Creating a Window, 355
Creating Graphic Output, 139
creating panes, 395
creating raster arrays or bitmaps for use as stipple

patterns or masks, 177

554
Index February 2018

Creating Replayable Output, 283
creating windows, 333
creating your own bitmap pattern, 163
:cr-not-newline-flag init option for tv:sheet, 356
CTM, 142
current font, 356, 370
:current-geometry message, 430
current transformation matrix, 142
cursor position, 352, 356, 373
Cursor Position and Formatting Output Macros, 92
cursors, 513
Customizable facilities, 421
customizing windows, 333
DAC, 509
:dashed, 160
:dash-pattern, 160
data arguments, 25
date, 533
:date tv:choose-variable-values variable type,

457
date formats, 533, 535, 536
:date-or-never tv:choose-variable-values

variable type, 457
dates and times, 533
Dates and Times, 533
Days of the week, 533
:decimal-number tv:choose-variable-values

variable type, 457
:decimal-number-or-nil tv:choose-variable-

values variable type, 457
decode-universal-time function, 537
:decode-variable-type method, 465
decomposing transforms, 171
:deexpose message to windows, 337
deexposed typein action, 367
deexposed typeout action, 344
deexposed windows, 340, 344
:default option for zwei:open-editor-stream, 542
default font, 371
:defaults option for zwei:with-editor-stream, 542
default unit distance, 142
define-presentation-action function, 246, 277
define-presentation-to-command-translator, 261
define-presentation-to-command-translator

function, 138, 238, 277
define-presentation-translator function, 229, 277
define-presentation-type function, 195, 218
Defining a Choose Variable Values Window, 466

555
February 2018 Index

Defining and Installing Commands, 45
defining a program’s window and command

interface in Frame-Up, 113
Defining Choose Variable Values Types, 465
defining commands, 123
Defining Commands within Your Own Framework,

123
Defining Your Own Presentation Types, 185
Defining Your Own Program Framework, 97
:delete-displayed-presentation method of

dw:dynamic-window, 95
Delete Pane, 122
deleting, 167
Describe Handler Presentation Inspector

Command, 276
description group, 405
deselected visibility, 373
device coordinate system of a dynamic window,

142
Differences between the LGP2/LGP3 and the

screen for graphic output, 139
digital audio facilities, 509
Digital Audio Facilities, 509
Digital Audio Parameters, 517
digit-argument-command, 61
disabling output recording, 84
:display pane type, 14
displayed-presentation-type, 222
displaying data structures, 485
Displaying Help Messages in the Input Editor, 504
displaying multiple values of a function, 488
Displaying Output: Replay, Redisplay, and

Formatting, 281
displaying program output, 15
Displaying Prompts in the Input Editor, 503
Display Pane, 99
display-related options, 12
Distinguishing Queries When Accepting Multiple

Values, 37
:documentation keyword, 465
:documentation menu item option, 426, 434
:documentation menu item type, 491
:documentation specification for tv:choose-

variable-values, 457
Doing Incremental Redisplay, 292
doing input from windows, 367
Doing Typein or Typeout From an Action, 258
[Do It], 445, 449, 451

556
Index February 2018

Done, 116
Done Frame-Up command, 114
:do-not-echo option, 502
:dont-snapshot-variables, 89
double evaluation, 88
:draw, 164
:draw- messages vs. graphics:draw- functions,

169
drawing an arbitrary closed path, 166
drawing characters, 356
Drawing Characters and Strings on Windows, 362
Drawing Function Options, 160
drawing function options, 149
drawing function options vs. coordinate system

transformation facilities, 149
Drawing Functions, 149
drawing functions that use the graphics cursor, 166
Drawing Lines on Windows, 362
Drawing Mode Options, 164
drawing pictures onto arrays, 361
Drawing Points on Windows, 362
Drawing Polygons and Circles on Windows, 363
Drawing Splines on Windows, 363
:draw-partial-dashes, 160
:draw-rectangle message, 361
:draw-rectangle method vs. graphics:draw-

rectangle function, 170
dummy parts, 405
dw:*command-menu-test-phase* variable, 328
dw:*display-ellipsis-help* variable, 67
dw:*presentation-input-context* variable, 278
dw:*program-frame* variable, 137
dw:*command-menu-test-phase*, 317
dw:*presentation-input-context*, 254
dw:*program-frame*, 127
dw::com-show-presentation-hierarchy, 276
dw::window-wakeup, 314
dw:accepting-values, 16, 36
dw:accepting-values output, 292
dw:accept-values, 16, 36
dw:accept-values-sample, 28
dw:accept-variable-values, 16, 36
dw:after-program-frame-activation-handler, 316
dw:after-program-frame-selection-handler, 316
dw:before-program-frame-deactivation-handler,

316
dw:before-program-frame-deexpose-handler,

316

557
February 2018 Index

dw:before-program-frame-kill-handler, 316
dw:call-presentation-menu, 258
dw:clear-presentation-input-context, 254
dw:command-error, 124
dw:continuation-output-size, 304
dw:default-command-top-level, 98, 125, 312
dw:define-command-menu-handler, 317
dw:define-program-command, 13
dw:define-program-framework , 122
dw:define-program-framework, 97, 98, 99, 113,

114, 116, 123, 127, 292, 393
dw:define-subcommand-menu-handler, 125
dw:displayed-presentation-clear-highlighting,

84
dw:displayed-presentation-set-highlighting, 84
dw:do-redisplay, 292
dw:dynamic-window, 28, 333, 349, 361, 376,

384, 417
dw:echo-presentation-blip, 254
dw:find-graph-node, 76
dw:find-program-window, 127
dw:get-program-pane, 127
dw:independently-redisplayable-format, 292
dw:make-program, 307
dw:member-sequence, 28
dw:menu-choose, 16, 34, 426
dw:menu-choose-from-set, 16, 34, 317
dw:mouse-char-for-gesture, 255
dw:mouse-char-gesture, 255
dw:mouse-char-gestures, 255
dw:named-value-snapshot-continuation, 304
dw:no-type, 28
dw:out-of-band-character, 28
dw:presentation-blip-case, 254, 314
dw:presentation-blip-ecase, 254
dw:presentation-blip-mouse-char, 254
dw:presentation-blip-object, 254
dw:presentation-blip-options, 229, 238, 254
dw:presentation-blip-p, 254
dw:presentation-blip-presentation-type, 254
dw:presentation-blip-typep, 254
dw:presentation-input-context-option, 254
dw:presentation-subtypep, 208
dw:program-command-table, 123
dw:program-frame, 99
dw:raw-text, 28
dw:read-program-command, 307
dw:redisplayable-format, 292

558
Index February 2018

dw:redisplayable-present, 292
dw:redisplayer, 292, 307
dw:set-program-frame-configuration, 325
dw:standard-command-menu-handler, 317
dw:tracking-mouse, 84, 375
dw:with-output-as-presentation, 15, 32
dw:with-output-to-presentation-recording-

string, 283
dw:with-output-truncation, 84
dw:with-own-coordinates, 84
dw:with-presentation-input-context, 16, 254
dw:with-presentation-input-editor-context, 254
dw:with-redisplayable-output, 281, 285, 292,

298, 300
dw:with-replayable-output, 283
dw:with-resortable-output, 283
dw:accepting-values function, 40
dw:accept-values function, 40
dw:accept-values-command-button function, 40
dw:accept-values-display-exit-boxes function,

41
dw:accept-values-fixed-line function, 41
dw:accept-values-for-defaults function, 41
dw:accept-values-into-list function, 41
dw:accept-variable-values function, 40
dw:after-program-frame-activation-handler

function, 328
dw:after-program-frame-selection-handler

function, 328
dw:before-program-frame-deactivation-handler

function, 328
dw:before-program-frame-deexpose-handler

function, 328
dw:before-program-frame-kill-handler function,

329
dw:check-presentation-type-argument function,

219
dw:clear-presentation-input-context function,

278
dw:command-error function, 137
dw:complete-from-sequence function, 219
dw:complete-input function, 219
dw:completing-from-suggestions function, 219
dw:continuation-output-size function, 305
dw:current-program function, 137
dw:default-command-top-level function, 137, 327
dw:define-command-menu-handler macro, 328
dw:define-program-command function, 137

559
February 2018 Index

dw:define-program-framework function, 100, 136
dw:define-subcommand-menu-handler function,

137
dw:delete-presentation-mouse-handler function,

278
dw:describe-presentation-type function, 219, 279
dw:displayed-presentation-clear-highlighting

function, 304
dw:displayed-presentation-set-highlighting

function, 304
dw:do-redisplay function, 304
dw:echo-presentation-blip function, 278
dw:erase-displayed-presentation function, 95
dw:find-and-select-program-window function,

137
dw:find-graph-node function, 95
dw:find-program-window function, 137
dw:get-program-pane function, 137
dw:handler-applies-in-limited-context-p function,

278
dw:independently-redisplayable-format function,

304
dw:make-program function, 327
dw:menu-choose function, 40
dw:menu-choose-from-set function, 40
dw:mouse-char-for-gesture function, 278
dw:mouse-char-gesture function, 278
dw:mouse-char-gestures function, 278
dw:named-value-snapshot-continuation

function, 305
dw:presentation-blip-case function, 279
dw:presentation-blip-ecase function, 279
dw:presentation-blip-mouse-char function, 278
dw:presentation-blip-object function, 278
dw:presentation-blip-options function, 278
dw:presentation-blip-p function, 279
dw:presentation-blip-presentation-type function,

278
dw:presentation-blip-typep function, 279
dw:presentation-equal function, 219
dw:presentation-input-context-option function,

278
dw:presentation-object function, 219
dw:presentation-subtypep function, 278
dw:presentation-type function, 219
dw:presentation-type-default function, 220
dw:presentation-type-name function, 220
dw:presentation-type-p function, 219

560
Index February 2018

dw:program-command-table function, 137
dw:program-frame resource, 327
dw:program-frame-top-level function, 328
dw:read-program-command function, 137, 327
dw:read-standard-token function, 218
dw:redisplayable-format function, 304
dw:redisplayable-present function, 304
dw:redisplayer function, 304
dw:set-program-frame-configuration function,

327
dw:standard-command-menu-handler function,

328
dw:suggest function, 219
dw:tracking-mouse function, 96
dw:with-accept-blip-chars function, 218
dw:with-output-as-presentation function, 39
dw:with-output-recording-disabled macro, 96
dw:with-output-to-presentation-recording-

string function, 305
dw:with-output-truncation function, 96
dw:with-own-coordinates function, 96
dw:with-presentation-input-context function,

218, 219, 278
dw:with-presentation-input-editor-context

function, 278
dw:with-presentation-type-arguments function,

220
dw:with-redisplayable-output function, 304
dw:with-replayable-output function, 305
dw:with-resortable-output function, 305
dw:with-type-decoded function, 220
Dynamic Item List Menus, 419, 442
Dynamic Item List Mixins, 443
Dynamic Menu Example, 443
dynamic nesting of program levels, 224
dynamic window, 17
dynamic window histories, 10, 12
Dynamic Windows, 333, 347, 349, 351, 355, 356,

361, 363, 370, 373, 375, 380, 381,
384, 385, 393, 498

Dynamic Windows vs. static windows, 17
:edit message to zwei:standalone-editor-frame,

544
editing terminal input, 498
editor buffer streams, 541
:editor-command option, 502
Editor Mouse Commands, 261
Edit Program Definition, 123

561
February 2018 Index

[Edit Screen] System menu item, 334, 335, 393
edit viewspecs handler, 283
Elapsed Time in Internal Time Units, 534
Elapsed Time in Seconds, 534
enclosing output in a border, 84
encoded mouse clicks, 376
encode-universal-time function, 538
:end option for zwei:open-editor-stream, 542
:end option for zwei:with-editor-stream, 542
ending the Frame-Up session, 116
:end-of-line-exception, 356
:end-of-page-exception, 356
entering the Frame-Up program, 113
:erase, 164
erasing, 167
erasing vs. deleting vs. painting white, 167
:error deexposed typeout action, 340
:eval Constraint Size Specification, 405
:eval menu item type, 425, 491
:eval-form tv:choose-variable-values variable

type, 457
:even Constraint Size Specification, 405
Example of a Text Scroll Window, 386
Example of Flashy Scrolling in Text Scroll

Windows, 392
Example of Formatting Text Scroll Window Items,

389
Example of Mouse-Sensitive Items in Text Scroll

Windows, 390
Examples of Specifications of Panes and

Constraints, 398
Examples of Specifications of Panes and

Constraints for Non-Dynamic
Windows, 412

Examples of Use of the Input Editor, 504
Examples of Using the Audio Facilities, 520
example using :dashed, 160
example using :dont-snapshot-variables, 89
example using :draw-partial-dashes, 160
example using dw:*program-frame*, 127
example using dw:command-error, 124
example using dw:default-command-top-level ,

126
example using dw:define-program-framework,

123
example using dw:tracking-mouse, 175
example using dw:with-output-as-presentation,

285

562
Index February 2018

example using dw:with-redisplayable-output ,
295

example using dw:with-redisplayable-output,
281, 285, 298, 300

example using :echo-stream, 126
example using :filled, 160
example using format-cell, 81, 82
example using format-graph-from-root, 78
example using format-item-list, 78
example using format-textual-list, 81
example using formatting-cell, 78, 81
example using formatting-column-headings, 78
example using formatting-item-list, 78, 88
example using formatting-row, 78, 81, 82, 86
example using formatting-table, 78, 81, 82, 86, 89
example using graphics:draw-circle, 82, 167
example using graphics:draw-line, 142
example using graphics:draw-rectangle, 139,

142, 175
example using graphics:draw-regular-polygon,

82, 160
example using graphics:transform-window-

points, 175
example using graphics:with-graphics-rotation,

142
example using graphics:with-graphics-scale, 142
example using graphics:with-graphics-

translation, 142
example using graphics:with-room-for-graphics,

139, 142, 160, 167, 175
example using :mouse-click, 175
example using :mouse-motion, 175
example using :output-row-wise, 88
example using :row-wise, 88
example with define-presentation-to-command-

translator, 302
example with dw:with-redisplayable-output, 302
exchanging the position of two panes in Frame-Up,

122
:execute message, 427, 491
Executing a menu item, 427
Executing Commands from within a Program, 64
executive, Command Processor equivalent of, 8
Exit Presentation Inspector Command, 270
:expander type expansions and handler

performance, 255
Exploring Presentation Types and Presentations,

263

563
February 2018 Index

:expose deexposed typeout action, 340
:expose message to windows, 337
exposed windows, 337, 344
:expression tv:choose-variable-values variable

type, 457
expression history, 28
facilities for creating graphs, 70
facilities for creating tables, 70
facilities for creating textual lists, 70
factors affecting graphic output speed, 170
:fill-column, 81
:filled, 163, 164
:filled vs. :thickness, 163
Filled format, 428
filling a graphics image, 163
filling a region outlined by a path, 166
filling-output function, 93
Filling Output Inside Table Cells, 81
fill pointer, 518
Finishing-choices, 451
Fixed-width Font Attribute, 372
fixed-width fonts, 356, 372
Flashy Scrolling in Text Scroll Windows, 392
Flavors for Panes and Frames, 395
Flavors of Basic Windows, 354
Flavors Related to Window Selection, 351
:flip, 164
font attributes, 371
font characters, 352
Font Editor, 370
:font-list tv:choose-variable-values variable type,

457
font map, 356
font names, 370
fonts, 352, 430
fonts:cptfont font, 371
fonts package, 370
:force-kbd-input message, 367
forcing keyboard input, 352
format, 15
format-cell function, 94
format effectors, 356
format-graph-from-root, 76, 300
format-graph-from-root function, 94
format-item-list function, 93
Format of TV Fonts, 373
format-sequence-as-table-rows function, 93
formatted graph within table, 78

564
Index February 2018

format-textual-list, 73
format-textual-list function, 93
formatting-cell function, 94
formatting-column function, 94
formatting-column-headings function, 94
formatting-graph, 76
formatting-graph function, 95
formatting-graph-node, 76
formatting-graph-node function, 95
Formatting Graphs, 76
formatting-item-list function, 93
formatting macros, 70
formatting-multiple-columns function, 93
formatting output, 70
formatting-row function, 94
formatting-table function, 94
Formatting Tables, 73
Formatting Text, 71
Formatting Text Scroll Window Items, 388
formatting-textual-list, 73
formatting-textual-list function, 93
formatting-textual-list-element, 73
formatting-textual-list-element function, 93
Formatting Textual Lists, 73
fractional character spacing, 86
Fraction Constraint Size Specification, 405
frame, 393
frame border, 395
frame configurations, 393
frame-oriented interactive subsystems, 395
Frames, 393
frames, 352
Frames and Panes, 350
Frame-Up Commands, 114
Frame-Up Layout Designer, 14, 393
Frame-Up layout designer, 5
framework building, 100
fresh-line inside formatting output macros, 92
from-presentation-type, 222
fs:directory-pathname, 28
fs:wildcard-pathname, 28
:full-rubout option, 501
:funcall Constraint Size Specification, 405
:funcall menu item type, 425, 491
:funcall-with-self menu item type, 425
:function init-plist option, 460
:function line item entry, 488
:function list item keyword, 493

565
February 2018 Index

Functions, Flavors, and Messages for Window
Graying, 349

Functions for Altering User Option Variables, 464
Functions for Defining User Option Variables, 464
functions for drawing closed figures, 165
Functions for Drawing Objects, 165
Functions, Variables, and Macros for Digital Audio,

517
General Approach to Parser Writing , 210
General Blinker Operations, 375
Genera substrate, 5
Geometry Example 1: A Multicolumned menu, 429
Geometry Example 2: Retrieving Geometry

Information, 430
Geometry Init-plist Options, 429
Geometry Messages, 429
get-decoded-time function, 534
Getting and Setting the Time, 534
Getting a Window to Use, 354
Getting Input to Your Program From the Command

Loop, 65
getting rid of graphics, 167
Getting Started, 113
Getting Your Own Program Interactor to Read Lisp

Forms, 125
get-universal-time function, 534
global line attributes, 487
glyphs, 370
Grabbing the Mouse, 379
grabbing the mouse, 376
graphical objects and text intermingled, 470
Graphic Output to Windows, 361
Graphic Output within Tables, 82
graphic presentations and backwards scrolling, 84
graphics, 352
graphics:2pi, 167
graphics::*graphics-identity-transform*, 142
graphics:compose-transforms, 171
graphics:current-position, 166
graphics:decompose-transform, 171
graphics:draw-ellipse, 165
graphics:drawing-path, 166
graphics:draw-lines, 165
graphics:draw-path, 166
graphics:draw-string, 139
graphics:draw-string vs. graphics:draw-string-

image, 165
graphics:erase-graphics-presentation, 167

566
Index February 2018

graphics:erase-rectangle, 167
graphics:formatting-graphics-cell, 82
graphics:graphics-origin-to-current-position,

166
graphics:graphics-rotate, 142
graphics:graphics-scale, 142
graphics:graphics-transform, 142
graphics:graphics-translate, 142
graphics:invert-transform, 171
graphics:replacing-graphics-presentation, 167
graphics:set-current-position, 166
graphics:stream-transform, 142
graphics:stream-transform-point, 175
graphics:stream-untransform-point, 175
graphics:transform-distance, 175
graphics:transform-point, 142, 175
graphics:transform-window-points, 142, 175
graphics:untransform-distance, 175
graphics:untransform-point, 142, 175
graphics:untransform-window-points, 142
graphics:with-clipping-from-output, 167
graphics:with-clipping-path, 167
graphics:with-coordinate-mode, 169
graphics:with-graphics-identity-transform, 142
graphics:with-graphics-rotation, 142
graphics:with-graphics-scale, 142, 160
graphics:with-graphics-transform, 142, 160
graphics:with-graphics-translation, 142
graphics:with-output-as-graphics-presentation,

165, 167
graphics:with-room-for-graphics, 139, 142, 160
graphics and the cursor, 167
graphics and the stream output, 167
graphics as presentations, 167
graphics coordinates, 361
graphics cursor, 166
Graphics Drivers, 171, 176
graphics:formatting-graphics-cell macro, 94
graphics messages, 361
Graphics Objects, 151
Graphics Output Performance, 170
graphics output priority maintenance, 139
graphics transformation functions, 142
graphics transformation macros, 142
graphics transforms, 171
:gray-level, 163, 164
:gray-level vs. tv:n%-gray, 163
Guide to documentation, 1

567
February 2018 Index

:hack-fonts option for zwei:open-editor-stream,
542

:hack-fonts option for zwei:with-editor-stream,
542

half-period of a blinker, 373
:handedness, 165
Handlers on the Same Mouse Chord , 256
Handling Asynchronous Window System Events,

316
Handling the Mouse, 376
Help Presentation Inspector Command, 270
Hierarchy of Windows, 335
highlighting displayed presentations, 84
:horizontal stacking description, 405
horizontal scrolling, 76, 84
horizontal wraparound, 356
:host tv:choose-variable-values variable type,

457
:host-list tv:choose-variable-values variable

type, 457
:host-or-local tv:choose-variable-values variable

type, 457
hour, 533
How Command Menus Work, 317
How Presentation Types Relate to Common Lisp

Types, 24
How Redisplay Works, 281
How the Input Editor Works, 498
How to Specify a Presentation Type, 25
How Windows Display Characters, 356
How Windows Display Graphic Output, 361
I/O buffer commands, 467
I/O buffer property list, 367
I/O buffers, 352, 367, 376, 395
I/O Buffers for Choose Variable Values Windows,

467
I/O from editor buffers, 541
identifying mouse buttons, 376
identity transform, 142
Implementing a Timeout At Command Level, 314
implementing single-keystroke accelerators, 125
inactive windows, 335
including a mouse-sensitive menu of commands,

125
Incorporating Accept-Values Keyboard Commands

Into Programs, 324
incremental redisplay, 281, 292
Incremental Redisplay of Graphics, 302

568
Index February 2018

Incremental Redisplay of Graphs, 300
Incremental Redisplay of Nested Structures, 295
Incremental Redisplay of Tables, 298
incrementwavetable, 513
indenting-output function, 93
inferior windows, 336, 352
infinity-argument-command, 61
inheriting command accelerators, 63
inhibiting snapshotting, 89
:initial-dash-phase, 160
:initial-input option, 502
Initializing Window Size and Position, 382
Init-plist Option for Dynamic Menus, 443
Init-plist Options for tv:menu, 482
input context, 12, 34
input-context/output-presentation pairs, 12
Input Context Matching, 189
input editor, 498
:input-editor message, 500
Input Editor Messages to Interactive Streams, 508
Input Editor Options, 501
Input Facilities, 16
Input from Windows, 367
Input Functions for Interactive Streams, 496
:input-history-default option, 502
input operations on windows, 334
:input-wait option, 502
:input-wait-handler option, 502
inserting commas in list output, 73
Insert Program Definition, 123
inside height, 428
inside width, 428
instance, 28
Instantiable, Basic, and Mixin Flavors, 421
Instantiable Choose Variable Values Flavors, 467
Instantiable Command Menus, 439
Instantiable Dynamic Item List Menus, 443
Instantiable flavors, 421
Instantiable Multiple Choice Menu Flavors, 454
Instantiable Multiple Menu Choose Flavors, 450
Instantiable Multiple Menus, 446
Instantiable Pop-up and Momentary Menus, 432
integer, 28
:integer tv:choose-variable-values variable type,

457
Integer Constraint Size Specification, 405
integers, 367
interaction modes, 8

569
February 2018 Index

interactive code-building, 97
Interactive-Stream Operations for Asynchronous

Characters, 497
interactive streams, 498
Interactive Streams, 495
Interactive Streams and Mouse-Sensitive Items,

498
:interactor pane type, 14
Interactor Pane, 99
Intercepted Characters, 497
inter-column spacing, 86
interface-oriented data typing, 10
internal representation of an object, 10
Internal Time Functions, 538
:interval option for zwei:open-editor-stream, 542
:interval option for zwei:with-editor-stream, 542
:interval-string message, 545
:interval-string message to zwei:standalone-

editor-frame, 544
Introduction, 375
Introduction: More Presentation-Type Concepts,

185
Introduction to Interactive Streams, 495
Introduction to Output Formatting, 69
Introduction to Program Frameworks, 97
Introduction to Scroll Windows, 485
Introduction to the Command Processor, 43
Introduction to the Digital Audio Facilities, 509
Introduction to the Menu Facilities, 422
Introduction to Using the Window System, 333
Introduction to Zwei Internals, 541
inverted-boolean, 28
:inverted-boolean tv:choose-variable-values

variable type, 457
inverting transforms, 171
Invoking an Application Program, 307
Invoking the Input Editor, 500
Invoking the Presentation Inspector, 266
:io-buffer init option, 367
:io-buffer message, 367
:item-type-alist init-plist option, 472
:join-to-path, 165
:kbd menu item type, 425, 491
keyboard as random access device, 380
keyboard process, 367
keyword, 28
:keyword-list tv:choose-variable-values variable

type, 457

570
Index February 2018

Keyword Options, 542
Keyword Options Affecting the Coordinate System,

149
:kill option for zwei:open-editor-stream, 542
:kill option for zwei:with-editor-stream, 542
labels, 352, 384
lambda expression as line item entry, 488
:layout Constraint Frame Specification, 396
:leader global line attribute, 493
left increment, 519
left kern, 372
Left Kern Font Attribute, 372
length of :function line item, 488
length of :symeval line item, 488
lexical contours, 290
:limit Constraint Size Specification, 405
line height, 356, 371, 381
Line Item Array Leaders, 493
Line Item Entries, 488
line item entries, 487
line items, 486
:line-joint-shape, 160
Line Options, 160
Line-Truncating Windows, 360
Lisp Listener Pane, 99
Lisp Machine console, 333
Lisp Primitives for the Digital Audio Facilities, 517
Lisp Primitives for Wiring Memory, 516
list function, 493
list as menu item, 424
list as pattern in dummy description, 405
:listener pane type, 14
List Fonts (���) Zmacs command, 371

list item plist, 486, 493
list items, 486
List of Choice Facilities, 419
:load-p option for zwei:open-editor-stream, 542
:load-p option for zwei:with-editor-stream, 542
locked windows, 340
Looping Through Audio Command Lists, 519
Maintaining State with Accept-Values Panes, 322
making a closed path fillable, 166
making a closed path usable for clipping, 166
Making mouse-sensitive displays, 12
Making Standalone Editor Windows, 544
Making Your Own Click-Right Menu, 258
managing command tables, 123
Managing Command Tables, 59

571
February 2018 Index

Managing the Command Processor, 43
Managing Your Program Frame, 307
Manipulating column geometry, 429
Margin Choices, 419
margin item, 384
margin item flavors, 384
margin item messages, 384
:mask, 167
maximum height, 428
maximum width, 428
member, 28
menu, 422
:menu menu item type, 425, 491
menu accelerator table, 59
:menu-alist tv:choose-variable-values variable

type, 457
Menu Commands, 125
menu formats, 428
menu-generating facilities, 34
Menu Item Options, 426
menu items, 491
Menu Items, 423, 438
Menu Items and Menu Values, 438
menu size parameter, 428
Menu Subcommands, 125
menus with several columns, 419, 449
Menu Values, 438
:merged-help option, 502
Messages About Character Width and Cursor

Motion, 360
Messages About Window Selection, 351
Messages Accepted by tv:menu, 483
Messages for Input from Interactive Streams, 496
Messages for Input from Windows, 368
Messages for Window Size and Position, 383
Messages to Display Characters on Windows, 359
Messages to Dynamic Menus, 443
Messages to Frames, 405
Messages to Read or Set Cursor Position, 359
Messages to Remove Characters from Windows,

359
meta-presentation arguments, 196
Microcode Support for the Digital Audio Facilities,

509
minute, 533
Miscellaneous Presentation Facilities, 208
:miter, 160
Mixin flavors, 421

572
Index February 2018

Mixing Graphics and Text, 140
Modifying the Choice Facilities, 422
Modifying the Default Top-Level Function, 312
modifying values of variables, 455
Momentary and Pop-up Menus, 431
Momentary menu, 433
momentary menu, 431
momentary menus, 442
Momentary Menus, 419
momentary menus, 342
month, 533
:more-exception, 356
more flag, 356
more processing, 352, 356
:mouse global line attribute, 491
:mouse line item entry attribute, 491
mouse as an input device, 352, 376
Mouse Behavior, 473
mouse blinker, 373
:mouse-blinker-character, 417
Mouse-Blinker Characters, 417
mouse blip, 438
Mouse Blips, 377
mouse button encoding, 491
mouse buttons, bit mask, 438
Mouse Characters, 378
mouse-char-p predicate, 378
:mouse-click method of tv:essential-mouse, 378
Mouse-Click Facilities for Looking at Handlers, 264
mouse clicks, 376
mouse cursor shape, 417
mouse documentation line, 422, 457
mouse documentation window, 491
mouse font, 417
Mouse Gesture Interface Facilities, 255
Mouse Gestures, 227
mouse gestures, 12
mouse handler applicability, 222
Mouse Handler Concepts, 221
Mouse Handler Facilities, 229
mouse handlers, 375
Mouse Handlers, 222
Mouse Input, 375
:mouse-item line item entry attribute, 491
mouse line documentation, 426
mouse process, 376
:mouse-self global line attribute, 491
mouse-sensitive, 12

573
February 2018 Index

Mouse-sensitive Areas, 419
Mouse-Sensitive Areas Example, 476
mouse-sensitive entries, 488
Mouse-sensitive Items, 419
Mouse-Sensitive Items in Text Scroll Windows, 389
Mouse Sensitivity, 12, 221, 491
mouse sensitivity and line items, 491
[Move Window] Edit Screen menu item, 335
multicolumn menu, 429
Multiple choice menu, 451
Multiple Choice Menus, 419
multiple choice window parameters, 451, 454
:multiple-choose message, 449
multiple-line objects, 486
multiple menu choose, 449
Multiple Menu Choose Menus, 419
Multiple Menu Choose Mixin and Resource, 450
Multiple Menu Mixins, 445
Multiple Menus, 419, 445
music systems, 513
named-lambda expression as line item entry, 488
Naming Conventions for Program Output Macros,

70
Nested Input Contexts, 224
Nested Presentations, 225
Nesting Formatted Output, 78
net:host, 28
net:local-host, 28
net:namespace, 28
net:namespace-class, 28
net:network, 28
net:object, 28
net:user, 28
neti:local-network, 28
neti:protocol-name, 28
neti:site, 28
:newline-after-query, 38
nil blinker visibility, 373
nil option for window size and position messages,

381
nil
as a menu item, 425
:no-input-save option, 502
:none, 160
Non-real-time synthesis, 524, 525
Non-real-time Synthesis Example, 524
:normal deexposed typeout action, 340
:no-select menu item type, 425

574
Index February 2018

not, 28
Notes on Wired Structures, 515
:notice message, 340
:notification-handler option, 503
notification messages, 352
Notifications and Progress Indicators, 363
:notify deexposed typeout action, 340
Notifying the User, 364
null, 28
null-or-type, 28
number, 28
:number tv:choose-variable-values variable type,

457
:number-or-nil tv:choose-variable-values

variable type, 457
obscuring graphics by painting white, 167
:off blinker visibility, 373
off-negative implication, 451
off-positive implication, 451
:on blinker visibility, 373
on-negative implication, 451
on-positive implication, 451
:opaque, 164
opening a bidirectional stream, 541
opening blinkers, 373
operating on a set of points, 177
Operation of Polyphony, 513
options for drawing graphics objects, 160
or, 28
:ordered-p option for zwei:open-editor-stream,

542
:ordered-p option for zwei:with-editor-stream,

542
order-independent graphics transformations, 171
ordering list, 405
organizing data collection and presentation, 10
Other Advanced Facilities for Graphic Output, 171,

177
Other Basic Facilities for Graphic Output, 142, 167
Other Mouse-Handler Facilities, 253
Other Options, 165
Out-of-Order Evaluation, 88
output cache, 281, 292, 300
:Output Destination, 265, 270
Output Facilities, 15
Output Formatting Spacing Parameters, 86
output history, 17, 32
output hold flag, 340, 356, 361

575
February 2018 Index

Output Hold state, 340
output operations on windows, 334
overlapping windows, 334
overstriking, 356
Overview of Notifications, 363
Overview of the Choice Facilities, 419
Overview of User Interface Programming Facilities,

5
Overview of Window Flavors and Messages, 352
owning of a window by the mouse, 376
package, 28
pane border, 395
Pane Commands, 116
panes, 352, 393
:panes init option for tv:basic-constraint-frame,

412
pane types, 14
parser function, 34
Parsing Objects for Which There is No Character

Representation, 215
:partial-help option, 502
partially visible windows, 334, 344
:pass-through option, 501
:past-date tv:choose-variable-values variable

type, 457
:past-date-or-never tv:choose-variable-values

variable type, 457
Path Drawing Facilities, 142
Path-Drawing Functions, 166
pathname, 28
:pathname option for zwei:open-editor-stream,

542
:pathname option for zwei:with-editor-stream,

542
:pathname tv:choose-variable-values variable

type, 457
:pathname-host tv:choose-variable-values

variable type, 457
:pathname-list tv:choose-variable-values

variable type, 457
:pathname-or-nil tv:choose-variable-values

variable type, 457
:pattern, 163, 164
pattern filling, 163
Pattern Options, 163
Pattern Protocols, 171
pauses, 356
Peek subsystem, 485

576
Index February 2018

Performance in SemantiCue, 255
:permit deexposed typeout action, 340
:permit deexposed typeout option, 344
pixels, 336
Pixels and Bit-Save Arrays, 336
Playing Large Pieces Example, 525
Polyphonic increments, 520
Polyphonic wavetable increments, 520
Polyphony Command Opcodes, 515
Polyphony Example, 528
polyphony feature, 509
pop-up menus, 431, 442
Pop-up menus, 419
Pop-up notifications, 365
position of blinkers, 373
position of window, 352
predefined mouse handlers, 229
Predefined Presentation Types, 28
Predefined tv:choose-variable-values Variable

Types, 457
:preemptable option, 502
Preface to Programming the User Interface, 1
:pre-process-function list item keyword, 493
present, 11, 15, 32
present function, 39
presentation arguments, 25
Presentation-based input, 16
presentation blips, 229, 238
presentation blips and mouse blips, 254
Presentation Functions, 11
Presentation Input Blip Facilities, 254
Presentation Input Context Facilities, 254
Presentation Inspector, 265
Presentation Inspector Commands, 269
presentation object, 10
Presentations, 10
Presentations, Presentation Objects, and

Presentation Types, 10
Presentation Substrate, 17
presentation substrate, 10
presentation type, 10
Presentation-Type Definition Facilities, 196
Presentation Type Matching for Mouse Handlers,

222
presentation type parser, 10
presentation type printer, 10
Presentation Types for Command Arguments, 185
presentation-type syntax, 25, 28

577
February 2018 Index

Presenting Formatted Output, 69
presenting program output, 15
present-to-string, 15, 32
present-to-string function, 39
Preview, 116
Preview Frame-Up command, 114
Primitives for Drawing onto Arrays, 363
:princ tv:choose-variable-values variable type,

457
print, 15
printed representation of an object, 10
printer function, 32
Printing Dates and Times, 535
:priority, 260
process, 352
producing an animation effect, 167
Program and Frame Commands, 114
program command interface, 100
program frame, 97
program framework definition, 100
Program Frameworks, 14
program interaction style, 8
program layout, 14
Programming the Mouse: Writing Mouse Handlers,

221
program organization, 14
Program Panes, 99
program screen interface, 100
program state variables, 100
Program State Variables, 99
progress bar, 366
Progress Indicator Facilities, 366
:prompt option, 501
prompt-and-accept, 16, 34
prompt-and-accept function, 40
prompting for user input, 16
Purpose of the Window System, 333
:query-identifier, 37
querying the user, 508
Querying the User, 508
:raw I/O buffer property, 367
Reading and Printing Time Intervals, 537
reading characters from the keyboard, 352
Reading Dates and Times, 536
reading mouse clicks, 491
Receiving and Displaying Notifications, 364
redisplay, 485
:redisplay message, 486

578
Index February 2018

:redisplay-function, 98
Redisplaying with dw:accepting-values Forms,

285
redisplay options, 14
Refining Sensitivity, 259
regenerating contents of windows, 336
relationship of mouse to windows, 376
relative coordinates, 84
replayable output, 283
replayable presentations, 281
repositioning the origin by scrolling, 142
Representation of Dates and Times, 533
:reprompt option, 501
Reset Configuration, 115
Reset Configuration Frame-Up command, 114
Resolving Conflicts Among Mouse Handlers, 260
resortable output, 283
Responsibilities of Your Program, 439
restoring the original program frame in Frame-Up,

115
restricting output of graphical objects, 167
restrictions on side effects of formatted-output

code, 69
������ characters, 486

Returning Values from a Parser, 216
:return-presentation, 165, 167
reverse video for presentations, 84
right increment, 519
right margin character flag, 356
rotation, 142, 171
:round, 160
rows, 428
Rubberbanding, 261
Sample Format, 510
Sample rate, 517
satisfies, 28
saving contents of windows, 336
saving lexical variable values, 89
saving output to a graphics stream in a compacted

form, 177
Sawtooth Wave Example, 522
:scale-dashes, 160
:scale-thickness, 160
scaling, 142, 171
scaling dashes, 160
scaling line thickness, 160
Scaling Mouse Motion, 380
Scan Conversion, 154

579
February 2018 Index

screen array, 337
Screen Arrays and Exposure, 337
:screen-manage message to windows, 344
screen manager, 335
Screen Manager Background Process, 344
screens, 336
Scrollability, 17
Scrolling Windows, 393
scroll-window command accelerators, 61
scroll windows, 485
Scroll Windows, 485
sct:system, 28
sct:system-version, 28
second, 533
sections in constraint frames, 405
������ and �������� Keys, 369

Select Configuration, 115
Select Configuration Frame-Up command, 114
selecting a gray-level, 163
Selecting a Window Temporarily, 351
selecting multiple menu items, 445
semantic specialization, 24
SemantiCue, 16
SemantiCue input system, 17
sending command to user process, 438
sequence, 28
sequence-enumerated, 28
sequential coordinate transforms, 171
:set-display-item message, 486
:set-interval-string message, 545
:set-interval-string message to zwei:standalone-

editor-frame, 544
:set-io-buffer message, 367
set of constraints, 393
Set Pane Name, 122
Set Pane Options, 116
Set Presentation Presentation Inspector

Command, 277
Set Program Options, 114
Set Program Options Frame-Up command, 114
:set-save-bits message to windows, 337
Set Screen Options, 366
setting parameter options to programs, 463
Setting the Console Volume, 509
setting the graphics cursor, 166
Setting up a Non-Echoing Command Loop, 126
:set-type-alist message, 491

580
Index February 2018

:set-viewport-position method of dw:dynamic-
window, 96

:sexp tv:choose-variable-values variable type,
457

shared lexical variables in iterations, 89
sharing I/O buffers, 395
Sharing State among Program Commands, 321
shell, Command Processor equivalent of, 8
Showcase, 5, 15, 70
Show Handler Applicability Presentation

Inspector Command, 274
Show Handler Applicability Presentation

Inspector Command, 271
Show Handler Context Applicability Presentation

Inspector Command, 276
Show Handlers All Presentations Presentation

Inspector Command, 271
Show Handlers This Presentation Presentation

Inspector Command, 274
Show Handlers This Presentation Presentation

Inspector Command, 271
Show Input Context Presentation Inspector

Command, 276
Show Presentation Hierarchy Presentation

Inspector Command, 276
Show Presentation Type Command, 270
si:with-ie-typeout-if-appropriate, 258
side-effecting mouse handlers, 245, 246
side effects, 12
sign-argument-command, 61
simple momentary window, 433
Simple Tone Generation with sys:%beep and

sys:%slide, 515
Sine Wave Example, 520
single-character command accelerators, 126
single coordinate transforms, 171
single-key accelerator, 43
Single-Key Accelerators, 125
si:parse-interval-or-never function, 537
size of panes, 405
size of window, 352
:sizes Constraint Frame Specification, 397
Snapshotting Variables, 290
Some Efficiency Caveats for Mouse Handlers, 255
special characters, 356
special choices, 445
Special Choices, 419
Specialized Blinkers, 375

581
February 2018 Index

specifying a bitmap as a mask, 167
specifying dashed lines, 160
specifying line characteristics, 160
specifying line joint shape, 160
specifying line thickness, 160
Specifying Panes and Constraints, 396
Specifying Panes and Constraints in Non-Dynamic

Windows, 405
specifying single-key accelerators, 123
specifying spacing in tables, 86
specifying the interiors of graphics images, 163
specifying the width of a table column, 81
specifying your own graphics transforms, 171
Split Pane, 122
splitting a pane horizontally in Frame-Up, 122
splitting a pane vertically in Frame-Up, 122
Square Wave Example, 522
squarewave example, 522
:stack-group init option, 468
stacking in constraint frames, 405
Standard and Customizable Facilities, 421
Standard facilities, 421
Standard Momentary Menu Example, 432
Standard TV Fonts, 371
standin types, 28
:start option for zwei:open-editor-stream, 542
:start option for zwei:with-editor-stream, 542
Starting and Stopping the Audio Microtask, 519
static window, 17
static windows, 380
status line, 352, 491
stepper function, 494
:stipple, 163, 164
stippling, 163
storage:unwire-structure, 516
storage:unwire-words, 516
storage:wire-consecutive-words, 516
storage:wire-structure, 516
storage:wire-words, 516
Storing Samples, 518
Strategy for Using the Presentation Inspector, 267
:stream, 165
Stream facility for editor buffers, 541
stream input messages, 352
string, 28
:string line item entry, 488
:string tv:choose-variable-values variable type,

457

582
Index February 2018

string as menu item, 424
:string-list tv:choose-variable-values variable

type, 457
:string-or-nil tv:choose-variable-values variable

type, 457
:style menu item option, 426
subset, 28
Substrate Facilities, 332
Suggestions and Examples, 255
superior window, 335, 336
:suppress-notifications option, 503
surrounding-output-with-border, 84
surrounding-output-with-border function, 96
surrounding-output-with-border output macro,

70
Swap Panes, 122
symbol, 28
symbol as menu item, 424
symbol as pattern in dummy description, 405
symbolic names of shift keys, 380
symbol line item entry, 488
symbol-name, 28
:symeval line item entry, 488
Synchronization Flags, 519
sys:code-fragment, 28
sys:expression, 28
sys:flavor-name, 28
sys:font, 28
sys:form, 28
sys:function-spec, 28
sys:generic-function-name, 28
sys:printer, 28
sys:stack-frame, 28
sys:console-volume function, 509
sys:read-interval-or-never function, 537
sys:set-select-key-activity function, 369
System Command Tables, 60
t, 28
t as a to-presentation-type, 222
t blinker visibility, 373
Table of Advanced Facilities for Program Frames,

327
Table of Basic Command Facilities, 66
Table of Facilities for Defining Presentation Types,

218
Table of Facilities for Writing Mouse Handlers, 277
Table of Graphics Facilities, 178
Table of Program Framework Facilities, 136

583
February 2018 Index

Table of Program Output Facilities, 92
Table of Replay and Redisplay Facilities, 304
Table of Top-level Presentation Type Facilities, 39
:tab-nchars init option for tv:sheet, 356
tab stops, 356
temp-locked windows, 340, 342
temporary windows, 342
Temporary Windows, 342
terminal-io variable, 334
terpri inside formatting output macros, 92
:tester, 260
Testing for the Existence of Audio, 517
Text as Graphics, 140
Text Scroll Window Flavors, 385
Text Scroll Windows, 385
Texturing, 177
The "General List" Form of Item, 425
The 3600-family Calendar Clock, 534
The Audio Microtask, 509
The Audio Wrapping Form, 517
The Basic Choose Variable Values Flavor, 467
The Basic Multiple Choice Flavor, 454
The Choice Facilities, 419
The Choose Variable Values Facility, 455
The Command-Definition Macro, 123
The define-presentation-action Macro, 245
The define-presentation-to-command-translator

Macro, 238
The define-presentation-translator Macro, 229
The define-presentation-type Macro, 191
The :do-not-compose mouse handler option and

performance, 255
The dw:define-program-framework Macro, 100
The Facilities, 13, 229
The Flavor Network of tv:menu, 480
The Form of a Menu Item, 424
The Geometry of a Menu, 428
The Graphics Substrate, 18
The Input Editor Program Interface, 498
The Keyboard, 380
The Margin Choice Facility, 477
The Mouse-Sensitive Items Facility, 470
The Multiple Choice Facility, 451
The Multiple Menu Choose Facility, 449
The Optional Constraint Function, 460
The Polyphony Feature, 513
The Presentation Inspector’s Frame, 266
The Presentation System, 10

584
Index February 2018

The Presentation Type System: an Overview, 21
The Recursive Behavior of Accept, 190
The Screen Manager, 344
The Selected Window and the Selected Activity,

349
The Standard Choose Variable Values Function,

461
The Standard Momentary Menu Interface, 431
The Standard Multiple Choice Function, 453
The Standard Multiple Menu Choose Function, 449
The sys:expression presentation type and handler

performance, 255
The t presentation type and handler performance,

255
The :tester mouse handler option and

performance, 255
The Top-Level Command Loop, 98
The Top-Level Loop, 312
The Transformation Matrix, 171
The tv:margin-choice-mixin Flavor, 477
The tv:mouse-y-or-n-p Facility, 432
The User Option Facility, 463
The User’s Process and the Mouse Process, 422
The zwei:open-editor-stream function, 541
The zwei:with-editor-stream macro, 541
:thickness, 160, 169
:tile, 163, 164
tiling, 163
time:*timezone* variable, 538
time:time-interval, 28
time:time-interval-60ths, 28
time:timezone, 28
time:universal-time, 28
Time Conversions, 537
time:daylight-savings-p function, 538
time:day-of-the-week-string function, 538
time:decode-universal-time function, 537
time:encode-universal-time function, 538
time formats, 533, 535, 536
time:get-time function, 534
time:initialize-timebase function, 538
:time-interval-60ths tv:choose-variable-values

variable type, 457
:time-interval-or-never tv:choose-variable-

values variable type, 457
time intervals, 533
time:leap-year-p function, 538
time:month-length function, 538

585
February 2018 Index

time:month-string function, 538
time of day, 533
time:parse function, 536
time:parse-present-based-universal-time

function, 537
time:parse-universal-time function, 537
time:parse-universal-time-relative function, 537
time:print-brief-universal-time function, 535
time:print-current-date function, 535
time:print-current-time function, 535
time:print-date function, 535
time:print-interval-or-never function, 537
time:print-time function, 535
time:print-universal-date function, 535
time:print-universal-time function, 535
time:set-local-time function, 534
time:timezone-string function, 538
time:verify-date function, 538
time zone, 533
:title pane type, 14
Title Pane, 99
token-or-type, 28
:top-level, 98
Top-Level Facilities for User Interface

Programming, 100, 238
to-presentation-type, 222
tracking the mouse, 376
tracking the mouse cursor, 84
transformation matrix, 142
transform graphics data structure, 171
Transforming Points in Window Coordinates, 175
translating mouse handler, 43, 221
translating mouse handlers, 229, 238
translation, 142, 171
translator, 222
translators, 12
truncating lines, 356
truncating output, 84
tv:*function-keys* variable, 369
tv:*mouse-incrementing-keystates* variable, 381
tv:*mouse-modifying-keystates* variable, 381
tv:*select-keys* variable, 369
tv:**constraint-node** variable, 405
tv:**constraint-remaining-height** variable, 405
tv:**constraint-remaining-width** variable, 405
tv:**constraint-stacking** variable, 405
tv:**constraint-total-height** variable, 405
tv:**constraint-total-width** variable, 405

586
Index February 2018

tv:basic-choose-variable-values Init-plist
Options, 468

tv:basic-constraint-frame flavor, 393
tv:basic-mouse-sensitive-items Example, 474
tv:basic-mouse-sensitive-items Init-plist Options,

473
tv:basic-mouse-sensitive-items Messages and

Functions, 473
tv:basic-scroll-window flavor, 486
tv:choose-variable-values Examples, 461
tv:choose-variable-values Type Definition

Example, 466
tv:choose-variable-values-keyword property,

465
tv:choose-variable-values-window Example, 469
tv:choose-variable-values-window Messages,

468
tv:command-menu Example, 440
tv:command-menu flavor, 480
tv:command-menu Init-plist Options, 439
tv:command-menu Messages, 440
tv:command-menu-mixin flavor, 480
tv:delaying-screen-management special form,

344
tv:graphics-mixin flavor, 361
tv:item-list-pointer variable, 442
tv:item-type-alist instance-variable, 472
tv:key-state function, 367
tv:make-window function, 486
tv:margin-choice-mixin Example, 478
tv:margin-choice-mixin Init-plist Option, 477
tv:margin-choice-mixin Messages, 478
tv:menu flavor, 429, 480, 482, 483
tv:menu-choose function, 427
tv:minimum-window flavor, 354
tv:momentary-menu Example 1: Simple

Momentary Menu, 433
tv:momentary-menu Example 2: Item List as Init-

plist Option, 434
tv:momentary-menu Example 3: Centered Label

and
Use of General List Items, 434
tv:momentary-menu Example 4: Using the Mouse

Buttons, 435
tv:momentary-menu flavor, 480
tv:momentary-multiple-menu Example, 447
tv:multiple-choice Example, 454
tv:multiple-choice Menu Messages, 454

587
February 2018 Index

tv:multiple-choose Menu Example, 453
tv:multiple-menu-choose Example, 449
tv:multiple-menu-choose-menu Example, 450
tv:multiple-menu-mixin Init-plist Options, 446
tv:multiple-menu-mixin Messages, 446
tv:pop-up-menu Example, 436
tv:scroll-item-leader-offset variable, 493
tv:scroll-maintain-list function, 494
tv:scroll-mouse-mixin flavor, 491
tv:scroll-parse-item function, 487, 491
tv:scroll-window flavor, 486
tv:scroll-window-with-typeout flavor, 486
tv:select-or-create-window-of-flavor Function,

445
tv:sheet-force-access special form, 340
tv:stream-mixin flavor, 356, 361, 367
tv:truncating-lines-mixin flavor, 356
tv:value, 488
tv:window, 28
tv:window flavor, 354
tv:with-blinker-visibility, 307
tv:with-output-to-bitmap, 163
tv:add-function-key function, 369
tv:add-select-key function, 369
TV Fonts, 370
tv:key-state function, 381
tv:mouse-double-click-time variable, 381
tv:prepare-sheet function, 342
tv:sheet-force-access function, 342
:tyi message, 395
:type-alist init option for tv:scroll-mouse-mixin,

491
Type Decoding Message, 466
typefaces, 352, 370
Type Inheritance, 187
type-or-string, 28
typeout, 356
Typeout Windows, 393
types of graphics objects, 165
Types of Menu Items, 425
undefined character code, 356
underlining presentations, 84
Universal Time, 533
unwired memory, 515
updating list items, 494
updating the display, 485
Useful tv:menu Init-plist Options, 433
Useful tv:menu Messages, 433

588
Index February 2018

Use of satisfies in presentation types, 255
user coordinate system, 142
User Interaction Paradigm, 8
User Interface Concepts, 8
user option facility, 419
User Options Example, 464
user-visible data representations, 10
uses of :coordinate-mode, 169
using flavor inheritance in programs, 321
Using Frame-Up, 113
Using Presentation Types, 21
Using Presentation Types for Input, 34
Using Presentation Types for Output, 32
Using Single-Character Accelerators, 320
Using the Formatted Output Facilities:

Programming Hints, 78
using the Frame-Up Layout Designer, 113
using the mouse with menus, 422
using the mouse with momentary menus, 431
using the mouse with mouse-sensitive items, 473
using the mouse with multiple choice window, 451
using the mouse with multiple menus, 445
Using the Presentation Inspector, 266
Using the Top-Level User Interface Programming

Facilities, 4
using the window system, 333
Using the Window System, 333
Using TV Fonts, 370
Using User-Extendable Data Types as

Presentation Types, 209
Usurping the Mouse, 379
usurping the mouse, 376
:value line item entry, 488
:value menu item type, 425, 427
values returned by a CP command, 65
:variable-choice I/O buffer command, 467
Variables and Types, 455
Variable Snapshotting, 89
variable-width fonts, 356, 372
:verify option for window size and position

messages, 381
:vertical stacking description, 405
vertical spacing, 356
viewport, 17, 142
viewspec choices, 281
Virtual List Maintenance, 494
:visibility, 108
visibility of blinkers, 373

589
February 2018 Index

:visible-cursorpos-limits method of dw:dynamic-
window, 95

visible windows, 334, 337
voices, 513
vsp attribute, 356
wavetable cursor, 513
Wheels, 5
:white pattern in dummy description, 405
Why Define Your Own Presentation Types, 185
width of :function line item, 488
width of :symeval line item, 488
:winding-rule, 166
:window option for zwei:open-editor-stream, 542
:window option for zwei:with-editor-stream, 542
window attributes, 356
Window Attributes for Character Output, 360
Window Borders, 384
Window Exposure and Output, 340
Window Flavors and Messages, 352
Window Graying, 347
Window Graying Specifications, 348
window inside, 352, 381, 384
Window Labels, 385
Window Layout, 325
window margin, 352, 381, 384
Window Margins, Borders, and Labels, 384
:window-op menu item type, 425
window panes, 335
window position init options, 381
window position messages, 381
Windows, 334
Windows and Processes, 349
Windows as Input Streams, 367
windows as output streams, 352, 356
windows as streams, 334
window size init options, 381
window size messages, 381
Window Sizes and Positions, 381
Window Status, 351
Window Substrate, 17
Window Substrate Facilities, 415
window system, 17
window system choice facilities, 419
Window System Choice Facilities, 419
wired memory, 515
with-character-face, 71
with-character-face function, 92
with-character-family, 71

590
Index February 2018

with-character-family function, 92
with-character-size, 71
with-character-size function, 92
with-character-style, 71
with-character-style function, 92
with-character-style output macro, 70
:with-output-recording-disabled method of

dw:dynamic-window, 96
with-underlining function, 92
Writing a Non-Echoing Command Loop, 313
Writing a Parser, 210
Writing a Parser That Calls accept Several Times,

213
Writing a Parser That Recursively Calls Accept,

211
Writing a Printer, 217
writing a simple program using the Frame-Up

Layout Designer, 130
Writing a Translator From a Blank Area, 257
writing device-specific drivers, 176
Writing Formatted Output Macros, 304
:x-scroll-position method of dw:dynamic-

window, 96
:x-scroll-to method of dw:dynamic-window, 96
year, 533
yes-or-no question, 508
:y-scroll-position method of dw:dynamic-

window, 96
:y-scroll-to method of dw:dynamic-window, 96
zl:%%kbd-mouse bit, 367
zl:*nopoint variable, 455
zl:base variable, 455
zl:ibase variable, 455
zl:package variable, 455
zl:prinlevel variable, 455
zl:readtable variable, 455
zl:setf macro, 488
zl:time package, 533
Zmacs Commands for Frame-Up, 122
zwei:*comtab* variable, 544
zwei:buffer, 28
zwei:define-presentation-to-editor-command-

translator, 261
zwei:standalone-editor-frame flavor, 544
zwei internals, 541
Zwei Internals, 541
~% inside formatting output macros, 92
~& inside formatting output macros, 92

