
Page iii

���

Table of Contents

Page

1 1Release Notes for Statice 2.1

1.1 1Statice Improvements for Genera 8.1

1.2 1Statice and CLOS

1.3 2Limitations on statice:for-each* in Statice 2.1

1.4 2Duplicate Attribute Names Are Not Allowed in Statice 2.1

1.5 2Hints on Using Statice

1. Release Notes for Statice 2.1

This section discusses improvements offered by Statice 2.1 and some known limita-

tions of Statice 2.1.

1.1. Statice Improvements for Genera 8.1

• On UX400 systems, the Sun no longer times out on some network connections

with large transactions.

• Using the number type should no longer generate errors.

• Statice works more reliably on 3600-family machines.

• Problems relating to secondary mapping errors have been corrected.

• The deadlock detector no longer aborts non-deadlocked transactions. This should

help avoid the Too many retries error, especially if a process holding locks is in

the debugger.

• Aborts are now more fair. This should help avoid livelocks.

• Problems with background invalidation have been corrected. This fix, plus some

others should dramatically improve multi-user performance.

1.2. Statice and CLOS

Genera 8.1 includes CLOS (Common Lisp Object System). Statice users might be

interested in how Statice and CLOS interact. In general, there is no direct integra-

tion between Statice 2.1 and Genera 8.1. However, using Statice and CLOS in the

same Lisp world works, and you can develop programs that use both Statice and

CLOS.

In Genera 8.1 and Statice 2.1, Statice entity handles are implemented as Flavors

instances, not CLOS instances. Statice attribute accessing functions are Flavors

generic functions, not CLOS generic functions. You cannot define methods for

user-defined CLOS generic functions that are specialized on a flavor (such as a

Statice entity flavor).

Statice users can use CLOS, noting the following restrictions. You cannot mix

CLOS classes into a Statice entity definition. See the section "Mixing Flavors Into

a Statice Entity Definition" in Statice. You cannot define CLOS classes that inherit

from Statice entity flavors, or define CLOS methods that specialize on Statice enti-

ty flavors. We anticipate that some of these restrictions will be lifted in a future

release of Genera.

Page 2

1.3. Limitations on statice:for-each* in Statice 2.1

In Statice 2.1, statice:for-each* is restricted to single-variable queries. Queries in-

volving more than one variable are supported by statice:for-each, but not by

statice:for-each*. See the section "Using statice:for-each on Many Variables" in

Statice.

Also, statice:for-each* is restricted to iterating over all entities of an entity type;

it cannot iterate over members of a set-valued attribute as statice:for-each can.

See the section "Iterating Over Sets with statice:for-each" in Statice.

1.4. Duplicate Attribute Names Are Not Allowed in Statice 2.1

Statice does not allow an entity to specify an attribute name which is the same as

an attribute name of one of its parent entity types.

This restriction is one difference between Statice and Flavors (and CLOS). A fla-

vor can specify the name of an instance variable even if it is the name of an in-

herited instance variable, with the goal of modifying it by giving it a new option,

or an option to override an inherited one.

1.5. Hints on Using Statice

• Use small transactions. If the log is not big enough, creating large databases

with one large transaction takes longer than many short transactions. Use small

transactions or specify a log size of double the intended database size when you

build the file system. In any case, you need a log file that is at least as large as

the number of pages created or written in any given transaction. Use the func-

tion dbfs:show-dbfs-meters on the server to look at the performance of Statice’s

transaction system. If there are many reinserted pages and/or the log has grown

many times, you are probably using transactions that are too long, with logs

that are too small. Long transactions also thwart the buffer replacement mecha-

nism, which causes paging overhead.

• Do not use Update Database Schema. There are currently some reliability prob-

lems with Update Database Schema. The best way to change a schema is to

build a new database with the new schema. If you do decide to use Update

Database Schema, make a backup of your database before you start.

• Use TCP protocols for DBFS-PAGE and ASYNC-DBFS-PAGE namespace services. Do

not use chaos protocols. Remove all chaos protocols for DBFS-PAGE and ASYNC-

DBFS-PAGE from the namespace objects for your hosts. Rebuild worlds with the

new namespace information at your convenience. Make sure all your hosts have

INTERNET addresses.

Page 3

• Do not warm boot. Warm booting machines currently does not work well if Stat-

ice locks are held. If you have to warm boot, just do so long enough to save

your buffers. Do not use Statice after a warm boot.

• Do not override sys:without-aborts. If Statice asks you not to use c-ABORT,

heed its advice. If the machine is stuck, it is better to just boot the machine

rather than forcibly abort critical Statice functions.

• If lookup or deletion is slow, use indexes. If accessing set-valued attributes is

slow then indexes on sets may be very helpful, even if each entity only has a

few items in its set valued attribute. This is especially the case if you have a

lot of those entities. Indexes (especially inverse indexes) will help speed up dele-

tion. Deletion must preserve the integrity of the database, by removing all refer-

ences to the object you are deleting. If there are inverse indexes which can help

find those references, then deleting is very fast. If there are indexes missing,

then a scan of the database is necessary, which can be very slow for large

databases. Avoid the use of type t, when possible. Use user::all-but-entity in-

stead, if you can.

• Be careful about side-effects inside the dynamic scope of a user::with-

transaction. Transactions can abort for many reasons. When they are aborted,

they are automatically restarted, including the user code inside the dynamic

scope of the user::with-transaction form. Be careful about modifying variables,

flavor instances, and structures which are created before the transaction, and

which will exist after it.

• ;;Wrong
 (let ((a nil))

 (with-transaction ()

 ;;Any code which looks at A here could have

 ;;problems if the transaction is aborted.

 ...

(setq a (make-person :name "Frank"))

...))�

 ;;Right

 (with-transaction ()

 ...

 (let ((a (make-person :name "Frank")))

 ...))�

• Avoid nested transactions. If the function dbfs:show-dbfs-meters on your client

machine shows many nested transactions, then you may want to rethink the

modularity of your software somewhat. It is best not to nest transactions, since

the current page state is saved before the inner transaction is executed. If you

have modified 1000 pages before doing a nested transaction, then 1000 pages

have to be copied to another buffer. This copying not only takes a lot of time, it

also hurts your paging performance. It is most efficient to just have one with-

transaction in effect at any given time.

Page 4

• Avoid the use of type number, when possible. It is slow, and uses more storage

than a specific type of number, such as single-float or fixnum.

• Save worlds with Statice, do not just load Statice every time you want to use it.

This avoids a lengthy delay everytime you boot, and it is a more reliable way to

use Statice. Be sure to observe the following:

° Build your worlds correctly. Always start a world building procedure by boot-

ing the latest released world from Symbolics. Disable services. Load the IP-

TCP system first (IP-TCP is a loadable system bundled with Genera 8.1), then

load Statice. This insures that Statice knows it can use IP-TCP.

° Do not save a Statice world without IP-TCP, since Statice is not reliable over

Chaos.

° Be sure any critical private patches are loaded.

° Save the resulting world, then immediately reboot the new world. Never use a

world after you have just saved it. �

For more information, see the section "Making, Distributing, and Using Worlds"
in Site Operations.

• It is better to keep all your schema for a particular database in one file, and re-

compile the entire schema file when you make schema changes.

• Use unique attribute names. Do not use the same name for two different at-

tributes in two different object definitions. This is a current limitation.

• The limited string type seems to be using a non-compact form of storage. Its

use is not recommended until this bug can be fixed.

Page 5

�

Index

Duplicate Attribute Names Are Not Allowed in

Statice 2.1, 2

Hints on Using Statice, 2

Limitations on statice:for-each* in Statice 2.1, 2

Release Notes for Statice 2.1, 1

Statice and CLOS, 1

Statice Improvements for Genera 8.1, 1

