
iii
February 2018 Table of Contents

Table of Contents

Page

1 1Organization of the Statice Documentation

2 3Tutorial Introduction to Statice

2.1 3Quick Overview of Statice: the Bank Example

2.1.1 3Basic Concepts of Statice

2.1.3 8Making a Statice Database

2.1.4 9Accessing a Statice Database

2.1.5 10Introduction to Statice Transactions

2.1.6 12Making New Statice Entities

2.1.7 14Accessing Information in a Statice Database

2.1.8 16Iterating Over an Entity Type

2.2 17Using Statice for the First Time

2.2.1 18Creating a New Statice File System

2.2.2 20Writing Statice Programs in the Right Package

2.3 20A More Complicated Schema: the University Example

2.3.1 20Defining a Schema for a University

2.3.2 21Entity-Typed Attributes

2.3.3 22Set-Valued Attributes

2.3.4 23Iterating Over Sets with statice:for-each

2.3.5 24One-to-One, Many-to-One, and Other Relationships

2.3.6 26Inverse Writer Functions for Entity-typed Attributes

2.3.7 27Inheritance From Entity Types

2.3.8 29The Statice Null Value

2.3.9 31The :no-nulls Attribute Option

2.3.10 32The :initform Attribute Option

2.3.11 33The :read-only Attribute Option

2.3.12 33Statice Attribute Types

2.3.13 36The :conc-name Entity Type Option

2.3.14 36Order of Defining Pieces of a Schema

2.4 37Coping with Transaction Restarts

2.4.1 38Taking Snapshots with the :cached Attribute Option

2.4.2 40Testing Statice Programs with Transaction Restarts

2.5 41Querying a Statice Database with statice:for-each

2.5.1 41Using the :where Clause of statice:for-each

2.5.2 43General Rules of the :where Clause of statice:for-each

2.5.3 44Using the :count Clause of statice:for-each

2.5.4 44Sorting Entities with the :order-by Clause of statice:for-

each

2.5.5 45Using statice:for-each on Many Variables

2.6 45Using Indexes to Increase Database Performance

iv
Table of Contents February 2018

2.6.1 45Introduction to Indexes in Statice

2.6.2 47Indexes and statice:for-each

2.6.3 48statice:for-each Can Use Many Indexes Together

2.6.4 49Making and Deleting Indexes

2.6.5 50Indexes and :order-by

2.7 51Multiple Indexes

2.7.1 51Introduction to Multiple Indexes

2.7.2 53Multiple Indexes and Leading Subsequences

2.7.3 54Multiple Indexes and Suffix Comparisons

2.7.4 55Multiple Indexes and :order-by

3 57Advanced Techniques for Statice Applications

3.1 57Hints and Techniques for Using Statice

3.1.1 57Choosing the Forward Direction for a Statice Schema

3.1.2 58Representing Information as an Ordinary Value Versus an

Entity

3.1.3 58Warning About Changing the Package of a Statice Program

3.1.4 60Obtaining a Symbol From a Database, When the Package is

Undefined

3.1.5 60Guide to the Statice Examples

3.1.6 61Checking for Disk Write Errors

3.2 62Browsing a Statice Database

3.3 68Statice Buffer Replacement

3.4 69Dealing with Strings in Statice

3.4.1 69Regular Comparison Versus Exact Comparison

3.4.2 70Exact Inverse Accessor Functions

3.4.3 70Exact Indexes

3.4.4 72Statice Operators for Dealing with Strings and Vectors

3.5 72Opening and Terminating Databases

3.6 75Built-In Statice Types

3.6.1 83Types Not Supported by Statice

3.7 84Defining New Statice Types

3.7.1 84Physical and Logical Statice Types

3.7.2 84Defining Lisp and Statice Types

3.7.3 85Defining Logical Types

3.7.4 88Defining Physical Types

3.7.5 89Defining a Variable-Format Physical Type

3.7.6 92Defining a Fixed-Format Physical Type

3.7.7 95Comparing Values of User-Defined Types

3.7.8 97Flavors Representing a Statice Type

3.7.9 98Summary of Methods for Defining New Statice Types

3.8 100Dynamic Statice Operations

3.8.1 101Dynamic Statice Accessor Functions

3.8.2 102Dynamic Entity Creation

3.8.3 102Dynamic Set Manipulation

3.8.4 103Dynamic Statice Queries

v
February 2018 Table of Contents

3.8.5 105Dynamic Counting of Entities

3.9 105Integrating Statice with a User Interface

3.9.1 105Viewing an Arbitrary Statice Entity

3.9.2 106Presentation Type for Statice Types with Simple String

Names

3.10 107Integrating Object-oriented Programming with Statice

3.10.1 108Defining Methods for Entity Types

3.10.2 109Specifying Instance Variables for an Entity Handle

3.10.3 109Mixing Flavors Into a Statice Entity Definition

3.10.4 109Statice and CLOS

3.11 110Examining the Schema of a Statice Database

3.11.1 110Template Schemas and Real Schemas

3.11.2 111Example of Schema Examination

3.11.3 112Summary of Functions for Examining a Schema

3.12 115Modifying a Statice Schema

3.12.1 115Modifying the Template Schema

3.12.2 116Modifying the Real Schema

3.12.3 116Limitations to Modifying a Real Schema

4 119Statice Performance Issues

4.1 119Statice Records

4.2 120Statice Indexes

4.3 127Statice Type Sets, Attribute Sets, and Areas

4.4 131How to Control Type Sets, Attribute Sets, and Areas

4.5 133Clustering Technique for Statice Databases

4.6 135Concurrency Control in Statice

4.6.1 135How Locking Works in Statice

4.6.2 137Deadlocks

4.6.3 139How Locking Affects Performance

5 141Operations and Maintenance of Statice Databases

5.1 141The Architecture of Statice

5.1.1 141Using Statice Locally or Remotely

5.1.2 142How a Statice File System is Described in the Namespace

5.1.3 144Statice Database Pathnames

5.1.4 145Dealing with Databases by Their Pathnames

5.1.5 146Services and Protocols Used by Statice

5.1.6 147Attributes for Objects of Type "File System"
5.1.7 149FEP File for Generating Statice Unique IDs

5.2 149Statice File System Operations Program

5.2.1 149Overview of the Statice Backup Facilities

5.2.2 150Kinds of Tertiary Storage

5.2.3 151Choosing the Kind of Tertiary Storage to Use

5.2.4 151Volume Capacity

5.2.5 152Tertiary Volumes and Volume Sets

5.2.6 153Labels on Volumes

vi
Table of Contents February 2018

5.2.7 154Volume Libraries

5.2.8 155Using the Statice File System Operations Program

5.2.9 157Dictionary of Statice File System Operations Commands

5.3 163High-level Dumper/Loader of Statice Databases

6 165Dictionary of Statice Commands

7 173Summary of Statice Operators

8 181Dictionary of Statice Operators

9 225Dictionary of Statice Error Flavors

vii
February 2018 List of Figures

�

List of Figures

Page

1 141Hosts Mars and Venus, with File Systems Rose and Iris

2 142Local and Remote Use of Statice

1
February 2018 Organization of the Statice Documentation

1. Organization of the Statice Documentation

Statice is an object-oriented database system for the Genera programming environ-

ment. Statice provides client programs with persistent, shared storage of informa-

tion. Persistent information stored in Statice exists outside and beyond the bound-

aries of the Lisp world that created it, and is protected against failure. Shared in-

formation is shared by distinct Lisp worlds on different workstations, for writing

as well as reading.

The Statice documentation is divided into several categories. The installation in-

structions are delivered along with the cover letter.

We start with a tutorial that covers the basic concepts in the context of example

programs:

"Tutorial Introduction to Statice"

Statice is a powerful programming tool that includes many advanced techniques,

most of which can be learned separately from the others. Any given application

program will not need all of these techniques, so you can select from the next

chapter those that sound most useful to your application:

"Advanced Techniques for Statice Applications"

Since performance is a key aspect of a database, we present a separate chapter

discussing how to maximize the performance of your application:

"Statice Performance Issues"�

The next chapter describes the administration of Statice:

"Operations and Maintenance of Statice Databases"

The next category is the reference documentation. We start by documenting the

Statice commands. We then cover Statice functions, special forms, and macros.

Each Statice operator is briefly mentioned in the Summary, and then documented

fully in the Dictionary.

"Dictionary of Statice Commands"
"Summary of Statice Operators"
"Dictionary of Statice Operators"

The documentation presents several example programs. You can find the Lisp

source of these programs in the directory SYS:STATICE;EXAMPLES;.

2
Organization of the Statice Documentation February 2018

3
February 2018 Tutorial Introduction to Statice

2. Tutorial Introduction to Statice

To show you how to make use of Statice in your programs, we present this tutorial

of example programs. The tutorial is designed to be read sequentially. Within the

tutorial you will see cross-references to more detailed documentation, but we rec-

ommend that you go through the tutorial in sequence, and postpone the cross-

references until later. However, feel free to read it in whatever style suits you

best.

2.1. Quick Overview of Statice: the Bank Example

2.1.1. Basic Concepts of Statice

We start with a simple example that demonstrates the basic concepts and facilities

of Statice. The explanations are sketchy, designed to give you an overall idea of

what Statice is, while leaving the details till later. The complete source listing of

the example is given in this section and in the file SYS:STATICE;EXAMPLES;BANK-

EXAMPLE.LISP.

How to Define a Statice Schema�

In this example we define a bank database. A bank database is made up of ac-

counts, and each account has a name and a balance. The following forms define

the schema:

(define-schema bank (account))

(define-entity-type account ()

 ((name string :inverse account-named :unique t)

 (balance integer)))�

The statice:define-schema form defines a schema named bank, and says that it

has one entity type, named account. The statice:define-entity-type form defines

the entity type named account, and says that it has two attributes, named name

and balance. The name attribute is declared to be unique, which means that no

two accounts can have the same name.

statice:define-entity-type is analogous to defstruct or defflavor, in that it defines

a new type. The attributes of an entity are analogous to slots or instance vari-

ables. The main difference between entity types and types defined by defstruct

and defflavor is that entity types reside not in a Lisp world, but in a Statice

database. Another difference is that each attribute has a type. In this case, account

names are strings, and account balances are integers.

The statice:define-entity-type form automatically defines accessor functions (for

accessing the value of an entity’s attributes) and an entity constructor function (for

creating new entities of this entity type). We show examples of using these func-

tions later on in this section. See the section "Defining a Statice Schema", page 7.

4
Tutorial Introduction to Statice February 2018

How to Make a Statice Database�

We need to state where the bank database will be stored. Every Statice database is

stored in a file in a Statice File System. The Statice File System might be on your

own host or on another host on the network.

The following form defines a variable to hold a pathname, which we will use to in-

dicate where the database is stored. This pathname is different from others be-

cause beet is not a host name, but the name of a Statice File System.

(defvar *bank-pathname* #p"beet:>finance>bank")�

Below, we define make-bank-database. This function creates a new database in

the place specified by the pathname, and initializes it to be a bank database with

no accounts.

(defun make-bank-database ()

 (make-database *bank-pathname* ’bank))�

If you are eager to plunge in and start using Statice, and want instructions on

how to set up a Statice File System: See the section "Using Statice for the First

Time", page 17.

How to Make New Statice Entities�

When you define an entity type, statice:define-entity-type automatically defines an

entity constructor function. For example, make-account is the entity constructor

function for making new account entities. Below we define make-new-account,

which makes a new account in the bank database by calling make-account, the

entity constructor.

(defun make-new-account (new-name new-balance)

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (make-account :name new-name :balance new-balance))))�

See the section "Making New Statice Entities", page 12.

How to Access a Statice Database�

Notice that the definitions of make-new-account (above) and the definition of

deposit-to-account (below) use statice:with-database and statice:with-

transaction when accessing the database.

The statice:with-database form is analogous to with-open-file. It opens the

database (if necessary) and makes this database the current database during the ex-

ecution of its body.

Every operation that examines or modifies a database must be done within the dy-

namic extent of a statice:with-transaction form. statice:with-transaction delimits

a single transaction on the database. A transaction is a group of operations on a

database, with the following properties:

5
February 2018 Tutorial Introduction to Statice

• Each transaction accesses shared data without interfering with other transac-

tions.

• If a transaction terminates normally, all of its effects are made persistent; oth-

erwise it has no effect at all.

See the section "Accessing a Statice Database", page 9.

How to Access Information in a Database�

To read information about an entity in the database, we use the reader functions

that were defined automatically by statice:define-entity-type form. There is a

reader for each attribute of an entity. In the bank example, the readers are called

account-name and account-balance.

To write information about an entity in the database, we use the writer functions

that are defined automatically. To call a writer function, use setf with the reader

function. In the bank example, you can use setf with account-name and account-

balance.

Readers and writers are called accessor functions.

The statice:define-entity-type form for bank also defines an inverse reader func-

tion called account-named, which is the inverse of account-name: given a name,

it returns the account entity. (Inverse reader functions are not defined by default;

you can request them by using the :inverse attribute option, as we did when we

defined the bank entity type.)

deposit-to-account adds to someone’s balance. First, account-named finds the ac-

count entity from the name provided. Then account-balance accesses and updates

the balance of the account.

(defun deposit-to-account (name amount)

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (incf (account-balance (account-named name)) amount))))�

transfer-between-accounts moves a specified amount from one account into anoth-

er account. If there are insufficient funds in the "from" account, it signals an er-

ror.

(defun transfer-between-accounts (from-name to-name amount)

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (decf (account-balance (account-named from-name)) amount)

 (incf (account-balance (account-named to-name)) amount)

 (when (minusp (account-balance (account-named from-name)))

(error "Insufficient funds in ~A’s account" from-name)))))

See the section "Accessing Information in a Statice Database", page 14.

6
Tutorial Introduction to Statice February 2018

How to Access all Entities of an Entity Type�

bank-total computes the total of all accounts in the database. It uses a special

form called statice:for-each, which successively binds the variable a to each ac-

count entity.

(defun bank-total ()

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (let ((result 0))

(for-each ((a account))

 (incf result (account-balance a)))

result))))�

See the section "Iterating Over an Entity Type", page 16.

Benefits of Using Statice�

We could have written this program using structures or instances to represent

bank accounts, but by using Statice we gain two key advantages.

• Persistence. The account information is stored in a database and continues to ex-

ist even after the Lisp environment is destroyed by a cold-boot or system crash.

• Sharing. Any number of hosts on the network can use the database at the same

time. Each one sees the effects of changes made by the others.�

The use of transactions provides further benefits. Actions performed within a

transaction are:

• Atomic: Either they all happen, or none of them happens. In transfer-between-

accounts, either the decf and the incf both happen, or neither happens, and so

the database cannot be left in an inconsistent state. If the error is signalled and

not handled, the transaction aborts, and the decf and the incf are both undone.

Transactions are always atomic even if the process is killed or the machine

crashes.

• Isolated: Many processes can access the database at once, but any transaction al-

ways gets a consistent view of the database, as if there were no other processes.

If you call bank-total while some other process is calling transfer-between-

accounts, you’ll get a correct total, because bank-total won’t "see" the state in

between the decf and the incf.�

See the section "Introduction to Statice Transactions", page 10.

7
February 2018 Tutorial Introduction to Statice

Entities and Entity Types�

A Statice database holds a set of entities. Each entity represents some thing or

concept in the real world. Every entity has a type, called its entity type. In the

bank example, there is one entity type, named account.

The statice:define-schema Form

The first thing in the bank example is a statice:define-schema form.

(define-schema bank (account))�

A schema is a description of everything that can appear in a database; this de-

scription consists of a list of the entity types. In the bank example, we define a

schema named bank, and say that all the entities in the database are of entity

type account. The symbol bank is called the schema name. In other words, a

bank database contains account entities.

The statice:define-entity-type Form

The second thing in the bank example is a statice:define-entity-type form, which

defines the account entity type.

(define-entity-type account ()

 ((name string :inverse account-named :unique t)

 (balance integer)))

An entity type can inherit from other entity types. The list following the entity

type name includes those entity types that this one inherits from. In the bank ex-

ample, account doesn’t inherit from anything.

Attributes�

Next is a list of descriptions of the attributes of the account entity type. At-

tributes are used to represent properties of entities and relationships between en-

tities. Each attribute has a name and a type. In the bank example, there are two

attributes. The attribute named name has type string, and the attribute named

balance has type integer. This means that each account has a name, which is a

string, and a balance, which is an integer. Attribute types are always presentation

types, but only some presentation types are allowed. See the section "Statice At-

tribute Types", page 33.

Automatically-generated Functions�

statice:define-entity-type automatically defines accessor functions for each at-

tribute. In the bank example, there are two reader functions, account-name and

account-balance. There are two corresponding writer functions, which you call by

using setf with account-name and account-balance.

statice:define-entity-type also automatically defines an entity constructor function,

used to create new entities of this entity type. In the bank example, the entity con-

structor function is make-account.

8
Tutorial Introduction to Statice February 2018

Attribute Options�

After the name and type of an attribute comes a set of attribute options, expressed

as alternating keywords and values. In the bank example, the attribute name has

two options. The :inverse option defines an inverse reader function named account-

named. The :unique option says that only one account in the database can have a

particular name.

2.1.3. Making a Statice Database

After defining the schema, the bank example makes a database.

The Statice File System�

Every Statice database is stored in its own file in a special kind of file system

called a Statice file system. This defvar form defines a dynamic variable that holds

the pathname of the particular database we are working with:

(defvar *bank-pathname* #p"beet:>finance>bank")

The value of the variable *bank-pathname* is a pathname to a file on a Statice

file system; we call this kind of pathname a database pathname, because it indi-

cates the location of a Statice database. The "host" component of the pathname is

beet, but beet is the name of a Statice file system rather the name of a host.

The functions in the program use *bank-pathname* as an implicit argument to

specify the database. Notice that each statice:with-database form uses this path-

name to refer to the database.

If we were working with more than one bank, and each bank had its own database,

we would change the value of the *bank-pathname* variable from time to time as

we changed our attention from one bank to another. The program could have also

been written by having each function take a pathname as an explicit argument.

File-System Objects in the Namespace�

To find out where beet resides, Statice consults the namespace system, looking for

a namespace object of type file-system named beet. This namespace object says

what actual host to use, along with other information. It would be possible to move

the beet file system from one host to another, using tapes or disk packs, without

modifying our example program.

Database Pathnames�

Pathnames are used to name databases within a Statice File System. The path-

names are hierarchical, with component names separated by ">" characters, as they

are in LMFS. Unlike in LMFS, there are no file types or file versions, just file

names. In the bank example, the directory is >finance> and the name is bank.

Many familiar Genera commands can be used with database pathnames, such as

Show Directory, Create Directory, Rename File, and Delete File. Genera’s Dired

and File System Editor tools can also be used with database pathnames. Relative

9
February 2018 Tutorial Introduction to Statice

pathnames and wildcard pathnames work the same way as for LMFS pathnames.

However, it’s not possible to open database pathnames, because they refer to Stat-

ice databases rather than files. So Copy File, Edit File, and Show File don’t work

on database pathnames.

For more information: See the section "Statice Database Pathnames", page 144.

Making the Database

Next, the bank example defines make-bank-database, which calls the Statice func-

tion statice:make-database to actually create a new database.

(defun make-bank-database ()

 (make-database *bank-pathname* ’bank))

statice:make-database takes as arguments the pathname and the name of the

schema for the new database. It makes a new database and copies the schema into

the database. The newly created database contains the schema, but no entities.

That is, the database is set up so that it can hold entities of type account, but

there aren’t any accounts yet.

2.1.4. Accessing a Statice Database

Using statice:with-database

In the bank example, the form statice:with-database surrounds every reference to

the database. statice:with-database does the following:

1. Determines which database should be opened, based on the pathname.

2. Opens the database, if it’s not already open.

3. Binds the specified variable to the database instance, during the execution of

the body.

4. Makes this database be the current database, during the execution of the

body.

Opening a Database�

The first time a database is used by a Lisp environment, Statice opens it. Once it

has been opened, it stays open, and need not be opened again until Lisp is cold-

booted. Opening happens automatically; the only thing you’ll notice is a pause the

first time statice:with-database is used. statice:make-database also opens the

database it makes, so if you were to run the bank example, even the first usage of

statice:with-database would not have to open the database. (There is no need to

close a database.)

10
Tutorial Introduction to Statice February 2018

Binding the Variable

In the bank example, the Lisp variable db is bound to a Lisp object called a

database instance that represents the database. Database instances are used as ar-

guments to various Statice functions. They are needed only by programs that refer

to two different databases at the same time. The bank example, like many real

Statice applications, only uses one database, and so it never uses the db variable

at all.

The Current Database�

Whenever any Statice functions are used, there must be a current database. The

current database is used as the default database by many Statice functions. This is

why we don’t need to use the db variable. statice:with-database binds the current

database throughout the dynamic scope of its body. Dynamic scope means that if

the body calls another function, the same database is still current while that func-

tion runs, so the called function doesn’t need to use statice:with-database.

2.1.5. Introduction to Statice Transactions

Operations on Statice databases are grouped together into transactions. Before any

operation can be performed on a database, a transaction must be begun. A transac-

tion terminates either successfully or unsuccessfully. When a transaction termi-

nates successfully, we say it commits. When a transaction terminates unsuccessful-

ly, we say it aborts. (Opening a database is not considered an operation on the

database, so it need not be done within a transaction.)

Using statice:with-transaction

In the bank example, the form statice:with-transaction surrounds every reference

to the database. A transaction begins when the statice:with-transaction special

form is entered. If the statice:with-transaction form returns to its caller, the

transaction commits. If the statice:with-transaction form exits abnormally, due to

a throw or a return through the statice:with-transaction form, the transaction

aborts. Anything else that unwinds the stack, such as the killing of the process, al-

so causes the transaction to abort.

statice:with-transaction has dynamic scope. The empty list in the statice:with-

transaction form is for keyword options and values, which are rarely used.

Transactions are Atomic�

The group of operations performed within a transaction are performed atomically.

If the transaction commits, all of its effects take place; if the transaction aborts,

none of them take place. For example, if a transaction begins, and executes some

operations that modify values in the database, and then the transaction aborts, the

modifications are undone and the database is left in its original state.

In the bank example, the benefits of atomic transactions can be seen in the

transfer-between-accounts function. Because the two accounts are modified within

11
February 2018 Tutorial Introduction to Statice

a single transaction, we can be sure that either the amount will be moved from

one account to the other, or else nothing will happen. The total amount in all ac-

counts is guaranteed to be stay the same; the database as a whole remains consis-

tent.

In general, the atomic property of transactions prevents databases from being left

in inconsistent, intermediate states. A transaction that modifies a database takes

the database from one consistent state to another consistent state. Of course, the

meaning of "consistent" depends on the application. In the bank example, consis-

tency means that no amount enters or leaves the database due to a transfer be-

tween accounts.

Transactions are Isolated�

Statice allows concurrent access to databases: more than one process can access a

database at the same time. The processes might be on the same host or on differ-

ent hosts. Transactions are used to keep these processes out of each other’s way.

The operations done in a transaction are isolated from all other transactions. This

means that no transaction in progress is ever aware of the effects of another

transaction in progress. In fact, transactions let Statice applications disregard con-

currency altogether, so you can write programs as if the database were reserved

for yourself.

In the bank example, suppose there were two processes. The first process is run-

ning the transfer-between-accounts function, in a transaction we’ll call T1. The

second process is running the bank-total function, in a transaction we’ll call T2.

Now, suppose the operations of these two transactions happened to occur in the

following order:

1. T1 subtracts the amount from the from-account.

2. T2 iterates over all accounts, adding up the balances.

3. T1 adds the amount to the to-account.

4. Both transactions commit.�

If this were allowed to happen, bank-total would return the wrong answer: it

would be short by the amount being transferred. Transactions make sure that this

cannot happen. The two transactions are isolated from each other, so T2 never ob-

serves the results of a transaction in progress. In this case, as soon as transaction

T1 tried to modify the from-account, it would wait until transaction T2 terminates,

and then proceed.

Transactions and System Failure�

A system failure is any event that causes the entire system to stop, requiring a

warm boot or cold boot. When a system failure occurs, Statice databases are not

damaged. Any transactions that were in progress at the time of the failure are

aborted, which means their effects are discarded. The database is left in a consis-

12
Tutorial Introduction to Statice February 2018

tent state. In other words, the transactions are atomic even if there is a system

crash in the middle of a transaction.

When a database is being used over a network, there is a server host that actually

stores the database, and one or many client hosts that run Statice programs affect-

ing the database. (See the section "Using Statice Locally or Remotely", page 141.)

A system failure on a user host aborts all transactions being done by that host. A

system failure on a server host aborts all transactions being done by any user host

that involve databases on this server. In any case, all unfinished transactions are

aborted, and the database is left consistent.

When a transaction commits, the results of the transaction are written into the

database, and will be visible to any future transactions. As soon as a statice:with-

transaction form returns, Statice guarantees that the changes made by that trans-

action are persistently stored, and will be remembered even if there is a system

failure.

Nested Transactions�

If you nest a statice:with-transaction dynamically within another statice:with-

transaction form, and the outer one is aborted, then both the outer transaction

and the inner one are aborted. Nothing is committed until the end of the outer-

most statice:with-transaction is reached.

Errors and Transactions�

If an error is signalled during a transaction, the normal Genera signalling mecha-

nism begins: the lists of handlers are searched to find a handler for this error.

The mere signalling of an error does not cause the transaction to abort. The trans-

action is aborted only if the error handler causes a throw to outside the scope of

the statice:with-transaction.

If the error is not handled by any bound handler, default handler, or global han-

dler, it causes the debugger to be invoked. If you then press �����, the debugger

throws to the nearest restart handler, which is normally outside the scope of the

statice:with-transaction. So, if an error reaches the debugger and you press

�����, that normally aborts the transaction. In the bank example, if the "Insuffi-
cient funds" error is signalled, the debugger is entered, and the user will presum-

ably abort the transaction.

But if the error is handled, the handler need not abort the transaction. For exam-

ple, if there were a condition-case within the scope of a statice:with-transaction,

and it handled a condition, the transaction would not be aborted.

2.1.6. Making New Statice Entities

Example of Making New Entities

The next function in the bank example is make-new-account.

13
February 2018 Tutorial Introduction to Statice

(defun make-new-account (new-name new-balance)

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (make-account :name new-name :balance new-balance))))

make-new-account takes arguments called new-name and new-balance, which

should be a string and an integer, respectively. After opening the database and

starting a transaction, make-new-account calls the function make-account.

Entity Constructor Functions�

make-account is an entity constructor function. It makes a new entity of type

account in the database. It also initializes the values of the name and balance at-

tributes of the new entity to the values of the variables new-name and new-

balance.

Entity constructor functions are defined automatically for each entity type. Their

names are formed by prefixing the entity type name with make-. You can use the

:constructor option to statice:define-entity-type to specify a different name for

the constructor.

Constructors take keywords arguments, one for every attribute of the entity type.

If a keyword is given with a value to the constructor, that value is stored as the

value of the corresponding attribute. The names of the keywords are the same as

the names of the attributes, but in the keyword package.

Entity Handles�

The value returned by an entity constructor function is a Lisp object called an en-

tity handle. An entity handle is an object in the Lisp world that represents an enti-

ty in a Statice database. Lisp programs pass around and manipulate entity handles

in order to refer to entities.

An entity handle is an instance of a flavor. For every entity type, Statice defines a

flavor named the same as the entity type. In our example, there is a flavor named

account, and the entity handle returned by make-account is an instance of the

account flavor. Remember that flavors are considered type names by the Lisp type

system, and so the entity handle is of the Lisp type account, just as the corre-

sponding entity is of the Statice entity type account.

Entity handles preserve the identity of entities. That is, there is never more than

one entity handle in a Lisp world for a given entity. If you have two entity handles

and want to know whether they refer to the same entity, you can use eq to check.

The entity type of an entity is fixed when the entity is created, and can never be

changed. An entity stays the same type for its entire lifetime. An entity will not

disappear from the database unless you explicitly delete it with statice:delete-

entity.

14
Tutorial Introduction to Statice February 2018

2.1.7. Accessing Information in a Statice Database

Example of Accessing Information

The next function in the bank example is deposit-to-account. It adds a specified

amount to the balance of the account with a specified name.

(defun deposit-to-account (name amount)

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (incf (account-balance (account-named name)) amount))))

Accessor Functions: Readers and Writers

To get the value of an attribute of an entity, you use a reader function, or reader.

To set the value of an attribute of an entity, you use setf with the reader. The

function that is called when you use setf with a reader is called a writer function,

or writer. Both readers and writers are called accessor functions, because they en-

able you to access the value of an attribute for either reading or writing.

Reader functions are defined automatically for every attribute of every entity type.

The name of a reader is formed by concatenating the entity type name, a hyphen,

and the attribute name. In the bank example, two readers are defined, account-

name and account-balance.

Writers are also defined automatically. To call a writer, use the setf syntax with a

reader, such as:

(setf (account-balance account) new-value)

statice:define-entity-type offers four options that enable you to specify the name

of readers and writers: :reader, :writer, :accessor, and :conc-name. See the spe-

cial form statice:define-entity-type, page 187.

Accessors are implemented as generic functions, which means you can write meth-

ods for them to specialize their behavior. For example, the reader account-balance

is a generic function. Statice defines one method for it, on the account flavor. The

argument to account-balance is an entity handle of type account. This reader re-

turns the value of the balance attribute of the entity referred to by its entity han-

dle argument. That is, account-balance takes an account and returns its balance,

where the account is indicated by the entity handle for the account entity. The

writer associated with account-balance is also a generic function with one

method. Writers are implemented as setf generic functions. For information on

defining methods for setf generic functions (also called setter functions): See the

section "Setter and Locator Function Specs" in Symbolics Common Lisp Program-

ming Constructs.

Inverse Reader Functions�

The function account-named is an inverse reader function. Inverse readers are de-

fined when you use the :inverse attribute option in the schema. You specify the

name of the inverse reader; this is the value of the :inverse option.

15
February 2018 Tutorial Introduction to Statice

account-named takes a string argument, and returns the entity handle for the

account entity whose name value is the same as the argument. The operation per-

formed by account-named is the inverse of the operations performed by account-

name: the former goes from a string to the corresponding entity handle, while the

latter does the opposite.

Kind of Function Argument Value

Inverse Reader attribute’s value entity handle

Reader entity handle attribute’s value

We discuss inverse writer functions later: See the section "Inverse Writer Func-

tions for Entity-typed Attributes", page 26.

How deposit-to-account Works

Now we look at how the function deposit-to-account works. It first opens the

database and starts a transaction. It calls account-named to find the account;

account-named returns an entity handle that refers to the desired account entity.

It calls account-balance to read out the current balance, adds in the specified

amount, and then writes the sum back into account-balance. Finally, the body of

statice:with-transaction returns, and the transaction commits. The results are

now stored in the database.

Why Transaction Isolation is Important�

deposit-to-account shows why it’s important that transactions are isolated from

each other. Suppose there is an account named "George" with a balance of 100.

Suppose that there were two concurrent transactions, each trying to deposit 10 into

George’s account. If everything works properly, there should be 120 in George’s ac-

count when the two transactions complete. But suppose they took place this way:

1. The first transaction reads the account-balance, and gets 100.

2. The second transaction reads the account-balance, and gets 100.

3. The first transaction adds 10 to the 100 that it read, and writes 110 into

account-balance.

4. The second transaction adds 10 to its own 100, and writes 110 into account-

balance.

5. Both transactions commit.

If this could happen, George’s balance would only be 110 even though both transac-

tions seemed to do their job. But in Statice this cannot happen because transac-

tions are isolated from each other. Statice guarantees that if these two transac-

tions are run concurrently, the overall effect will the the same as if they had run

separately, one after the other. That’s why deposit-to-account must do both its

16
Tutorial Introduction to Statice February 2018

reading and its writing within a single transaction.

How transfer-between-accounts Works

The transfer-between-accounts function does the same kinds of things as deposit-

to-account. Again, it’s important that all the operations be performed within a

single transaction, to assure that concurrent transactions don’t interfere with each

other.

Another important reason to use a single transaction is that transfer-between-

accounts does two semantically related operations that write into the database. We

must be sure that either both operations take place, or neither. The transaction as-

sures us that the two operations will be done atomically, even if the system crash-

es, the process is killed, the user types ���������, or the error is signalled and

leads to a throw.

2.1.8. Iterating Over an Entity Type

Example of Iteration

The final function in the bank example is bank-total, a function that returns the

sum of the balances of all the accounts in the database.

(defun bank-total ()

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (let ((result 0))

(for-each ((a account))

 (incf result (account-balance a)))

result))))

The statice:for-each Special Form

In order to add up the balances of all accounts in the database, we need a way to

find all accounts in the database. The statice:for-each special form lets us do this.

In the bank-total function, statice:for-each establishes a variable called a, and

binds a successively to entity handles for each account entity in the database. It

runs the body once for each entity, and the body accumulates the sum of the bal-

ances.

The extra level of list structure in the syntax of statice:for-each, is needed be-

cause statice:for-each has many other capabilities. It can iterate over a selected

subset of entities; it can iterate in sorted orders; and it can iterate over tuples of

entities from different entity types. Here we see statice:for-each in its most basic

form, in which it iterates over all entities of a given entity type.

Databases Keep Track of All Entities

There is an important difference between Lisp objects and Statice entities. Lisp ob-

jects are kept track of only if you save references to them. It is possible for a Lisp

object to be unreferenced and unreachable. Such an object is called "garbage" and

can be deallocated automatically.

17
February 2018 Tutorial Introduction to Statice

In contrast, Statice keeps track of all entities in a database. It can always access

any entity, by using statice:for-each on the entity type of the entity. As a result,

no entities ever become garbage.

Notice that make-new-account (defined in the section "Making New Statice Enti-

ties") makes a new entity, but never "puts" it anywhere. In Lisp, if you make a

new Lisp object and then just ignore it, it immediately becomes garbage. But in

Statice, it’s installed into a database and can always be found again.

2.2. Using Statice for the First Time

When you are ready to begin using Statice, you need to do some preparation work

before writing programs:

1. Find or create a Statice File System in which to store your database.

First find out whether someone at your site has already created a Statice File

System. If so, proceed to the next step. If not, you need to create one before

proceeding further. See the section "Creating a New Statice File System",
page 18.

If you do not know whether or not there is already a Statice File System at

your site, you can get that information by using the command Show All Stat-

ice File Systems. See the section "Show All Statice File Systems Command",
page 170.

2. Create a directory in a Statice File System for your use.

In general, several users will share one Statice File System. Users create

their own directories within that Statice File System in which to keep their

databases. Creating a directory in a Statice File System is just like creating a

directory in any hierarchical file system. For example, if the Statice File Sys-

tem is named "beet" and you want to create a directory under the root named

"finance", you could use this command:

Create Directory beet:>finance>�

3. Give the command: Add ASYNCH DBFS PAGE Service

This command adds two service entries to your host object in the namespace

database. Once you’ve run this command on a particular host, you never need

to run it again. (If you do run it again, it won’t hurt.) Each client machine

that uses Statice should have these service entries.

4. Decide what package to write your Statice program in.

Now you’re ready to write programs using Statice. For any Statice application

program, you should make your own package that uses the statice package.

See the section "Writing Statice Programs in the Right Package", page 20.

18
Tutorial Introduction to Statice February 2018

2.2.1. Creating a New Statice File System

If you are the first person to use Statice at your site, you need to create a Statice

File System. A Statice File System is a file system that contains Statice databases.

1. Decide which host the Statice File System will reside on.

A Statice File System must reside on a Symbolics host, and cannot reside on

any other kind of host. If you only have one Symbolics host, of course, your

decision is simple. Otherwise, it depends on how your site is managed.

At sites with many Symbolics hosts, usually one or more machines act as ded-

icated server hosts. Usually, these hosts spend all their time providing ser-

vices to users on other hosts, and they often have shared facilities such as

tape drives, and lot of disk space. This is the ideal place to put a Statice File

System.

In some cases, you might want to put the Statice File System on your own

host. If your site has no dedicated server, or if the server is running a Gen-

era release previous to 7.2, you cannot put the Statice File System on the

server. If you are trying out Statice for the first time, you might not want to

use the server until you feel more confident.

We recommend that any Statice File System that is going to hold real data

(as opposed to a Statice File System used only for experimentation) should be

on a host with its own tape drive. It’s important to do regular backups to

tape, to guard against the possibility of disk failure. You can do backups to a

tape drive on another host by using remote tape access, but using a tape

drive on the same host as the Statice File System is faster and more reliable.

2. Make disk space available on the machine that will store the Statice File Sys-

tem.

A Statice File System lives in the FEP file system, just like everything else

that occupies disk space on a Symbolics host. For general information about

the FEP file system: See the section "FEP File Systems" in Site Operations.

A Statice File System occupies some disk space, so you’ll need some free

space in the FEP file system of one or more disks on the host. You can use

the Show FEP Directory command to find out how much space is available on

each disk, and find candidates to be deleted and expunged if you need to

make more room.

3. Choose a name for the Statice File System.

This name will be the name of the file system object in the namespace

database. Just be sure to pick a name that has not already been used. You

19
February 2018 Tutorial Introduction to Statice

can use the Show All Statice File Systems command to see all the names that

are already in use. More important, pick a name that is not a host name at

your site, so that the pathname parser can distinguish the pathnames for your

file system from the pathnames for hosts at your site.

4. Create the Statice File System.

On the machine you have designated to store the Statice File System, use the

Create Statice File System command. This command requires the name of the

Statice File System as its first argument.

Create Statice File System name

An AVV menu is then displayed, showing you the amount of free space on

each of the disks. The variables appear something like this:

Directory partition: FEP1:>Statice>name.UFD

Maximum directory entries: 1000

Maximum log size in blocks: 500

Partition: FEP1:>Statice>name-part0.file.newest

Blocks (None to remove): None integer

The UFD extension to the filename is used for the directory partition of a

Statice file system. Usually, the defaults for the first four variables in this

menu are fine, and you need only enter a value for the fifth. The Blocks vari-

able indicates the size (how many blocks) the partition should be. A Statice

File System can span several different partitions, or it can use only one. This

enables you to have a Statice File System that uses space on several disks.

If you want the partition to be 5000 blocks long, click on integer and enter

5000. The AVV menu will change to offer you a second partition. If you want

a second partition, you can enter a size in blocks, and a third partition will

be offered, and so on. Otherwise, just leave it alone; if the size is given as

None, no partition is created.

The log is a special file used by Statice to implement recovery from failures.

Its default initial size is 500 blocks. If you want to make a very small Statice

file system, you can change this number to be smaller. The log will grow au-

tomatically when necessary.

When you are satisfied with the values of the variables, press ���. A name-

space object is created, of type file-system and of name name. The Statice

File System is created on the machine, including the FEP files that hold the

directory partition and all of the file partitions you specified. It also allocates

the log file, with the specified size.

5. Configure the server machine by giving the Add DBFS PAGE Service com-

mand.

20
Tutorial Introduction to Statice February 2018

If you want this machine to be usable as a server, give the Add DBFS PAGE

Service command. This command adds two service entries to the host object

in the namespace database, allowing other hosts to use this host as a server.

Once you have given this command on a particular host, you never need to

run it again. (If you do run it again, it won’t hurt.) If you do not want this

machine to be usable as a server, omit this step.�

You’ve now created a Statice File System. Before you start using Statice: See the

section "Writing Statice Programs in the Right Package", page 20.

For detailed information about Statice administration: See the section "The Archi-

tecture of Statice", page 141.

2.2.2. Writing Statice Programs in the Right Package

When developing a program that uses Statice, you should not put your own file di-

rectly in the statice package; doing so would create name conflicts with internal

Statice functions.

For any Statice application program, you should make your own package that uses

the statice package. You can do this via the Package: entry in the file attribute

list. You can also declare the package using defpackage or make-package. By cre-

ating your own package, you avoid conflicts with other programs that might be

loaded with yours.

If you are just experimenting with Statice and don’t want to make a new package,

you can write your program in the statice-user package, or s-u for short. statice-

user has no symbols of its own, but inherits symbols from statice and scl.

2.3. A More Complicated Schema: the University Example

2.3.1. Defining a Schema for a University

This part of the Statice tutorial uses a university example to introduce concepts

related to the schema of a database. You can find the complete source listing for

the university example in SYS:STATICE;EXAMPLES;UNIVERSITY-EXAMPLE.LISP.

We present the whole schema here. Just skim over it for now. We’ll focus on the

new features in subsequent sections.

;;; -*- Mode: LISP; Syntax: Common-lisp;

;;; Package: (UNIVERSITY :USE (STATICE SCL));

;;; Base: 10; Lowercase: Yes -*-

(define-schema university (person student graduate-student shirt

 course instructor department))

21
February 2018 Tutorial Introduction to Statice

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

(define-entity-type graduate-student (student)

 ((thesis-advisor instructor))

 (:conc-name student-))

(define-entity-type shirt ()

 ((size integer)

 (color string :initform "white")

 (washed boolean)))

(define-entity-type course ()

 ((title string :inverse courses-entitled)

 (dept department)

 (instructor instructor))

 (:multiple-index (title dept) :unique t))

(define-entity-type instructor (person)

 ((rank rank :initform "Assistant")

 (dept department :no-nulls t)

 (visiting boolean)

 (salary single-float)))

(define-entity-type department ()

 ((name string :unique t

 :inverse department-named :inverse-index t)

 (head instructor)))

(define-presentation-type rank ()

 :expander ’(dw:member-sequence ("Assistant" "Associate" "Full")))

2.3.2. Entity-Typed Attributes

An Entity-typed Attribute: dept

Look at the description of the dept attribute of the student entity type.

22
Tutorial Introduction to Statice February 2018

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

The type of the dept attribute is department, which is a Statice entity type. This

means that the value of the dept attribute for any student entity is a department

entity.

In English, this means that every student has an associated department, presum-

ably the department in which the student is majoring. Students and departments

are both represented by entities in Statice, and the dept attribute serves to link

one entity to another. Statice attributes can serve as relationships between entities

as well as properties of entities.

Entity Types Versus Ordinary Types�

Every Statice attribute has a type, which is either an ordinary type or an entity

type. An entity type is defined by statice:define-entity-type, and the values of the

attribute are always entities of that type. An ordinary type is something like inte-

ger or string. Statice pre-defines many useful ordinary types. It is also possible to

define your own ordinary type, with statice-type:define-value-type; this advanced

feature is described later: See the section "Defining New Statice Types", page 84.

The type of an attribute is always specified by a presentation type. This is also

true of entity-typed attributes: every entity type is a presentation type. This is be-

cause defining an entity type defines a flavor of the same name, and flavor names

are automatically type names.

2.3.3. Set-Valued Attributes

Example of a Set-valued Attribute

Look at the description of the courses attribute of the student entity type:

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

Like dept, courses is an entity-typed attribute. But the presence of the special

symbol set-of means that it is also a set-valued attribute: the attribute holds a set

of values rather than a single value. In this case, every student is taking a set of

courses, and each course is represented by a Statice entity of type course.

Every Statice attribute is either single-valued or set-valued. In the bank example

(defined in the section "Quick Overview of Statice: the Bank Example"), both at-

tributes were single-valued. The university schema, like most real schemas, has

several set-valued attributes.

We usually give set-valued attributes plural names, to make it clear that they hold

many things.

23
February 2018 Tutorial Introduction to Statice

Accessor and Entity Constructor Functions�

When you use the student-courses reader function, it returns a list of entity han-

dles, one for each course that the student is taking. You can also set the courses

of a student by using setf with student-courses, and giving it a new list of enti-

ties.

When you use the make-student entity constructor function, the value you provide

with the :courses keyword must be a list of entity handles (possibly empty, of

course). If you don’t provide any initialization, the initial value of a set-valued at-

tribute is the empty set.

Using statice:add-to-set and statice:delete-from-set

Two special forms are provided for adding an element to a set, or deleting an ele-

ment from a set. If the value of joe-cool is a student (an entity handle of type

student, that is), and the value of english-101 is a course, the following form adds

this course to Joe’s set of courses:

(add-to-set (student-courses joe-cool) english-101))

The following form deletes this course from Joe’s set of courses:

(delete-from-set (student-courses joe-cool) english-101))

In these forms, english-101 is a Lisp form that is evaluated to return a course,

and joe-cool is a Lisp form that is evaluated to produce a student, but (student-

courses joe-cool) is not evaluated; it simply identifies the set.

2.3.4. Iterating Over Sets with statice:for-each

Iterating Over All Entities of an Entity Type�

The function mean-salary-of-instructors returns the mean of the salary of all the

instructors.

(defun mean-salary-of-instructors ()

 (with-database (db *university-pathname*)

 (with-transaction ()

 (let ((total-salary 0.0)

 (number-of-instructors 0))

 (for-each ((i instructor))

 (incf total-salary (instructor-salary i))

 (incf number-of-instructors))

(/ total-salary number-of-instructors)))))

The special form statice:for-each is an iteration construct, like dotimes. In mean-

salary-of-instructors, statice:for-each evaluates its body once for each instructor

entity in the database. Each time around the loop, the variable i is bound to the

entity handle of the next instructor entity. Inside the body, the reader function

instructor-salary obtains the salary of the instructor under consideration, and this

amount is added into the variable total-salary.

The general form for iterating over all entities of a type is:

24
Tutorial Introduction to Statice February 2018

(for-each ((variable entity-type-name))

 body...)

variable is a symbol, which names a new variable, just as in dotimes. entity-type-

name is a symbol, which must be the name of an entity type in the current

database.

Iterating Over Members of a Set-valued Attribute�

The function all-shirts-washed finds all the shirts of a particular student, and

marks them as being washed. The argument must be an entity handle of type

student.

(defun all-shirts-washed (clean-student)

 (with-database (db *university-pathname*)

 (with-transaction ()

 (for-each ((s (student-shirts clean-student)))

 (setf (shirt-washed s) t)))))

(student-shirts clean-student) has the syntax of a call to a reader function. It

refers to the set of all shirts owned by this particular student. statice:for-each

evaluates its body once for each member of this set, binding s to the entity handle

for each shirt entity in the set.

The general form for iterating over all members of a set is:

(for-each ((variable (reader-function-name form)))

 body...)

variable is a symbol, the same as above. reader-function-name is the name of the

reader function of an attribute. The attribute must be set-valued and entity-typed.

The attribute’s entity type must be in the current database. form can be any Lisp

form. It is evaluated, once, before the iteration begins. The value of form must be

an entity of the attribute’s entity type. statice:for-each iterates over the members

of the attribute (specified by reader-function-name) of the entity (specified by the

value of form).

2.3.5. One-to-One, Many-to-One, and Other Relationships

Every Statice reader function, including the inverse ones, can be characterized as

one-to-one, many-to-one, one-to-many, or many-to-many. This is best explained by

example.

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

25
February 2018 Tutorial Introduction to Statice

• person-name is a one-to-one function. Every person has one name, and every

name refers to just one person. There is one person to one name.

• student-dept is a many-to-one function. Every department has many students in

it, but every student has one particular department. There are many students to

one department.

• student-shirts is a one-to-many function. Every shirt is owned by just one stu-

dent, but every student has many shirts. There is one student for many shirts.

• student-courses is a many-to-many function. Each student takes many courses,

and each course is taken by many students. There are many students to many

courses.

The inverse functions work just the same way.

• person-named is a one-to-one function. Every name refers to just one person,

and and every person has one name. There is one name to one person.

• shirt-owner is a many-to-one function. Every student is the owner of many

shirts, but every shirt is owned by just one student. There are many shirts to

one owner.

• students-in-dept is a one-to-many function. Every student has only one particu-

lar department, but every department has many students in it. There is one de-

partment to many students.

• course-students is a many-to-many function. Each course is taken by many stu-

dents, and each student takes many courses. There are many courses to many

students.

The General Rule

What determines each function’s characterization into one of these four kinds? For

regular reader functions, if the function is set-valued, it’s a something-to-many

function, and if the function is unique, it’s a one-to-something function. The in-

verse reader function (if any) always has the inverse characterization; for example,

if an attribute’s reader function is one-to-many, the inverse reader function is

many-to-one.

Here are all the possibilities:

Unique Set-valued Reader Inverse reader

 Yes No One-to-one One-to-one

 No No Many-to-one One-to-many

 Yes Yes One-to-many Many-to-one

 No Yes Many-to-Many Many-to-Many

26
Tutorial Introduction to Statice February 2018

Designing the Schema

When you’re designing a schema, be careful to think about each attribute, and de-

cide which kind of reader function you want it to have.

The designer of the university schema had to make several important choices. For

example, person-name is one-to-one. This is convenient, because we can speak of

"the person named Fred Smith". However, if a second Fred Smith shows up at the

university, it’s going to be a problem.

The title attribute of course is not unique, though. course-title is a many-to-one

function. That’s because two different departments sometimes pick the same

course name. To specify a particular course at the university, you need both its ti-

tle and its department.

The schema could be made more flexible. Instructors might not have only one de-

partment; some might divide their time among several departments. A department

could have two people who share being the head of the department. However, it’s

only worth modelling such circumstances if you intend to write all your programs

to handle all these possibilities. The extra flexibility costs in complexity and per-

formance. Designing a schema takes care and judgement.

2.3.6. Inverse Writer Functions for Entity-typed Attributes

Inverse Writer Functions�

If you use the :inverse option to statice:define-entity-type to define an inverse

reader function, and the attribute is an entity-typed attribute, Statice defines an

inverse writer function as well as an inverse reader. To call the inverse writer, use

setf with the inverse reader.

An entity-typed attribute defines a relationship between two entities:

entity-1 The entity that defines the attribute

entity-2 The entity that is the value of the attribute

The inverse reader enables you to go from entity-2 to get entity-1. The inverse

writer takes entity-2 as an argument, and gives a new value, so that the next time

you use the inverse reader on entity-2, the result is the new value. The new value

itself is an entity, which might be entity-3. Thus, the effect of using the inverse

reader is to change entity-3 such that its attribute is given the value entity-2.

Inverse Writers and Set-valued Attributes�

The above discussion is simplified because we assume that the entity-typed at-

tribute is unique, so it defines a one-to-one relationship between two entities. In

fact, you can use an inverse writer even for a non-unique attribute (as long as it

is entity-typed and you specified the :inverse option). The inverse reader for a

non-unique attribute is set-valued, so the inverse writer changes a set of entities.

Consider the dept attribute of the student entity type:

27
February 2018 Tutorial Introduction to Statice

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

The dept attribute is entity-valued, and the :inverse option is used to define the

inverse reader students-in-dept. Thus, you can use setf with students-in-dept.

Since dept is not unique, the inverse reader students-in-dept is set-valued. Thus,

the new value must be a list of students. The effect is to change all affected stu-

dent entities:

• For all students listed in the new value given to the inverse writer: the stu-

dents’ dept attribute is made to be the specified department.

• For any students not list in the new value given to the inverse writer, but

whose dept was previously the specified department: these students’ dept at-

tribute is made to be the null value. (If :no-nulls were specified for the dept

attribute, an error would be signaled.)

No Inverse Writers for Some Attributes

An inverse writer is defined only for entity-typed attributes (when the :inverse op-

tion is used). There is no inverse writer for attributes whose types are ordinary

types, such as strings, integers, and so on.

Consider the name attribute of the person entity type:

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

Remember that an inverse reader goes from the value of an attribute to the entity.

Thus, you can use person-named to get the person entity whose name is a given

string. An inverse writer changes the value of the attribute; if there were a in-

verse writer in this case, it would change the person named "Joe" to being another

person, who already has a name of his own. The semantics of such an operation

are unclear. If the goal is to change one person’s name to being a different string,

the straightforward approach is to use a normal writer function on that person en-

tity (rather than using an inverse writer on a string). Due to semantic ambigui-

ties, Statice does not provide inverse writers for attibutes whose types are ordinary

types.

2.3.7. Inheritance From Entity Types

An entity type can inherit from other entity types, just as flavors can inherit from

other flavors. Look at the entity types person, student, and graduate-student in

the university schema.

28
Tutorial Introduction to Statice February 2018

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

(define-entity-type graduate-student (student)

 ((thesis-advisor instructor))

 (:conc-name student-))

student inherits from person, and graduate-student inherits from student. This

is because a student is a kind of person, and a graduate student is a kind of stu-

dent.

Inheritance of Attributes

Since a student is a kind of person, and each person has a name, it follows that a

student has a name. We say that entity type student inherits the name attribute

from entity type person. In general, entity types inherit all of their ancestors’ at-

tributes.

The reader functions defined by the ancestor entity types can be used on entities

of the descendant entity types. For example, the reader function person-name can

be applied to entities of type student, or of type graduate-student. Note that

there is no reader function named student-nameeach attribute has only one

reader function.

The uniqueness of the name attribute applies to every entity that has the at-

tribute, no matter what its entity type. That is, you can’t have a person entity

with name "Fred" and also have a student entity with name "Fred". Every value

of the name attribute, in every entity in which the name attribute exists, must

have a distinct value. The inverse reader function person-named can return per-

son entities, student entities, or graduate-student entities.

Inheritance of Types

Type membership is affected by inheritance the same way as in Flavors. Every en-

tity of type graduate-student is also considered to be of type student, and every

entity of type student is also considered to be of type person.

For example, the argument of the person-name is required to be of type person.

It’s OK to call person-name on a student entity, because such an entity is a per-

son too.

Another example: if there were an attribute whose type were student, it would be

all right for the value of the attribute in some entity to be a graduate-student

entity, since every graduate student is a student. But it would not be all right for

the value to be a person, since not every person is a student.

29
February 2018 Tutorial Introduction to Statice

Duplicate Attribute Names are Not Allowed�

Statice does not allow an entity to specify an attribute name which is the same as

an attribute name of one of its parent entity types.

This restriction is one difference between Statice and Flavors (and CLOS). A fla-

vor can specify the name of an instance variable even if it is the name of an in-

herited instance variable, with the goal of modifying it by giving it a new option,

or an option to override an inherited one.

2.3.8. The Statice Null Value

Statice has a special value called the null value. The value of any single-valued at-

tribute can be the the null value (unless :no-nulls is used), regardless of the type

of the attribute. The null value is used to represent "value unknown" or "not ap-

plicable".

For example, the value of the id-number attribute for a particular person might

be the null value. This would represent that the person does not have any as-

signed ID number. For brevity, we often say that the value of the attribute "is
null".

The null value is not the same as an empty string, or zero. If the value of a per-

son’s id-number attribute is zero, the person does have an ID number, which just

happens to be zero. The null value means that the person does not have any ID

number at all.

The null value never appears in set-valued attributes, only in single-valued at-

tributes.

Reader Functions and the Null Value�

What happens if you call a reader function, and the value of the attribute is the

null value? Reader functions actually return two values. For the reader of a single-

valued attribute: If the value of the attribute is not null, the first value of the

reader is the Lisp representation of the value, and the second value is t. If the

value of the attribute is null, both returned values are nil. (For the reader of a

set-valued attribute: the second value is always t.)

In general, if you want to know whether the value of an attribute is null, you have

to receive and test the second value. For many types, though, nil isn’t the Lisp

representation of any non-null value, and so you can simply see whether the first

returned value is nil. This works for attributes of type integer and string; it also

works for entity-type attributes. It does not work for boolean, because nil is a pos-

sible value of a boolean attribute.

For example, if George has ID number 123 and Fred has no ID number:

(person-id-number george) => 123 t

(person-id-number fred) => nil nil

If Prof. Smith is not a visiting instructor, but we don’t know whether Prof. Jones

is a visiting instructor:

30
Tutorial Introduction to Statice February 2018

(instructor-visiting prof-smith) => nil t

(instructor-visiting prof-jones) => nil nil

How do you set the value of an attribute to the null value? If the type of the at-

tribute doesn’t use nil as the Lisp representation of any non-null value, you can

just use setf with nil. But for types such as boolean, setting to nil means setting

to "false", so this doesn’t work. The general way to set an attribute to the null

value is the statice:set-attribute-value-to-null function.

For example, to remove George’s ID number, and give Fred ID number 456:

(setf (person-id-number george) nil)

(setf (person-id-number fred) 456)

Since ID numbers are always integers, nil always means the null value. The sec-

ond value returned by the reader is not needed, and we can make the value be

null by simply storing nil.

To assert that we no longer know whether Prof. Smith is a visiting instructor, but

we know that Prof. Jones is not:

(set-attribute-value-to-null prof-smith ’instructor-visiting)

(setf (instructor-visiting prof-jones) nil)

Since the visiting attribute is boolean, nil means false rather than the null value.

So we must use the second value returned by the reader function to determine

whether the value is null, and we must use statice:set-attribute-value-to-null to

make the value be null.

Entity Constructors and the Null Value�

When you make a new entity using an entity constructor function, there are two

ways to make the initial value of a single-valued attribute be null.

First, if you simply omit the keyword for the attribute (and if :initform isn’t

used), the attribute starts out null. For example, the following form makes a per-

son named "Beth", with a null ID number:

(make-person :name "Beth")

Second, if the type of the attribute doesn’t use nil as the Lisp representation of

any non-null value, you can supply nil as the initial value to mean the null value.

For example, the following form makes a person named "Beth", with a null ID

number, just like the last example:

(make-person :name "Beth" :id-number nil)

If the type of the attribute does use nil to represent some non-null value, you can

only use the first way, not the second. That is, you have to omit the keyword for

the attribute in order to initialize it to the null value.

If an attribute is set-valued, and you omit its keyword or provide nil as its value,

the initial value is the empty set.

31
February 2018 Tutorial Introduction to Statice

Null Values and the :unique Attribute Option

As we discussed earlier (in sections "Defining a Statice Schema" and "One-to-One,

Many-to-One, and Other Relationships"), if an attribute has the :unique attribute

option, no two entities can have the same value for that attribute. However, for

purposes of :unique checking, one null value does not equal another null value. In

our example, more than one person can have a null ID number, even though id-

number is a :unique attribute.

This makes sense when you consider what the null value represents. The :unique

attribute ensures that we don’t assign the same ID number to two different people.

But it is valid for several people not to have any ID number at all.

2.3.9. The :no-nulls Attribute Option

The :no-nulls attribute option is used in the name attribute of person:

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

:no-nulls means that values of the name attribute are not allowed to be the null

value. name is a "required" attribute; every person must have some name. :no-

nulls has the following consequences:

• The second value returned by the reader function for a :no-nulls attribute is al-

ways t.

• Any attempt to set the value of a :no-nulls attribute to the null value signals

an error.

• When an entity creator function is called, values must be supplied for all :no-

nulls attributes, either explicitly or with :initform.�

Examples:

(setf (person-name george) nil) => error

(make-person :id-number 123) => error

Using :no-nulls in a Schema

In the university schema, the :no-nulls attribute is used sparingly. The designer

of the schema allows for null values in many attributes. For example, a graduate

student might enroll in the university, but not get a thesis advisor assigned for a

while. We might want to represent an instructor in the database even if we don’t

yet know what the instructor’s salary is. We might even want to represent a

course whose title is still under dispute.

The dept attribute of instructor has the :no-nulls attribute. The designer of the

schema asserts that whenever any instructor is represented in the database, the

instructor must have some particular department.

32
Tutorial Introduction to Statice February 2018

Consider the quandry we’d be in if we used the :no-nulls attribute on the head at-

tribute of department. Suppose we want to represent Prof. Einstein, who is the

head of the Physics department, and is in the Physics department. No matter

which one we create first, an error is signalled, because each demands the exis-

tence of the other. In fact, it would be impossible to create any departments or

any instructors! The problem arises because of a cycle of :no-nulls attributes. Be

careful not to make any.

2.3.10. The :initform Attribute Option

The :initform attribute option is used in the color attribute of shirt:

(define-entity-type shirt ()

 ((size integer)

 (color string :initform "white")

 (washed boolean)))

:initform means that if an entity is created, and the keyword for this attribute is

not supplied, the value of the :initform option should be evaluated, and the result

used as the initial value of the attribute. In other words, it’s the default initial

value for the attribute.

:initform can be used with single-valued or set-valued attributes. If the attribute

is set-valued, the result of evaluating the option must be a list. nil, of course, is a

list, representing the empty set.

Here are some examples.

(shirt-color (make-shirt :color "black")) => "black"

(shirt-color (make-shirt)) => "white"

(shirt-color (make-shirt :color nil)) => nil

In the last example, the value of the color attribute is the null value. Because the

:color keyword was explicitly provided to the entity constructor function, the :color

nil takes precedence over the :initform.

The value of the :initform attribute option doesn’t have to be a constant. In fact,

it can be an arbitrary Lisp form. The form is evaluated inside the lexical environ-

ment of the containing statice:define-entity-type form (this only matters if the

statice:define-entity-type isn’t at top level, which is uncommmon).

Summary of Rules for Initial Values�

These rules specify how Statice determines the initial value of each attribute when

the entity constructor function is called.

1. If the attribute’s keyword is supplied to the entity constructor function, ini-

tialize the attribute to the associated value.

2. Otherwise, if the attribute has an :initform option, evaluate the :initform and

initialize the attribute to the returned value.

3. Otherwise:

33
February 2018 Tutorial Introduction to Statice

• If the attribute is single-valued, initialize the attribute to the null value.

• If the attribute is set-valued, initialize the attribute to the empty set.

These points should also be kept in mind for single-valued attributes:

• If nil is not a meaningful value for an attribute’s type, nil can be used to mean

the null value.

• If you try to initialize an attribute to the null value and :no-nulls is specified

for that attribute, an error is signalled.

2.3.11. The :read-only Attribute Option

The :read-only attribute option is used in the id-number attribute of person:

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

:read-only means that no writer is defined for setting the value of the attribute.

That is, you cannot use setf with the reader. Once a person entity has been cre-

ated, the value of the id-number attribute for the person never changes.

For set-valued attributes, :read-only also means that the special forms

statice:add-to-set and statice:delete-from-set cannot be used.

2.3.12. Statice Attribute Types

So far, most of the attributes we’ve examined were entity-typed, or of type integer

or string. Statice provides many other types. The attributes of instructor use

some other types:

(define-entity-type instructor (person)

 ((rank rank :initform "Assistant")

 (dept department :no-nulls t)

 (visiting boolean)

 (salary single-float))

 (:multiple-index (rank salary)))

The type of the salary attribute is single-float. Values of this attribute are float-

ing-point numbers in IEEE-standard 32-bit format. Many other Lisp types can be

used as attribute types, including the following. This is only a brief survey, for

complete information: See the section "Built-In Statice Types", page 75.

Type Values

integer Arbitrary-precision integer.

(integer n m) Integer subrange, as defined by Common Lisp.

string Arbitrary-length string. Characters can have character styles.

34
Tutorial Introduction to Statice February 2018

(limited-string n) String of n or fewer characters. Characters cannot have char-

acter styles or modifier bits and must be in the standard char-

acter set.

boolean t or nil.

single-float Floating point number in IEEE Single format.

double-float Floating point number in IEEE Double format.

number Any number.

symbol Lisp symbol, from any package. Characters in the print name

can have character styles.

entity-handle Any entity, regardless of its entity type.

t Any Lisp object that can be handled by the binary file dumper

and loader.

(member a b c ...) Any of the Lisp objects a, b, or c. Compared using eql.

(alist-member :alist (("a" . x) ("b" . y) ("c" . z)))
Any of the objects x, y, or z. The full syntax of the alist-

member is also supported. Compared with equalp.

(dw:member-sequence (a b c))

Any of the Lisp objects a, b, or c. Comparison predicate speci-

fied by :test data argument, defaulting to eql.

time:universal-time

Arbitrary-precision integer.

time:time-interval Arbitrary-precision integer.

time:time-interval-60ths

Arbitrary-precision integer.

Type Inheritance

Statice types are tied into the inheritance structure of presentation types. If a par-

ticular presentation type is not directly handled by Statice, we look at its ancestors

to find one that is.

For example, rational can be used as a Statice type, because number is one of its

ancestors in the inheritance structure. The writer function makes sure that only

rational values can be stored, but the same storage format is used as for any

number.

The t Type

The t type accepts any Lisp object. It uses the same binary format that the Gen-

era Lisp compiler uses to produce its binary output files. The same data that

would go into a binary file is, instead, stored in the Statice database. When the

value is retrieved, the binary loader is called in. This is the same binary loader

used by the load function and the :Load File command.

35
February 2018 Tutorial Introduction to Statice

The semantics of statice:lisp-object are much like the semantics of printed repre-

sentation. To store a Lisp object in a statice:lisp-object attribute value is like

printing it, and to get a Lisp object from a statice:lisp-object attribute value is

like reading it. If you store a list, the elements of the list are stored, recursively.

If you get a list from the database, a new list is created.

For example, if student-symbols were a single-valued reader function of a

statice:lisp-object attribute:

(setq x (list ’a ’b ’c))

(setf (student-symbols george) x)

(setq y (student-symbols george)) => (a b c)

(equal x y) => t

(eq x y) => nil

Enumerated Types

The types member, alist-member, and dw:member-sequence can all be used as

enumerated types. An enumerated type has a small, fixed set of possible values.

For example, suppose we want to model cards in a playing deck:

(define-entity-type card ()

 ((number (integer 0 (13)))

 (suit (member spades hearts diamonds clubs))))

(setq ace-of-spaces (make-card :number 1 :suit ’spades))

(card-suit ace-of-spaces) => spades

member uses eql to determine equality. If the elements of the enumerated set are

strings, the alist-member and dw:member-sequence types are more useful. For

information on these types: See the section "Dictionary of Predefined Presentation

Types" in User Interface Dictionary.

The Rank Type

In the university schema, the rank attribute of the instructor entity type has

type rank. rank is a presentation type defined by the university program itself.

rank can be used as a Statice type, even though it’s not one of the built-in types,

because of presentation type inheritance.

 (define-presentation-type rank ()

 :expander ’(dw:member-sequence ("Assistant" "Associate" "Full")))

rank has an :expander that expands into the dw:member-sequence presentation

type, and dw:member-sequence is supported by Statice. The value of the rank at-

tribute is always one of the strings "Assistant", "Associate", or "Full" (or the

null value).

36
Tutorial Introduction to Statice February 2018

Physical Space Usage

Here we briefly discuss the amount of physical space required by values of some of

the commonly used types. For more detailed information: See the section "Built-In

Statice Types", page 75.

• Although integer can represent arbitrary precision, it only uses up one word for

numbers whose absolute value is less than (expt 2 30), which is about one bil-

lion.

• boolean values are packed into one bit if :no-nulls is used, and two bits if nulls

are allowed.

• Integer subranges are packed into as few bits as are needed to represent the

possible values, including nulls if they are allowed.

• Enumerated types are packed just like integer subranges.

• Strings have one word of overhead and use an integer number of words. A thin

string n characters long uses (1+ (ceiling n 4)) words; fat strings (using charac-

ter styles and/or character sets) take more space.�

2.3.13. The :conc-name Entity Type Option

Entity types can have options. The options follow the list of attribute descriptions.

Each is specified by a list that starts with the name of the option. The name is a

keyword. For example, the graduate-student entity type has one option, :conc-

name.

(define-entity-type graduate-student (student)

 ((thesis-advisor instructor))

 (:conc-name student-))

The value of the :conc-name option is a symbol. It’s used as the prefix to con-

struct the names of reader functions, taking the place of the name of the entity

type and the following hyphen. In our example, the reader function for the thesis-

advisor attribute of graduate-student is student-thesis-advisor.

2.3.14. Order of Defining Pieces of a Schema

The order of the statice:define-schema and statice:define-entity-type forms

doesn’t make any difference. You can write them in any order you like. You don’t

have to do anything special about "forward references". (An example of a "forward

reference" is when the student entity type refers to the department entity type

before department is defined).

At the time statice:make-database is called, though, everything must be complete

and consistent.

Since each statice:define-entity-type form defines a flavor, it is a good idea to

provide a compile-flavor-methods form in the file, after all methods for the fla-

37
February 2018 Tutorial Introduction to Statice

vor. It’s even advisable if you don’t define any methods of your own, because Stat-

ice itself defines methods. See the macro compile-flavor-methods in Symbolics

Common Lisp Dictionary.

2.4. Coping with Transaction Restarts

This section shows how the possibility of transaction restarts can affect a program,

mentions some pitfalls to avoid and some techniques to use.

One Way to Show the Students

The function show-students-1 prints the names of all the students:

(defun show-students-1 ()

 (with-database (db *university-pathname*)

 (let ((name-list

 (with-transaction ()

 (let ((names nil))

 (for-each ((s student))

 (push (person-name s) names))

 names))))

 (dolist (name name-list)

 (format t "~%~A" name)))))

At first, this seems like an unnecessarily awkward way to print the names. show-

students-1 enters a transaction, builds up a list of names using statice:for-each,

and then returns the list while finishing the transaction. Then it uses dolist to

print each of the names. Why not just print the names from inside the body of the

statice:for-each form?

Transaction Restarts

The problem is that Statice sometimes stops midway through a transaction and

starts it all over. While a transaction is in progress, any call to a Statice facility

(including finishing the transaction) can make Statice decide to restart the trans-

action. When a transaction is restarted, all its side-effects on the database are un-

done, and control is thrown back to the beginning of the statice:with-transaction

form (unbinding any dynamic variables and running any unwind-protect handlers

on the way).

The reasons that Statice restarts transactions have to do with the underlying con-

currency control and recovery system. For example, Statice will restart a transac-

tion when two or more transactions become involved in a deadlock (also called a

"deadly embrace") in which they’re all waiting for each other. Restarts can also

arise from Statice’s "optimistic locking" scheme. We’ll discuss later the specific

reasons for restarts; it’s not important for you to understand the details now.

You do have to understand that restarts can happen, and you have to be careful to

write your programs to work right no matter when and where restarts occur. The

most important thing to be careful about is operations inside a transaction that

38
Tutorial Introduction to Statice February 2018

have side-effects, other than side-effects on the database itself. If the transaction is

restarted, some of those side-effects might happen more than once.

In our example, if we tried to write a version of show-students-1 that simply

printed from inside the body of the statice:for-each form, consider what would

happen if there were a transaction restart halfway through. Some of the students

would be printed twice (or more times, if there were more than one restart). In

general, we mustn’t do output from within a transaction.

Instead, show-students-1 first builds up a list of the names of the students. If

there is a transaction restart during the transaction, the body of the statice:with-

transaction form starts over again, and the the variable names starts again from

nil.

Another Way to Show the Students

The function show-students-2 also prints the names of all the students. It shows

another way to cope with transaction restarts.

(defun show-students-2 ()

 (with-database (db *university-pathname*)

 (let ((name-list nil))

 (with-transaction ()

 (setq name-list nil)

 (for-each ((s student))

 (push (person-name s) name-list)))

 (dolist (name name-list)

 (format t "~%~A" name)))))

The peculiar thing about show-students-2 is the form (setq name-list nil). The

setq seems superfluous, since name-list is initially bound to nil by the let.

The setq is needed because the transaction might restart. If the setq were not

there, and the transaction restarted, some of the same names would be pushed on-

to the list more than once.

2.4.1. Taking Snapshots with the :cached Attribute Option

Since many Statice programs need to deal with transaction restarts, Statice sup-

ports the technique of "taking snapshots" of portions of a database.

In the section "Coping with Transaction Restarts", we showed two ways to print

the names of the students. The function show-students-3 below shows how to do

the same thing using the snapshot technique.

39
February 2018 Tutorial Introduction to Statice

(defun show-students-3 ()

 (with-database (db *university-pathname*)

 (let ((students nil))

 (with-transaction ()

 (setq students nil)

 (for-each ((s student))

 (person-name s)

 (push s students)))

 (dolist (s students)

 (format t "~%~A" (person-name s))))))

show-students-3 does two unusual things. First, it calls the reader function

person-name from within the transaction, but ignores the returned value. Second,

it calls person-name from outside the transaction. What’s going on here?

The :cached Attribute Option

The name attribute of person is defined using the :cached attribute option.

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

The :cached option allocates a slot inside the flavor of the entity type. (This slot,

or instance variable, is internal, and cannot be used by methods.) In our example,

a slot is allocated in the person flavor, and we call this slot the cache slot for the

name attribute. Of course, the cache slot is inherited by all the descendant fla-

vors, including the student flavor.

When the reader function for a :cached attribute is used within a transaction, it

performs its normal reading function, and it puts the value of the attribute into

the cache slot. When the reader function for a cached attribute is used from out-

side a transaction, it returns the contents of the cache slot.

In show-students-3, the first iteration (the statice:for-each) calls the person-

name reader function in order to read the names from the database and store

them into the cache slots. Notice that show-students-3 calls person-name and ig-

nores the returned value: the purpose of calling person-name is to read the values

from the database and store them into the cache slots. We call this loading the

cache slots. The second iteration (the dolist) calls person-name to get the values

from the cache slots and print the values.

Using Cached Attributes�

Reader functions act differently, depending on whether they are called within a

transaction, or outside of one. Within a transaction, a reader gets the value of an

attribute in the database. If :cached t is specified, the reader then loads the cache

slot from the database value.

When used outside of a transaction, a reader function must be from a cached at-

tribute. Outside a transaction, a reader does not access the databaseit accesses

the cache slot in the entity handle.

40
Tutorial Introduction to Statice February 2018

When an entity handle is first created, the cache slots for its cached attributes are

empty (unbound). If the reader is called from outside a transaction and the slot for

the cached attribute is still empty, Statice starts a little transaction that loads the

cache slot, and then returns the value.

Writer functions cannot be used outside of a transaction.

Snapshots

The attribute values found in cache slots at a given time are not necessarily the

same as the value in the database at that time, because some other process could

have changed the value since our cache slot was loaded. We say that the cached

values reflect a snapshot of the database statea frozen copy of what was in the

database at a certain time in the past.

It’s important to remember that a cache slot holds a snapshot, because the value

in the cache slot might be obsolete. As soon as you finish a transaction, some oth-

er process can access and change the values your transaction dealt with. Cache

slots are a copy, not the real thing.

In practice, many attributes are read-only (whether or not they actually use the

:read-only attribute). If the value of an attribute never changes, you know that

the cached copy is still up-to-date, and you never need to read the value from the

database again. In our example, person-name is not read-only, because we want to

be able to handle changes of name (when people marry, for example). The name

attribute rarely changes, but if we were to assume that it never changes, and nev-

er bother to reload the cache slot, we’d miss real updates in the database.

Often it is important to take a snapshot of the database and make sure that the

information in the snapshot is internally consistent. This is done by loading the

cache slots for many attributes within a single transaction.

2.4.2. Testing Statice Programs with Transaction Restarts

Statice programs must not have any side effects inside transactions, because trans-

actions can spontaneously abort and restart at any time. Unfortunately, it can be

rather difficult to know whether you are properly obeying this restriction. Since

aborting and restarting is possible but rare, if your code does have a side effect in-

side a transaction, testing might not reveal the mistake.

Statice offers a way to help you test your code for robustness in the face of trans-

action aborting and restarting. You can set the variable statice:*restart-testing*

to a value that triggers many aborts in many places. This feature is not guaran-

teed to reveal all problems, but it makes it more likely that, during testing, you

will encounter them.

See the variable statice:*restart-testing*, page 181.

41
February 2018 Tutorial Introduction to Statice

2.5. Querying a Statice Database with statice:for-each

This section shows some ways you can use statice:for-each for associative lookup

and sorting.

2.5.1. Using the :where Clause of statice:for-each

Using :where with a Simple Condition

The function show-instructors-paid-more-than prints the names of all instructors

whose salary is greater than a specified amount.

(defun show-instructors-paid-more-than (this-much)

 (with-database (db *university-pathname*)

 (let ((instructors nil))

 (with-transaction ()

(setq instructors nil)

(for-each ((i instructor)

 (:where (> (instructor-salary i) this-much)))

 (push (person-name i) instructors)))

 (format-textual-list instructors #’princ))))

show-instructors-paid-more-than resembles show-students-2 in overall structure,

building a list inside a transaction, and then printing it. The new element is the

:where clause in the statice:for-each special form.

The :where clause makes statice:for-each selective. The body of statice:for-each

is executed only for those instructors that satisfy the condition of the :where

clause. In this example, the precondition is:

(> (instructor-salary i) this-much)

This precondition is true when the instructor’s salary value is greater than this-

much. The body is only executed for those instructors whose salary is greater than

the given amount, and only those are put on the list to be printed.

Using :where with More than One Condition

The function show-full-instructors-after prints the names of all instructors whose

rank is "full" and whose name alphabetically follows a given string.

(defun show-full-instructors-after (string)

 (with-database (db *university-pathname*)

 (let ((instructors nil))

 (with-transaction ()

(setq instructors nil)

(for-each ((i instructor)

 (:where (and (equal "Full" (instructor-rank i))

(string-greaterp (person-name i) string))))

 (push (person-name i) instructors)))

 (format-textual-list instructors #’princ))))

The condition in the :where clause is:

42
Tutorial Introduction to Statice February 2018

(:where (and (equal "Full" (instructor-rank i))

 (string-greaterp (person-name i) string)))

A :where clause can have one condition, or it can have one or more conditions

within a list starting with and. When and is used, all of the conditions must be

true for the body to be executed.

Using :where with a Set-valued Attribute

The function show-students-taking-course takes a course (that is, an entity han-

dle for a course entity) and prints the names of all students taking that course.

(defun show-students-taking-course (course)

 (with-database (db *university-pathname*)

 (let ((names nil))

 (with-transaction ()

(setq names nil)

(for-each ((s student) (:where (eq course (:any (student-courses s))))))

 (push (person-name s) names)))

 (format-textual-list names #’princ))))

show-students-taking-course differs from our earlier examples because the at-

tribute tested in the :where clause, namely student-courses, is set-valued. The

:where clause is:

(:where (eq course (:any (student-courses s))))

When the attribute in a :where clause is set-valued, the conditional function is ap-

plied to each element of the set, and the condition is considered true if the func-

tion’s value is true for any of the members of the set. The set is placed in a list

with the symbol :any to signify that the test applies to any member of the set.

In this example, student-courses is set-valued. :any is used around the list that

has the syntax of a call to the set-valued reader function. The condition tests to

see if any course in the student’s courses attribute is eq to the value of course.

How :any Works with and

A :where clause might have two comparisons, one of a single-valued attribute and

one of a set-valued attribute. If we wanted to modify show-students-taking-course

to print only those students in a given department, the :where clause would be:

(:where (and (eq course (:any (student-courses s)))

 (eq dept (student-dept s))))

courses is set-valued and dept is single-valued. Note that the :any only applies to

the condition that tests the set-valued attribute, not the condition that test the sin-

gle-valued attribute.

For more information on the :where clause: See the section "General Rules of the

:where Clause of statice:for-each", page 43.

43
February 2018 Tutorial Introduction to Statice

2.5.2. General Rules of the :where Clause of statice:for-each

Every condition is a list of three elements, according to the following template:

(comparison form (reader-function variable))

comparison A symbol specifying the kind of comparison. These symbols are

usually the names of Lisp functions, such as >, equal, or

string-greaterp.

form A Lisp form. It is evaluated once, before the iteration begins.

reader-function The name of a reader function, for one of the attributes of the

type being iterated over. This cannot be an inverse reader

function.

variable A symbol, the same variable used as the variable of iteration of

the statice:for-each.

The overall syntax of the condition is designed to look like a function call, where

comparison is usually the name of a Lisp function, and the second and third ele-

ments play the role of arguments. The syntax is intended to be natural, and easy

to remember. Keep in mind that it’s not really a function call, and must be in the

syntax described here.

If the reader function in the third element is set-valued, the reader function must

be surrounded by :any, so that the whole condition is of the form:

(comparison form (:any (reader-function variable)))

Interchanging the "Arguments"

The second and third elements of the list can be interchanged, for some kinds of

comparisons. For example, in show-full-instructors-after, the equal condition was

in the usual order, with the Lisp form first, but the string-greaterp condition was

in the reverse order, with the two-element sublist first. In such a case, the condi-

tion is of the form:

(comparison (reader-function variable) form)

The ordering of the second and third elements doesn’t matter for commutative

comparison functions such as equal, but it does matter for non-commutative ones

such as string-greaterp. For example, the following two conditions mean the same

thing:

(string-greaterp (person-name i) string)

(string-not-greaterp string (person-name i))

string-search is a kind of comparison for which the order must not be reversed. A

typical example condition using string-search is:

(string-search string (person-name i))

This condition selects only those people whose name contain string as a substring.

44
Tutorial Introduction to Statice February 2018

Exception for typep

There is one exception to the above syntax, for a special kind of comparison called

typep. In a typep condition, the second element is simply the name of the variable

of the statice:for-each, and the third element is a form that evaluates to an entity

type name. Example:

(for-each ((s student)

 (:where (and (typep s ’graduate-student) ...)))

 ...)

This condition selects only those students that are of type graduate-student.

2.5.3. Using the :count Clause of statice:for-each

Sometimes, you want the body of statice:for-each to be executed for only one en-

tity. The :count option of statice:for-each allows the caller to limit the number

entities for which the body is called. By using the :count option, you can reduce

consing and improve query performance. For example:

(for-each ((p person))

 (return p))

could be improved by:

(for-each ((p person) (:count 1))

 (return p))

2.5.4. Sorting Entities with the :order-by Clause of statice:for-each

The function show-courses-in-dept-sorted prints the names of all courses in the

given department, in alphabetical order by title.

(defun show-courses-in-dept-sorted (dept)

 (with-database (db *university-pathname*)

 (let ((titles nil))

 (with-transaction ()

(setq titles nil)

(for-each ((c course)

 (:where (eq (course-dept c) dept))

 (:order-by (course-title c) descending))

 (push (course-title c) titles)))

 (format-textual-list titles #’princ))))

What’s new here is the :order-by clause:

(:order-by (course-title c) descending)

The :order-by clause does not affect the set of entities that statice:for-each iter-

ates over, but it controls the order of the iteration. The entities are sorted by the

values of an attribute, and the iteration is done in that order.

In this example, statice:for-each iterates over course entities. The :order-by

clause tells statice:for-each to iterate in alphabetical order according to the value

45
February 2018 Tutorial Introduction to Statice

of the title attribute of course. The order is specified as descending because push

builds lists in reverse order, so that once the list is finished, it’s really in ascend-

ing order. The final list, titles, is in ascending alphabetical order.

2.5.5. Using statice:for-each on Many Variables

The function instructors-in-dept-headed-by returns the names of all instructors

who are in a department headed by a particular person.

(defun instructors-in-dept-headed-by (head)

 (with-database (db *university-pathname*)

 (let ((instructors nil))

 (with-transaction ()

(setq instructors nil)

(for-each ((i instructor) (d department)

 (:where (and (eq d (instructor-dept i))

(eq (department-head d)

 (person-named head)))))

 (push (person-name i) instructors)))

 instructors)))

The statice:for-each form has two variables, i and d. statice:for-each iterates

over every possible pairwise combination of values for i and d. In other words,

statice:for-each considers each instructor, and for each instructor it considers

each department. In mathematical jargon, it takes the Cartesian product of instruc-

tors and departments.

When it has a pair of i and d, it examines the :where clause to decide whether to

run the body. The :where clause can refer to both variables, i and d. The second

condition in the :where clause is the familiar kind that tests the value of an at-

tribute. The first condition is a new kind that joins the two variables. In English,

the entire :where clause means "If d is the department of i, and the head of d is

the person named head". We call this a join condition.

Within the body of the statice:for-each both variables i and d are bound to entity

handles, and the body can use either or both. In our example, the body doesn’t

need to use d for anything; d played its useful part inside the :where clause.

2.6. Using Indexes to Increase Database Performance

2.6.1. Introduction to Indexes in Statice

In this section we introduce a new concept: the index. Indexes exist inside Statice

databases, but they don’t represent any new information. In fact, any program will

return the same results regardless of what indexes exist. Even though they have

no effect on the results, indexes are important because they have a great effect on

performance.

It’s important to use indexes. If you don’t, your program will become slower and

slower as the size of your database grows. Fortunately, indexes are easy to use:

46
Tutorial Introduction to Statice February 2018

you just create them, and ignore them. And any time you change your mind, it’s

easy to create or destroy them. In fact, you can create an index, try running a

program, then destroy the index and try again, and observe the effects on perfor-

mance.

Indexes have drawbacks as well as advantages. In general, they make lookups and

searches much faster, but they make inserting and deleting slightly slower.

Indexes and Inverse Reader Functions

Consider the inverse reader person-named. How does it find the entity for the

person named "Joe Cool"? It could examine each entity of type person (including

entities whose type inherits from type person), check the value of the name at-

tribute, and see whether it equals "Joe Cool". This would be slower and slower as

the database grew, taking time linearly proportional to the number of person enti-

ties. In fact, this is what happens if there isn’t an index.

To make person-named fast, we can make an index. An index is auxiliary struc-

ture that resides invisibly in the database. This particular index is a compact table

that represents a mapping from values of the name attribute to the corresponding

entities, sorted alphabetically and generally organized to make searching fast. (In

database jargon, it’s organized as a B+ tree.) If this index exists, person-named

will automatically use the index to find the entity handle.

To see how the index was created, look at the description of the name attribute of

the person entity type.

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

The :inverse-index option means that when the database is created, an index (ini-

tially empty) should also be created. This kind of index is specified by :inverse-

index because it speeds up the inverse reader function.

Indexes and Accessor Functions

Here’s an example of an index used to speed up a regular accessor function, rather

than an inverse reader function. Notice that the description of the courses at-

tribute of the student entity type includes the :index t option:

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

The index specified for the courses attribute speeds up the performance of both

the reader student-courses and the corresponding writer (which is called with setf

of student-courses). The performance improvement happens whether you are ac-

cessing the attribute for reading or writing, because it increases the speed of lo-

cating the attribute in the database.

47
February 2018 Tutorial Introduction to Statice

How does the student-courses reader function work? If there is no index, Statice

must do a search through a sequence of small data structures called tuple records,

of which there is one for every relationship between a student and a course.

Again, this takes time linear in the number of such relationships, and so student-

courses gets increasingly slower as the database grows.

The :index option causes Statice to make an index that makes student-courses�

fast. This is a different kind of index internally; it gives each student entity a list

of pointers to the course entities. But all these details are invisible to you. You

just make the index, and student-courses automatically runs faster. Note that you

could also use the :inverse-index option this attribute to speed up

course-students.

The :index option is only meaningful for set-valued attributes. For a single-valued

attribute, there’s no need for an index, since Statice can obtain the value directly

without searching. (There’s one case in which it does make sense to use :index

with a single-valued attribute, involving areas: See the section "Statice Type Sets,

Attribute Sets, and Areas", page 127.)

Indexes are also useful for speeding up the associative queries done with

statice:for-each. For more information: See the section "Indexes and statice:for-

each", page 47.

We present indexes in more detail later: See the section "Statice Indexes", page

120.

2.6.2. Indexes and statice:for-each

How does statice:for-each find the entities that conform to the conditions of the

:where clause? Look again at the function show-instructors-paid-more-than,

which prints the names of all instructors whose salary is greater than a specified

amount.

(defun show-instructors-paid-more-than (this-much)

 (with-database (db *university-pathname*)

 (let ((instructors nil))

 (with-transaction ()

(setq instructors nil)

(for-each ((i instructor)

 (:where (> (instructor-salary i) this-much)))

 (push (person-name i) instructors)))

 (format-textual-list instructors #’princ))))

Without an index, statice:for-each actually examines each instructor entity, and

looks at the value of the salary attribute to see whether it’s greater than this-

much. Does this make statice:for-each much slower? It depends. If this-much is a

very small number, statice:for-each has to deal with almost all the instructors

anyway, so the search does not slow things down significantly. But if this-much is

a very large number, statice:for-each only really needs to deal with a few instruc-

tors, and the extra overhead of examing and rejecting the rest could slow down

the query significantly.

48
Tutorial Introduction to Statice February 2018

To make statice:for-each faster, we can add an inverse index to the salary at-

tribute of instructor. statice:for-each automatically notices that this index exists.

The index is internally stored in sorted order, so statice:for-each can efficiently

find pointers to all the instructors whose salary is greater than this-much. (In

database jargon, this statice:for-each is doing a range query, searching for values

that fall within a given range. The range, in this example, is from this-much to

infinity. One reason Statice uses the B+ tree organization is because it works well

for range queries.)

Why is the statice:for-each sped up by an inverse index, rather than a regular

index? Because the job of an inverse index is to get from the value to the entity,

while the job of a regular index is to get from the entity to the value. The

statice:for-each has the value (actually a range of values), and it’s trying to find

the entities. So an inverse index is the right kind.

Here’s another way to explain why we’re using an inverse index instead of a regu-

lar index. Suppose the salary attribute of instructor had an inverse reader func-

tion, named instructors-whose-salary-is. It would be a function of one argument,

a salary amount (a floating point number), that returns a list of instructors. An-

other way to do the same thing would be the write a function using statice:for-

each:

(defun instructors-whose-salary-is (salary-value)

 (let ((result nil))

 (for-each ((i instructor)

 (:where (= (instructor-salary i) salary-value)))

 (push i result))

 result))

Such a function does the same thing that an inverse reader function would do. As

you can see, it’s similar to show-instructors-paid-more-than. statice:for-each is

given a value, and it’s supposed to find the entity. When we’re going in that di-

rection, we need an inverse index. By the way, you can have an inverse index on

an attribute even if there is no any inverse reader function.

2.6.3. statice:for-each Can Use Many Indexes Together

The function find-big-blue-shirt returns an entity handle for a shirt whose size is

greater than 15 and whose color is "blue", or returns nil if there is no such shirt.

(defun find-big-blue-shirt ()

 (with-database (db *university-pathname*)

 (with-transaction ()

 (for-each ((s shirt)

 (:where (and (> (shirt-size s) 15)

 (string-equal "blue" (shirt-color s)))))

(return s)))))

How does statice:for-each go about evaluting this query? It depends on what in-

dexes exist. If, as in our example schema, there are no useful indexes, it simply

checks each shirt to see whether the shirt meets both criteria.

49
February 2018 Tutorial Introduction to Statice

If we make an inverse index on the size attribute of shirt, statice:for-each uses

that index to find all the big shirts, and then examine each of them to see

whether it’s blue. This is much faster, in a large database. Similarly, if there is an

index on the color attribute, statice:for-each uses that index to find all the blue

shirts, and then examine each of them to see whether it’s big.

If we make an index on both the shirt attribute and the color attribute,

statice:for-each uses both indexes. Each index yields a set of entities, and

statice:for-each computes the intersection of the sets. This is the fastest way of

all, in a large database.

In general, if a statice:for-each has a :where clause with several conditions

and’ed together, statice:for-each examines each condition to see whether there’s

an index that can resolve that condition. It uses all those indexes, and computes

the intersection of all the resulting sets. Then, if there are any conditions left over

that didn’t have an index, statice:for-each checks each entity to make sure that it

meets all of the leftover conditions as well.

2.6.4. Making and Deleting Indexes

You can make new indexes or delete existing indexes at any point within a trans-

action, even while other processes are using the database at the same time. The

concurrency control mechanism of Statice ensures that none of the results of the

transactions conflict with one another. If a large number of entities of the type al-

ready exist, it might take some time for Statice to make the index.

Statice provides functions for making and deleting indexes, and testing whether in-

dexes exist. These functions expect the name of the reader function as their argu-

ment; this identifies the index.

The function statice:make-index makes an index. For example, the following form

makes an index on the shirts attribute of student:

(make-index ’student-shirts)

The function statice:delete-index deletes an index. For example, this form deletes

the index on the courses attribute of student:

(delete-index ’student-courses)

The function statice:index-exists returns t if an index exists, and nil if it does

not. For example, the following form asks whether there is an index on the cours-

es attribute of student:

(index-exists ’student-courses) => nil

Statice provides analogous functions for inverse indexes. statice:make-inverse-

index, statice:delete-inverse-index, and statice:inverse-index-exists. These all

take as their argument the name of the reader function. Note that they take the

name of the regular reader function, not the name of the inverse reader function.

For example:

50
Tutorial Introduction to Statice February 2018

(make-inverse-index ’shirt-size)

(delete-inverse-index ’person-name)

(inverse-index-exists ’course-instructor) => nil

2.6.5. Indexes and :order-by

We’ve seen how indexes can speed up the :where clause of statice:for-each. They

can also speed up the :order-by clause. Here’s an example. The function show-

names-sorted prints the names of all people in alphabetical order.

(defun show-names-sorted ()

 (with-database (db *university-pathname*)

 (let ((names nil))

 (with-transaction ()

(setq names nil)

(for-each ((p person)

 (:order-by (person-name p) descending))

 (push (person-name p) names)))

 (format-textual-list names #’princ))))

If there is no inverse index on the name attribute, statice:for-each has to find all

the entities and then sort them. However, there is such an index. As we said ear-

lier, the index entries are sorted by the value of the name attribute. Since the en-

tries are already in properly sorted order, statice:for-each doesn’t have to do a

time-consuming sort operation. It uses the index, to find all the entities already

sorted into order.

If a statice:for-each has both a :where clause and an :order-by clause, and both

can be helped by indexes, statice:for-each uses both indexes. Consider the function

show-new-names-sorted, which prints out the names of all people whose ID num-

ber is greater than 1000, sorted alphabetically:

(defun show-new-names-sorted ()

 (with-database (db *university-pathname*)

 (let ((names nil))

 (with-transaction ()

(setq names nil)

(for-each ((p person)

 (:where (> (person-id-number p) 1000))

 (:order-by (person-name p) descending))

 (push (person-name p) names)))

 (format-textual-list names #’princ))))

If there is an inverse index on id-number and an inverse index on name,

statice:for-each uses both indexes together, one to find the subset of entities to

process, and the other to control the order in which to process them.

51
February 2018 Tutorial Introduction to Statice

2.7. Multiple Indexes

2.7.1. Introduction to Multiple Indexes

A multiple index is an index on two or more attributes. The course entity type has

a multiple index on attributes title and dept.

(define-entity-type course ()

 ((title string :inverse courses-entitled)

 (dept department)

 (instructor instructor))

 (:multiple-index (title dept) :unique t))

This multiple index is a compact table (a B+ tree) that associates pairs of attribute

values with pointers to entities. The index entries are sorted by the values of title,

and groups of entries that all have the same value of title are sorted within the

group by dept.

There are two restrictions on multiple indexes:

1. The attributes must all be single-valued, not set-valued.

2. The attributes must all be from the entity type itself, not inherited from par-

ent entity types.

Basic Use of Multiple Indexes

Here’s an example of how statice:for-each can use a multiple index. The function

find-course takes a title string and a department entity, and returns the designat-

ed course, or nil if there isn’t any.

(defun find-course (title dept)

 (with-database (db *university-pathname*)

 (with-transaction ()

 (for-each ((c course)

 (:where (and (string-equal (course-title c) title)

 (eq (course-dept c) dept))))

(return c)))))

When statice:for-each examines this query, it recognizes that the multiple index

can resolve the whole query, both conditions, in a single step. It looks up both the

title and the department in the multiple index, and finds an answer if any exists.

If there had been inverse indexes on both title and course, and no multiple index,

statice:for-each could have used both indexes and intersected the results. Howev-

er, using the multiple index is faster. In fact, if the multiple index had existed and

both of the inverse indexes had existed, statice:for-each would have chosen to use

the multiple index. In general, statice:for-each looks over the different ways of re-

solving a query, and automatically chooses the one it anticipates will be fastest.

52
Tutorial Introduction to Statice February 2018

Uniqueness Constraints

In addition to speeding up queries, multiple indexes can impose uniqueness con-

straints on entity types. The :unique t in the :multiple-index option means that

this index imposes a uniqueness constraint. The constraint states that no two dis-

tinct courses can have both the same title and the same department. In other

words, the constraint means that given a particular title and a particular depart-

ment, there can be at most one course with that title and that department. (For

those familiar with the terminology of relational data models, this can be compared

with the notion of "composite candidate keys".)

When null values are involved (See the section "The Statice Null Value", page 29.)

we follow the same principle as for unique attributes: for purposes of uniqueness

constraints, one null value does not equal another null value. For example, there

could be two distinct courses in the same department, both of whose titles are

null. The idea is that they don’t have titles yet, so they aren’t really conflicting

with each other.

Earlier we said that indexes have no semantic effect, and that they only affect

performance. The uniqueness feature described here is the sole exception to that

rule.

Making and Deleting Multiple Indexes

Statice provides functions for making and deleting multiple indexes, and testing

whether a multiple index exists. These functions take one required argument, a

list of the names of the reader functions for the attributes.

The function statice:make-multiple-index makes a multiple index. For example,

the following form makes a multiple index on the size and color attributes of the

shirt entity type:

(make-multiple-index ’(shirt-size shirt-color))

To make the index impose a uniqueness constraint, use the :unique keyword argu-

ment:

(make-multiple-index ’(shirt-size shirt-color) :unique t)

The function statice:delete-multiple-index deletes a multiple index. For example,

to delete the multiple index on title and dept:

(delete-multiple-index ’(course-title course-dept))

There is no :unique keyword argument; statice:delete-multiple-index just deletes

the index, whether or not it is unique.

The function statice:multiple-index-exists returns t if an index exists, and nil if it

does not. For example, the following form asks whether there is a multiple index

on the title and dept attributes of course:

(multiple-index-exists ’(course-title course-dept))

Several different kinds of queries can take advantage of multiple indexes:

See the section "Multiple Indexes and Leading Subsequences", page 53.
See the section "Multiple Indexes and Suffix Comparisons", page 54.

53
February 2018 Tutorial Introduction to Statice

See the section "Multiple Indexes and :order-by", page 55.

2.7.2. Multiple Indexes and Leading Subsequences

Consider the function find-courses-with-title, which returns a list of all courses

with a given title:

(defun find-courses-with-title (title)

 (with-database (db *university-pathname*)

 (with-transaction ()

 (let ((result nil))

(for-each ((c course)

 (:where (string-equal (course-title c) title)))

 (push c result))

result))))

find-courses-with-title is like find-course, but it discriminates only on the basis of

the title attribute, rather than on both title and dept. However, statice:for-each

can still use the multiple index. In the multiple index, the entries of the index are

sorted first by the value of the title attribute. So all the entries for a particular ti-

tle are grouped together, and all these groups are sorted by title. statice:for-each�

simply finds the whole group of entries for given title string, which is exactly the

information being sought.

By the way, find-courses-with-title is essentially the same thing as an inverse

reader function for the title attribute of course. If we make an actual inverse

reader function, it uses the multiple index in the same way that find-courses-

with-title does. If there is an inverse index on the title attribute, the inverse func-

tion uses it in preference to the multiple index, but so does

find-courses-with-title.

This trick would not work for a query that discriminated on dept but not title, be-

cause the index entries are grouped together based on title. In general, if there is

a multiple index on a sequence of attributes, statice:for-each first looks for an

equality condition for the first attribute. If one is found, it then looks for an equal-

ity condition on the second attribute, and so on. Thus, statice:for-each then re-

solves all of these conditions with one lookup in the multiple index. Any remaining

conditions cannot be resolved with the multiple index. In other words, statice:for-

each looks for a set of equality conditions whose attributes form a leading subse-

quence of the sequence of attributes in the index.

Here’s an artificial example:

(define-entity-type example ()

 ((a string)

 (b string)

 (c string)

 (d string)

 (e string))

 (:multiple-index (b e a c)))

54
Tutorial Introduction to Statice February 2018

(for-each ((ex example)

 (:where (and (equal (example-e ex) "huey")

(equal (example-c ex) "dewey")

(equal (example-b ex) "louie"))))

 ...)

statice:for-each first looks for an equality condition on the first attribute of the

index, namely b. It finds one, namely (equal (example-b ex) "louie"). Next, it

looks for an equality condition on e, and finds one. Next, it looks for an equality

condition on a; there isn’t any, so it stops looking. statice:for-each uses the multi-

ple index to resolve the equality conditions on b and e, and gets back the set of all

entities meeting those two conditions. Then it tests each entity to see if it meets

the condition on c. Even though c is one of the attributes of the multiple index,

statice:for-each can’t use it, because it’s not part of a leading subsequence.

2.7.3. Multiple Indexes and Suffix Comparisons

The function show-well-paid-english-profs prints the names of all instructors in

the English department who earn more than 50000.

(defun show-well-paid-english-profs ()

 (with-database (db *university-pathname*)

 (let ((names nil))

 (with-transaction ()

(setq names nil)

(for-each ((i instructor)

 (:where (and (eq (instructor-dept i)

 (department-named "English"))

(> (instructor-salary i) 50000))))

 (push (person-name i) names)))

 (format-textual-list names #’princ))))

Suppose there is a multiple index on attributes dept and salary of the instructor

entity type. The statice:for-each does an equality comparison on the value of the

dept attribute, and a greater-than comparison on the salary attribute.

statice:for-each can resolve the query in one step, using the multiple index. Re-

member how the index entries are arranged. First, they’re sorted by the value of

dept. Then, within each group of entries for which dept is equal, they are sorted

by the value of salary. This means that all the index entries for the entities we’re

looking for are stored together, contiguously, in the index. statice:for-each can

simply find that range of the index, and it has its answer.

This would not have worked if the multiple index were on salary and dept. It’s

important that dept was the first attribute in the index, because the index entries

are first sorted by dept.

In general, statice:for-each can do this kind of query resolution using a multiple

index if, and only if, there is an equality condition in the for-each for all the at-

tributes of the multiple index except the last one, and there is a comparison (or

string-prefix) condition in the for-each for the last attribute of the multiple index.

55
February 2018 Tutorial Introduction to Statice

Multiple indexes can also help with sorting: See the section "Multiple Indexes and

:order-by", page 55.

2.7.4. Multiple Indexes and :order-by

Earlier we saw that indexes can speed up the :order-by clause of statice:for-each.

(See the section "Indexes and :order-by", page 50.) Multiple indexes can do this,

too. The function get-sorted-shirts returns a list of shirt entities, sorted first al-

phabetically by the name of the color, and then (within shirts of a given color) by

size.

(defun get-sorted-shirts ()

 (with-database (db *university-pathname*)

 (let ((shirts nil))

 (with-transaction ()

(setq shirts nil)

(for-each ((s shirt)

 (:order-by (shirt-color s) ascending

 (shirt-size s) ascending))

 (push s shirts)))

 (nreverse shirts))))

If there is a multiple index on the color attribute and the size attribute,

statice:for-each uses the index directly to get its answer. You can picture one

such index as follows:

 blue, size 1

 blue, size 2

 blue, size 5

 red, size 1

 red, size 2

 red, size 10

This index is the ideal index for get-sorted-shirts, because the index entries are in

exactly the order that get-sorted-shirts is interested in.

Even if we didn’t have the ideal index, we might have an index that is helpful. If

there is a multiple index on the color attribute and the washed attribute,

statice:for-each uses the index to accomplish the first part of the sorting. The in-

dex provides statice:for-each with groups of shirt entities, with a particular color

for each group, and these groups are sorted by color. Within each group,

statice:for-each must sort the entities by size. Although this is not as good as the

ideal index, it is still a lot faster than sorting the entire set of entities by both

color and size.

In general, statice:for-each can use a multiple index in this way if the first one-

or-more of its attributes appear in the :order-by clause (and they’re either all as-

cending or all descending).

There’s another interesting case where statice:for-each takes advantage of a mul-

tiple index, this time to deal with a :where clause and an :order-by clause both at

56
Tutorial Introduction to Statice February 2018

the same time. Consider the function show-courses-in-dept-sorted, which we intro-

duced earlier (See the section "Sorting Entities with the :order-by Clause of

statice:for-each", page 44.).

(defun show-courses-in-dept-sorted (dept)

 (with-database (db *university-pathname*)

 (let ((titles nil))

 (with-transaction ()

(setq titles nil)

(for-each ((c course)

 (:where (eq (course-dept c) dept))

 (:order-by (course-title c) descending))

 (push (course-title c) titles)))

 (format-textual-list titles #’princ))))

Suppose there is a multiple index on the dept attribute and the title attribute.

The statice:for-each has an equality condition on the dept attribute, and needs to

sort using the title attribute. It turns out that the multiple index has exactly what

the statice:for-each needs. The index entries in the multiple index are grouped,

with each entry’s entity having the same value of dept. Within that group, the en-

tries are sorted by title. This is exactly what the statice:for-each needs, so it gets

it straight from the index.

The general rule for this kind of query resolution is that a multiple index can be

used if the first one-or-more attributes are used in equality conditions by the

statice:for-each, and all the rest of the attributes are used in the :order-by clause

(and they’re either all ascending or all descending).

57
February 2018 Advanced Techniques for Statice Applications

3. Advanced Techniques for Statice Applications

3.1. Hints and Techniques for Using Statice

3.1.1. Choosing the Forward Direction for a Statice Schema

When you are designing a schema, you can express a relationship between a pair

of entity types in two ways, depending on which direction is forward and which is

backward. Consider the relationship between students and courses in the Universi-

ty example:

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

(define-entity-type course ()

 ((title string :inverse courses-entitled)

 (dept department)

 (instructor instructor))

 (:multiple-index (title dept) :unique t))

(The university example is presented in full elsewhere: See the section "Defining a

Schema for a University", page 20.)

The relationship between students and courses is modeled by the courses attribute

of the student entity type. student-courses is the accessor function, and course-

students is the inverse accessor function.

Here is an alternate way to model the same thing:

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

(define-entity-type course ()

 ((title string :inverse courses-entitled)

 (dept department)

 (instructor instructor)

 (students (set-of student) :inverse-index t :inverse student-courses))

 (:multiple-index (title dept) :unique t))

Here the same relationship is modeled by the students attribute of the course en-

tity type. course-students is the accessor function, and student-courses is the in-

verse accessor function, which is just the opposite of what we first saw. This time

we had to use :inverse-index rather than :index.

However, the functions course-students and student-courses do exactly the same

thing, regardless of the choice you make about the schema. The index is still de-

signed to speed up student-courses. When you use the accessor functions, it

doesn’t make any difference whether they are regular or inverse accessor func-

tions.

58
Advanced Techniques for Statice Applications February 2018

Whenever you model a relationship between two entity types, you can put the at-

tribute into either type. For the most part, it doesn’t matter which way you

choose, because you can always make inverse accessors, inverse indexes, and so on.

Usually you can pick whichever one seems most expressive to you.

It is important, however, not to duplicate the same information by representating a

single relationship between two entity types in two distinct attributes; such dupli-

cation is unnecessary and error-prone. In this sense, Statice is different from Lisp.

In Lisp, you can follow the forward direction, but not the backward direction, but

in Statice, you can go in both directions. For example, if you define student to

have an attribute course with an inverse reader, you can get from a course entity

the students taking the course, and there is no need to define course to have an

entity students.

One circumstance in which the choice of direction matters is when you want to

use a multiple index: See the section "Multiple Indexes", page 51. In the example

above, there is a multiple index on attributes title and dept of course. If the rela-

tionship between department and course had been modeled by a course attribute

of the department entity type, there would be no way to make the multiple index.

3.1.2. Representing Information as an Ordinary Value Versus an Entity

When designing a schema, you should think about which kind of information

should be modeled as entities, and which simply as ordinary values, such as string

or integers.

For example, suppose you had an entity type called person, and you wanted to

store the political party in which the person is registered. So you want the entity-

type person to have an attribute named party. What should be the type of the at-

tribute? You might make it a string, and store "Republican" or "Democrat" as the

value. This is simple and straightforward. However, someday you might want to

store attributes of political parties, such as the year the party was founded. In that

case, it would be better to have an entity type called party, and have some enti-

ties of that type, one representing the Republicans and one representing the

Democrats and so on, so that you could store attributes of each party.

In general, you should try to think ahead and anticipate how the database might

grow in the future. By using entities to model things that are distinct objects or

concepts in the real world, you make it easier to expand the database schema in

the future.

3.1.3. Warning About Changing the Package of a Statice Program

If you change the way your application uses Lisp packages, Statice can get con-

fused. This section describes two sources of confusion, and the solutions to them.

Inside each database, the name of the schema is stored. For example, suppose you

make a new database by doing:

(make-database #p"foo:>a>b" ’my-package:my-schema)

Inside the database foo:>a>b, Statice remembers that the symbol my-package:my-

59
February 2018 Advanced Techniques for Statice Applications

schema is the name of the schema. When you open the database later, Statice us-

es this information to locate the template schema information. For background in-

formation: See the section "Template Schemas and Real Schemas", page 110.

When You Move a Statice Program From One Package to Another�

You might later decide to move your program from the package called my-package

to a different package called other-package. You could do this by moving code

from one file to another, or by changing the file attribute lists of an existing file.

However, your databases still "know" that the name of the template schema is my-

package:my-schema. If you try to use these databases, Statice will look in the

my-package package for the symbol my-schema, and won’t find it. If the package

my-package no longer exists, Statice will signal an error trying to intern a symbol

in my-package. If the package does still exist, Statice will signal the

statice:schema-not-loaded error. The error message is:

 The database foo:>a>b contains the symbol my-package:my-schema,

 and expects to find that my-package:my-schema is defined,

 in the Lisp environment, as a Statice schema.

 However, it is not. Perhaps the application

 program is not loaded, not all loaded, or loaded

 into some other package than my-package.

 If the schema is in fact loaded, and the symbol contained

 in the database (shown above) is incorrect, you may use the

 Set Database Schema Name Command to change it.�

To fix the database to know that its schema name is now really other-

package:my-schema, use the following command:

Set Database Schema Name foo:>a>b other-package:my-schema

Do this for every existing database that uses the schema whose package was

changed.

See the section "Set Database Schema Name Command", page 170.

When You Kill and Redefine the Package of a Statice Program�

Here we discuss a problem that can happen when you are writing a Statice pro-

gram in a package (called my-package), and, for some reason or another, you kill

that package (using pkg-kill), and then redefine the my-package package.

Now, if a Statice database refers to the schema my-package:my-schema, and we

open the database, and then we kill the package my-package, and make a new

package called my-package, and reload everything into that new package, Statice

is still holding onto the old symbol that was interned in the old package. So Stat-

ice won’t use the current my-package:my-schema.

The solution for this is to terminate the database and then open it again, which

will make Statice look up the symbol again. Statice calls intern anew and finds

the new symbol.

60
Advanced Techniques for Statice Applications February 2018

statice:terminate-database takes one argument, the pathname where the database

is stored.

See the function statice:terminate-database, page 216.

3.1.4. Obtaining a Symbol From a Database, When the Package is Undefined

Statice signals an error if if you try to get a symbol such as foo:bar out of a Stat-

ice database, and there is no package named foo defined in your Lisp world.

Error: FOO is not meaningful as a package name.

This error offers several proceed options.

This can happen if two clients are using the same database: client A has a pack-

age named foo in its Lisp world but client B does not; client A stores a symbol

from package foo into the database; and client B tries to read it.

Another way it can happen is with only one client: if client A defines package foo,

stores a symbol from package foo into the database, then client A cold-boots, and

tries to read that symbol out of the database but this time it has not defined pack-

age foo.

To be more specific, what happens is that Statice signals the error statice:symbol-

package-not-found. This error is built upon the error sys:package-not-found.

3.1.5. Guide to the Statice Examples

Statice comes with several files of examples, which are in the directory

SYS:STATICE;EXAMPLES;. This section explains each of the example files.

SYS:STATICE;EXAMPLES;BANK-EXAMPLE.LISP

The bank example used in this document. See the section

"Quick Overview of Statice: the Bank Example", page 3.

SYS:STATICE;EXAMPLES;UNIVERSITY-EXAMPLE.LISP

The university example used in this document. See the section

"A More Complicated Schema: the University Example", page

20.

SYS:STATICE;EXAMPLES;PRESENTATION-TYPE.LISP

The definition of the statice-utilities:entity-named-by-string-

attribute presentation type; an example of a presentation type

for entities. See the section "Presentation Type for Statice

Types with Simple String Names", page 106.

SYS:STATICE;EXAMPLES;BOOKS.LISP

A sample Statice application program, using Genera’s user in-

terface management system, that does simple bookkeeping.

This is also a good example for many Dynamic Windows facili-

ties.

61
February 2018 Advanced Techniques for Statice Applications

SYS:STATICE;EXAMPLES;FINGER-HACK.LISP

A daemon program that runs on every client at a site. The

daemon periodically updates a shared Statice database, keeping

track of who is logged in and what the user’s idle time is. This

program features a heavy degree of concurrent access to a

shared database. It has been run with up to 100 clients.

SYS:STATICE;EXAMPLES;IMAGE.LISP

Some simple examples of how to use the statice:image type.

See the statice type specifier statice:image, page 77.

SYS:STATICE;EXAMPLES;EXTENDED-TYPES.LISP

Several examples of extended type definitions, including those

used in this document. See the section "Defining New Statice

Types", page 84.

SYS:STATICE;EXAMPLES;WEATHER-REPORT-COMMAND.LISP

This program gathers and manipulates weather data. It pro-

vides various user interfaces and analysis routines, and accu-

mulates the weather data in a Statice database. Since this pro-

gram relies on the existence of a network server that provides

the raw weather data, it is unlikely that you can run this pro-

gram, but it utilizes many interesting techniques.

SYS:STATICE;EXAMPLES;WEATHER-JOSHUA.LISP

This is a sequel to the weather-report-command example. It

uses Joshua to analyze the weather data, and run simple rules

to predict the weather. This example shows one way to define

a Joshua predicate model that accesses a Statice database, thus

tying the expert system facilities of Joshua to the database fa-

cilities of Statice.�

3.1.6. Checking for Disk Write Errors

Statice has an optional mode in which it checks for disk write errors. When disk

write error checking is turned on, Statice follows every disk write operation with a

disk read operation: it reads back the data that it just wrote, and makes sure that

the data reads back without causing a disk system error (such as an ECC error).

This mode is useful because disk subsystems are sometimes unreliable. If a block

is written with incorrect data, a database could be rendered useless, and have to

be restored from backup tape. The disadvantage of this mode is that it makes writ-

ing slower: every disk write operation now must wait for the disk to spin around

again and for a disk read operation to happen.

On hardware models 3600, 3640, 3645, 3670, and 3675, there has been a problem

observed in the disk subsystem in which disk writing somehow omits one word of

data. Blocks that are written this way will cause an ECC error when they are read

back. The problem is very rare and very hard to reproduce, but it does happen.

Hardware models 3610AE, 3620, 3650, and 3653 have a very different disk subsys-

tem, and this problem has not been observed. Of course, no hardware is perfect.

62
Advanced Techniques for Statice Applications February 2018

The mode is controlled by the value of the global variable dbfs:*check-writes*.

The value is interpreted as follows:

nil No disk write error checking is done.

t Disk write error checking is always done.

:obs Disk write error checking is only done if the machine is of

hardware model 3600, 3640, 3645, 3670, or 3675. This is the

default.

:nbs Disk write error checking is only done if the machine is of

hardware model 3610AE, 3620, 3650, or 3653.�

If a disk write error is detected, a notification is produced with a message like

this:

[01:43:22 DISK WRITE ERROR: Incorrect data written to DBFS log

 causing the following error: (write will be retried)

 %DISK-ERROR-ECC during a %DCW-READ32

 on unit 0., cyl 294., surf 2., sec 23.,

 Fatal ECC error,

 3. pending transfers associated with this disk event aborted.]�

Note: if you get this notification, you don’t have to do anything about it. It just

means that Statice detected the disk write error and intends to fix it. You can

safely ignore the notification.

After sending the notification, Statice retries the write operation. If it fails again,

another notification is sent, and so on; if it succeeds, Statice continues normal op-

eration. It keeps retrying until it has tried more than dbfs:*check-writes-retry-

limit* times; the default value of this variable is 10. If the operation is still failing

after that, Statice signals an error:

Retry limit exceeded while trying to propagate changes

from the DBFS log to the database files.

It offers a proceed type called "Continue trying to rewrite data" which tries the

writes another dbfs:*check-writes-retry-limit* times. If the error persists, Statice

cannot continue to operate; your hardware must be repaired.

3.2. Browsing a Statice Database

The Statice Browser is a facility for viewing and modifying entities in a database.

Selecting the Statice Browser�

The Browser is started by pressing ������ �, or by selecting Statice Browser from

the system menu.

63
February 2018 Advanced Techniques for Statice Applications

Panes of the Statice Browser�

When the Browser starts up, there are six panes in the frame. The format of the

screen resembles that of Document Examiner. The panes include:

Title Displays the title Statice Browser.

Viewing Entities are displayed and modified here; this is the largest

pane.

Current Candidates Shows all the entities which are in the various queries.

Queries Shows all the queries which have been performed so far. A

query is a group of entities which have been selected from the

database.

Commands Displays the commands you enter.

Command Menu Displays the Statice Browser commands.

Choosing a Database to Browse�

To start, you should use the Open Database command to select a database to

browse.

Before using the Browser, the Lisp world must have the package of the schema

defined, and the schema itself defined. If the package for the schema as indicated

in the database is not defined in the Lisp world, then the Browser will signal the

following error:

��

If the package is present, but the schema is not loaded, then the Browser signals

the following error:

��

��

��

��

��

��

��������������������������������

If the schema and its package are present in the Lisp world, then the Browser

sets its "current database" to that name given in the Open Database command,

and indicates this in the label of the viewing window.

Using the Query Command to Select Entities�

Next, you should select some entities using the Query command. The Query com-

mand accepts one argumentan entity type name. If you don’t know what entity

types are available in the database, pressing the ���� key after typing in the

Query command will display a list of possibilities. Once an entity type is entered

and the ������ key pressed, an AVV menu with all of the attributes for that enti-

ty type will appear in the typeout window. Query restrictions for the attributes

64
Advanced Techniques for Statice Applications February 2018

may then be entered for any of the attributes. Once a query is entered for an at-

tribute, another line with the same attribute name on it appears below it, so that

additional restrictions may be given. If an entity type inherits attributes from oth-

er entity types, those attributes also appear in the menu.

For example, given the following entity type definitions:

(define-entity-type person ()

 ((name string :unique t :inverse person-named :inverse-index t)

 (ssn integer :unique t :initform 0 :read-only t)

 (picture image)))

(define-entity-type employee (person)

 ((home-address string :area emp-hom :function-set nil)

 (office string)

 (phones (set-of string))

 (salary integer)

 (dependents integer)))

(define-entity-type faculty (employee)

 ((rank string)

 (teaching (set-of course) :inverse teachers-of)

 (tenure boolean :initform nil)

 (dept department))

 (:area faculty-club)

 (:type-set nil)) �

The following AVV menu will be displayed when Query Faculty is given:

PERSON-NAME: Any

PERSON-SSN: Any

PERSON-PICTURE: Any

EMPLOYEE-HOME-ADDRESS: Any

EMPLOYEE-OFFICE: Any

EMPLOYEE-PHONES: Any

EMPLOYEE-SALARY: Any

EMPLOYEE-DEPENDENTS: Any

FACULTY-RANK: Any

FACULTY-TEACHING: Any

FACULTY-TENURE: Any

FACULTY-DEPT: Any

Entering Query Specifications�

To query for all faculty which have a salary > 10 and < 100, you can click on the

Any next to EMPLOYEE-SALARY: and enter the operator > and the value 10. A

new EMPLOYEE-SALARY: line with the value Any will then appear below into

which you can enter < 100.

65
February 2018 Advanced Techniques for Statice Applications

PERSON-NAME: Any

PERSON-SSN: Any

PERSON-PICTURE: Any

EMPLOYEE-HOME-ADDRESS: Any

EMPLOYEE-OFFICE: Any

EMPLOYEE-PHONES: Any

EMPLOYEE-SALARY: > 10
EMPLOYEE-SALARY: < 100
EMPLOYEE-SALARY: Any

EMPLOYEE-DEPENDENTS: Any

FACULTY-RANK: Any

FACULTY-TEACHING: Any

FACULTY-TENURE: Any

FACULTY-DEPT: Any

When the query is performed, these specifications are all "anded" together; the re-

sult of the query is the set of entities which match the conjunction of all specifica-

tions entered.

You may use any of the following operators for query operator specifications:

= ≠ < > ≤ ≥ any eq eql equal string-prefix string-prefix-exact
string-search string-search-exact string-equal string-greaterp

string-lessp string-not-greaterp string-not-lessp string=

string≠ string< string> string≤ string≥ �

Of course, not all of them may be useful depending on the attribute type; for ex-

ample, string= should not be used on an integer attribute. The operator any may

be used to specify that any value may be used as a match for the query. You may

use entity handles as part of the query specification by clicking on them in anoth-

er window (e.g. the Current Candidates window). You should use the eq operator

for entity-valued attributes.

Finalizing a Query

Pressing ��� executes the query. During query execution, progress notes indicate a

"Counting" phase where the Browser is counting the number of entities that match

the query specifications, followed by an "Executing Query" phase where the enti-

ties are being gathered.

Presentation of Queries

Following query execution, a new query item is placed in the Queries pane. In the

Current Candidates pane, a smaller presentation of the query object and all the en-

tities in that query are displayed. The query object presentations look like this:

[Query on FACULTY (2 entities)]

There is an arrow pointing to this object, indicating that it is the current query.

In this case, two entities were found matching the query specifications.

66
Advanced Techniques for Statice Applications February 2018

Selecting a Query or an Entity

Clicking Left on a query in the Query Pane selects that query and causes the first

entity in that query to be displayed in the Viewing pane.

Clicking Left on any entity handle in the Current Candidates pane selects that en-

tity and displays it as the current entity in the Viewing pane.

Stepping Through the Entitites in a Query

You can step through the entities in a query by any of the following methods:

• Use the Next Candidate command. It takes one argument (the number of candi-

dates to step down) which defaults to 1. There is also a Previous Candidate

command.

• Use the mouse to click on the entity in the Current Candidates pane.

• Use ��� to step down to the next entity handle in the query set. This key also

accepts numeric arguments, so that you can do things like ��� ���, or ���� ���.

The ��� key steps backwards.

Appearance of Entities in the Viewing Pane

In the Viewing pane, the current entity handle is displayed with one attribute and

its value(s) per line. For example, selecting a GRADUATE entity as the current

candidate might cause the following to be displayed in the viewing pane:

��

�����������������������������

�������������������������

��������������������������

�����������������[Click here to display image]

���

���

���

���

���

������������������

������������������

Notice that set-valued attributes are displayed as a group of entities (e.g. the EN-

ROLLMENT attribute above) with ellipses and a count if there are more than

three in the set.

You can click Right on the ellipses and select the "Display more of the set" menu

item to see more of the set-valued attributes. You may also select any of the enti-

ties shown as the current entity by clicking Left on it. For example, you could

view the advisor of Joe Cool above by clicking on the #<Entity-Handle of FACUL-

TY 32/8 534375465> presentation in the above example.

67
February 2018 Advanced Techniques for Statice Applications

Presentation of the Values of Attributes

The Browser uses the attribute’s type as the presentation type when displaying

values. Note that the above entity display has a presentation next to PICTURE:

which may be clicked on to view the image of Joe Cool; the entity type definition

is statice:image which is not a presentation type. The presentation type used by

the Browser may be overriden by placing a statice::browser-ptype property on an

attribute name symbol’s plist. For example, if there is a presentation type called

pop-up-image, then the following form would cause the Browser to present values

of person-picture as pop-up-image.

(setf (get ’person-picture ’statice::browser-ptype) ’pop-up-image)�

Describing an Attribute’s Definition

You may click Middle on an attribute name in the left column of the Viewing pane

to describe its definition. For example, clicking Middle on PICTURE: in the above

example would cause the following to be typed in the typeout window:

DEMO:PICTURE is a slot in entity-type DEMO:PERSON with accessor

function DEMO:PERSON-PICTURE and type STATICE:IMAGE.

It is single valued, not unique, modifiable, not cached, and is

in the default area. It does not have an inverse.�

Modifying a Flavor Instance or an Attribute’s Value

When you describe a flavor instance, you may click ��������� on any of the val-

ues in order to modify that slot.

The same is true for attribute values displayed in the Viewing pane. When you

click ���������, enter a new value, and press ������, a new transaction is

opened, and the attribute value for the entity is set.

Note that the transaction is opened after the value is entered so that the Browser

doesn’t hold a lock on the pages that the entity resides on. That is, once the new

value is entered, no check is made to see if the entity has been changed between

the time that it was displayed in the Viewing pane and the time when the ������

key is pressed. Thus, it is possible that you believe you are changing a value that

is 0 to be 1, but sometime after the 0 was displayed by the Browser, another user

had already modified it to be a different value.

Modifying Groups of Entities: Begin Edits

Another facility exists for changing groups of entity values in a more controlled

manner. The Begin Edits command causes all subsequent changes to entities (us-

ing the ��������� mouse action) to be queued until an End Edits or Abort Edits

command is given. End Edits attempts to make the changes based on a comparison

check specified in the command, and Abort Edits throws out all the pending

changes.

There are two options to the End Edits command:

68
Advanced Techniques for Statice Applications February 2018

:Compare Attributes

{None, Changed, All} Specifies which attributes of the entities

that were changed should be compared for differences between

when they were displayed in the Viewing Pane and their val-

ues at modification time. None causes no comparison to be

done. Changed specifies that only those attributes that were

changed for each entity should be compared. All specifies that

all attributes for the changed entities need to be compared.

The default is Changed.

:Difference Action {Query, Abort, Ignore} Specifies what action should be taken if

the compared attributes turn out to be different. Query lets

the user select which value should be used from the original

displayed value. Abort aborts the changes. Ignore ignores the

differences and writes the new values anyway. The default is

Query.�

Note that during the comparison phase, a separate transaction is opened to read

the values prior to the modification writing. If no differences are detected, then

the same transaction is used to write out the edits to the database. If changes are

detected, the difference action is taken. If the :Difference Action is QUERY, the

user is asked for resolution, and the comparison phase is repeated. If the values

are changing "out from under" the Browser user, then they may be asked many

times about the difference action (since each comparison phase is in a new trans-

action).

Clearing the Browser

You can clear the Browser by using the Clear command. This clears all the win-

dows and resets the current database.

The Browser’s Typeout Window

The Browser has a typeout window. If an error or other type of message should

come up in that window, it can always be cleared with the ����� key. ����������

allows you to have the last screen full of the typeout window appear. It can be

used repeatedly to scroll backwards through the window. Similarly, �������� can

be used to scroll forward through the typeout window.

3.3. Statice Buffer Replacement

Statice supports buffer replacement, which is a scheme to avoid keeping every

paged touched resident in virtual memeory. Buffer replacement allows Statice to

access databases larger than virtual memory. Buffer replacement should also re-

duce the size of the working set of Statice applications, and thus improve perfor-

mance.

69
February 2018 Advanced Techniques for Statice Applications

Buffer replacement works by limiting the number of pages allocated in virtual

memory on a particular machine (client or server), based on a policy set by the

user. If a transaction attempts to allocate a page over the specified limit, the buf-

fer replacement mechanism will attempt to recycle a page which has not been used

recently, rather than allocate a new page. Only pages not currently involved in a

transaction may be recycled. If all pages are currently in use by at least one

transaction, then a new buffer is allocated, despite the limit. Only the number of

pages specified by the users are maintained in a least-recently-used (LRU) fashion.

Any pages over that limit are maintained in a most-recently-used fashion, to mini-

mize virtual memory paging overhead. Thus, the buffer replacement mechanism

permits the user to select the trade-off between LRU performance and paging per-

formance, scaled to the amount of physical memory on the machine.

You can use dbfs:set-buffer-replacement-parameters to tune some buffer replace-

ment parameters.

dbfs:set-buffer-replacement-parameters &key (:page-pool-factor 0.25) (:page-pool-

limit (* 1024 1024))

Enables the user to limit the amount of virtual memory Statice

will use as least-recently-used (LRU) buffer space.

3.4. Dealing with Strings in Statice

This chapter discusses the different ways that strings are compared in Statice, and

then mentions some operators that are specially designed for dealing with strings.

3.4.1. Regular Comparison Versus Exact Comparison

Statice inverse reader functions on string-typed attributes find an entity whose

value, for the attribute in question, equals a supplied value. But what does

"equals" mean? Common Lisp has two kinds of string equality, which we call regu-

lar (default) string equality, and exact string equality. Regular string equality is

sometimes called case-insensitive equality, and exact string equality is sometimes

called case-sensitive equality.

The two kinds of equality testing are implemented by the Common Lisp functions

string-equal and string=. string-equal, in Symbolics Common Lisp, compares two

strings character by character, but ignores the case (upper or lower) and the char-

acter style (face, family, and style). string= pays attention to the case and charac-

ter style. For example, regular equality says that "King" and "king" are equal and

"queen" and "queen" are equal, whereas exact equality considers each pair not

equal.

Statice queries also provide both kinds of equality testing. The conditions in the

:where clause of a statice:for-each have a comparison symbol, such as string-

greaterp. Statice also provides comparison symbols for the exact comparison func-

tions, such as string>. For basic information about :where clauses: See the section

"General Rules of the :where Clause of statice:for-each", page 43.

70
Advanced Techniques for Statice Applications February 2018

3.4.2. Exact Inverse Accessor Functions

Statice uses regular comparison by default. For example, in the Bank example (de-

fined in the section "Basic Concepts of Statice") the inverse function account-

named uses regular comparison, and will consider a person named "d. e. jones" to

be the same as "D. E. Jones".

(define-entity-type account ()

 ((name string :inverse account-named :unique t)

 (balance integer)))

To get an inverse function that uses exact comparison, use the :inverse-exact at-

tribute option. For example:

(define-entity-type account ()

 ((name string :inverse-exact account-named-exactly :unique t)

 (balance integer)))

account-named-exactly is an exact inverse reader function. It’s like an inverse

reader function, but uses exact comparison instead of regular comparison. For ex-

ample, (account-named-exactly "joe") finds a person whose name is "joe", but

does not find a person whose name is "Joe".

You can have both a regular inverse reader and an exact inverse reader for the

same attribute:

(define-entity-type account ()

 ((name string :inverse account-named

 :inverse-exact account-named-exactly

 :unique t)

 (balance integer)))

The uniqueness checking on the name attribute always uses exact comparison.

3.4.3. Exact Indexes

Two Kinds of Indexes

When you use an inverse index on a string-typed attribute, you are implicitly doing

a kind of string comparison. For example, consider the inverse index on the name

attribute of the person entity type. (See the section "Introduction to Indexes in

Statice", page 45.) When we call (person-named "Joe Cool"), Statice goes to the

index to find an index entry whose key matches the string "Joe Cool". This

matching is a string comparison.

Like any string comparison, it could be regular or exact. Which kind of comparison

does Statice use? Either kind, or both kinds, might be useful: it depends whether

you’re trying to speed up a regular inverse accessor, or an exact index accessor, or

both.

Two different kinds of indexes are provided by Statice, one for each kind of com-

parison. The indexes that we’ve discussed so far all use regular comparison; there

is also a kind that uses exact comparison. For every way to make or manipulate a

regular index, there is a corresponding way to make or manipulate an exact index.

71
February 2018 Advanced Techniques for Statice Applications

You can have both a regular index and an exact index, if you want to speed up

both kinds of searches.

How to Make Exact Indexes

To make an exact inverse index on an attribute, use the attribute option :inverse-

index-exact. For example:

(define-entity-type account ()

 ((name string :inverse-exact account-named-exactly

 :inverse-index-exact t :unique t)

 (balance integer)))

You can use both :inverse-index and :inverse-index-exact in the same attribute.

You can use these only on attributes of type string, limited-string, or symbol.

There is no such thing as :index-exact, because the argument of an accessor func-

tion is never string-typed; it’s always entity-typed.

To make an exact multiple index, use the :multiple-index-exact entity type option.

You can have a regular multiple index and an exact multiple index on the same

sequence of attributes, and they are considered distinct indexes. For more informa-

tion on multiple indexes: See the section "Multiple Indexes", page 51.

All functions for making and deleting indexes take a keyword argument called

:exact. The default value is nil, which means that the function operates on a regu-

lar index. If the value is t, the function operates on an exact index. The functions

are statice:make-index, statice:delete-index, statice:index-exists, statice:make-

inverse-index, statice:delete-inverse-index, and statice:inverse-index-exists. For

more information on these functions: See the section "Making and Deleting

Indexes", page 49.

Exact Searches with Regular Indexes

Regular indexes speed up regular searches, and exact indexes speed up exact

searches. Exact indexes don’t help regular searches at all. However, regular index-

es do provide some help to exact searches.

When you ask Statice to do an exact search, and there is no exact index, but there

is a regular index, Statice uses the regular index to help narrow down the field.

For example, if you ask for the value of (account-named-exactly "Joe"), Statice

uses the regular index to find a set of entities whose names are the same as

"Joe" except for case. It finds "joe", "JOE", "Joe", and "jOe". Then, Statice

checks each entity to see if its name is exactly equal to "Joe". The index didn’t

do the whole job, but it probably did most of the work.

So if you sometimes do exact searches and sometimes do regular searches, but you

don’t want to pay the overhead of having two separate indexes, you can get most

of the benfits of both indexes for the cost of a single index by making only a regu-

lar index.

72
Advanced Techniques for Statice Applications February 2018

3.4.4. Statice Operators for Dealing with Strings and Vectors

Statice offers several operators and one option for dealing with string-valued at-

tributes without consing new strings. Two of the operators mentioned here work

on vectors as well as strings.

The :into argument to statice:attribute-value

Reads a string-valued attribute into an already existing string,

thus preventing the consing of a new string.

statice:attribute-value-array-portion entity-handle attribute from-start from-end in-

to-array into-start

Reads a portion of an array-valued attribute into a target ar-

ray.

statice:set-attribute-value-array-portion entity-handle attribute start end from

from-start

Writes from an array into a portion of an array-valued at-

tribute.

statice:do-text-lines (var string-valued-function-call &key (:delimiter ’#\Return)

(:create-function ’#’default-string-create-function)) &body body

Allows a program to iterate over the actual lines of a string-

valued attribute, thus eliminating the need to cons one big

string and break it into lines.

statice:do-text-lines* function entity-handle attribute &key (:delimiter ’#\Return)

(:create-function #’default-string-create-function)
This is the dynamic version of statice:do-text-lines.

3.5. Opening and Terminating Databases

This section discusses the use of statice:open-database, statice:with-current-

database, and statice:terminate-database. Before reading this section, you should

review the section of the Tutorial that discusses the concepts of opening a

database: See the section "Accessing a Statice Database", page 9.

As mentioned in that section, statice:with-database does four things:

1. Determines which database should be opened, based on the pathname.

2. Opens the database, if it’s not already open.

3. Binds the specified variable to the database instance, during the execution of

the body.

4. Makes this database be the current database, during the execution of the

body.

73
February 2018 Advanced Techniques for Statice Applications

Primitives Underlying statice:with-database�

The function statice:open-database does the first two things: given a pathname, it

finds and opens the database. It returns the database object.

The macro statice:with-current-database does the the fourth thing: it makes that

object be the current database, for the (dynamic) extent of its body.

statice:open-database and statice:with-current-database can be thought of as the

primitives underlying statice:with-database. In some cases, however, they can be

useful on their own.

If you need to know what the current database is, you can use the statice:current-

database function, which takes no arguments.

Dealing with Two Databases�

One important use of statice:with-current-database is when you want to deal

with two databases at the same time. Suppose we have a program that is reading

data from one database, and writing it into another database. The important thing

to note is that all references to databases must be to the current database. Here’s

a sample program fragment:

(defun copy-customers-to-people (from-pathname to-pathname)

 (with-database (from-db from-pathname)

 (with-database (to-db to-pathname)

 (with-transaction ()

(with-current-database (from-db)

 (for-each ((c customer))

 (let ((name (customer-name c)))

 (with-current-database (to-db)

(make-person :name name)))))))))�

When we are doing the statice:for-each to search for customers, and when we are

calling customer-name, from-db must be the current database. But when we are

calling make-person to make the new entity, to-db must be the current database.

The example above also finally explains the purpose of the variables in the

statice:with-database form, which we’ve never used until now.

Using statice:open-database and statice:with-current-database for Speed�

Remember that a database is opened only once, and then it stays open. This means

that statice:with-database on an already-open database is much faster than it is

on a database that is not yet open. However, statice:with-database still does take

some time, even if the database is already open. By using statice:open-database,

and storing or keeping track of the database object yourself, you can avoid this

cost, and just use statice:with-current-database whenever you want to operate on

the database. statice:with-current-database is extremely fast.

74
Advanced Techniques for Statice Applications February 2018

Pitfalls with statice:open-database and statice:with-current-database�

If this approach is faster, why ever use statice:with-database? The reason that

statice:with-database still does take some time, even if the database is already

open, is that statice:with-database checks that the pathname you specified still

refers to the same database that it used to. If you use statice:open-database to

open a database named "a", and someone renames that database to "b", your pro-

gram will keep referring to the same database even though the name has changed.

If someone now renames "c" to "a", your program still uses the original "a" rather

than the current "a". This could be confusing.

By the way, while a transaction is running, locks are held to prevent any other

transaction from renaming or deleting any database that the transaction has

opened (with statice:open-database or statice:with-database). If the transaction

uses a database that it did not open (in other words, it uses a database object and

statice:with-current-database), then the database can be renamed or deleted dur-

ing the transaction. If a transaction has read or written a database, and that

database is deleted before the transaction ends, the transaction immediately aborts.

Terminating a Database�

In the section "Accessing a Statice Database", we said that there is no need to

close a database. Although this is true, there is a way to undo the effects of open-

ing a database. It’s called terminating a database; you do it with the function

statice:terminate-database, which takes the pathname of the database as its ar-

gument. Note that, like opening a database, this does not have any effect on the

persistent state of the database; it only affects state within your own Lisp envi-

ronment.

Why terminate a database? One reason is to allow the entity handles associated

with the database to be garbage collected. But the primary reason is more compli-

cated:

Statice provides two ways for you to make an exact copy of a database. You can

use the Copy Statice Database command, or you can do it with the backup dump

system. Every Statice entity has its own unique identity, represented internally by

a numerical unique ID. Now, if you have databases A and B, and B is a copy of A,

you could access two distinct entities (one in each database) that had the same

unique ID. Statice would get very confused, because the unique IDs would not re-

ally be unique. This cannot be allowed. Therefore, you cannot open two database at

once if one of them is a copy of the other.

If A is open, and you try to open B, an error is signalled. The message is some-

thing like this:

The database X:>a exists and has the same

unique ID as the database in file X:>b�

If you really want to open B, you must first terminate A. This is the purpose of

statice:terminate-database.

75
February 2018 Advanced Techniques for Statice Applications

When the above error is signalled, Statice provides a proceed handler that offers

to terminate the database that’s open. In the example, the proceed handler would

offer to terminate X:>a.

3.6. Built-In Statice Types

This chapter describes all the built-in Statice types. For each type, it explains the

possible values that Statice can model, and the Lisp representations of the values.

It explains some of the fine points of how Statice deals with certain kinds of Lisp

values; for example, the treatment of fill pointers in strings, and strings that are

indirect arrays.

It also tells how much storage is occupied by each value. Some values take an in-

teger number of (32-bit) words. Other values use up a fractional number of words:

a number of bytes, or even just a few bits. Statice attempts to pack these smaller

values together into words so as to minimize the total number of words allocated.

For some values, the amount of storage depends on the value itself. For example, a

value of type string takes more space when the string is longer. This variable por-

tion of storage is always rounded up to the nearest word.

Statice also understands Common Lisp types and presentation types that inherit

from, expand into, or are equivalent to built-in Statice types. For example, (mod 3)

and (signed-byte 5) can be used as Statice types.

In addition to the built-in types, you can extend Statice to use types of your own,

either by defining presentation types that inherit from built-in types, or by using

the statice-type:define-value-type special form to define new types. See the sec-

tion "Defining New Statice Types", page 84.

statice:all-but-entity Statice Type Specifier

Represents any Lisp object except entity handles. The restrictions on what

kinds of Lisp objects are supported are the same as noted for the t Statice

type specifier: See the statice type specifier t, page 81.

The t Statice type specifier represents any Lisp object, including entity

handles. The statice:entity-handle Statice type specifier represents entity

handles.

The reason this type exists is to improve performance. When statice:delete-

entity searches for all existing references to the entity being deleted, it has

to examine every value that might hold such a reference. Since any entity

could be stored in any attribute of type t, such an attribute must be

checked, for every entity. This type cannot store entities, so its presence in

the database does not slow down the statice:delete-entity operation.

statice:alist-member Statice Type Specifier

Represents an association list of items. equalp is the equality predicate. So,

for example, "A" is considered to be a proper value of the following type:

((alist-member :alist (("a" . a) ("b" . b))))

76
Advanced Techniques for Statice Applications February 2018

See the presentation type alist-member in User Interface Dictionary.

alist-member is implemented by encoding the possible values into the

smallest possible packed bit field. If the attribute does not provide the :no-

nulls option, the null value counts as a possible value. For example, the ex-

ample type above occupies two bits if :no-nulls is provided, and three bits

if :no-nulls is not provided.�

boolean Statice Type Specifier

Represents a boolean value (true or false). The Lisp representation is nil

for false and t for true. Note that only the symbol t is accepted as a repre-

sentation of true, not any non-nil object; this is for compatibility with the

definition of the Lisp boolean type.

Because nil is the Lisp representation of a value, you can’t use nil to mean

the null value when you use accessor functions. See the section "The Stat-

ice Null Value", page 29.

The implementation of boolean depends on whether the attribute allows

null values or not. See the section "The :no-nulls Attribute Option", page

31. A boolean value occupies one bit if null values are not allowed, or two

bits if null values are allowed.

character Statice Type Specifier

Represents a Lisp character, in any character set, with any bits, and in any

character style. The Lisp representation is the corresponding Lisp character

object. See the type specifier character in Symbolics Common Lisp Dictio-

nary. See the presentation type character in User Interface Dictionary. See

the section "Type Specifiers and Type Hierarchy for Characters" in Symbol-

ics Common Lisp Language Concepts.

There is one exception: the character whose code is 255 cannot be repre-

sented, because the value 255 is reserved to represent the null value. Since

255 is an unused character code within the standard character set, this is

unlikely to cause problems.

A value of type character occupies sixteen bits. In addition, every time a

new combination of character set, style, and bits is used, an entry is added

to a per-database table. The size of the entry depends on the many things,

such as the length of the name of the character style, etc, but is typically

on the order of ten words long.�

double-float Statice Type Specifier

Represents a floating point number, stored in IEEE "double" format (64

bits). The Lisp representation is a Lisp double-float value. Values must be

of type double-float; no coercion is performed from other types, not even

from single-float.

The Common Lisp double-float type accepts data arguments, to let you

specify subranges. Statice understands these data arguments and does ap-

propriate error checking. Examples:

77
February 2018 Advanced Techniques for Statice Applications

(double-float 2.0d0 5.0d0) A double-float x where 2.0 ≥ x ≥ 5.0
(double-float 2.0d0 (5.0d0)) A double-float x where 2.0 ≥ x > 5.0
(double-float 2.0d0 *) A double-float x where 2.0 ≥ x

See the type specifier double-float in Symbolics Common Lisp Dictionary.

A double-float value occupies two words.�

statice:entity-handle Statice Type Specifier

Represents any type of entity handle. This occupies one word, as does any

entity-typed attribute.�

statice:image Statice Type Specifier

Represents a 2-dimensional bit array. For an array to be an image, one of

the following must be true:

• The width is a multiple of 32.

• The array is an indirect array conformally displaced to an underlying ar-

ray whose width is a multiple of 32.

Values of the Statice image type represent two-dimensional, black-and-

white, image data. The Lisp representation of such an image is a raster,

created with the function make-raster-array. See the section "Rasters" in

Symbolics Common Lisp Language Concepts.

Because of restrictions of the bitblt function, the raster’s width must be a

multiple of 32. However, sometimes it is important to be able to represent

images whose width is a specific number that’s not a multiple of 32. The

solution is to make a conformally displaced raster of the desired width, that

is displaced to an underlying raster whose width is a multiple of 32. When

graphics:draw-image is given such a conformally displaced array, it only

draws a region the size of the displaced array.

The example program in the file sys:statice;examples;image.lisp demon-

strates a simple example of using the statice:image type. A snapshot in-

stance has a name and a picture; the type of the picture attribute is image.

setup-image-database makes the database and puts two snapshots into it.

The first snapshot holds a raster whose width is a multiple of 32, and the

second snapshot holds a conformally displaced raster, 59 wide, displaced to

the first raster. The function show-image-database displays all the snap-

shots in the database.�

integer Statice Type Specifier

Represents any mathematical integer, without limit. The Lisp representa-

tion is a Lisp integer value.

The Common Lisp integer type accepts data arguments, to let you specify

integer subranges. Statice understands these data arguments and does ap-

propriate error checking. Examples:

78
Advanced Techniques for Statice Applications February 2018

(integer 2 5) 2, 3, 4, or 5

(integer 2 (5)) 2, 3, or 4

(integer (2) *) an integer greater than 2

See the type specifier integer in Symbolics Common Lisp Dictionary.

The implementation of integer depends on the data arguments. If there are

two data arguments, and each is numeric rather than *, the type is a

bounded subrange with a finite number of possible values. In this case,

Statice uses a "packed" field, whose length is bits is the logarithm base 2 of

the number of possible values (including the null value if :no-nulls is

false).

Otherwise, there is an infinite range of values. In this case, the implemen-

tation alway takes at least one word. It takes exactly one word if the inte-

ger value is less than (expt 2 30) and greater than or equal to (- (expt 2

30)). If the value is outside that range, it takes more and more words, as

necessary to hold the value, storing one word for each additional 31 bits

needed to represent the integer.�

statice:limited-string Statice Type Specifier

(statice:limited-string n) represents a vector of characters with no more

than n characters. A single data argument n must always be given. The

limited-string can be any length less than or equal to n. Note that the

meaning of the data argument to statice:limited-string is not the same as

that of string’s data argument.

The characters of the string must all be of type string-char, which means

they must be in the standard character set with bits field of zero and style

of NIL.NIL.NIL. Furthermore, character codes 128 and 255 cannot be rep-

resented. See the type specifier string-char in Symbolics Common Lisp Dic-

tionary. See the section "Type Specifiers and Type Hierarchy for

Characters" in Symbolics Common Lisp Language Concepts.

(statice:limited-string n) values occupy exactly n bytes of storage, regard-

less of how long the string is. Any leftover space in the last (or first) word

is available for other values. For example, two values of type

(statice:limited-string 6) occupy exactly three words.

The purpose of this type is to provide high storage efficiency, in exchange

for restrictions on the string. This type is similar to the string types pro-

vided in conventional relational database systems.

statice:limited-string is appropriate mainly when you know in advance that

there is a particular, short limit on the length of strings that will ever ap-

pear in a field. For example, the three-letter codes used to designate air-

ports could be stored in an attribute of type (statice:limited-string 3).

However, it is unwise to use statice:limited-string simply because you

think it’s unlikely that an attribute value will exceed a certain length. Un-

less you’re sure, it’s best to stick with string, rather than have to truncate

or otherwise mangle a data value to make it fit into a fixed-length field.�

79
February 2018 Advanced Techniques for Statice Applications

member Statice Type Specifier

Represents one of a series of objects. eql is used to test a value for equali-

ty. So, for example, a is considered to be a proper value of the following

type:

(member a b)�

The following type is nearly useless, since other strings with the same

characters are not considered to be equal to the string objects in the type:

 (member "a" "b")�

See the type specifier member in Symbolics Common Lisp Dictionary.

member is implemented by encoding the possible values into the smallest

possible packed bit field. If the attribute does not provide the :no-nulls op-

tion, the null value counts as a possible value. For example, the type (mem-

ber a b) occupies two bits if :no-nulls is provided, and three bits if :no-

nulls is not provided.�

dw:member-sequence Statice Type Specifier

Represents one of a sequence of objects. eql is used for comparison. For

example, a is considered to be a proper value of the following type:

(dw:member-sequence (a b))

Since eql is used for comparison, the following type is nearly useless, be-

cause other strings with the same characters are not considered to be equal

to the string objects in the type.

(dw:member-sequence ("a" "b"))�

You can provide the equality-testing function explicitly by using the :test

presentation argument. For example, "A" is considered to be a proper value

of the following type:

(dw:member-sequence ("a" "b") :test equalp)�

When providing an equality-testing function, be sure to choose a function

that can accept any Lisp argument as input, such as equalp, rather than

one that signals an error when given certain objects, such as string-equal.

See the presentation type dw:member-sequence in User Interface

Dictionary.

dw:member-sequence is implemented by encoding the possible values into

the smallest possible packed bit field. If the attribute does not provide the

:no-nulls option, the null value counts as a possible value. For example, the

type (dw:member-sequence (a b)) occupies two bits if :no-nulls is provid-

ed, and three bits if :no-nulls is not provided.�

statice:pathname Statice Type Specifier

Represents a Genera pathname, from the generic file system. The Lisp rep-

resentation is a pathname instance. When a logical pathname is stored, it is

first translated to a physical pathname. See the section "Naming of Files"
in Program Development Utilities.

80
Advanced Techniques for Statice Applications February 2018

The implementation of pathname is as a logical type built on string. The

pathname’s :name-for-printing, with the host name fully qualified (includ-

ing the site name), is stored as a string, and parsed when read.�

single-float Statice Type Specifier

Represents a floating point number, stored in IEEE "single" format (32

bits). The Lisp representation is a Lisp single-float value. Values must be

of type single-float; no coercion is performed from other types, not even

from double-float.

The Common Lisp single-float type accepts data arguments, to let you spec-

ify subranges. Statice understands these data arguments and does appropri-

ate error checking. Examples:

(single-float 2.0 5.0) A single-float x where 2.0 ≥ x ≥ 5.0
(single-float 2.0 (5.0)) A single-float x where 2.0 ≥ x > 5.0
(single-float 2.0 *) A single-float x where 2.0 ≥ x

See the type specifier single-float in Symbolics Common Lisp Dictionary.

A single-float value occupies one word.�

string Statice Type Specifier

Represents a vector of characters, of any length. The Lisp representation is

a Lisp string value. The characters can be in any character set and any

character style.

The Common Lisp string type accepts one data argument, which specifies

the length of the string. For example, (string 3) means strings whose

length is exactly 3. Statice performs this type check. See the type specifier

string in Symbolics Common Lisp Dictionary. See the presentation type

string in User Interface Dictionary.

Statice’s model of a string is as a vector of characters. Statice strings do

not model fill pointers or indirect or displaced arrays. If you store a string

with a fill pointer, Statice stores all of the characters up to the fill pointer,

but does not take any notice of the rest of the elements or of the total size

of the array. If you read a string value from Statice, you get a string with

no fill pointer whose :element-type is character. To read string informa-

tion from Statice into other arrays, use the special facilities for strings:

See the section "Statice Operators for Dealing with Strings and Vectors",
page 72.

The implementation of string depends on whether the string has any non-

thin characters. By thin characters, we mean characters in the standard

character set whose style is NIL.NIL.NIL. A thin string of length n takes

up (ceiling n 4) words, plus one word, plus an extra word if the n is

greater than 4095. Strings with non-thin characters are encoded using a set

of algorithms that use data-compression techniques such as run-length en-

coding to minimize storage usage; there’s no simple formula for the size,

but it tends to be greater when many character sets and characters styles

are used and when there are many transitions from one to the other. The

data argument does not affect the implementation.�

81
February 2018 Advanced Techniques for Statice Applications

string-char Statice Type Specifier

Represents characters that are of the Common Lisp type string-char, name-

ly characters that are in the standard character set with bits field of zero

and style of NIL.NIL.NIL. The Lisp representation is the corresponding

Lisp character object. See the type specifier string-char in Symbolics Com-

mon Lisp Dictionary. See the section "Type Specifiers and Type Hierarchy

for Characters" in Symbolics Common Lisp Language Concepts.

There is one exception: the character whose code is 255 cannot be repre-

sented, because the value 255 is reserved to represent the null value. Since

255 is an unused character code within the standard character set, this is

unlikely to cause problems.

A value of type string-char occupies eight bits.�

symbol Statice Type Specifier

Represents a Lisp symbol from any package. Any Lisp symbol is a legal

value. The print-name of the symbol can include characters with any char-

acter set and character style (although this is unusual). See the type speci-

fier symbol in Symbolics Common Lisp Dictionary. See the presentation

type symbol in User Interface Dictionary.

The Statice symbol type only stores the symbol’s print name and the name

of the symbol’s package. It does not store the value, definition, or property

list of the symbol. When you read a symbol value, Statice calls intern to

find or create the appropriate symbol in the Lisp world. If the specified

package does not already exist in the Lisp world, Statice signals

sys:package-not-found, which has various proceed handlers you can use.

The implementation of symbol is similar to that of string. See the statice

type specifier string, page 80.

It’s somewhat more complicated because the package name must also be

stored. Package names are shared in a table and referenced by integer in-

dexes in order to save space. The formula for the size of strings is too com-

plicated to present in full because of the complexity of the data compres-

sion, but in all cases common in practice a symbol takes up the same

amount of space as a string: if the length of the print-name is n, the sym-

bol takes up (1+ (ceiling n 4)) words.

For a discussion of what happens if you try to read, from a database, a

symbol that resides in a package that doesn’t exist in your Lisp environ-

ment: See the section "Obtaining a Symbol From a Database, When the

Package is Undefined", page 60.�

t Statice Type Specifier

Represents any type that can be dumped by the binary dumper. In fact, it

does just that  invokes the binary dumper  to format the data. Thus, it

should be used only when no more specific type is appropriate.

Below, we go into more detail about the kinds of objects that t can handle.

For more information than is given here: See the section "Putting Data in

Compiled Code Files" in Program Development Utilities.

82
Advanced Techniques for Statice Applications February 2018

The t Statice type specifier can handle:

• Any kind of number.

• Any character object, string, or symbol.

• Any array and any list, as long as all the elements are themselves things

that the type t can handle.

• Compiled code objects (as long as any constants referred to by the object

are themselves things that the type t can handle.) (Note that interpreted

code objects can also be handled, because they are lists.)

• Generic function objects.

• Locatives to the value cell or function cell of a symbol.

• Instances of flavors, if and only if the flavor has a :fasd-form method.

The t Statice type specifier cannot handle the following, and will signal an

error if you try to store one of them:

• All other locatives.

• Dynamic closures.

• Lexical closures.

• Logic variables.

• Stack groups.

• Circular or self-referential objects.�

time:time-interval Statice Type Specifier

Represents a time interval. See the presentation type time:time-interval in

User Interface Dictionary.

This type is the same as the integer type, except for the presentation as-

pects of the type (the printer, parser, and so on). See the statice type speci-

fier integer, page 77.�

time:time-interval-60ths Statice Type Specifier

Represents a time interval in 60ths of a second. See the presentation type

time:time-interval-60ths in User Interface Dictionary.

This type is the same as the integer type, except for the presentation as-

pects of the type (the printer, parser, and so on). See the statice type speci-

fier integer, page 77.�

time:universal-time Statice Type Specifier

Represents a universal time. See the presentation type time:universal-time

in User Interface Dictionary. This type is the same as the integer type, ex-

cept for the presentation aspects of the type (the printer, parser, and so

on). See the statice type specifier integer, page 77.�

vector Statice Type Specifier

Represents a vector of integers. The type spec must specify the element-type

data argument, which must be either fixnum or (unsigned-byte n), where

n is a positive integer power of two less than or equal to 32. That is, n

83
February 2018 Advanced Techniques for Statice Applications

must be 1, 2, 4, 8, 16, or 32. fixnum means the same thing as (unsigned-

byte 32). See the type specifier vector in Symbolics Common Lisp Dictio-

nary.

The implementation of vector has two cases. If the data argument is

fixnum or (unsigned-byte 32), there are two fixed overhead words, plus

one word for each element of the vector. Otherwise, there are three fixed

overhead words, and the number of bits needed for each element is n.

Statice offers a convenient way to read or write a portion of a vector into a

existing array, thus avoiding the need to cons a new one: See the function

statice:attribute-value-array-portion, page 185. See the function

statice:set-attribute-value-array-portion, page 215.�

3.6.1. Types Not Supported by Statice

The following are some basic Symbolics Common Lisp types not supported by Stat-

ice:

• and

• array

• atom

• common

• compiled-function

• cons

• function

• hash-table

• instance

• list

• locative

• not

• or

• package

• random-state

• readtable

• satisfies

• sequence

• simple-array

• simple-vector

• stream

• structure

• sys:dynamic-closure

• sys:generic-function

• sys:lexical-closure

• values

84
Advanced Techniques for Statice Applications February 2018

3.7. Defining New Statice Types

The Statice type system is extensible: you can define new types. This section de-

scribes how to do so.

Several examples of definitions of new Statice types are provided in the file

sys:statice;examples;extended-types.lisp.

3.7.1. Physical and Logical Statice Types

When you make a new type, you can make either a physical type or a logical type.

The key difference between the two kinds of types is how data values are fetched

from and stored into the database. A physical type does its own translation of a

data value from "raw bits" into a Lisp object. A logical type relies on an underly-

ing type to do this translation; it can impose a further translation between the

Lisp values produced by the underlying type and the Lisp values that it shows to

and accepts from the client program.

Example of Using Logical Types

Suppose you want a type whose possible values are "maroon", "ultramarine", and

"turquoise". You want to disallow any other values. (This idea is similar to an

"enumerated type" in Pascal.) You could make a logical type based on the integer

underlying type, and provide functions to encode the three strings into the integer

values 0, 1, and 2 when a value is written and to decode the number back into a

string when a value is retrieved. When a Statice client stores data into the

database or fetches data back, your functions are invoked to encode and decode the

values.

Example of Using Physical Types

Suppose you want a type that can store rational numbers, but only those that are

positive and whose numerator and denominator fit within eight bits. You specifical-

ly want to store these values in only 16 bits. Using a logical type based on the

integer type would occupy at least 32 bits. (Here we assume there is no available

physical type to build on, although in practice there might be.) You could define a

physical type that can get direct access to the 16 bits, and build the rational num-

ber directly.

In general, logical types are easier to define and to debug than physical types. Al-

so, bugs in the implementation of a physical type can destroy the integrity of the

database. It’s usually best to use logical types if you can, and use physical types

only when necessary.

3.7.2. Defining Lisp and Statice Types

To make a new Statice type, there are two major steps.

1. Define a new Lisp presentation type.

85
February 2018 Advanced Techniques for Statice Applications

2. Tell Statice how to store elements of this Lisp type into a database.

To define a new presentation type, use define-presentation-type. While you’re at

it, you can define a printer, a parser, and so on.

The name of your new type should be a symbol whose home package is normally

the package of your own application program, in order to prevent name conflicts.

We suggest not using keywords.

Presentation types can have data arguments and presentation arguments. The type

of any Statice attribute is a full presentation type, with arguments. When you de-

fine a Statice type, however, you specify only the type name (the symbol), and so

you are actually defining a parameterized family of types. Your handlers are given

the presentation type arguments to examine. Make sure that the valid values for

the data arguments and presentation arguments can all be read from printed rep-

resentations. Statice signals an error if there is an attempt to create a type whose

type specifier cannot be printed readably.

For example, to define the "enumerated" type mentioned in "Physical and Logical

Statice Types", we could choose the type name enumerated. Then a sample pre-

sentation type might be (enumerated "maroon" "ultramarine" "turquoise"). The

three strings are data arguments. This presentation type means a type whose val-

ues must be one of string-equal to one of those three strings.

If your new type is also a Lisp flavor, the defflavor form already defines a new

Lisp type. However, you must also provide a define-presentation-type form as

well. Be sure to use the :no-deftype option to define-presentation-type in this

case.

3.7.3. Defining Logical Types

A logical type is build on top of an underlying type (which can be physical or log-

ical). The logical type works by encoding one Lisp representation into another Lisp

representation. Logical type are easier to implement than physical types.

We show the entire implementation of the enumerated type mentioned in "Physi-

cal and Logical Statice Types" and then explain each of the forms. This example is

in the statice-type package.

(define-presentation-type enumerated ((&rest elements))

 :abbreviation-for ‘(and string (member . ,elements)))

(define-value-type enumerated

 (:format :logical)

 (:based-on integer))

(defmethod (encode-value enumerated-handler) (value)

 (position value (cdr presentation-type) :test #’string-equal))

(defmethod (decode-value enumerated-handler) (integer)

 (nth integer (cdr presentation-type)))

86
Advanced Techniques for Statice Applications February 2018

The define-presentation-type Form

The define-presentation-type form defines enumerated as a presentation type.

This form is part of Genera’s user interface substrate, and is not specific to Stat-

ice. It creates a new Lisp type similar to the statice-type::member type, but all of

the elements must be strings.

The statice-type:define-value-type Special Form

The statice-type:define-value-type special form defines a new value type. The

first subform is the type name, a symbol. The :format clause says that this is a

logical type. The :based-on clause specifies the presentation type upon which this

new type is based. The "based on" presentation type must be understood by Statice

before the new type can be used in a database.

Name of the Flavor Representing a Type

When writing methods, the name of the flavor representing this type is formed by

the following convention: the type’s name followed by the suffix -handler. In this

example, the enumerated type has the corresponding flavor named enumerated-

handler. Thus, the methods specialize on enumerated-handler.

The statice-type:encode-value Method

The statice-type:encode-value method is given the type and a Lisp object that is

the representation of a valid member of this type. It must return the Lisp object

that represents the argument in the terms used by the underlying type. In general,

each logical type is required to provide a method for statice-type:encode-value.

In the example, the statice-type:encode-value method takes the type and a string,

finds the string’s position in type’s list of data arguments, and returns that posi-

tion, which is an integer.

Statice guarantees the the Lisp object passed to the statice-type:encode-value

method is of the specified type, so the method need not check. Methods for

statice-type:encode-value need not be conerned with null values: if the underlying

type is holding a null value, these methods are not called.

The statice-type:decode-value Method

The statice-type:decode-value method is given the type and a Lisp object that is

the representation in the terms used by the underlying type. It must return the

Lisp object that represents the argument in terms of this type. In general, each

logical type is required to provide a method for statice-type:decode-value.

In the example, the statice-type:decode-value method takes the type and an inte-

ger, looks down the cdr of the type for the indexed element, and returns the string

that it finds.

Methods for statice-type:decode-value need not be conerned with null values: if

the underlying type is holding a null value, these methods are not called.

87
February 2018 Advanced Techniques for Statice Applications

More about Encoding and Decoding Methods

When two elements of a logical type are compared to each other, for sorting or for

"range" queries (that is, :where criteria involving comparisons), the underlying val-

ues are compared. Thus, the methods of encoding and decoding determine the

equality predicate for values, as well as ordering of the values for comparison pur-

poses and sorting purposes.

Another Example: Simple Integrity Checking

Here’s an even simpler example of a logical type, called string-without-e. This is

the same as the built-in string type, except that it does not allow its values to

have the letter "e" in them. This example shows that logical types can be used to

provide arbitrary constraints on the values of a type. This is a simple form of

what is known in the database world as "integrity checking": making sure that the

only data in the database is "valid", where the particular application defines the

concept of being "valid".

(defun without-e (string)

 (not (find #\e string :test #’char-equal)))

(define-presentation-type string-without-e ()

 :abbreviation-for ’(and string (satisfies without-e)))

(define-value-type string-without-e

 (:format :logical)

 (:based-on string))

Note that it is not necessary to provide methods for statice-type:encode-value and

statice-type:decode-value. The Lisp type system takes care of forbidding the letter

"e", and the statice-type:define-value-type informs Statice that a string-without-e

is stored the same way as a statice-type::string.

Computing the Underlying Type

In these examples, the value of the :based-on attribute is a constant, always exact-

ly the same for any logical type. Sometimes, you might want to compute the based-

on type, depending on the exact presentation type. For example, the member logi-

cal type constructs its underlying type to be an integer subrange that is just large

enough to represent the integers that can arise, in order to save storage. For ex-

ample:

(define-value-type member

 (:format :logical)

 (:based-on-function member-based-on))

(defun member-based-on (presentation-type)

 ‘(integer 0 (,(length (cdr presentation-type)))))

The :based-on-function clause can be used instead of the :based-on clause in any

definition of a logical type. The clause names a function. When any particular pre-

sentation type is given to Statice that is handled by this logical type definition,

88
Advanced Techniques for Statice Applications February 2018

such as (member a b c), the function is called with that presentation type as its

argument. The function must return the presentation type of the underlying type,

e.g. (integer 0 (3)).

3.7.4. Defining Physical Types

A physical type works by storing a Lisp representation of a value into actual bits

and retrieving those bits to reconstruct a Lisp representation. It’s harder to write

a physical type than a logical type, but in some cases you can achieve greater

speed and/or storage efficiency.

Records

All values are stored in containers called records. A record can be thought of as a

contiguous vector of words. Each word holds a 32-bit signed integer. (Note that

words are 32-bit quantities regardless of the word size of the host computer.) Ev-

ery value of any type is ultimately represented in words and stored into records.

There is no limit on the size of records. (They can span pages; they are not con-

tiguous at the physical level of abstraction. Statice handles all this for you.)

A record addressor is a Lisp object that names a record. Several of the type han-

dlers that are defined as part of a physical type are given record addressors as ar-

guments. A record addressor can be read-only, or writable; Statice passes the ap-

propriate kind of addressor to the appropriate type handlers.

You are responsible for making sure that you write only into the portion of the

record assigned to your data item. Writing into the wrong part of the record can

destroy the integrity of the database! Be sure to write your methods carefully, and

test them thoroughly before you use your new physical type in a database with

valuable contents.

There are four functions you can call on record addressors:

statice-storage:read-record-word record-addressor index &key :buffer-p

Reads the word specified by index from the record specified by

record-addressor, and returns it.

statice-storage:write-record-word record-addressor index new-value &key :buffer-p

Writes new-value into the word specified by index of the record

specified by record-addressor.

statice-storage:read-multiple-record-word record-addressor start-index end-index

&key :into :into-start

Reads a contiguous subsequence of words from the record into

an array on the data stack.

statice-storage:write-multiple-record-word record-addressor start-index end-index

new-value

Writes a contiguous subsequence of words from an array on

the data stack into the record.

89
February 2018 Advanced Techniques for Statice Applications

Variable-Format and Fixed-Format

There are two kinds of physical types: variable-format and fixed-format. When a

physical type is of variable-format, each individual value of that type can take up a

different amount of storage in its record. When a physical type is of fixed-format,

all values of that type take up exactly the same amount of space. In a variable-

format type, the amount of space is always an integer number of words. In a fixed-

format type, the amount of space can be any number of bits.

We discuss these further in sections"Defining a Variable-Format Physical Type"
and "Defining a Fixed-Format Physical Type".

3.7.5. Defining a Variable-Format Physical Type

In this section we show the entire implementation of an example variable-format

physical type called hw-vector, and then explain the forms one at a time. hw-

vector is a type that holds vectors of arbitrary length, whose elements are signed

16-bit integers (that is, integers between -32768 and 32767 inclusive). (hw-vector�

i) is the same, but the vector must have no more than i elements; i must be an

integer. (Here "hw" as an abbreviation for "half-word".)

Lisp representations of hw-vector values can be vectors of any element type, as

long as the element are all signed 16-bit integers. If the array has a leader, the

leader is used as the length. The Statice representation does not store the Lisp el-

ement type, nor whether there was a leader or not, nor the contents of the array

past the leader.

In this example, hw-vector is further defined such that it is not meaningful to

compare two elements of type hw-vector, and it is not possible to build an index

on an attribute of type hw-vector.

The basic idea of the implementation is to store two elements in each word. How-

ever, it is also necessary to store the number of elements; Statice tells us the

length of our portion of the record in words, but we need to know it in half-words,

which takes one bit. We use the first half-word to encode the low-order bit of the

length. The real length is computed as the number of words in our portion of the

record, times two, minus one for the first half-word, and minus another one if the

length bit is set. (The length bit subtracts one, rather than adding one, so that we

can represent a length of zero.)

Variable-format physical types need not concern themselves with the null value.

Statice takes care of the representation of the null value automatically.

90
Advanced Techniques for Statice Applications February 2018

(define-presentation-type hw-vector ((&optional limit))

 :expander ’vector

 :typep ((value)

 (and (vectorp value)

 (let ((len (length value)))

 (and (or (null limit) (≤ len limit))
 (every #’(lambda (value)

 (typep value ’(integer #o-100000 (#o100000))))

 value))))))

(define-value-type hw-vector

 (:format :variable))

(defmethod (read-value hw-vector-handler) (addressor word-offset n-words)

 (let* ((first-word (read-record-word addressor word-offset))

 (length (- (* 2 n-words) 1 (ldb (byte 1 0) first-word)))

 (vector (make-array length)))

 (loop for j below length

 for right first nil then (not right)

 with word = first-word

 with i = word-offset do

(when right

 (setq word (read-record-word addressor (incf i))))

(let ((raw-byte (ldb (if right (byte 16 0) (byte 16 16)) word)))

 (setf (aref vector j)

(if (zerop (ldb (byte 1 15) raw-byte))

 raw-byte

 (- raw-byte (expt 2 16))))))

 vector))

(defmethod (value-equal hw-vector-handler) (value addressor word-offset n-words)

 (let ((first-word (read-record-word addressor word-offset))

 (length (length value)))

 (and (= length

 (- (* 2 n-words) 1 (ldb (byte 1 0) first-word)))

 (loop for j below length

 for right first nil then (not right)

 with word = first-word

 with i = word-offset do

 (when right

 (setq word (read-record-word addressor (incf i))))

 (unless (= (aref value j)

(ldb (if right (byte 16 0) (byte 16 16)) word))

 (return nil))

 finally (return t)))))

91
February 2018 Advanced Techniques for Statice Applications

(defmethod (size-of-value hw-vector-handler) (value)

 (ceiling (1+ (length value)) 2))

(defmethod (write-value hw-vector-handler) (vector addressor word-offset n-words)

 (declare (ignore n-words))

 (let ((length (length vector)))

 (loop for j below length

 for right first nil then (not right)

 with word = (if (oddp length) 0 (dpb 1 (byte 1 0) 0))

 with i = word-offset do

 (when right

(setf (read-record-word addressor i) word)

(incf i)

(setq word 0))

 (setq word (sys:%logdpb (aref vector j)

 (if right (byte 16 0) (byte 16 16))

 word))

 finally

 (setf (read-record-word addressor i) word))))

 �

The define-presentation-type Form

As with logical types, the first step in making a new Statice type is to define a

Lisp type. This is just an ordinary define-presentation-type form that defines hw-

vector as a Lisp type. It could be enhanced with other clauses, such as :parser

and :printer.

The statice-type:define-value-type Form

The statice-type:define-value-type special form tells Statice that hw-vector is to

be represented in Statice databases using the physical type mechanism. The key-

word symbol :variable means that this is a variable-format type, as opposed to

fixed-format.

The statice-type:read-value Method

The statice-type:read-value method is given a record with a value stored in it. It

must make and return the Lisp representation of that value.

The first argument is record addressor for the record. The second argument is the

word-offset into the record of the first word of this value’s portion of the record.

The third argument is the length of the portion, in words. The record addressor is

read-only (or, in any event, not guaranteed to be writable), and the method must

not write into the record. The word-offset is a positive integer and the length is a

non-negative integer.

92
Advanced Techniques for Statice Applications February 2018

The statice-type:value-equal Method

The statice-type:value-equal method receives exactly the same arguments as

statice-type:read-value, and has the same restrictions, except that takes one extra

argument, called value, at the beginning. value is the Lisp representation of a data

value of this type, or the null value, if this type allows null values. The method

should return true if the value in the record is considered equal to value. The null

value must be considered equal only to the null value, and no other value.

This is the method’s way of expressing what it considers equality to be. In the ex-

ample, note that the method considers two hw-vectors the same if they have the

same length and contents, but it does not care about the element type of the Lisp

vector.

The statice-type:size-of-value Method

The statice-type:size-of-value method receives an argument that is a valid Lisp

representation of a value of the type. It must return the number of words of a

record that would be used to represent this value. Statice uses this method to de-

termine how much space must be allocated to store a value into a record.

The statice-type:write-value Method

The statice-type:write-value method receives exactly the same arguments as

statice-type:read-value, and has the same restrictions, except that it takes one ex-

tra argument, called value, at the beginning. value is the Lisp representation of a

data value of this type. The addressor is writable, and the length argument is the

same value as statice-type:size-of-value would return for the value (in fact, that’s

how Statice knew how much room to allocate). The method should write the value

into the portion of the record, or write an indication that the value is null.

3.7.6. Defining a Fixed-Format Physical Type

We’ll show the entire implementation of a fixed-format physical type, and then ex-

plain the forms one at a time. The type in example is called tiny-rational, and it

stores rational numbers whose numerator and denominator are known to fit into

sixteen bits.

The implementation uses a 16-bit byte field, aligned on 16-bit boundaries, which

means that the field cannot be split across words. Eight bits hold the numerator,

and eight bits hold the denominator.

The null value is represented by zero in the denominator field, which cannot be

the representation of any valid value. Fixed-format physical types deal with the

null value explicitly; this is discussed below.

(defun tiny-rational-p (value)

 (and (not (minusp value))

 (< (numerator value) #o400)

 (< (denominator value) #o400)))

93
February 2018 Advanced Techniques for Statice Applications

(define-presentation-type tiny-rational ()

 :abbreviation-for ’(and rational (satisfies tiny-rational-p)))

(define-value-type tiny-rational

 (:format :fixed)

 (:fixed-space 16 16))

(defmethod (read-value tiny-rational-handler) (addressor word-offset bit-offset)

 (let* ((word (read-record-word addressor word-offset))

 (num (sys:%logldb (byte 8 (+ bit-offset 8)) word))

 (den (sys:%logldb (byte 8 bit-offset) word)))

 (if (zerop den) *null-value* (/ num den))))

(defmethod (write-value tiny-rational-handler) (value addressor word-offset bit-offset)

 (let* ((word (read-record-word addressor word-offset))

 (new-16-bits (if (eq value *null-value*)

 0

 (sys:%logdpb (numerator value) (byte 8 8) (denominator value)))))

 (write-record-word

 addressor

 word-offset

 (sys:%logdpb new-16-bits (byte 16 bit-offset) word))))

(defmethod (value-equal tiny-rational-handler) (value addressor word-offset bit-offset)

 (let* ((word (read-record-word addressor word-offset))

 (num (sys:%logldb (byte 8 (+ bit-offset 8)) word))

 (den (sys:%logldb (byte 8 bit-offset) word)))

 (unless (zerop den)

 (and (rationalp value)

 (= num (numerator value))

 (= den (denominator value))))))

(defmethod (record-equal tiny-rational-handler)

 (addressor-1 word-offset-1 bit-offset-1 addressor-2 word-offset-2 bit-offset-2)

 (let* ((word-1 (read-record-word addressor-1 word-offset-1))

 (den-1 (sys:%logldb (byte 8 bit-offset-1) word-1))

 (word-2 (read-record-word addressor-2 word-offset-2))

 (den-2 (sys:%logldb (byte 8 bit-offset-2) word-2)))

 (and (not (zerop den-1))

 (not (zerop den-2))

 (= word-1 word-2))))

(defmethod (value-null-p tiny-rational-handler) (addressor word-offset bit-offset)

 (let* ((word (read-record-word addressor word-offset))

 (den (sys:%logldb (byte bit-offset 8) word)))

 (zerop den)))

94
Advanced Techniques for Statice Applications February 2018

How Fixed-Format Differs from Variable-Format

A fixed-format type definition is similar to a variable-format type definition, so

we’ll just discuss the differences. First, the statice-type:define-value-type special

form says :fixed instead of :variable. The statice-type:size-of-value method is not

provided, since the size is the same for every value of the type.

Fixed-format types must explicitly handle the null value. For purposes of these

methods, the null value is represented by a special Lisp object that is the value of

the symbol statice-type:*null-value*. The implementor of a new fixed-format type

must find a way to represent the null value in the record, and this representation

must not conflict with the representation of any real value.

The :fixed-space Clause of statice-type:define-value-type

In every record that holds a value of a fixed-format type, there is a contiguous

field of bits allocated. The field is of the same size in each record, regardless of

the actual value being stored. This field of bits is called the fixed space. The en-

tire representation of the value must fit into the fixed space.

The :fixed-space clause of statice-type:define-value-type is how you ask Statice

for the amount of fixed space needed to hold a value.

The :fixed-space clause specifies two values that describe the fixed space. The

first value is the size of the fixed space, in bits. The second value describes the

alignment of the fixed space. If the second value is zero, the fixed space must be

aligned on a word boundary. Otherwise, the second value should be a positive inte-

ger less than or equal to 16, and it means that the bit position of the first bit in

the field must be an integer multiple of the second value.

When we say that a bit field is "contiguous", we count bits as going from lower-

numbered words to higher-numbered words within a record, and from the least-

significant bit to the most-significant bit within a word. For example, suppose

there were a type whose :fixed-space clause specified 40 and 8. This would mean

that the type uses 40 bits (five 8-bit bytes), aligned on a multiple-of-8 boundary.

Such a field might start at bit position 8 of word 3, continue up through bit posi-

tion 31 of word 3, continue at bit position 0 of word 4, and end at bit position 15

of word 4.

The tiny-rational example above returns 16 and 16, and so requests 16 contiguous

bits, aligned either as the low half or high half of a word. Note that by requesting

this alignment, we guarantee that the whole value will be stored in one word of

the record, instead of being broken across two words, which simplifies the imple-

mentation slightly.

Methods for statice-type:read-value, statice-type:value-equal, and statice-type:write-
value

These are the same as for variable-format handlers, except for the word-offset and

bit-offset arguments. These arguments describe the location of the fixed space

within the record: they refer to the first bit of the fixed space. The size of the

fixed space, of course, is the same for all elements of this type, and so is not

95
February 2018 Advanced Techniques for Statice Applications

passed as an argument. The bit-offset is a multiple of the second value of the

:fixed-space clause.

These functions must all be prepared to deal with the null value. if statice-

type:write-value’s argument is statice-type:*null-value*, it must notice this and

store a representation that means that the value is null. In this case, the denomi-

nator field being zero is used to represent the null value. Similarly, statice-

type:read-value must check for this special representation, and return statice-

type:*null-value* if it’s found. If statice-type:value-equal finds a null value

stored in the record, it must return nil. The argument to statice-type:value-equal

is never statice-type:*null-value*, so it’s not necessary to check for that.

The statice-type:record-equal Method

The statice-type:record-equal method is given two records, and must determine

whether they are equal. The first three arguments designate the first record; the

second three arguments designate the second record. The method should return a

true value if and only if the values stored in both records are non-null and equal

to each other. Note that the rules for handling null values are not exactly analo-

gous to those of the statice-type:value-equal method: if the value in either or

both record is the null value, statice-type:record-equal must return nil.

The statice-type:value-null-p Method

The statice-type:value-null-p method takes the same arguments as statice-

type:read-value. It returns true if and only if the value stored in the record is the

null value.

The presentation-type Instance Variable

The presentation-type instance variable is the presentation type itself, which is

either a symbol or a list. Methods can use it to examine the data arguments and

presentation arguments. In our example, the presentation type does not take any

data or presentation arguments, so the instance variable is not used.

3.7.7. Comparing Values of User-Defined Types

In both examples of physical types, we have defined types whose values cannot be

compared with each other, to see which is greater or less than the other. If you

supply methods that say how to compare values, Statice can be asked to sort rela-

tions based on attributes of this type, or to do "range queries", queries on relations

that ask for all relations where the value of an attribute is greater and/or less

than a given value.

This section describes how to make values comparable. We’ll start with an exam-

ple of how you could add comparability to the tiny-rational type. This example il-

lustrates comparison for a fixed-format physical type.

96
Advanced Techniques for Statice Applications February 2018

;;; Modified define-value-type form for tiny-rational

(define-value-type tiny-rational

 (:format :fixed)

 (:comparable-p t))

(defmethod (value-compare tiny-rational-handler)

 (value addressor word-offset bit-offset)

 (let* ((word (read-record-word addressor word-offset))

 (num (sys:%logldb (byte 8 (+ bit-offset 8)) word))

 (den (sys:%logldb (byte 8 bit-offset) word)))

 (if (zerop den)

null-value

(let ((val-1 (* num (denominator value)))

 (val-2 (* den (numerator value))))

 (cond ((< val-1 val-2) :lessp)

((> val-1 val-2) :greaterp)

(t :equal))))))

(defmethod (record-compare tiny-rational-handler)

 (addressor-1 word-offset-1 bit-offset-1

addressor-2 word-offset-2 bit-offset-2)

 (let* ((word-1 (read-record-word addressor-1 word-offset-1))

 (num-1 (sys:%logldb (byte 8 (+ bit-offset-1 8)) word-1))

 (den-1 (sys:%logldb (byte 8 bit-offset-1) word-1))

 (word-2 (read-record-word addressor-2 word-offset-2))

 (num-2 (sys:%logldb (byte 8 (+ bit-offset-2 8)) word-2))

 (den-2 (sys:%logldb (byte 8 bit-offset-2) word-2)))

 (cond ((zerop den-1)

 (if (zerop den-2) :equal :greaterp))

 ((zerop den-2) :lessp)

 (t

 (let ((val-1 (* num-1 den-2))

 (val-2 (* num-2 den-1)))

 (cond ((< val-1 val-2) :lessp)

 ((> val-1 val-2) :greaterp)

 (t :equal)))))))

The :comparable-p Clause of statice-type:define-value-type

The :comparable-p clause in the statice-type:define-value-type special form

means that the values can be compared. The default is nil. If the :comparable-p

clause’s value is t, the type must provide methods for statice-type:value-compare�

and statice-type:record-compare.

97
February 2018 Advanced Techniques for Statice Applications

The statice-type:value-compare Method

The statice-type:value-compare generic function is given a record holding a val-

ue, and a Lisp representation of a value. It must return :lessp if the value stored

in the record is less than the value supplied as an argument. It returns :greaterp

if the record is greater than the value supplied as an argument, and :equal if the

values are equal. If the value in the record is the null value, it must return the

statice-type:*null-value*. The value passed as an argument is never the null val-

ue.

The advantage of having an explicit statice-type:value-compare method, instead

of using statice-type:read-value and comparing the the Lisp representations, is to

avoid allocating Lisp storage (consing) to build a Lisp rational number, resulting

in greater efficiency.

The statice-type:record-compare Method

The statice-type:record-compare generic function is given two records, each hold-

ing a value. It must return one of the symbols :lessp, :greaterp, or :equal, based

on the comparision of the records. Null values are considered to be equal to each

other, and greater than all other values. Like statice-type:value-compare, statice-

type:record-compare avoids allocating Lisp storage for rational numbers.

Comparing Values of Variable-Format Physical Types

To make a variable-format physical type be comparable, you supply the

:comparable-p clause in the same way as for fixed-format, and supply methods for

statice-type:value-compare and statice-type:record-compare. The arguments tak-

en by these two methods are the same for variable-format as for fixed-format, ex-

cept that the bit-offset argument is replaced by the n-words argument. Also, as

usual, methods for variable-format types need not worry about null values.

3.7.8. Flavors Representing a Statice Type

When you define a new Statice type, a flavor is defined to represent it. We call

that flavor a storage handler. By default, the name of the storage handler flavor

representing this type is formed by the following convention: the type’s name fol-

lowed by the suffix -handler. For example, when we use statice-type:define-value-

type to define the type enumerated, Statice defines a flavor named enumerated-

handler.

Sometimes you might want more control over the selection of the storage handler

flavor. One reason is to avoid name conflicts; perhaps your program has a type

named enumerated, but already has a flavor named enumerated-handler for some

other reason.

A more interesting reason to take control over the selection of the storage handler

flavor is to choose among several possible flavors, depending on the data argu-

ments of the presentation type. For example, suppose you were making integer be

a Statice type. (You wouldn’t actually do that, because integer is already a Statice

type.) The type integer includes integers of arbitrary precision, and must be repre-

98
Advanced Techniques for Statice Applications February 2018

sented using a variable format. However, the type (integer 0 15) can be stored in

four bits, and so you might want to use a fixed format representation.

You might also want to select among storage handler flavors depending on

whether the attribute specifies :no-nulls. For example, if you were making

boolean be a Statice type, two bits would be needed if null values were allowed,

but only one bit if they were not allowed.

Here’s a simplified example:

(define-value-type integer

 (:handler-finder (data-arguments no-nulls)

 (declare (ignore no-nulls))

 (if data-arguments

 ’fixed-integer-handler

 ’variable-integer-handler)))

(define-handler-flavor fixed-integer-handler

 (:format :fixed)

 (:comparable-p t))

(define-handler-flavor variable-integer-handler

 (:format :variable)

 (:comparable-p t))

statice-type:define-value-type offers the clause :handler-finder, which has an ar-

gument list and a body. The function defined by the clause is called the storage

handler finder function. It is called when a new attribute is made. Its first argu-

ment is the list of data arguments of the presentation type of the attribute. Its

second argument is the no-nulls parameter of the new attribute. It must return a

symbol that is the name of the storage handler flavor. When you use the :handler-

finder clause, it should be the only clause.

statice-type:define-handler-flavor is a special form whose syntax is just like that

of statice-type:define-value-type, except that it does not accept the :handler-

finder clause, and the name is the name of the flavor itself rather than the name

of a type. It accepts all the other kinds of clauses, such as :built-on and

:comparable-p. It should only be used in conjunction with statice-type:define-

value-type and :handler-finder.

3.7.9. Summary of Methods for Defining New Statice Types

The first step in defining a new Statice type is using this special form:

statice-type:define-value-type type-name &body clauses

Defines a new Statice value type.

In cases where you want greater control over the flavor or flavors that represent

the type, you can use this special form:

99
February 2018 Advanced Techniques for Statice Applications

statice-type:define-handler-flavor handler-name &body clauses

Used only in conjunction with statice-type:define-value-type and

:handler-finder; this special form defines a storage handler flavor rep-

resenting a new type.

We now discuss the generic functions that you specialize with methods, when

defining new Statice types. Since many of the generic functions take the same ar-

guments as one another, we first summarize the arguments.

3.7.9.1. Arguments to Methods for Defining New Statice Types
Many of the generic functions that you specialize when defining a new Statice type

accept the same arguments. Depending on the job that the generic function is do-

ing, it accepts some subset of the arguments described here.

handler The first argument to all of these generic functions is the

type. This argument selects the methods. In the documentation

of these generic functions, this parameter is called handler.

When writing methods, the name of the flavor of this type is

formed by the following convention: the type’s name followed

by the suffix -handler. For example, the enumerated type has

the corresponding flavor named enumerated-handler. Methods

should specialize on the name of the flavor, such as enumerat-

ed-handler.

value A Lisp object that is the representation of a valid member of

this type.

addressor The record addressor for a record.

word-offset A positive integer that is the word-offset into the record of the

first word of this value’s portion of the record.

n-words-or-bit-offset A non-negative integer that is the length of the value’s por-

tion. This parameter has different semantics for variable-

format versus fixed-format types:

Kind of Type n-words-or-bit-offset

Fixed-format bit offset

Variable-format number of words

For a variable-format type, the number of words is the same

value as statice-type:size-of-value would return for the value.

The generic functions that must be specialized are:

statice-type:encode-value handler value

Methods for logical types should return the Lisp object that represents

the value argument in the terms used by the underlying type indicated

by handler.

100
Advanced Techniques for Statice Applications February 2018

statice-type:decode-value handler value

Methods for logical types should return the Lisp object that represents

the value argument in terms of the type indicated by handler.

statice-type:read-value handler addressor word-offset n-words-or-bit-offset

Methods for physical types should make and return the Lisp represen-

tation of the value indicated by the arguments.

statice-type:value-equal handler value addressor word-offset n-words-or-bit-offset

Methods for physical types should return true if the value in the

record is considered equal to the value argument. The null value must

be considered equal only to the null value, and no other value.

statice-type:size-of-value handler value

Methods for physical types should return the number of words of a

record that would be used to represent this value. Statice uses this

method to determine how much space must be allocated to store a val-

ue into a record.

statice-type:write-value handler value addressor word-offset n-words-or-bit-offset

Methods for physical types should write the value into the portion of

the record, or write an indication that the value is null.

statice-type:record-equal handler addressor-1 word-offset-1 n-words-or-bit-offset-1

addressor-2 word-offset-2 n-words-or-bit-offset-2

Methods are given two records, and must determine whether they are

equal. Methods should return a true value if and only if the values

stored in both records are not the null value and are equal to each

other.

statice-type:record-compare handler addressor-1 word-offset-1 n-words-or-bit-offset-1

addressor-2 word-offset-2 n-words-or-bit-offset-2

Methods for physical types that are comparable receive two records,

each holding a value; they must return one of the symbols :lessp,

:greaterp, or :equal, based on the comparison of the records.

statice-type:value-compare handler value addressor word-offset n-words-or-bit-offset�

Methods for physical types that are comparable receive a Lisp repre-

sentation of a value and a a record holding a value. They return

:lessp, :greaterp, :equal, or statice-type:*null-value*, depending on

how record compares to the Lisp value.

3.8. Dynamic Statice Operations

The section "Tutorial Introduction to Statice" presented automatically-generated

functions (such as accessors and entity constructors) and special forms such as

statice:for-each and statice:add-to-set. When using any of these, you cannot con-

trol at run time which attribute, or which type, you want to operate on. For exam-

ple, the syntax of the statice:for-each special form requires you to indicate the

101
February 2018 Advanced Techniques for Statice Applications

type to iterate over, statically in the source code. If you want to write a program

that decides at run time which type to iterate over, you cannot use statice:for-

each. The same is true of the automatically-generated accessors and constructors

because the name of the entity type is part of the name of the function.

This section introduces ordinary Lisp functions that perform the same operations

as the automatically-generated functions and special forms. Because these are ordi-

nary Lisp functions, they take arguments in the normal Lisp way, which lets you

control all aspects of what the functions do at run time.

The automatically-generated functions and special forms are usually easier to read,

and more expressive, when static behavior is all you need. The functions described

here are somewhat more verbose, but they provide the extra power of run time

control when it is needed.

3.8.1. Dynamic Statice Accessor Functions

statice:attribute-value is the all-purpose reader function. It takes two arguments:

an entity handle, and the name of an attribute. The name of the attribute is a

symbol, which can be either the name of the attribute, or the name of its reader

function.

statice:attribute-value returns the same values as other reader functions: The

first value is the value of the attribute, or nil if the attribute’s value is null; the

second value is t if the attribute’s value is not null and nil if the attribute’s value

is null.

You can use setf with statice:attribute-value to set an attribute value, just as you

can use setf with other reader functions.

Here is an example, based on a previous example: See the section "The Statice

Null Value", page 29. The schema is the university example, presented elsewhere

in full: See the section "Defining a Schema for a University", page 20.

The entity type is person, and the attribute is id-number. The value of the vari-

able george is an entity handle.

;;; using the automatically-generated accessor

(setf (person-id-number george) 123)

(person-id-number george) => 123 and t

;;; using the all-purpose accessor

(attribute-value george ’id-number) => 123 and t

(attribute-value george ’person-id-number) => 123 and t

(setf (attribute-value george ’id-number) 72)

;;; further examples of using both kinds of accessors

;;; and of setting an attribute’s value to null

(person-id-number george) => 72 and t

(setf (attribute-value george ’person-id-number) nil)

(person-id-number george) => nil and nil

(attribute-value george ’id-number) => nil and nil�

102
Advanced Techniques for Statice Applications February 2018

The function statice:set-attribute-value-to-null takes the same arguments as

statice:attribute-value, and sets the attribute value to be the null value.

statice:set-attribute-value-to-null works with any attribute. In contrast, using setf

with statice:attribute-value with nil as the value sets the attribute value to null

only if nil is not a valid Lisp representation of some value of the type. statice:set-

attribute-value-to-null is discussed elsewhere: See the section "The Statice Null

Value", page 29.

statice:inverse-attribute-value is the all-purpose inverse reader function. It takes

three arguments: the name of the entity type of the attribute, the name of the at-

tribute, and the value whose inverse is desired. For example:

(person-named "george")

is equivalent to both of the following:

(inverse-attribute-value ’person ’name "george")

(inverse-attribute-value ’person ’person-name "george")

statice:attribute-value-null-p is like statice:attribute-value, but instead of return-

ing the value of the attribute, it simply returns t if the value is null and nil oth-

erwise. statice:attribute-value does the same thing with its second returned value.

The advantage of statice:attribute-value-null-p is that it is more efficient than

statice:attribute-value if you don’t care about the value. The gain in efficiency

only matters for large values, such as bit-map images. statice:attribute-value-

null-p is used rarely compared to the other functions described here.

3.8.2. Dynamic Entity Creation

statice:make-entity is the all-purpose entity constructor function. Its first argu-

ment is the name of the entity type, and the rest of its arguments are the same as

the arguments to the entity constructor function of that entity type. For example:

(make-person :name "Beth" :id-number 23)

is equivalent to:

(make-entity ’person :name "Beth" :id-number 23)

For basic information about entity constructor functions: See the section "Making

New Statice Entities", page 12. See the section "The :initform Attribute Option",
page 32.

3.8.3. Dynamic Set Manipulation

statice:add-to-set* is the dynamic version of statice:add-to-set. Note that

statice:add-to-set* is a function, whereas statice:add-to-set is a special form.

statice:add-to-set* lets you specify the set to which the value should be added at

run time instead of within the syntax of the program.

For example:

103
February 2018 Advanced Techniques for Statice Applications

(add-to-set (student-courses joe-cool) english-101)

is equivalent to:

(add-to-set* joe-cool ’student-courses english-101)

Similarly, statice:delete-from-set* is the dynamic version of statice:delete-from-

set:

(delete-from-set (student-courses joe-cool) english-101))

is equivalent to:

(delete-from-set* joe-cool ’student-courses english-101)

For basic information about statice:add-to-set and statice:delete-from-set: See the

section "Set-Valued Attributes", page 22.

3.8.4. Dynamic Statice Queries

statice:for-each* is the dynamic version of statice:for-each. statice:for-each* is a

function, whereas statice:for-each is a special form. statice:for-each* lets you

specify at run time which entity type to iterate over, what criteria to use, and so

on.

In Statice 2.0, statice:for-each* does not support the full set of functionality as

does statice:for-each. See the section "Limitations on statice:for-each* in Statice

2.1".

The first argument to statice:for-each* is a function that you supply; this function

is called once for every entity that statice:for-each* finds. The function is called

on one argument, the entity handle, and its returned value is ignored. It’s analo-

gous to the body of the statice:for-each special form.

The second argument to statice:for-each* is the name of an entity type. The re-

maining arguments are keyword arguments. If none of the keyword arguments is

used, the function is called once for each entity of the entity type.

(for-each ((faculty faculty))

 (push (person-name faculty) results))

is equivalent to:

(for-each* #’(lambda (faculty)

 (push (attribute-value faculty ’name) results))

 ’faculty)

statice:for-each* has a sys:downward-funarg declaration on its first parameter,

so you need not include a sys:downward-function declaration in your functional

argument.

statice:for-each* accepts the keyword argument :where, which is analogous to the

:where clause of the statice:for-each special form. :where lets statice:for-each*

104
Advanced Techniques for Statice Applications February 2018

select a subset of the entities, based on conditions. For background: See the sec-

tion "Using the :where Clause of statice:for-each", page 41. The value of the

:where argument is a list of conditions. statice:for-each* calls the function once

for each entity that satisifies all the conditions. Each condition is represented as a

list of three elements:

(attribute-name function-name value)

attribute-name is the name of the attribute, or the name of the attribute’s reader

function. function-name is the name of the comparison operator, usually the name

of a Lisp comparison function. value is a Lisp object of the same type as the at-

tribute. (When the function-name is typep, attribute-name is not needed and should

be nil.)

The following example shows two ways to accumulate a list of the names of all in-

structors whose salary is greater than the value of the variable this-much. Notice

the use of backquote and comma to place the actual number into the condition.

This example is the core of the function show-instructors-paid-more-than from

the tutorial; See the section "Using the :where Clause of statice:for-each", page

41.

(for-each ((i instructor)

 (:where (> (instructor-salary i) this-much)))

 (push (person-name i) instructors))

is equivalent to the following:

(for-each* #’(lambda (i) (push (person-name i) instructors))

 ’instructor

 :where ‘((salary > ,this-much)))

Here’s how you could write the core of the function show-full-instructors-after�

(from the same section):

(for-each ((i instructor)

 (:where (and (equal "Full" (instructor-rank i))

(string-greaterp (person-name i) string))))

 (push (person-name i) instructors))

is equivalent to:

(for-each* #’(lambda (i) (push (person-name i) instructors))

 ’instructor

 :where ‘((rank equal "Full")

 (name string-greaterp ,string)))

statice:for-each* accepts the keyword argument :order-by, which is analogous to

the :order-by clause of the statice:for-each special form. :order-by makes

statice:for-each* call the function on the entities in a specified order. For back-

ground: See the section "Sorting Entities with the :order-by Clause of statice:for-

each", page 44. The value of the :order-by argument is a list of alternating at-

tribute names and direction names. The direction name must be either ascending

105
February 2018 Advanced Techniques for Statice Applications

or descending. Here’s how the core of the show-courses-in-dept-sorted function

could be written using statice:for-each*:

(for-each ((c course)

 (:where (eq (course-dept c) dept))

 (:order-by (course-title c) descending))

 (push (course-title c) titles))

is equivalent to:

(for-each* #’(lambda (c) (push (course-title c) titles))

 ’course

 :where ‘(dept eq ,dept)

 :order-by ’(course-title descending))

3.8.5. Dynamic Counting of Entities

The function statice:count-entities* returns the number of entities of a given en-

tity type. You can provide a :where clause, which results in counting only those

entities that satisfy the specified conditions.

3.9. Integrating Statice with a User Interface

In this section we describe two features of Statice that help you integrate a Stat-

ice program with a user interface.

3.9.1. Viewing an Arbitrary Statice Entity

You may call the function statice:view-entity from your own program to display

an arbitrary entity in a window.

statice:view-entity Functionstream pathname entity-handle &optional (setf-

function #’statice::make-browser-attribute-

value-setf) values

Displays an arbitrary entity in a window.

stream The window on which to view the entity.

pathname Specifies the database which the entity handle is from.

entity-handle The entity to be viewed.

setf-function Should be a function of two arguments, an entity-handle

and the name of an attribute, which returns a list suit-

able for setf’ing. �

Here’s an example from the university database. Suppose the value of *uni-

versity-pathname* is the pathname of the university database, and that the

value of j is the entity handle for the student named Joe.

106
Advanced Techniques for Statice Applications February 2018

(view-entity *standard-output* *university-pathname* j)

#<STUDENT Joe 504260721> (type STUDENT)

NAME: Joe

ID-NUMBER: 827

DEPT: (Null value)

COURSES: (Entity-Handle of COURSE 24/28

 Entity-Handle of COURSE 24/25)

SHIRTS: (Entity-Handle of SHIRT 25/11)�

The default setf-function, #’statice::make-browser-attribute-value-setf is

defined as:

(defun make-browser-attribute-value-setf (entity-handle fname)

 ‘(browser-attribute-value ,entity-handle ’,fname))

This function is called to create the :form argument to present for the at-

tribute values. If ��������� is clicked on (i.e. "Modify this structure slot"),
the user interface management system does a setf operation, using the

:form argument and the new value that was entered. By default, the Brows-

er uses #’statice::make-browser-attribute-value-setf as its :form function,

so that when a attribute slot is modified, the following form is evaluated:

(setf (browser-attribute-value <entity-handle>
 ’name-of-attribute-being-modified)

 new-value-entered)

browser-attribute-value is not defined as a function, but (setf browser-

attribute-value) is, and may be used to setf a single attribute value in an

entity handle. Note that it performs its own transaction.

3.9.2. Presentation Type for Statice Types with Simple String Names

Here we discuss a predefined presentation type for Statice entities that have sim-

ple string names, and how to make use of it.

You might define an entity type whose name is more complicated than a single

string attribute. For example, you might have entities named by three attributes

called name (a string), type (a string), and version (an integer). You’d need to

write a new presentation type for this, if you wanted to get proper input and out-

put behavior, including completion. The source code for statice-utilities:entity-

named-by-string-attribute is provided in the file

sys:statice;examples;presentation-type.lisp, to use as a guide in writing your

own, similar presentation type.

statice-utilities:entity-named-by-string-attribute Presentation Type(() &key path-

name type attribute restrictions)

A presentation type for Statice entities that have simple string names,

where the value of a single-valued, string-typed attribute of the entity is

considered the name of the entity. Most applications are expected to make a

presentation type that is an abbreviation for this presentation type.

107
February 2018 Advanced Techniques for Statice Applications

The first three data arguments are all mandatory; the last one is optional.

pathname is the pathname of the database.

type is the name of the entity type.

attribute is the name of the single-valued, string-typed attribute of the type

that serves to name entities.

restrictions is a list of criteria, just like the :where argument to statice:for-

each*, and it means that only the subset of entities

that pass all of these criteria are considered to be part

of the set.�

For example, here is an entity type that has a simple string name, namely

the person entity type from the university example:

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))�

If we want a presentation type that will prompt the user for the name of a

person in the database in *university-pathname*:

‘((statice-utilities:entity-named-by-string-attribute)

 :pathname ,*university-pathname* :type person :attribute name)�

Since that’s rather verbose, you might want to make an abbreviation:

(define-presentation-type name-in-the-university (() &key pathname)

 :abbreviation-for

 ‘((statice-utilities:entity-named-by-string-attribute)

 :pathname ,pathname :type person :attribute name))�

Having defined this abbreviation, you can do things like the following:

(accept ‘((name-in-the-university) :pathname ,*university-pathname*))�

The presentation type implements completion efficiently, by using Statice

queries in the database, rather than reading all the names out of the

database.

These examples are in the file sys:statice;examples;university-

example.lisp.

3.10. Integrating Object-oriented Programming with Statice

This section discusses how you can use object-oriented techniques in a Statice ap-

plication. We have already shown (in section "Inheritance From Entity Types") that

an entity type can be built on other entity types, in order to inherit attributes.

Every entity type is also Lisp flavor. You can define methods on entity types. You

can also specify that the flavor corresponding to an entity type should have extra

108
Advanced Techniques for Statice Applications February 2018

instance variables, which you can then use in methods. Lastly, you can build an

entity type on other flavors, which need not be entity types themselves. Some of

these techniques are advanced, and they won’t be needed in the majority of Statice

applications.

3.10.1. Defining Methods for Entity Types

Every entity type is also a Lisp flavor, so you can define methods on entity type

flavors.

(defmethod (student-mean-shirt-size student) ()

 (let ((total-size 0)

(n-shirts 0))

 (for-each ((sh (student-shirts self)))

 (incf total-size (shirt-size sh))

 (incf n-shirts))

 (/ total-size n-shirts)))

student-mean-shirt-size takes one argument, a studentthat is, a student entity

handle, which is an instance of the student flavor. In the body of the method, the

value of self is the student. The caller must call this function from within a

transaction, since the function accesses the database.

The rules of flavor method inheritance apply in the usual way to both Statice and

Lisp, so student-mean-shirt-size can be applied to graduate-student entity han-

dles as well.

A particularly useful generic function to handle is sys:print-self. Here’s an exam-

ple of a sys:print-self method:

(defmethod (sys:print-self person) (stream print-depth slashify-p)

 (declare (ignore print-depth))

 (if slashify-p

 (sys:printing-random-object (self stream :typep)

(princ (person-name self) stream))

 (princ (person-name self) stream)))

This method works because the name attribute of person is a :cached attribute.

sys:print-self is likely to be called from outside transactions, and if name were

not cached, the calls to person-name from outside a transaction would signal an

error.

When defining your own methods, remember that the attributes are not instance

variables. You have to use the accessor functions to get or set the attribute values.

This is true even for cached attributes; although instance variables exist, you can-

not access them directly. The style of using accessor functions from within method

bodies may seem unusual to programmers accustomed to Flavors; however, the

style is consonant with the Common Lisp Object System (CLOS).

109
February 2018 Advanced Techniques for Statice Applications

3.10.2. Specifying Instance Variables for an Entity Handle

In the statice:define-entity-type form, you can specify instance variables to be in-

cluded in the flavor being defined to represent the entity type. To do so, use the

:instance-variables option. You can initialize, read, and write these instance vari-

ables (if you use the :initform, :reader, and :writer options for the instance vari-

ables). However, the values of these instance variables are maintained only in vir-

tual memory, and are not stored in the Statice database. This advanced option can

be used for customized caching schemes or for other purposes.

See the special form statice:define-entity-type, page 187.

3.10.3. Mixing Flavors Into a Statice Entity Definition

In the statice:define-entity-type form, the name of the new entity is the first ar-

gument. The second argument is a list of entity types from which this new type

will be built. You can think of them as component types, or parent types, of the

new type.

You can include in this list of component types the names of flavors that are not

necessarily entity type flavors. If you do so, the normal flavor inheritance rules

apply. Thus, the new flavor that is being defined to represent the new entity type

will inherit from all the flavors in this list.

The result is that any methods you have defined on the component flavors are in-

herited by the entity type flavor. Instance variables are inherited as well.

3.10.4. Statice and CLOS

Genera 8.1 includes CLOS (Common Lisp Object System). Statice users might be

interested in how Statice and CLOS interact. In general, there is no direct integra-

tion between Statice 2.1 and Genera 8.1. However, using Statice and CLOS in the

same Lisp world works, and you can develop programs that use both Statice and

CLOS.

In Genera 8.1 and Statice 2.1, Statice entity handles are implemented as Flavors

instances, not CLOS instances. Statice attribute accessing functions are Flavors

generic functions, not CLOS generic functions. You cannot define methods for

user-defined CLOS generic functions that are specialized on a flavor (such as a

Statice entity flavor).

Statice users can use CLOS, noting the following restrictions. You cannot mix

CLOS classes into a Statice entity definition. See the section "Mixing Flavors Into

a Statice Entity Definition", page 109. You cannot define CLOS classes that inherit

from Statice entity flavors, or define CLOS methods that specialize on Statice enti-

ty flavors. We anticipate that some of these restrictions will be lifted in a future

release of Genera.

110
Advanced Techniques for Statice Applications February 2018

3.11. Examining the Schema of a Statice Database

Some Statice applications are written to work with one schema that is designed

specifically for that application. The univerity example from the tutorial is such an

application. Other applications are written so that they can work with arbitrary

schemas, so that the programmer does not know, at the time the program is being

written, what entity types and attributes exist. A general-purpose browser, or a

sharable interactive display and query facility, are examples.

Applications of the second kind need a way to examine a Statice schema under

program control; that is, at run time. This section introduces a set of functions

that let an application examine a schema.

3.11.1. Template Schemas and Real Schemas

There are two kinds of schemas in Statice: template schemas and real schemas.

The template schema is what statice:define-schema and statice:define-entity-type

creates. It is independent of any particular database; indeed, immediately after it

is defined, but before statice:make-database is called, there is a template schema

even though there is no database. The template schema lives in Lisp virtual mem-

ory. It can change over time if the statice:define-schema and statice:define-

entity-type forms are edited and compiled again.

The real schema is created by statice:make-database by copying a template

schema. Every real schema resides in one Statice database, and describes what is

in that database. Although a real schema starts out as a copy of a template

schema, it can change over time. For example, statice:make-index and

statice:delete-index change the real schema of one database, but do not have any

effect on the template schema.

The same set of Lisp functions can examine both template schemas and real

schemas. The only functions that work differently for the two kinds of schema are

the ones that you start with, namely:

statice:get-real-schema pathname

Returns an instance representing the real schema in the Stat-

ice database stored in the file indicated by pathname, which is

a database pathname.

statice:get-template-schema schema-name

Returns an instance representing the template schema named

schema-name.

statice:get-template-entity-type entity-type-name

Returns the entity type instance corresponding to entity-type-

name, a symbol. (There is a separate function for getting a

template entity type because template entity types can exist in-

dependent of any schema. As long as there is a statice:define-

entity-type form, the entity type is defined, even if it’s not a

member of any schema.)�

111
February 2018 Advanced Techniques for Statice Applications

There is also a user interface for looking at the real schema of a particular

database. See the section "Show Database Schema Command", page 171.

3.11.2. Example of Schema Examination

To show how the schema examination functions are used, we present a sample in-

teractive session with comments. In practice, the schema examination functions are

usually used by programs, rather than directly by the user. We present this exam-

ple in the form of an interactive session because this is a clear way to show the

functions in action, not because they’re usually used interactively.

This example is based on the university schema: See the section "Defining a

Schema for a University", page 20.

The schema examination functions are centered around four kind of instances that

represent the fundamental objects that make up schema information: schemas, en-

tity types, attributes, and multiple indexes. The functions let you examine the rela-

tionships among, and the properties of these objects.

We start by examining the template schema for university:

(setq u (get-template-schema ’university))

 => #<Schema UNIVERSITY 532342233>

The functions statice:schema-name and statice:schema-types return the name

and the entity types of a schema:

(schema-name u) => UNIVERSITY

(schema-types u) =>

 (#<Entity-Type PERSON 532342320>

 #<Entity-Type STUDENT 540046771>

 #<Entity-Type GRADUATE-STUDENT 532343340>

 #<Entity-Type SHIRT 540045763>

 #<Entity-Type COURSE 532343667>

 #<Entity-Type INSTRUCTOR 532343103>

 #<Entity-Type DEPARTMENT 532344047>)

Now let’s take a look at the student entity type. We can obtain an entity-type in-

stance either from the list that we just got from statice:schema-types, or by call-

ing statice:get-template-entity-type. Once we have the entity-type instance, we

can find the name of the entity type and the names of its parents:

(setq s (get-template-entity-type ’student))

 => #<Entity-Type STUDENT 540046771>

(type-name s) => STUDENT

(type-parent-names s) => (PERSON)

We can also find out about student’s attributes. We’ll find out about the shirts

attribute. First, we set the variable ss to the attribute instance for the shirts at-

tribute.

112
Advanced Techniques for Statice Applications February 2018

(type-attributes s)

 => (#<Attribute SHIRTS of STUDENT 540046734>

 #<Attribute COURSES of STUDENT 540047027>

 #<Attribute DEPT of STUDENT 540047107>)

(setq ss (first *)) => #<Attribute SHIRTS of STUDENT 540046734>

Now we can call functions that tell us the name of the attribute, the name of the

reader function and the inverse reader function, the entity type that "owns" the

attribute, the type of values of the attribute, whether the attribute is set-valued,

and whether the attribute was specified with the :no-nulls option:

(attribute-name ss) => SHIRTS

(attribute-function-name ss) => STUDENT-SHIRTS

(attribute-inverse-function-name ss) => SHIRT-OWNER

(attribute-type ss) => #<Entity-Type STUDENT 540046771>

(attribute-value-type ss) => #<Entity-Type SHIRT 540045763>

(attribute-value-is-set ss) => T

(attribute-no-nulls ss) => NIL

3.11.3. Summary of Functions for Examining a Schema

Getting a Schema Instance�

The first step in examining a schema is getting a schema instance, which is an in-

stance of either a real schema or a template schema.

statice:get-real-schema pathname

Returns an instance representing the real schema in the Statice

database stored in the file indicated by pathname, which is a database

pathname.

statice:get-template-schema schema-name

Returns an instance representing the template schema named schema-

name.

If you need only the name of the schema for a particular database, it’s not neces-

sary to get a schema instance; instead, use the following function:

statice:get-real-schema-name pathname

Returns the name of the real schema in the Statice database stored in

the file indicated by pathname, which is a database pathname. The re-

sult is a symbol, not a schema instance.

You can get a template entity type instance by using the following function:

statice:get-template-entity-type entity-type-name

Returns the entity type instance corresponding to entity-type-name, a

symbol. (There is a separate function for getting a template entity

type because template entity types can exist independent of any

schema. As long as there is a statice:define-entity-type form, the en-

tity type is defined, even if it’s not a member of any schema.)�

113
February 2018 Advanced Techniques for Statice Applications

Operations on Schema Instances

statice:schema-name schema

Returns the name of the given schema.

statice:schema-types schema

Returns a list of entity types of the given schema.

Operations on Entity Type Instances

You get entity type instances by using statice:schema-types, or statice:get-

template-entity-type. The following operations can be used on entity type in-

stances:

statice:type-name entity-type

Returns the symbol that is the name of the given entity-type.

statice:type-parent-names entity-type

Returns the names of the parent types of the given entity-type.

statice:type-attributes entity-type

Returns the names of the attributes of the given entity-type.

statice:type-area-name entity-type

Returns the name of the area in which entities of the given entity-type

are stored.

statice:type-set-exists entity-type

Returns true if a set exists for the given entity-type; otherwise, returns

nil.

statice:type-multiple-indexes entity-type

Returns a list of multiple index instances of the given entity-type.

Operations on Attribute Instances

You get attribute instances by using statice:type-attributes. The following opera-

tions can be used on attribute instances:

statice:attribute-name attribute

Returns the name of the given attribute.

statice:attribute-function-name attribute

Returns the name of the reader function for the given attribute.

statice:attribute-type attribute

Returns the entity type of the given attribute.

statice:attribute-value-type attribute

Returns the value type of the given attribute.

statice:attribute-value-is-set attribute

Returns true if the attribute is set-valued; otherwise, returns nil.

114
Advanced Techniques for Statice Applications February 2018

statice:attribute-unique attribute

Returns true if the attribute’s value is defined to be unique; other-

wise, returns nil.

statice:attribute-read-only attribute

Returns true if the attribute is defined to be read-only; otherwise, re-

turns nil.

statice:attribute-area-name attribute

Returns the name of the area (a symbol) in which values of the given

attribute are stored.

statice:attribute-set-exists attribute

Returns true if a set exists for the given attribute; otherwise, returns

nil.

statice:attribute-index-exists attribute

Returns true if an index exists for the given attribute; otherwise, re-

turns nil.

statice:attribute-index-average-size attribute

Returns the average size defined for the attribute’s index, or nil if no

average size was specifed for the index.

statice:attribute-inverse-index-exists attribute

Returns true if an inverse index exists for the given attribute; other-

wise, returns nil.

statice:attribute-inverse-index-exact-exists attribute

Returns true if an inverse exact index exists for the given attribute;

otherwise, returns nil.

statice:attribute-inverse-index-average-size attribute

Returns the average size defined for the attribute’s index, or nil if no

average size was specifed for the index.

statice:attribute-no-nulls attribute

Returns true if :no-nulls t was specified for the given attribute; other-

wise, returns nil.

statice:attribute-inverse-function-name attribute

Returns the name (a symbol) of the inverse function for the given at-

tribute, or nil if the attribute has no inverse function.

Operations on Multiple Indexes

You get multiple index instances by using statice:type-multiple-indexes. The fol-

lowing operations can be used on multiple index instances:

statice:multiple-index-attribute-names multiple-index

Returns a list of names (symbols) of the attributes indexed by this

multiple index.

115
February 2018 Advanced Techniques for Statice Applications

statice:multiple-index-unique multiple-index

Returns true if the multiple-index is defined to be unique; otherwise,

returns nil.

statice:multiple-index-case-sensitive multiple-index

Returns true if the multiple-index is defined to be case sensitive; oth-

erwise, returns nil.

3.12. Modifying a Statice Schema

Sometimes after you’ve created a database, you want to make a change to its

schema, preferably without changing or losing the contents of the database. This is

done in two steps:

1. Modify the template schema by editing and recompiling the schema definition.

2. Modify the real schema of the particular database(s) you want to update, by

using the Update Database Schema command.

Statice’s ability to update schemas is limited: some changes to the schema cannot

be performed without losing some of the the data in the database. For information

on which kind of modifications can and cannot be accomplished: See the section

"Limitations to Modifying a Real Schema", page 116.

To understand the following explanation, you should be familiar with the terms

template schema and real schema: See the section "Template Schemas and Real

Schemas", page 110.

3.12.1. Modifying the Template Schema

Modifying the template schema is easy: you can edit the code and recompile, just

as if you were updating the definition of a Lisp function. Now the template

schema in the Lisp world incorporates your changes.

Here is an example based on the university schema. (The entire schema is pre-

sented elsewhere: See the section "Defining a Schema for a University", page 20.)

Suppose you want to add a new attribute called age to the person entity type. The

attribute should be of type single-float, and there should be an inverse index. To

do this, you edit the define-entity-type form for person, as follows:

Before:

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

After:

116
Advanced Techniques for Statice Applications February 2018

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (age single-float :inverse-index t)

 (id-number integer :unique t :read-only t)))

Then you must compile the statice:define-entity-type form. You can do this in the

Lisp world, perhaps by using the ������ command in Zmacs, or you can write out

the file, compile it, and load it. Any technique that works for modifying any Lisp

definition will also work for statice:define-entity-type.

3.12.2. Modifying the Real Schema

To modify the real schema of a particular database, you use the Update Database

Schema command. The command takes one argument: the pathname of the

database. If you have several databases, all of which were made from the same

template schema, you must run Update Database Schema separately on each

database.

Update Database Schema examines the template schema in the Lisp world, and

compares it to the real schema in the database. It composes a sequence of opera-

tions to perform on the database in order to change its schema to correspond to

the current template schema. It shows you the list of operations it intends to per-

form, and asks whether to go ahead. You should examine the list and make sure

that it’s what you want; if so, type "yes" and it actually performs the operations.

Continuing with our example in the last section, here’s what the Update Database

Schema command does when asked to update the database BEET:>university:

:Update Database Schema (pathname of database) BEET:>university

Plan for updating the schema of BEET:>university:

Add attribute AGE of entity type PERSON

Go ahead? (Yes or No) Yes

Done.�

Some changes to the template schema don’t require any changes to the real

schema. For example, if you add an inverse accessor to an entity type, or remove

one, all you need to do is update the template schema. The real schema need not

be changed. This is because an inverse accessor is just a Lisp function, and

doesn’t change the layout of data in the database. There is no harm in doing Up-

date Database Schema in such a case; it just tells you that no changes are needed.

3.12.3. Limitations to Modifying a Real Schema

When the Update Database Schema command encounters differences between the

template schema to the real schema, it classifies the change required to rectify the

difference as either compatible or incompatible. Compatible changes don’t disturb

the database; incompatible changes generally lose some data.

For example, Statice cannot change the type of an existing attribute. If the tem-

plate schema says that the type of the salary attribute is single-float, but the real

117
February 2018 Advanced Techniques for Statice Applications

schema says that the type is integer, the only way to update the real schema is to

delete the salary attribute and make a new salary attribute. The unfortunate side-

effect is that all the salary values disappear, and the values of the new salary at-

tribute are all the null value, as if you had added a new attribute.

This is why Update Database Schema shows you what it intends to do, and waits

for confirmation before actually doing it. When Update Database Schema finds it

necessary to perform an incompatible operation, it tells you exactly what it plans

to do. You can then decide whether to go ahead.

Update Database Schema has the following limitations:

• When an entity type is removed, all its subtypes are removed. If you remove a

type from the template schema, but leave a subtype (changing the subtype’s par-

ent list, of course), Update Database Schema must delete and re-create the sub-

type.

• If a type’s list of parents has changed, or the type’s area name has changed,

Update Database Schema must delete and re-create the type.

• If an attribute’s type changes, if it changes whether it’s set-valued or not, if it

changes whether it’s unique or not, if it changes whether it allows null values

or not, or if it changes its area name, Update Database Schema must delete and

re-create the attribute.

If none of the limitations noted above apply, then Update Database Schema can

make the following changes compatibly:

• Add or delete entity types.

• Add or delete attributes.

• Add or delete any kind of index.

• Add or delete type sets and function sets.

When an entity type is deleted, all of the entities of that type (and its subtypes)

are deleted, just as if statice:delete-entity had been called. statice:delete-entity

can affect attribute values of other entities. See the section "Deleting Entities".

When a new attribute is added, the value of the attribute in all existing entities of

the relevant entity types is the null value if the attribute is single-valued, or the

empty set if the attribute is set-valued.

When an attribute is deleted, the storage occupied by the attribute values is not

freed up. One way to free the storage is to use the high-level dumper and loader

to rebuild the database. See the section "High-level Dumper/Loader of Statice

Databases", page 163.

118
Advanced Techniques for Statice Applications February 2018

119
February 2018 Statice Performance Issues

4. Statice Performance Issues

When a database grows large, the performance of Statice becomes slower. Statice

provides techniques for increasing performance: adding indexes; and controlling the

use of type sets, attribute sets, and areas. To use these techniques effectively, you

need to understand some aspects of how Statice works internally, and how it repre-

sents information in a database. This section describes the implementation of Stat-

ice to the extent needed to increase performance of Statice programs.

4.1. Statice Records

Statice stores information in chunks of memory called records. Some records are

only a few words long. Records can get arbitrarily large if, for example, they are

holding long character strings or images.

The following examples are based on the schema definition in "Defining a Schema

for a University".

There are two kinds of records: entity records and relationship records.

Entity Records

There is one entity record for every entity in the database. The entity record rep-

resents the entity itself, and also stores all of the values of the single-valued func-

tions of the entity. This includes the single-valued functions that it inherits from

its parent domains, as well as its own single-valued functions.

For example, there is one entity record for every student represented in the

database. This record holds the values of the student-dept function, the person-

name function, and the person-id-number function, for that student.

Relationship Record�

There is one relationship record for every element of the value of every set-valued

function in the database. In other words, the value of a set-valued function is

stored in many relationship records, one for each member of the set.

For example, the values of the student-courses function are represented by rela-

tionship records. There is one relationship record for every pair of a student, and

a course being taken by the student. Each relationship record, in other words, rep-

resents a fact like "Student Fred is taking course english-1". If Fred is taking en-

glish-1, math-2, and history-3, there will be three relationship records.

One-to-Many, Entity-valued Functions are an Exception�

There is an exception to the above rules for one-to-many, entity-valued functions;

that is, functions with the following characteristics:

120
Statice Performance Issues February 2018

• The function is unique; that is, :unique t was specified

• The function is set-valued; that is, its type is (set-of something)

• The function is entity-typed; that is, something is an entity type�

The values of one-to-many, entity-valued functions are stored inside the entity

records of the entities that are the value of the function, rather than in the entity

record of the entity itself, and rather than in relationship records.

For example, consider the one-to-many function student-shirts. Although this is a

function of the student type, the values are actually stored in the shirt entity

records. You can think of it like slots in a defstruct: every shirt entity record has

a slot that points to the student who owns this shirt.

Another example of a one-to-many, entity-valued function is the students-in-dept

inverse function. students-in-dept is a function of a department, but the informa-

tion is stored in the entity records for students. That is not surprising, since stu-

dents-in-dept is really just another way of thinking of the student-dept function.

Exceptions

Later on, when we discuss areas, we’ll see some modifications and exceptions to

these rules. See the section "Statice Type Sets, Attribute Sets, and Areas", page

127.

4.2. Statice Indexes

What is an Index�

An index is a kind of physical data structure in a Statice database. An index has

no effect on the semantics of a database (that is, it does not change what func-

tions are defined, their arguments or return values, and so on). The only effect of

an index is to change the speed of some operations.

The Effect of an Index

To illustrate what indexes are for, consider the function show-students-courses.

The statice:for-each is given a student, and it must find all the courses that the

student is taking. In other words, it finds the value of the student-courses set-

valued function for a particular student.

The values of the student-courses function are represented by relationship

records. To find all the courses being taken by student Fred, Statice has to find all

of the student-courses relationship records for which Fred is the student. Then, it

can find the course entities pointed to by those records.

If there is no index, the query must look at every relationship record for the stu-

dent-courses function, searching for those records that point to Fred. If there are

121
February 2018 Statice Performance Issues

a thousand students, each taking four courses, Statice must search through four

thousand records. In this query, only a few of those records are part of the an-

swer. This method of processing a query is called a type set scan, and it can be

very slow if the database is large.

If there is an index on the function student-courses, the query is processed using

an index scan. The index has a pointer from the entity record for Fred back to all

the student-course relationship records that point to Fred as the student. By con-

sulting the index, the query can find all the desired records directly, without both-

ering with all the irrelevant records. This is much faster.

The Cost of an Index�

Why not use indexes on every set-valued function? The index has several costs.

First, insertion and deletion in the student-courses sets is slower when an index

is present, because the pointers in the index must be updated. Second, the index is

a storage structure that takes up additional disk space. Third, the index itself is

information that has to be read from the database, and reading information takes

time. Fourth, if two users try to concurrently create or delete an element of any

student-courses set, they would both try to alter the same index at the same time,

and one would have to wait.

Guidelines for Using Indexes�

Deciding whether to have an index or not is a trade-off. The index makes querying

faster, but imposes a penalty on insertion and deletion.

We recommend using indexes when you expect that queries that will happen rela-

tively frequently, and for functions that are queried more often than they are

modified.

Fortunately, it’s easy to experiment, and change your mind later. You can create

and delete indexes any time you want, and compare the performance before and

after.

Creating and Destroying Indexes�

Usually you specify indexes as part of the schema definition, in options in the

clauses of statice:define-entity-type forms. When the schema definition specifies

indexes, statice:make-database creates the indexes when it creates the database.

To do this, provide the :index option with the value t in the clause for the at-

tribute.

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t)))

You can create or delete an index at any time during a transaction by using

statice:make-index or statice:delete-index, which take the name of the function

as their sole argument. You can use statice:index-exists to see whether an index

currently exists.

122
Statice Performance Issues February 2018

Inverse Indexes�

You can also make indexes for inverse functions.

You can specify an inverse index in the statice:define-entity-type form. The fol-

lowing example defines an inverse function called students-in-dept, and uses the

:inverse-index option to give it an index.

(define-entity-type student (person)

 ((dept department :inverse students-in-dept :inverse-index t)

 (courses (set-of course) :index t)))

This inverse index speeds up queries of the form "What students are in this de-

partment?" This includes queries that use the inverse function explicitly (by call-

ing students-in-dept), and queries that use statice:for-each instead of the inverse

function.

The function show-students-in-english-department-1 is one example of a query

that will be speeded up by this inverse index.

(defun show-students-in-english-department-1 ()

 (with-database (db *university-pathname*)

 (princ

 (with-transaction ()

 (with-output-to-string (string-stream)

 (for-each

 (s (students-in-dept (department-named "English")))

 (format string-stream "~%~A" (person-name s)))))))

 nil)

Note that the values of the students-in-dept attributes are stored in the entity

records of type student. This shows that indexes can be used for information in

entity records as well as for information in relationship records.

There are functions for making indexes for inverse functions: statice:make-

inverse-index, statice:delete-inverse-index, and statice:inverse-index-exists. The

argument given to these functions is the name of the accessor function, not the in-

verse accessor function.

Note: although inverse functions are only a syntactic convenience feature, inverse

indexes are really something different from regular indexes, whose effect cannot

be achieved any other way. An index and an inverse index are distinct physical

structures, arranged for quite different purposes.

An Inverse Index without an Inverse Function�

You can make an inverse index on a function even if there is no inverse function

specified in the statice:define-entity-type. The following example defines the stu-

dent type to have an inverse index, but no inverse function.

123
February 2018 Statice Performance Issues

(define-entity-type student (person)

 ((dept department :inverse-index t)

 (courses (set-of course) :index t)))

(Note that simply redefining the student type has no effect on the database, un-

less you remake it or use the Update Database Schema command. See the section

"Modifying a Statice Schema", page 115.

Why would you want an inverse index without an inverse function? Consider the

function show-students-in-english-department-2, which does the same thing as

show-students-in-english-department-1. The only difference is that it uses the

function student-dept, instead of the inverse function students-in-dept. This query

is speeded up by the inverse index.

Remember that inverse functions are really just syntactic sugar. Statice treats

both versions of the function the same way, and uses an index scan over the entity

records of the student type in both cases.

(defun show-students-in-english-department-2 ()

 (with-database (db *university-pathname*)

 (princ

 (with-transaction ()

 (with-output-to-string (string-stream)

 (for-each

 (s student

 (:where (eq (student-dept s)

 (department-named "English"))))

 (format string-stream "~%~A" (person-name s)))))))

 nil)�

Indexes on Other Kinds of Functions�

So far, we’ve only used indexes with queries that were testing the equality of en-

tities. In general, an index can be created on any function, not just an entity-

valued function. It can speed up any equality test, any inequality test (numbers or

strings), and any string-prefix test in a statice:for-each query.

For example, a function that is sped up by an inverse index is person-named, the

inverse function of the name attribute of the person type. If there is no inverse

index, person-named must use a type set scan, scanning over all person entity

records, looking for one whose name attribute has the specified value. If there’s

an inverse index, Statice maintains a physical structure called a B-tree index that

contains name values and pointers to the entity records containing those values.

person-named then uses an index scan, searching very efficiently through the

B-tree index to find the target entity record.

Earlier we saw the function show-instructors-paid-more-than. See the section

"Using the :where Clause of statice:for-each", page 41. It uses the single-valued

function instructor-salary, whose values are stored in the entity records for type

instructor. If there is an index on this function, Statice can quickly find all the

124
Statice Performance Issues February 2018

entity records for type instructor that contain a salary greater than a given

amount, or between any two values. This is fast because the entries that make up

the B-tree index are stored in sorted order.

Case Sensitivity of Inverse Indexes�

There are two kinds of indexes for accelerating the queries made by inverse func-

tions whose value is a string. One kind of index is case-sensitive, and the other is

case-insensitive. It is possible to have both kinds of index for a string-valued in-

verse function.

Statice uses a case-insensitive index to speed up a case-sensitive query, by narrow-

ing down the search set, but a case-sensitive index is still faster than a case-

insensitive index if there are many different strings that are the same except for

case.

When specifying the inverse index in the statice:define-entity-type form, use the

:inverse-index option to make an index that does not distinguish case. Use the :in-

verse-index-exact option to make an inverse index that does distinguish by case.

When using statice:make-inverse-index, the value of the :exact keyword controls

whether the index is case-sensitive.

For more information: See the section "Dealing with Strings in Statice", page 69.

Indexes on Queries with Several Criteria�

Indexes can also speed up queries in which several criteria are tested, and com-

bined with an :and in the :where clause. For example, consider the function show-

full-instructors-after, which was described in "Using the :where Clause of

statice:for-each". Here’s the statice:for-each clause from show-full-instructors-

after:

(for-each ((i instructor)

 (:where (and (equal "Full" (instructor-rank i))

(string-greaterp (person-name i) string))))

 (push (person-name i) instructors))�

There are two criteria that an instructor must meet, each of which is represented

by one subform of the and: the instructor’s rank must be "Full", and the in-

structor’s name must alphabetically follow string. To execute this query, Statice

checks both criteria and looks for an index that can be used.

• If neither criterion can be resolved using an index, it just scans over instructor,

and so must examine every entity record for the instructor type.

• If one of the criteria can be resolved using an index, Statice does an index scan

to fetch the subset of records that fit this criterion, and then examines each

record to see whether it fits the other criterion.

• If both criteria can be resolved using indexes, Statice does two index scans, one

for each index. Then it does a "set intersection" on the results of the two index

scans, to fetch only those records that are pointed to by both indexes.

125
February 2018 Statice Performance Issues

The last way, with two index scans, is the fastest, especially when the database is

large. To get this behavior for the function show-students-in-english-

department-1 or -2, you need two indexes: an inverse index on student-dept, and

an inverse index on department-name.

Why are these both inverse indexes, rather than regular indexes? Here’s how to

think of it. student-dept is a function of a student that finds a department. But in

this query, we are trying to find a student, not a department. So we’re going in

the "inverse" direction. Similarly, department-name is a function that you use

when you already have a department and you want to get a name, but in this

query we are trying to get a department; again, this is the "inverse" direction.

Sometimes an Index is Useless�

There are some functions for which an index is useless. For example, there is no

reason to make an index for the person-name function. Given a person entity, the

person’s name is easy to get: it is stored in the entity record. To be precise, it is

useless to make an index on any one-to-one function or any many-to-one function,

and it is useless to make an inverse index on any one-to-many entity-typed func-

tion.

It is not useless to make an inverse index on an entity-typed one-to-one function.

Making an inverse index stores "back pointers" from the referenced entities to the

referencing entity. For a value-typed one-to-one function, an index is useful for

looking up entities by value, for example, finding a person with a given social se-

curity number.

Estimating the Size of an Index�

Sometimes Statice can do a slightly better job if you tell it in advance how large

to expect the indexed sets to be. That is, if you’re making an index to speed up a

query, how many results is the query likely to have? In some applications, the de-

signer knows in advance the approximate properties of these sets. So while differ-

ent departments in a university might have different sizes, one might estimate

that departments generally have around 1000 students in them. If Statice knows

this, it can do some allocation in advance, and save time and/or space later when

the database is filled in.

To provide such a guess, use the :index-average-size and :inverse-index-average-

size options in the function clause. The values should be forms that evaluate to

integers.

It is not necessary to pinpoint the exact values of the numbers; just pick a rough

ballpark figure. Even if you do not provide any numbers, the added costs are quite

small, since Statice dynamically adjusts formats to represent the index in an effi-

cient way.

126
Statice Performance Issues February 2018

Multiple Indexes: Indexes on Several Functions�

You can create a single index on more than one function of a type. The example

shows the use of the :multiple-index option to statice:define-entity-type to create

an index on instructor-rank and instructor-salary. The functions listed in the

:multiple-index clause are specified by attribute name, not by the function name.

(define-entity-type instructor (person)

 ((rank :string)

 (dept department)

 (salary :integer))

 (:multiple-index (rank salary)))

The function show-well-paid-associate-instructors shows a query that can be re-

solved directly from this index.

(defun show-well-paid-associate-instructors (salary)

 (with-database (db *university-pathname*)

 (princ

 (with-transaction ()

 (with-output-to-string (string-stream)

 (for-each (i instructor

 (:where (:and (string= "a" (instructor-rank i))

 (> (instructor-salary i) salary))))

 (format string-stream "~%~A" (person-name i)))))))

 nil)�

Rules for Multiple Indexes

You can create a multiple index when all of the following requirements

are met:

• All functions listed are single-valued functions.

• All functions listed are in the same area as the type.

• None of the functions are inverse functions.

• At least two functions are listed.

You can provide many :multiple-index clauses.

Guidelines for Multiple Indexes

A multiple index can speed up queries in which there are several claus-

es combined with :and in the :where clause, and there are clauses that

mention all of the functions in the index, or a leading sequence of them.

If the leading sequence is not as long as the whole set, then the index

is helpful only if the tests are all equality tests. If the sequence is as

long as the whole set, then the last test can be an inequality or string-

prefix test as well.

Enforcing Uniqueness on a Combination of Attributes

A :multiple-index clause can also specify :unique t. This makes Statice

enforce a constraint: no two entities can have the same combination of

values for all of the functions mentioned in the clause. That is, if you

127
February 2018 Statice Performance Issues

specify :unique t, then a particular set of values for the set of functions

mentioned in the clause specifies no more than one entity. This example

allows two instructors to have the same rank or the same salary, but

makes in impossible for them to have the same values for both rank and

salary.

(define-entity-type instructor (person)

 ((rank :string)

 (dept department)

 (salary :integer))

 (:multiple-index (rank salary) :unique t))

When a multiple index is specified as :unique t, it is necessary to ini-

tialize the value of at least one of the attributes when making entities.

In this case, you can create one instructor without entering a value for

the rank or salary attribute; the default for both would be nil. However,

if you then try to create a second instructor without entering a value

for the rank or salary attribute, the default for both would again be nil.

Since this would violate the uniqueness constraint, Statice would signal

an error.

In addition to specifying multiple indexes in the statice:define-entity-

type forms, you can use the functions make-multiple-index, delete-

multiple-index, and multiple-index-exists. �

4.3. Statice Type Sets, Attribute Sets, and Areas

At this point it is useful to describe how statice:for-each finds entities when no

index exists. We’ll examine both of the queries in the function show-students-and-

their-courses. (This example was used earlier in the documentation, and is repeat-

ed here.)

(defun show-students-and-their-courses ()

 (with-database (db *university-pathname*)

 (princ

 (with-transaction ()

(with-output-to-string (string-stream)

 (for-each (s student)

 (format string-stream "~%~A:" (person-name s))

 (for-each (c (student-courses s))

 (format string-stream " ~A" (course-title c)))))))))

Type Sets�

Consider the outer statice:for-each, which finds all of the students, and assume

there are no helpful indexes. statice:for-each finds the students by using an auxil-

iary structure called a type set. A type set is like a B-tree index, but with no keys:

it simply points to every entity record of a given type. It lets statice:for-each find

all the student records, without having to examine all the other records in the

128
Statice Performance Issues February 2018

database that are not student records.

Attribute Sets�

Now consider the inner statice:for-each, which finds all the courses being taken

by one particular student. Since student-courses is a many-to-many attribute, its

value is represented by relationship records. Statice uses an auxiliary structure

called an attribute set to find all of the relationship records that make up the func-

tion student-courses, for all students and courses. It examines each one and

chooses only those that point to the particular student. This is not nearly as fast

as using an index. However, it is a lot faster than checking every single record in

the entire database, including the ones that are not part of student-courses at all.

An attribute set is very similar to a type set. The only difference is that a type set

point to every entity record of a type, while an attribute set points to every rela-

tionship record of an attribute.

Cost of Type Sets and Attribute Sets�

Type sets and attribute sets have some of the same costs as indexes. Insertion and

deletion into the sets have costs; the sets take up disk space; the sets themselves

are extra information that must be read in from the database; and they can cause

concurrency conflicts.

Controlling the Use of Type Sets and Attribute sets�

By default, Statice always creates a type set for every type, and an attribute set

for every function that resides in relationship records.

In some cases, it makes sense to tell Statice not to create the sets at all. In par-

ticular, if you are sure that any query that your application program does will al-

ways be resolved by an index, then you can get rid of the sets entirely. See the

section "How to Control Type Sets, Attribute Sets, and Areas", page 131. There is

an alternative that is often better, which is to control the use of areas. In order to

control areas wisely, you need to understand how paging affects performance.

Paging Considerations�

Earlier, we stated that a database is made up out of chunks called records. In ad-

dition to the records, there are also auxiliary structures: indexes, type sets, and at-

tribute sets.

A database can also be broken into a different kind of unit called a page. Every

database is a sequence of pages. Every page is the same size. The page size might

vary from one Statice file system to the next, because it depends on hardware cri-

teria that can be different from one processor or disk to the next. The division of

databases into pages is a physical phenomenon, imposed on the file system by the

way hardware works. (Currently, pages are 1152 bytes on Symbolics 36xx proces-

sors, and 1280 bytes on Symbolics Ivory-based processors; the processor type of the

server is relevant, not of the client.)

129
February 2018 Statice Performance Issues

Everything in a database resides in some page. Every page in the database has a

specific purpose. Some are used to store portions of indexes. Others are used to

store pieces of attribute sets, or type sets. Others are used to store records. In this

discussion, we’ll concentrate on the pages that are used to store records, which are

called data pages.

Typically, a record is smaller than the size of a page. Most data pages hold many

records. However, there is no limit in Statice on the size of a record, and some

records are larger than the page size. One reason this can happen is if one of the

values stored in the record is a very long string. In such cases, the record is

spread over many data pages. The process of storing records within pages happens

automatically.

When you access a database, the amount of time spent accessing the disk is often

the dominant cost of the access. This is because disks are so much slower than

processors. Whenever the processor accesses the disk, it always transfers an entire

page, or several entire pages; this is how disks work. So the cost of using the disk

is usually measured in terms of the number of pages that have to be accessed.

This has an important implication. If Statice wants to access seven different

records, and all of those records happen to be stored on the same page, then the

cost will be only one disk access. But if all seven records are on different pages,

the cost will be seven disk accesses, which is seven times the cost. If you can ar-

range things so that the records that you need at the same time tend to be

grouped together into fewer pages, you can access them more quickly.

To understand the physical structure of your database, you do not have to actually

be aware of individual pages, and which record is on exactly which page. The im-

portant thing to know is that some records tend to be close to other records, and

this means that there is a good chance many of these nearby records will be on

the same page.

When Statice creates a new record, it finds a data page that has enough room to

hold the record, and puts it there. If there is no data page with enough room, it

creates a new data page for the record. If there is a lot of interleaved deleting and

creating, it is hard to predict exactly where a record will end up being created.

But if there is a lot of creation without intervening deletion, records will tend to

be close to the records that were created around the same time.

You can affect the speed of Statice queries by controlling which records are stored

near other records. There are two ways to do this: areas and clustering.

Areas�

An area is a set of data pages. Every data page is a member of one particular

area. Every type has an associated area, and every attribute that is stored in rela-

tionship records has an associated area as well. Entity records of a type are always

stored in data pages from the type’s area, and relationship records work likewise.

By default, there is only one area, and every type and attribute is associated with

that area. All of the records are placed into a single set of data pages.

130
Statice Performance Issues February 2018

Suppose you request a second area, and associate the type student with that area.

Now, the entity records for student entities are created in the second area, and

everything else is created in the first area. The result is that all of the student

entity records are crowded into the smallest possible number of pages. So if you do

a query that examines every student record, it will be faster than it otherwise

would have been, because fewer pages need to be accessed.

It is important to keep in mind what information is stored in what kind of records.

The student records hold the name, id-number, and dept of the student, and these

can be examined once the record has been accessed. However, in order to access

the courses, Statice has to fetch the relevant relationship records. These are stored

in the first area, and so more pages have to be accessed from the disk. In order to

access the shirts, Statice has to access the relevant shirt entity records, which al-

so are not in the new area.

Cost of Using Areas�

What is the cost of using areas in this way? Suppose that when we create stu-

dents, we generally store all the information about one student, then all the infor-

mation about the next student, and so on. If everything were in one area, the stu-

dent entity record, and the student-courses relationship records that go with it,

would tend to be close together, possibly on the same page. Now, if we want to ac-

cess one particular student, and look at all his courses, it might take only one

page access. But if there were a separate area for student entity records, it would

take at least two page accesses, because the student entity records would have to

be on a different page from the student-courses relationship records.

Guidelines for Controlling Areas�

Whether to put something in a separate area or not depends on the kind of access-

ing you expect to be doing, or the kind whose speed you care the most about.

Qualitatively, if you are interested in a few things about many entities, separate

areas are better, but if you are interested in many things about a few entities,

keeping things together is better.

You can also control the area of a particular function. If you specify a particular

area for a set-valued function, the relationships records for that function go into

the area. If you specify a particular area for a single-valued function (and it is not

the same area as the area of the type), then the values of the single-valued func-

tion are not stored in the entity record, but rather live in relationship records, and

those relationships records go into the specified area.

Area Scans�

When statice:for-each does not find any relevant index, and there is no attribute

set or type set, it performs an area scan. In an area scan, Statice accesses every

page of the area associated with the type or function, and examines each record in

each page to see if it’s what the query is looking for.

We discussed an example in which a new area was established for student

records. Consider a statice:for-each query over the student type. If there were no

131
February 2018 Statice Performance Issues

type set for student, statice:for-each would do an area scan on this area. Al-

though there is no type set, this is quite efficient. First, Statice accesses only

those pages that it needs to. It actually accesses slightly fewer pages than a type

set scan would access, since there is no need to access the type set itself. Second,

the only records it finds are student records, since any other record would not be

in this area.

When there is only one type of record in an area, there is no need to have a type

set, and in fact the type set only slows things down.

If all the different types of records are in the same area, then the type sets usual-

ly speed queries up a lot. The only exception would be if nearly every record in

the database is of one type, to the point where just about every single page of the

database has at least one of these records in it. Then you might be better off with-

out a type set.

If there are several areas, and one area has a few different record types, then

whether a type set (or attribute set) is desirable or not depends on the numbers.

Generally, if there is one record type that occupies most of the area, then a type

set is less likely to be helpful. If there are only a few such records, the type set is

more likely to be helpful.

Commercial relational databases very often put every single record type into its

own area, and have no type sets or attribute sets. This is a perfectly reasonable

strategy. It is particularly useful if you often access the database by searching

through many records of the same type, and more rarely access records together of

many different types. Statice provides this as one strategy, but also offers others,

because different strategies are better for different databases.

Areas and Indexes�

In the section "Introduction to Indexes in Statice", we said that the :index option

is meaningful only for set-valued attributes. There is an exception to this: if the

values of a single-valued attribute are stored in a different area from the entity

itself, :index is meaningful.

When an entity’s attribute value is in a different area from the entity itself, the

attribute value obviously cannot be stored in the entity record. Instead, it is stored

in a relationship record. In order to fetch the value of the attribute, Statice must

locate the relationship record. If there is no index, Statice has to search for the

relationship record, using an area scan or a type set scan. With an index, Statice

can just follow a pointer.

4.4. How to Control Type Sets, Attribute Sets, and Areas

This section shows examples of controlling the presence of absence of type sets

and attribute sets, and controlling which records go into which areas.

132
Statice Performance Issues February 2018

Specifying an Area for Types�

This example redefines the student type to shows the use of the :area option to

statice:define-entity-type. This means that there should be a new area, separate

from the default area, designated student, and all of the entity records for student

entities should be placed in that area. The name space of areas is independent of

the names of types and attributes, so you can have both a type named student and

an area named student.

(define-entity-type student (person)

 ((dept department)

 (courses (set-of course)))

 (:area student))

The relationship records of the student-courses function will also be placed into

the student area, because the default area for an attribute’s relationship records

is the area of its entity type. If this new definition of student replaced the origi-

nal one in the schema definition, then all student and student-courses records

are placed in the student area, and the rest of the records are placed in the de-

fault area; there are two areas in the database. Type sets and attribute sets are

still created for all types and functions, including student and student-courses.

Specifying an Area for Functions �

This example shows the use of the :area option for attributes. The student-

courses relationship records are now placed into a new area, designated sc.

(define-entity-type student (person)

 ((dept department)

 (courses (set-of course) :area sc))

 (:area student))

The :type-set and :attribute-set Options to statice:define-entity-type�

This example shows the use of the :type-set entity type option and the :attribute-

set attribute option. This definition is like the first one: student and student-

courses are both in area student, and everything else is in the default area. Even

though student and student-courses are not alone in their own areas, we have

nevertheless specified that there should be no type set for student, and there

should be no attribute set for student-courses.

(define-entity-type student (person)

 ((dept department)

 (courses (set-of course) :attribute-set nil))

 (:area student)

 (:type-set nil))

133
February 2018 Statice Performance Issues

Storing Entities of Several Types in an Area�

This example shows new definitions of the types student and course. Both specify

area sc. Therefore, entity records for both student and course entities, as well as

relationship records for type student-courses, all are placed into area sc. This is

the reason that areas have names: so you can mention them more than one place

in a schema.

(define-entity-type student (person)

 ((dept department)

 (courses (set-of course)))

 (:area sc))

(define-entity-type course ()

 ((title :string :unique t)

 (dept department)

 (instructor instructor))

 (:area sc))

Summary�

• There is always one default area, designated nil.

• The area for entity records is specified by the :area option for the type, and de-

faults to nil.

• The area for relationship records is specified by the :area option in the clause

that defines the attribute, and defaults to the area of the type.

• The presence of a type set is controlled by the :type-set option to the type, and

default to t.

• The presence of an attribute set is controlled by the :attribute-set option in the

clause defining the attribute, and defaults to t.

• The :area option is not inherited. It must be specified explicitly for each type.

Note that specifying :area nil explicitly is not necessarily the same thing as

omitting the :area keyword.

4.5. Clustering Technique for Statice Databases

When you access information in a database, Statice creates a buffer in the virtual

memory of your machine in which to store that information. The buffer contains a

page worth of data. The speed of accessing any data on that page is greater than

accessing a different page which must be fetched from the database. You can in-

crease the performance of your program if you can predict groups of entities that

would need to be accessed together, and specify that they should be stored on the

same page, or on a set of pages.

134
Statice Performance Issues February 2018

The technique called clustering enables you to group related entities on a set of

pages. There are two ways of making clusters: using declarative specifications, and

using imperative specifications. The declarative form may be used when your pro-

gram fits into the declarative model. If not, you can use the imperative form.

The Declarative Model

One entity type is considered the parent type. Every entity of the parent type is

placed in its own cluster. Some other entity types are child types. Every entity of

a child type lives in the cluster of one entity of the parent type. There is an enti-

ty-type option to statice:define-entity-type called :own-cluster, which identifies a

parent type.

Each child entity type has a single-valued entity-typed attribute, whose type is ei-

ther the parent type or one of the other child types. There is an attribute option

to statice:define-entity-type called :cluster, which identifies the entity type as a

child type, and identifies the attribute as the one that designates the immediate

parent.

No entity type can be both a parent type and a child type. No entity type can have

more than one :cluster attribute. No parent type and no child type can have the

:area entity type option.

To use the declarative model, you must create your entities in "top-down" order,

making the parent first, then the children that refer directly to the a parent, and

so on. If this limitation is too restrictive, you can use the imperative specifications.

The relationships that join parents to children have to be one-to-one or one-to-

many; they cannot be many-to-many. You can deal with many-to-many by using the

the imperative specifications.

Declarative Specifications

There are two aspects of the declarative form which are specified as part of an en-

tity definition. The first is the :own-cluster option to statice:define-entity-type;

this option says that every time one of these entities is specified is created, it

should be placed in a new cluster. This means that a new page is allocated, and

this page is empty except for the entity being created. Also, this page is not a

member of any other cluster.

The second aspect is the :cluster option to entity-typed attributes. When Statice

makes a new entity of an entity type that has a :cluster attribute, and the value

of the :cluster attribute is provided (whether explicitly or via :initform), and that

value is in a cluster, then the new entity is placed in the same cluster. Otherwise

(if the value isn’t in any cluster, or the value is not provided) the entity is allocat-

ed normally (without clustering).

There can be only one :cluster attribute per entity type.

135
February 2018 Statice Performance Issues

Imperative Specifications

The imperative form gives you greater control over the clustering process. It is

based on the concept of the current cluster. By default (at top-level) there is no

current cluster. If there is a current cluster, and you make a new entity, the enti-

ty is created inside the current cluster. This overrides the declarative interface

and any area specifications.

To declare a current cluster, you use statice:with-cluster as in these examples:

(with-cluster (:new) body)

(with-cluster (:none) body)

(with-cluster (entity-handle) body) �

The contents of the first subform of statice:with-cluster (either :new, :none, or

entity-handle) is evaluated at run time, so it may be a variable.

When :new is specified, all the entities that are created in the dynamic scope of

body are created in a new cluster. That is, the first entity to be created in the

statice:with-cluster form is placed in its own cluster, and the rest of the entities

are placed in that same cluster.

When :none is specified, the effect is to turn off clustering.

When entity-handle is specified, all the new entities created in the dynamic scope

of body are placed in an existing clusterthat of the entity-handle. If entity-handle

is not a clustered entity, then no clustering takes place, and everything is allocat-

ed wherever there is free space on non-clustered pages.

statice:with-cluster also causes the set-valued links to be placed in the cluster

pages if clustering is enabled. These are records linking set-valued attributes to

entities, which exist if the set-valued entity-type attribute has an index.

If both declarative and imperative techniques are used, the override rule is: if

there is any "current cluster", the imperative laws apply, and if there is no current

cluster, the declarative laws apply.

4.6. Concurrency Control in Statice

Concurrency control is the facility in Statice that lets many client processes oper-

ate on the same database at the same time, without getting in each other’s way.

Concurrency control is completely automatic in Statice; we only discuss it because

it can affect performance. By understanding something about how concurrency con-

trol is implemented in Statice, you might be able to improve the performance of

your application.

4.6.1. How Locking Works in Statice

The concurrency control technique used in Statice is called "two-phase locking,

with page granularity", in the jargon of database systems. This section does not

try to take the place of a textbook on the principles of concurrency control in

136
Statice Performance Issues February 2018

database systems, but it explains enough about locking to help you understand how

it affects performance of Statice.

Locking

To control concurrent access to a database, Statice maintains a software object

called a lock on every page of the database. The state of the lock controls which

clients are allowed to access the page. The lock can have any of three states:

Unlocked No client is using the page; the next client who asks for it will

get it. The page is said to be unlocked.

Locked for reading One or more clients are allowed to read the contents of the

page, but no client is allowed to write the contents of the

page. The page is said to be locked for reading by these

clients. The clients are said to own the page for reading.

Locked for writing One client is allowed to read or write the contents of the page.

No other clients are allowed to access the page at all. The

page is said to be locked for writing by this client. The client

is said to own the page for writing.�

In other words, many processes can share a page if they’re only reading the page,

but only one process can use a page if it’s writing the page.

The concept of "page" was described earlier: See the section "Statice Type Sets,

Attribute Sets, and Areas", page 127.

When a client process tries to read a page of a database, and it does not already

own the page at all, it must attempt to lock the page for reading. If the page is

unlocked, or locked for read, the client is granted the lock. Otherwise, the client

process must wait until the state of the lock changes.

When a client process tries to write a page of a database, and it does not already

own the page for writing, it must attempt to lock the page for writing. If the page

is unlocked, the client is granted the lock. If the page is locked for reading by this

client and no other clients, the lock is upgraded to being locked for writing by this

client process. Otherwise, the client process must wait until the state of the lock

changes.

At the beginning of a transaction, the client process doesn’t own any locks. As the

transaction proceeds and the client reads and writes various pages, it acquires

locks. Finally, when the transaction ends (either commits or aborts), it releases all

of its locks. (This pattern of acquiring and releasing locks is technically known as

two-phase locking.)

Example of locking

Here’s how locking works in a typical transaction. The function impose-salary-

minimum finds all instructors whose salary is less than this-much, and sets their

salaries to this-much. Suppose there is an inverse index on the salary attribute of

instructor, so that Statice will use an index scan.

137
February 2018 Statice Performance Issues

(defun impose-salary-minimum (this-much)

 (with-database (db *university-pathname*)

 (with-transaction ()

 (for-each ((i instructor)

 (:where (< (instructor-salary i) this-much)))

 (setf (instructor-salary i) this-much)))))�

impose-salary-minimum starts a new transaction, which we’ll call Transaction A.

As Transaction A starts, it doesn’t own any locks. The first thing Statice does is

to read the inverse index to find the locations of the entity records for the rele-

vant instructors. During this operation, Transaction A has to acquire locks for

reading on the pages of the database that hold the inverse index.

If some Transaction B is already executing, and has acquired a lock for writing on

any of these inverse pages, Transaction A must wait for Transaction B to com-

plete. This could only happen if Transaction B were trying to write the index,

which would happen if it were changing the salary of some instructor, creating a

new instructor, or deleting an instructor.

After the index scan, Transaction A owns some of the pages of the index for read-

ing. If some Transaction C attempts to write one of the pages of the index that

Transaction A is interested in, by changing the salary of some instructor, creating

a new instructor, or deleting an instructor, it would have to wait until Transaction

A completes. Because of the way the inverse index is organized, it’s possible that

the only pages Transaction C needs to modify are pages that Transaction A hasn’t

locked; it all depends on the details of the data values and the size of the index.

Next, Transaction A writes new values into the entity records of some instructor

entities. It must acquire locks for writing on each of the pages that those entities

live in. If any other transaction owns any lock on one of those pages, Transaction

A must wait for it to finish. Transaction A also must update the inverse index on

the salary attribute, which means it needs to upgrade some of its locks on the in-

dex pages to locks for writing. FInally, Transaction A commits the transaction, re-

leasing all its locks, and any transactions that were waiting for Transaction A can

proceed.

4.6.2. Deadlocks

Simple Two-way Deadlocks

Suppose a database has two pages, which we’ll call P1 and P2. Two transactions

start using the database, and the following sequence of events occurs:

• Transaction A modifies the contents of page P1, thus acquiring a lock on P1 for

writing.

• Transaction B modifies the contents of page P2, thus acquiring a lock on P1 for

writing.

138
Statice Performance Issues February 2018

• Transaction A attempts to modify the contents of P2. It first attempts to lock

P2, but Transaction B already owns P2, so Transaction A waits for Transaction

B to complete.

• Transaction B attempts to modify the contents of P1. It first attempts to lock

P1, but Transaction A already owns P1, so Transaction B waits for Transaction

A to complete.�

At this point, each transaction is waiting the other one to complete, but neither

one can. Such a situation is called a deadlock. Since application programs can ac-

cess pieces of a database in any order they choose, it’s possible for a deadlock to

occur at any time.

Statice monitors the state of all transactions, and looks for deadlocks. When it sees

that a deadlock exists, it picks one transaction, called the victim, and causes that

transaction to abort and restart. This breaks the deadlock and allows both transac-

tions to finish.

In our example, suppose that Transaction A is chosen as the victim. Statice aborts

Transaction A, and starts it again. P1, of course, is restored to its original con-

tents. Transaction A again tries to lock page P1. But this time, Transaction B is

queued up ahead of it, and Transaction B is granted the lock on P1 first. Now

Transaction B can finish, and Transaction A can run without interference.

This is one of the reasons that transactions can restart at unpredictable times.

This property of transactions was discussed earlier: See the section "Coping with

Transaction Restarts", page 37.

N-way Deadlocks

It is possible for three or more transactions to become involved in a deadlock. For

example, Transaction A owns a write lock on page P1, and is waiting for a write

lock on page P2. Transaction B owns a write lock on page P2, and is waiting for a

write lock on page P3. Transaction C owns a write lock on page P3, and is waiting

for a write lock on page P1.

Three-or-more-way deadlocks are less likely to occur than two-way deadlocks, but

they can happen. Statice knows how to detect such deadlocks and resolve them by

aborting one of the transactions.

Upgrade Deadlocks

Another way a deadlock can happen is from the lock upgrade operation. Suppose

Transaction A and Transaction B both own a read lock on page P1. Transaction A

now tries to upgrade the lock to a write lock. This request cannot be satisfied un-

til Transaction B releases the lock, so Transaction A waits. Transaction B now

tries to upgrade the same lock to a write lock, and waits until Transaction A re-

leases it. Again, both transactions are stuck.

This kind of deadlock is probably the most likely to occur in practice, because it

doesn’t depend on having two running transactions on the database that access

139
February 2018 Statice Performance Issues

pages in a different order. The transactions can be doing exactly the same thing,

in the same order, and an unlucky interleaving can cause a deadlock. Again, Stat-

ice knows how to detect and resolve such deadlocks.

Livelock

The policy of Statice is that the "youngest" transaction involved in the deadlock,

i.e. the one that started most recently, is picked as the victim. The intent is to

prevent a situation in which transactions are continually aborted and retried over

and over again, never completing; this situation is sometimes called "livelock".

There is no absolute guarantee that this policy will prevent a "livelock", although
it is likely to. Statice will keep retrying a transaction up to a specified number of

times, which is 100 by default. After that, it assumes that something is wrong and

manual intervention is needed, so the transaction aborts one last time, non-

restatably, and signals the condition dbfs:transaction-retry-limit-exceeded. The

maximum number of retries is controlled by the variable dbfs:*transaction-retry-

limit*.

4.6.3. How Locking Affects Performance

The most important effect of locking on the performance of a program using Stat-

ice is that when one transaction holds a lock on a page, other programs cannot ac-

cess that page, and must wait (unless the lock being held is a read lock, and the

other programs only want to read the page). The longer a transaction holds a lock,

the more time it "freezes out" other transactions, and the greater the chance that

another transaction will be slowed down because it needs to wait for a lock.

Similarly, the longer a transaction holds a lock, the more likely deadlocks become.

Deadlocks only arise when two transactions interleave in an unfortunate way. The

longer transaction A holds a lock, the greater the time window in which transac-

tion B can enter a deadlock with transaction A.

So the most important result is that you should try to keep transactions as short

as possible.

140
Statice Performance Issues February 2018

141
February 2018 Operations and Maintenance of Statice Databases

5. Operations and Maintenance of Statice Databases

5.1. The Architecture of Statice

5.1.1. Using Statice Locally or Remotely

Statice can be used on a single host, or between many hosts across the network.

This section describes how this works, and explains the terminology used for the

participants and the roles they play.

A host is a computer, a workstation. A site is a collection of hosts (and other

things, such as users), all at more or less the same physical place. Every host is at

one particular site. We assume that every host at a site is connected to a network,

so that each host can communicate with every other host. Hosts, sites, and net-

works are all described by the namespace database. For more information about

the namespace database and the things it describes: See the section "Concepts of

Symbolics Networks" in Networks. See the section "Setting Up and Maintaining the

Namespace Database" in Site Operations.

A Statice File System is a file system that holds Statice databases. Every Statice

File System is at one particular site. Every Statice File System resides on one par-

ticular host at that site. Each Statice File System is described in the namespace

database by a File System namespace object: See the section "How a Statice File

System is Described in the Namespace", page 142. See the section "Attributes for

Objects of Type "File System"", page 147.

Suppose that at some site there are two hosts named Mars and Venus, and there

are two Statice File Systems named Rose and Iris. Rose resides on host Mars, and

Iris resides on host Venus. Fig. 1 shows hosts represented as rectangles, and Stat-

ice File Systems represented as circles.

Mars Venus

Rose Iris

Figure 1. Hosts Mars and Venus, with File Systems Rose and Iris�

Now, suppose a process running on host Mars begins using Statice, doing

statice:with-database and statice:with-transaction, calling accessor functions, and

so forth. This process might be a Dynamic Lisp Listener, a process associated with

142
Operations and Maintenance of Statice Databases February 2018

some program defined by dw:define-program-framework, or any process at all. A

process that calls Statice functions and special forms is a client process.

If the client process uses a database that resides in the Statice File System named

Rose, Statice notices that Rose is on the same host as the client process itself. We

say that the client process is using Statice locally, or that the client is accessing a

local database. When a client is using Statice locally, the client manipulates the

database directly, invoking the disk driver to access the host’s disks, etc.

If the client process uses a database that resides in the Statice File System named

Iris, Statice notices that the Iris is on some other host than the client process. We

say that the client process is using Statice remotely, or that the client process is

accessing a remote database. When a client uses Statice remotely, a server process

is created on the remote host, and a network connection is created to allow the

client process and the server process to communicate. The client process cannot di-

rectly access the disks of another host, and so it delegates this work to the server

process.

Mars Venus

Rose Iris

Figure 2. Local and Remote Use of Statice�

If a second client process, running on host Venus, accesses the same database on

Iris, this second client is using Statice locally. In Fig 2, we have two client pro-

cesses, both using the same database, one locally and one remotely. In general,

there might be any number of client processes accessing a database, many locally

and many remotely.

5.1.2. How a Statice File System is Described in the Namespace

Every Statice File System is described by an object in the namespace database. For

more information about the namespace database and the things it describes: See

the section "Concepts of Symbolics Networks" in Networks. See the section "Setting
Up and Maintaining the Namespace Database" in Site Operations.

The namespace object for a Statice File System is of type File-System (as opposed

to Host, Network, User, et. al.), and would typically look similar to this:

143
February 2018 Operations and Maintenance of Statice Databases

Host: CHICOPEE

Type: DBFS

Root Directory: FEP1:>Statice>iris.UFD

Pretty Name: IRIS

User Property: PARTITION0 FEP1:>Statice>iris-part0.file.newest

User Property: PARTITION1 FEP1:>Statice>iris-part1.file.newest

User Property: PARTITION2 FEP1:>Statice>iris-part2.file.newest

User Property: LOG-DESCRIPTOR-FILE-ID 1015371-1311996-1048993

User Property: DBFS-DIR-ROOT-FILE-ID 1014172-1311996-1048993�

When you use the Create Statice File System command, Statice automatically cre-

ates a file-system object. See the section "Create Statice File System Command".

The most important attribute is the Host, which says where this file system lives.

In this example, Iris lives on host Mars.

The Type field always has the value DBFS. Any other values for this field are re-

served for future expansion.

The Root Directory field contains a pathname of a FEP FS file. That file contains

the directory of the Statice File System. The pathname should always start with

FEPn: and end with the .UFD file extension.

The Pretty Name and Short Name mean the same thing as they do in other name-

space objects. The Short Name can be used on input as an abbreviation; in partic-

ular, you can use it in pathnames. The pretty name is used to display the name of

the file system.

The User Properties named PARTITION have values that are pathnames of the

FEP files which are the partitions that make up the file system. The database is

stored in a number of partitions. For more information on partitions: See the sec-

tion "Create Statice File System Command", page 167.

The User Property named LOG-DESCRIPTOR-FILE-ID is the unique ID of Stat-

ice’s "log descriptor" file, an internal file used to store various per-file-system in-

formation.

The User Property named DBFS-DIR-ROOT-FILE-ID contains, in the form of a

string, the internal unique ID of the special database in the file system that stores

the hierarchical directory structure of the file system. This is established when the

Statice File System is created, and you should never change it.

For reference documentation on the File-System object and its attributes: See the

section "Attributes for Objects of Type "File System"", page 147.

Why is there a separate File-System namespace object? Why doesn’t Statice use

the host object, as LMFS does? There are three reasons:

• Pathnames starting with "MARS:" already mean "the LMFS found on host

MARS". They can’t also mean a Statice File System. We must have a different

name in order to specify the Statice File System, because the name "MARS" has

already been taken. This is the most compelling reason.

144
Operations and Maintenance of Statice Databases February 2018

• It’s possible to have more than one Statice File System on the same host, each

with its own name, using different areas of the host’s disks. Such a configura-

tion might be desirable for various administrative reasons.

• You can move a Statice File System from one host to another, using removable

disk packs, magnetic tape copies, or moving disks. If you do this, you need to

change the file-system namespace object for the Statice File System to refer to

the new host. All software that refers to the Statice File System by name con-

tinues to work, because the file-system namespace object provides the link to the

new location of the Statice File System.�

5.1.3. Statice Database Pathnames

Many Statice commands take a pathname as an argument, indicating a database.

This should be a database pathname. The most striking difference between a

database pathname and an ordinary pathname is the first component: for a

database pathname, this is a Statice File System; for an ordinary pathname, this is

a host.

Every Statice File System contains a set of files. Each file contains a Statice

database, and is named by a database pathname.

Database pathnames resemble LMFS pathnames. The "host name" part is the name

of the Statice File System, followed by a colon. After that are the names of the di-

rectories, separated by greater-than characters. The last part of the pathname is

the name of the file. For example, the pathname Iris:>george>financial>ledger
names a file in the Statice File System named Iris. The root directory on Iris con-

tains a directory named george, which in turn contains a directory named

financial, which in turn contains a file named ledger.

There are some important differences between database pathnames and LMFS

pathnames. Database pathnames have a name, but no type or version. Statice File

System directories store fewer properties than LMFS directories; there is no modi-

fication date, reference date, do-not-reap flag, and so on. There are also no links,

only files and directories. Statice File System directories support the following

properties, which can be examined with directory listings (see fs:directory-list or

fs:file-properties).

:author The user ID of the creator of the file.

:creation-date The date and time at which the file was created, expressed as

a universal time.

:comment An arbitrary string that appears in directory listings.

:directory t if this is a directory, nil if this is a file.

:length-in-blocks The length of the file, in blocks. A block is 1152 (decimal)

bytes, the size of a FEP file system block. (FEP blocks are

1152 bytes on 3600-family machines, and 1280 bytes on Ivory

machines.)�

145
February 2018 Operations and Maintenance of Statice Databases

The :author, :creation-date, and :comment properties can be set using fs:change-

file-properties. :comment can be set for files but not directories. The other prop-

erties cannot be set.

Database pathnames are case-insensitive for lookup, like those of LMFS. When you

make a new file, the Statice File System directory remembers the case you used

and stores this in the directory. To look up a file that already exists, you can use

either case for any character. A directory cannot have one file named Foo and an-

other named foo; these are considered to be the same name.

Database pathnames support relative pathname syntax, wildcard syntax, and com-

pletion, just like LMFS pathnames. <foo>bar means the file named bar in the di-

rectory named foo in the directory that is the parent of the default pathname’s di-

rectory. >foo>* means all the files in the directory named foo. >foo>**>* means all

the files in the directory named foo and its descendants. >foo>b* means all the

files whose names start with b in the directory named foo.

There is no undeletion, and no expunging. When you delete a file, it is immediate-

ly and permanently removed.

Files cannot be opened by the Lisp open function because they are not really files

in the sense of the Lisp stream system. The contents of files are accessed only via

Statice operations, never by streams. The only exception is if they are opened with

a :direction of :probe, :probe-directory, or :probe-link. This lets programs use

probe-file to check for the existence of files in a Statice File System.

Database pathnames work correctly with the Genera directory manipulation tools,

such as DIRED, FSEdit (the File System Editor), and commands such as Show Di-

rectory, Create Directory, Delete File, and Rename File. However, they do not

work with commands that attempt to open files, such as Copy File and Show File.

The root directory of every Statice File System directory contains an entry named

Directory, which refers to the directory itself. This gives you a way to name the

root directory as a file, in order to perform operations on it. This is rarely neces-

sary, and you can usually just ignore the Directory entry.

5.1.4. Dealing with Databases by Their Pathnames

Many operations on databases can be done by using normal file commands on the

database pathname. See the section "Statice Database Pathnames", page 144.

• What databases are stored in a directory of a given Statice file system? Use the

Show Directory command:

Show Directory beet:>fred>*�

• What are all the databases stored an entire Statice file system? Use the Show

Directory command:

Show Directory beet:>**>*

• How can I rename a database? Use the Rename File command.

146
Operations and Maintenance of Statice Databases February 2018

Rename File beet:>university beet:>harvard�

• How can I remove a database? Use the Delete File command on a database

pathname.

Delete File beet:>university�

Although this method permanently removes the file, you can restore the file

from backup tapes (if you have any). See the section "Selective Restore Com-

mand", page 161.

5.1.5. Services and Protocols Used by Statice

Statice uses several network services and protocols. The commands that install

Statice at your site add new information to your namespace host objects, indicating

that these services and protocols are supported. In this section, we briefly describe

the new namespace information; this information is not required in order to write

Statice programs, but it might be useful to help you debug any unusual name-

space-related problems.

DBFS-PAGE Service

DBFS-PAGE is the network service provided by a Statice server for the benefit of

Statice clients. When a Statice client first accesses a particular Statice server host,

it invokes the DBFS-PAGE service on that host. From then on, this client uses

this connection to communicate with that host, even if it accesses more than one

Statice File System on that host.

When the transaction ends, the connection is returned to a free pool, so subse-

quent transactions can use that connection. This helps reduce the amount of time

spent opening network connections.

Statice servers use the same connection scavenger mechanism used by Genera file

servers, so that if a connection hasn’t been used for a long time, the server pro-

cess is killed and the connection goes away. See the section "The File Control Life-

time Host Attribute" in Site Operations.

The namespace entries for the DBFS-PAGE service should be present in the host

object of every host used as a Statice File System server. The Add DBFS Page

Service command sets up this service entry in the namespace database. See the

section "Add DBFS PAGE Service Command", page 165.

See the section "Using Statice for the First Time", page 17.

DBFS-Page Protocol

DBFS-PAGE is the name of a network protocol that implements the DBFS-PAGE

service. This protocol is built on top of the byte-stream-with-mark network medi-

um. See the section "BYTE-STREAM-WITH-MARK Network Medium" in Networks.

It can be used with Chaosnet or TCP/IP networks. For Chaosnet, the contact name

is "DBFS-PAGE"; for TCP/IP, the port number is 569.

147
February 2018 Operations and Maintenance of Statice Databases

ASYNCH-DBFS-PAGE Service

ASYNCH-DBFS-PAGE works in the reverse direction: the Statice server uses this

service to form a connection back to Statice File System client hosts. The server

uses this connection to notify the user when pages have been modified by another

client; the client acts on this information by invalidating its cache.

The service that ASYNCH-DBFS-PAGE provides is not necessary for correct opera-

tion of Statice. If the server finds that it cannot form a connection to the client, it

simply gives up and tries again later. The cache coherency protocol within Statice

makes sure that invalid data is never used. However, Statice will be more efficient

if ASYNCH-DBFS-PAGE is working properly. You should try to make sure that all

hosts that use Statice as a client have the proper namespace entries for ASYNCH-

DBFS-PAGE in the namespace database. The command Add ASYNCH DBFS PAGE

Service should be run on each client host: See the section "Using Statice for the

First Time", page 17.

ASYNCH-DBFS-PAGE Protocol

ASYNCH-DBFS-PAGE is the name of the network protocol that implements the

ASYNCH-DBFS-PAGE service. This protocol is built on top of the byte-stream-

with-mark network medium. See the section "BYTE-STREAM-WITH-MARK Net-

work Medium" in Networks. It can be used with Chaosnet or TCP/IP networks. For

Chaosnet, the contact name is "ASYNCH-DBFS-PAGE"; for TCP/IP, the port num-

ber is 568.

5.1.6. Attributes for Objects of Type "File System"

Host

Specifies the host that the file system resides on; a host object

(required).

Host: MARS

Type

Must always be DBFS (required). Other values are reserved for

future expansion.

Type: DBFS

Root Directory

Specifies a pathname of a FEPFS file. That file contains the

directory of the Statice File System. The pathname should al-

ways start with FEPn: and end with the .UFD file extension.

Root Directory: FEP1:>Iris.UFD

148
Operations and Maintenance of Statice Databases February 2018

Pretty Name

Specifies a name for the file-system to use when showing the

name; a token (required).

Pretty Name: Iris�

Nickname

Specifies alternate names for the network; a set of names. The

file system may be found by these names.

Nickname: IRE

Short Name

Specifies additional nicknames; a set of names. A short-name is

used when a program wants to display a host’s name without

using up too much space. A short-name is used for both input

and output. This is also used in the printed representation of

pathnames.

Short Name: I

User Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

Statice automatically places several user properties into file-

system objects. The User Properties named PARTITION have

values that are pathnames of the FEP files which are the par-

titions that make up the file system. The database is stored in

a number of partitions. For more information on partitions: See

the section "Create Statice File System Command", page 167.

The User Property named LOG-DESCRIPTOR-FILE-ID is the

unique ID of Statice’s "log descriptor" file, an internal file used

to store various per-file-system information.

The User Property named DBFS-DIR-ROOT-FILE-ID contains,

in the form of a string, the internal unique ID of the special

database in the file system that stores the hierarchical directo-

ry structure of the file system. This is established when the

Statice File System is created, and you should never change it.

149
February 2018 Operations and Maintenance of Statice Databases

5.1.7. FEP File for Generating Statice Unique IDs

When you first run Statice on a machine, it automatically creates a small file (2

blocks) in the FEP file system, whose name is:

FEPn:>UNIQUE-ID.FEP.1�

where n is the lowest fixed-medium disk unit, or the lowest disk unit if all units

are removable-medium. (In almost all configurations, n is zero.)

This file is used internally by Statice to generate unique IDs. We recommend that

you leave it there, and don’t delete it. If you do delete it, Statice will re-create it

next time Statice is run.

5.2. Statice File System Operations Program

The Statice File System Operations program is an interactive utility for maintain-

ing and manipulating Statice File Systems. It serves primarily as the user inter-

face to the backup system. It also provides commands for enabling and shutting

down a Statice File System, and other functions.

We first present several sections that give background information, and then de-

scribe how to use the program itself, in the section "Using the Statice File System

Operations Program".

Some operations on databases can be done by using normal file commands on the

database pathname. For details: See the section "Dealing with Databases by Their

Pathnames", page 145.

5.2.1. Overview of the Statice Backup Facilities

The Statice File System backup facilities let you make backup copies of the

databases stored in a Statice File System, onto another medium. If the disk hold-

ing the Statice File System is damaged or destroyed, the copy of the Statice File

System can be restored onto a fresh disk.

It is very important to back up your Statice File System on a regular basis. Disks

are fragile and subject to failure. Doing backups is the only way to protect your

data against disk failures.

The backup facilities copy database information to tertiary storage media. Current-

ly, industry-standard magnetic tape and cartridge tapes are supported. The soft-

ware names and catalogs the media into groups called volume sets.

Two forms of backup are provided: complete backups, and continuous archive

backup. (Currently only complete backup is supported.) Complete backup makes a

complete copy of a database file system onto tertiary storage, and assures the copy

is transaction-consistent. If the database file system is destroyed, you can restore

the copy, losing only changes made since the latest backup copy was produced.

Archive logging continuously copies all database changes to tertiary storage. If the

database file system is destroyed, you can restore the latest complete backup copy,

and then replay the archive changes, so that no information is lost.

150
Operations and Maintenance of Statice Databases February 2018

A backup tape from a Statice File System stored on a 3600-family Statice server

cannot be reloaded into an Ivory Statice File System, and vice versa. Also, if you

want to move whole databases between file systems of different block size, you

have to use the high-level dumper (the Dump Database and Load Database com-

mands) to convert the data into a text file, and then move the text file.

See the section "High-level Dumper/Loader of Statice Databases", page 163.

5.2.2. Kinds of Tertiary Storage

Backup copies are kept on tertiary storage. (Primary storage is main memory, and

secondary storage is disk.) The Statice File System backup facilities back up to

and restore using a generic tertiary storage protocol, so that different kinds of ter-

tiary storage can be used interchangably, and new kinds can be added in the fu-

ture.

With Symbolics 36xx systems, two kinds of tertiary storage are currently support-

ed: 1/4-inch cartridge tapes, and 1/2-inch industry-standard reel-to-reel magnetic

tapes. (The fraction of an inch refers to the width of the tape itself.) Both kinds of

tapes can be used either locally or remotely. In local usage, the tape drive hard-

ware is physically connected to the workstation doing the backup or restore. In re-

mote usage, the tape drive hardware is connected to some other computer, which

communicates with the workstation over the network.

In future releases, we we plan to support write-once optical disks as another ter-

tiary storage medium. We also intend to support other formats of magnetic tape as

hardware support becomes available.

The physical integrity of backup copies is very important. If it’s necessary to re-

store a file system from a backup copy, it is imperative that the data be readable

from the copy. Unfortunately, magnetic tapes are an imperfect physical medium.

Periodically, tapes are found to be unreadable, or to contain data errors.

To protect against problems with tapes, the backup system always writes data us-

ing a powerful error-correcting coding technique, a simple version of Youngquist’s

algorithm. The technique is effective at recovering from large damage spots on

tape; this is important, since it is not uncommon for 100 sequential bits to "drop
out". The cost of the algorithm is that approximately 3/2 as much tape is required

to store the same amount of information. We believe that the protection is worth

the cost of the extra tape. We tested this coding technique by scratching a tape

with a razor, and the data were still recovered.

If you have a choice between industry-standard and cartridge tape, industry-

standard tape is preferable, because:

• Industry-standard tape runs faster than cartridge tape.

• More data fits on a single industry-standard tape than on a cartridge tape, so

you don’t have to change tapes as often.

The primary advantage of cartridge tape is its lower cost. Every Symbolics site has

151
February 2018 Operations and Maintenance of Statice Databases

at least one cartridge tape drive, because cartridge tape is used for distributing

software.

The benefits of using an industry-standard tape drive increase if you have large

Statice File Systems, or if you write new data frequently.

5.2.3. Choosing the Kind of Tertiary Storage to Use

If you have a choice between local and remote usage, local usage is preferable, be-

cause:

• Network connections are inherently unreliable. It is inconvenient to have a net-

work connection fail during a backup or restore operation.

• Local usage runs faster than remote usage.

Therefore, we recommend that you put your Statice File System on a workstation

that has its own tape drive, if possible.

When a command of the Statice File System Operations program prompts for a

"device specification", it wants to know which tape drive to use. (The prompt

doesn’t say "tape drive" because there will be other kinds of tertiary storage in the

future.) The default is to use the cartridge tape drive on the local workstation.

You can change the host, to use a tape drive on another computer, and you can

change the device type to industry-standard tape.

If you select industry-standard tape, the prompt expands to let you specify a unit

number and a density. The unit number parameter is provided because it is possi-

ble to attach more than one industry standard tape drive to a computer; the unit

number distinguishes which one you want. The default value is zero, and if there

is only one tape drive, it should be unit zero.

Industry standard tapes can be written at several different densities, measured in

bits per inch. We support 1600, 3200, and 6250 bits per inch, defaulting to 3200.

Not every tape drive can read and write at every density! You must check the

hardware you intend to use, and determine what densities it supports.

5.2.4. Volume Capacity

When you make a backup copy, you don’t need to know in advance how many vol-

umes will be needed to hold the copy. Whenever the dumper reaches the end of

one volume, it asks you to mount another volume, until the copy is completed.

However, you might want to be able to estimate, in advance, how many tapes will

be needed to hold a copy. Here is some information to help you make such an es-

timate. (There is no requirement that you make such an estimate, but it is some-

times desirable.)

It’s difficult to make an accurate estimate of how many volumes are needed for a

backup copy, because the number depends on many factors. More volumes are

needed if there are many small files than one large file. Different tape drives have

152
Operations and Maintenance of Statice Databases February 2018

different characteristics; industry-standard tape drives don’t all write interrecord

gaps the same way, and cartridge tape drives are affected by the quality of the

tape medium and the cleanliness of the heads. So the following numbers should be

treated as approximate figures.

The numbers below show the actual data capacity for several different kinds of

tape. The actual data capacity is smaller than the raw capacity primarily because

of the overhead of the error-correcting coding used in Statice File System backup

tapes. Capacities are given in megabytes.

DC300XL/P cartridge tape: 30 MB

DC600A or DC600XTD cartridge tape: 40 MB

600-foot industry standard tape at 3200 bpi: 14 MB

2400-foot industry standard tape at 3200 bpi: 60 MB

Industry-standard tapes can be written at different densities; the numbers above

assume a density of 3200 bpi. If you are using 1600 bpi, divide the numbers by

two; if you are using 6250 bpi, double the numbers. Similarly, if you use a reel of

tape with some other length, apply the appropriate ratio.

The sizes of the databases in a Statice File System are shown in Statice File Sys-

tem directory listings, in blocks. A block is 1152 bytes. So, for example, if you had

a Statice File System containing four databases, two 1000 blocks long and two

2000 blocks long, the total amount of data is about 6 MB, which will easily fit on

one tape of any kind.

5.2.5. Tertiary Volumes and Volume Sets

A volume means one physical tertiary storage medium, such as one reel or one car-

tridge of tape. (In future releases, a single write-once optical disk will also be re-

ferred to as a volume.)

A volume set is a set of one or more volumes. Volumes are grouped into sets be-

cause each volume is of a fixed size, whereas you can keep expanding the size of a

volume set by adding more volumes.

Each complete dump of a database file system is put on its own volume set. The

number of volumes in the volume set depends on the size of the database file sys-

tem. If the Statice File System is not very large, a complete dump fits on a single

volume, which constitutes a single volume set.

Each volume set has a name, and each volume within the volume set has a se-

quence number. The name is a character string. No two volume sets can have the

same name. Names are compared ignoring case, so you must not have one volume

named "Foo" and another named "foo". Volume set names may not use character

styles or non-standard character sets. The first volume of a volume set should be

numbered 1, and each sequential volume is assigned the next number.

When you’re using the backup system and a tape is being mounted, you are

prompted for a "mount specification". This consists of a volume set name, a se-

153
February 2018 Operations and Maintenance of Statice Databases

quence number, and a device specification. It means that you are mounting a par-

ticular volume on a particular device. To specify the device, you are prompted for

a host name, a device type, and further parameters depending on the type of the

device. For details of device specs: See the section "Choosing the Kind of Tertiary

Storage to Use", page 151.

5.2.6. Labels on Volumes

When a volume is being used by the Statice File System backup system, some spe-

cial identification information is written at the front of the volume, called the

label. The label includes the volume set name and the sequence number, which

uniquely identify the volume. The backup software uses the label to help assure

that you have mounted the tape you intended to mount, in order to guard against

mistakes.

When you first use a brand-new tape for Statice File System backup, you should

write a label on it, by using the Initialize Backup Volume command in the Statice

File System Operations program. Be careful to only use this command on fresh,

unused tapes, because it will destroy any information already on the tape.

When the backup system is making a backup copy, and it is ready to write onto a

new tape, it first reads the label of the tape, to make sure that this tape is the

right one. For example, suppose you are making a backup copy to a volume set

named FULL0013, and the backup system just finished writing volume number 2

of the volume. It prompts you with the message:

End of volume FULL0013/2. Enter mount specifications for the next volume:

You enter a mount specifiction, in which you enter a volume set name and se-

quence number. The default is volume set FULL0013, sequence number 3. You also

physically mount the correponding tape on the device that you specify in the

mount specifiction. After you click on Done or press End, the backup system reads

the volume label, to make sure that this volume is really volume number 3 of vol-

ume set FULL0013. If the label is present and contains what backup expects, the

backup copy continues. Otherwise, you are given several options:

Accept the information on the volume

(You believe you entered the wrong thing, and you want to use

what the tape says.) This choice tells the backup system to use

the volume set name and sequence number that were found in

the label on the tape, even though they aren’t what we origi-

nally expected. This sets the backup system’s concept of "cur-
rent volume", so the backup system will expect the next vol-

ume to follow this one.

Remount a different volume

(You believe you mounted the wrong tape, and wish to try

mounting a different one.) This choice lets you remove this vol-

ume from the drive and try another one. The backup system

prompts you with "Is the desired volume mounted?" When you

answer "y", it proceeds to read the label of the new tape and

check it.

154
Operations and Maintenance of Statice Databases February 2018

Reenter different volume specifications

(You believe you entered the wrong thing, and you want to try to

enter it again.) This choice makes the backup system return to

the point where you were prompted for mount specifications

for this tape; you are prompted again. Use this if the reason

for the problem is that you didn’t provide the right mount

specification.

Overwrite the volume with the specified information

(You believe that what the tape says is wrong, and you want to

use what you entered.) This choice tells the backup system to

ignore what the label says, and write the tape using the mount

specification that you provided. This overwrites the label and

can change the volume set name and sequence number in the

label.

Abort the current operation

(You don’t want to proceed further.) This choice returns you to

the Statice File System Operations program.

If the tape you mount is a fresh, unused tape, you’ll get this list of choices, and

you can select [Overwrite] to write a new label on the tape. So it is not actually

necessary to use the Initialize Backup Volume command to write an initial label;

[Overwrite] also does it for you. However, there’s a drawback to relying on

[Overwrite]. When the backup system tries to read the label of the blank tape, the

tape drive attempts to read data from the tape, but cannot find any. Some drives

react to this lack of data by reading further and further down the tape, hoping to

find data eventually, which can take a long time. So if you don’t run Initialize

Backup Volume on new tapes, backup copying might be substantially slower.

This behavior is part of the tape drive and tape controller, and cannot be modified

by software. Currently, all industry-standard tape drives sold by Symbolics exhibit

this behavior, but the cartridge tape drives do not. Therefore, it is particularly

time-saving to use Initialize Backup Volume on industry-standard tapes.

5.2.7. Volume Libraries

When you do Statice File System operations, Statice maintains a database called

the volume library. This database is stored within the file system. The volume li-

brary stores the following information:

For every backup volume that holds information from this file system:

• Volume name and sequence number

• Completion date, which is the date and time this tape was last written

• Type, which is either "Industry Standard Tape" or "Cartridge Tape"
• The tape spec that was used when the tape was last written, which includes the

host, and also unit and density for industry-standard tapes �

For every backup run (that is, for every time that a dump as made):

155
February 2018 Operations and Maintenance of Statice Databases

• Completion date, which is the date and time this run was performed

• The set of volumes that were written.

• Whether the run is "valid", or whether something went wrong during the dump�

For every file that has been dumped:

• Name of the file

• The set of backup-notes (see below)�

For every copy of a file that exists on tape, a "backup note", consisting of:

• The file attributes (length, creation-date, author, comment)

• Which volume the copy resides on

• Which backup run this copy was part of�

5.2.8. Using the Statice File System Operations Program

Before using the Statice File System Operations program, you must load it by en-

tering:

Load System DBFS-Utilities�

You enter the Statice File System Operations program by entering:

������������������

The commands appear a menu in the top pane. You can click on them, or type the

names of the commands. Typically, an AVV menu will be displayed, prompting you

for several fields. When you finish entering the information and press ���, the

command is executed.

We summarize the commands here. For complete documentation on each command:

See the section "Dictionary of Statice File System Operations Commands", page

157.

Backing Up and Restoring a File System�

The most common operations are Complete Backup and Complete Restore. Selec-

tive Restore can also be used, to restore one or more databases from tape to the

file system.

Complete Backup Command

Copies a Statice File System (and all databases in it) to tape.

Complete Restore Command

Copies a file system (and all databases in it) from a tape to a Statice

File System.

Selective Restore Command

Copies selected databases from a tape to a Statice File System.

Initialize Backup Volume Command

Writes the volume number on the tape label itself.

156
Operations and Maintenance of Statice Databases February 2018

Getting Information�

Describe Statice File System Command

Displays information about a file system.

Describe Backup Volume Command

Displays information about a backup volume stored on a tape.

Show Backup History Command

Displays information about all backup runs done on a file system.

Compare Backup Volume Set Command

Compares a file system stored on tape with a file system stored on the

local machine.

Enabling and Disabling a File System or All of Statice�

Enable Statice File System Command

Enables a file system: allows transactions to be started.

Disable Statice File System Command

Disables a file system: aborts any transactions in progress and disallows

any transactions to occur until the file system is enabled again.

Enable Statice Command

Re-enables Statice activities.

Disable Statice Command

Entirely disables all Statice activities.

File System Manipulation�

Create Statice File System Command

Creates a new Statice File System on the local host.

Delete Statice File System Command

Expunges an entire Statice file system, and removes all traces of it, in-

cluding every database in it; this is a very dangerous command.

Show All Statice File Systems Command

Lists all the file system objects and the host that they reside on in a

namespace.

Add Statice Partition Command

Adds a new partition to an existing Statice file system.

Show Statice Partitions Command

Lists the partitions of a Statice file system, and shows the amount of

free space remaining in each partition.

157
February 2018 Operations and Maintenance of Statice Databases

5.2.9. Dictionary of Statice File System Operations Commands

This section documents the commands that are available only in the Statice File

System Operations program.

The following commands are available from the Statice File System Operations

program, but are described elsewhere because they are also available at top level.

• "Add Statice Partition Command"

• "Create Statice File System Command"

• "Delete Statice File System Command"

• "Show All Statice File Systems Command"

• "Show Statice Partitions Command"�

For documentation on the other Statice commands that can be used at top level:

See the section "Dictionary of Statice Commands", page 165.

Complete Backup Command

Complete Backup�

Copies all databases in a Statice File System to tape. This command is available in

the Statice File System Operations Program.

The AVV menu looks like this:

Enter complete backup parameters (volume name required):

File system to backup: DLW-UFS-3

Volume set name: abc

Volume sequence number: 1

Device: Industry-Standard-Tape Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes No

The file system to backup must be stored on the local host. We discuss volume set

names and sequence numbers elsewhere: See the section "Labels on Volumes",
page 153.

The volume host is the host that will write the data to tape; it need not be the lo-

cal host. If that host does not have TAPE service in its namespace object, you will

get this error:

Error: Host does not support TAPE service.�

You can use one of the proceed options to try TAPE service on various mediums

such as TCP or CHAOS. You can also edit the host’s namespace object to add that

service entry, so the error won’t happen again.

158
Operations and Maintenance of Statice Databases February 2018

Symbolics recommends RTAPE via TCP rather than RTAPE via ChAOS (TCP is

more reliable). Add the service TAPE TCP RTAPE to the host’s namespace object.

If you are writing to a blank tape, you will get an error stating that the volume

set name does not match that of the tape itself. This is to be expected (because

the tape doesn’t have a volume set name at all yet). One way to prevent this error

is to use the Initialize Backup Volume command before doing Complete Backup, to

write the volume set name on the tape. In any case, one of the choices is to Over-

write the tape, which is the correct choice for a blank tape.

Compare Backup Volume Set Command

Compare Backup Volume Set�

Compares a file system stored on tape with a file system stored on the local ma-

chine. This command is available in the Statice File System Operations Program.

The AVV menu looks like this:

Enter specifications for compare:

File system to compare: DLW-UFS-3

Volume set name: abc

Volume sequence number: 1

Device: Industry-Standard-Tape Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes No�

If anyone has made changes to a database in the file system since the backup was

done, Statice will report how many pages are different. The output looks like this:

File SCRC|DLW-UFS-3:>Volume-Library>%volume-library has 21 pages

different from the tertiary image.

These differences could be caused by updates which occured

between the time the backup volume finished writing and the time

the comparison finished.�

Complete Restore Command

Complete Restore�

Copies all databases from a tape to a Statice File System. This command is avail-

able in the Statice File System Operations Program.

The AVV menu looks like this:

Enter specifications for restore:

159
February 2018 Operations and Maintenance of Statice Databases

File system to restore: DLW-UFS-3

Volume set name: abc

Volume sequence number: 1

Device: Industry-Standard-Tape Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes No�

The choices are the same as for the Complete Backup command: See the section

"Complete Backup Command", page 157.

The first thing that a Complete Restore does is delete all databases in the file

system. It then copies the databases from tape to the file system. Note that if you

are writing to a file system that already exists, you will get this message:

Before a file system can be restored, the existing files must be

destroyed. All the files in file system SCRC|DLW-UFS-3 are

about to be destroyed. Are you sure you want to continue? (Yes

or No) �

If you want to keep the existing file system, choose No. If you want to restore the

file system from tape, choose Yes.

Describe Backup Volume Command

Describe Backup Volume�

Displays information about a backup volume stored on a tape. This command is

available in the Statice File System Operations Program.

This command gets its information from the tape itself.

The AVV menu requests the type of tape (whether cartridge or industry standard),

and the volume host (the host where the tape is mounted).

Describe Statice File System Command

Describe Statice File System file-system-name�

Displays information about a file system. This command is available in the Statice

File System Operations Program.

This command gets information from the file-system namespace object. If the file

system is local, it also displays information about how much data is stored in each

partition.

Disable Statice Command

Disable Statice�

Entirely disables all Statice activities:

160
Operations and Maintenance of Statice Databases February 2018

• Every currently-running transaction is aborted, signalling the error dbfs:system-

shutdown-transaction-abort, whose error message is "Transaction aborted due

to a system shutdown."

• All server processes executing on the local host are killed.

• All local file systems are shut down. See the section "Disable Statice File Sys-

tem Command", page 160.

• The local host is marked as disabled, so that any new file systems created on

the host are automatically disabled.

• All network connections associated with Statice services are killed.

Any attempts to start a transaction while Statice is disabled signal an error. Any

attempts by a remote host to connect to this host are rejected. This command is

available in the Statice File System Operations Program.

Disable Statice File System Command

Disable Statice File System file-system-name�

Disables a file system: aborts any transaction in progress that owns a lock on any

page of any file in the file system. Disallows any transactions to occur until the

file system is enabled again. If any transaction attempts to use a database in the

file system, the error dbfs:file-system-disabled is signalled. This command is use-

ful if you want to perform administrative activities on a database, and want to

make sure nobody else accesses the database. Note that it is not necessary to dis-

able a Statice file system to do a backup dump.

file-system-name must be the name of a Statice file system on the local host. This

command is available in the Statice File System Operations Program.

Enable Statice Command

Enable Statice�

Re-enables Statice activities. Undoes the effect of Disable Statice, returning Statice

to normal. This command is available in the Statice File System Operations Pro-

gram.

Enable Statice File System Command

Enable Statice File System file-system-name�

Enables a file system: allows transactions to be started. Undoes the effects of Dis-

able Statice File System, returning the file system to normal. This command is

available in the Statice File System Operations Program.

161
February 2018 Operations and Maintenance of Statice Databases

Initialize Backup Volume Command

Initialize Backup Volume�

Writes the volume number on the tape label itself. This command is available in

the Statice File System Operations Program.

This command is not a necessary step, because Complete Backup will also write

the information on the tape, but it prevents the mismatch that can occur when

writing a blank tape: the volume number you specify won’t match that of the tape

(because a blank tape won’t have any volume number on it).

Selective Restore Command

Selective Restore�

Copies selected databases from a tape to a Statice File System. This command is

available in the Statice File System Operations Program.

The AVV menu looks like this:

Enter specifications for selective restore:

File system: DLW-UFS-3

Disable file system: Yes No

Paths to restore: >test2, >test7, and >test8

Repatriate action: Yes No Query

Name conflict resolution action: Leave

 Rename Existing File

 Replace Existing File

 Load Into Unique File

 Query

Volume selection mode: Automatic Manual

Device: Industry-Standard-Tape Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes No

If you choose Yes for "Disable file system", Statice does a Disable Statice File Sys-

tem before doing the Selective Restore, and an Enable Statice File System after-

wards. This option is useful if you are performing some kind of delicate operation

on the file system, such as recovering from a problem, and you want to make sure

that no other users make any changes in the file system while the Selective Re-

store is in progress. In the general case, it is not necessary to do this.

The "Paths to restore" are pathnames of databases within the file system. They

should start with the greater-than sign, >. They are separated by commas. These

pathnames can contain wildcards.

Once you press ���, Statice searches the volume libary to figure out which volume

the file is on. You will then be prompted to mount that volume:

Is volume abc/1 mounted for restoring? (Y or N) �

162
Operations and Maintenance of Statice Databases February 2018

When Selective Restore is searching the volume library to figure out which volume

to retrieve a file from, there might be more than one volume that has this file on

it. In such a case, it chooses the volume with the most recent completion date (the

date and time at which the dump was completed); that is, it uses the most recent

backed-up copy.

The repatriation action should never be needed by applications programmers, so

you should use the default (no) for this choice.

Show Backup History Command

Show Backup History file-system-name�

Displays information about all backup runs done on a file system. This command is

available in the Statice File System Operations Program.

This command gets its information from the volume library:

Volume Libraries

When you do Statice File System operations, Statice maintains a database called

the volume library. This database is stored within the file system. The volume li-

brary stores the following information:

For every backup volume that holds information from this file system:

• Volume name and sequence number

• Completion date, which is the date and time this tape was last written

• Type, which is either "Industry Standard Tape" or "Cartridge Tape"
• The tape spec that was used when the tape was last written, which includes the

host, and also unit and density for industry-standard tapes �

For every backup run (that is, for every time that a dump as made):

• Completion date, which is the date and time this run was performed

• The set of volumes that were written.

• Whether the run is "valid", or whether something went wrong during the dump�

For every file that has been dumped:

• Name of the file

• The set of backup-notes (see below)�

For every copy of a file that exists on tape, a "backup note", consisting of:

• The file attributes (length, creation-date, author, comment)

• Which volume the copy resides on

• Which backup run this copy was part of�

This command first iterates over all the backup runs, in order of completion date

(most recent first). For each run, it tells you whether the run is valid, and what

163
February 2018 Operations and Maintenance of Statice Databases

the completion date is. Then it iterates over all the volumes in that backup run,

sorted by completion date. For each volume, it prints out the name/sequence-

number, the type, the completion date, the host, the unit (if any), and the density

(if any).

5.3. High-level Dumper/Loader of Statice Databases

The Dump Database and Load Database commands invoke a "high-level" database
dump/load tool. High level means that it dumps and restores the data in a "source"
format, rather than in a binary page format as does the dump/restore tool avail-

able from the Statice Operations Menu. The high-level dump/load tool can used for

certain types of database reorganization operations.

Dump Database always dumps the databse in a transaction-consistent state, be-

cause it uses one long transaction to do its job.

The high-level dumper/loader is useful for several purposes. It enables you to:

• Move a database from one place to another, over a channel that can handle only

ordinary text.

• Store the contents of a database on some kind of storage medium (e.g. a partic-

ular tape format) that can handle only ordinary text.

• Edit the text file to reorganize the database. �

Limitations of the High-level Dumper/Loader

• It does not dump to tape, so the size of the dump is limited to the amount of

available file server disk space. Further, since the format is "source" level, it

may actually take more disk space to dump a database using the Dump

Database command than it does to store it.

• You shouldn’t do dumping while other users are operating on the database, since

it dumps everything in one large transaction (which will lock them out, or else

cause the dump/restore facility to abort a transaction). Loading data back into a

database can be rather slow since it does many small transactions (to avoid

growing the log).

• Because of LMFS file size limitations, it may not be appropriate to dump a

database to a LMFS file. This size limitation is approximately 15MB. Instead,

you may have to dump to a UNIX or VMS machine with enough disk space.�

Clustering is Maintained�

Clustering is maintained across dumps. The actual entities may be grouped differ-

ently within the clusters, but they will all be in the same cluster that they were

before.

164
Operations and Maintenance of Statice Databases February 2018

Format of the Dump File

The dump file consists of lists which contain information about the contents of the

database. At the beginning of the file is information about the real schema, and

following that is information about the actual contents of the database. The format

of each list is that the first element of it is a keyword symbol specifying what the

list is about and the rest of the list is information specific to that type of list.

Schema information is contained in lists which begin with the :DOMAIN, :RELA-

TION, :COMMIT-DOMAINS, and :INDEX keywords. For the most part, users

should not modify these lines unless it is obvious what they mean. For example,

consider the following definition, which is taken from the file

SYS:STATICE;EXAMPLES;BOOKS.LISP:

(define-entity-type account ()

 ((name string :unique t :cached t :inverse account-named)

 (balance single-float :cached t)

 (type (member checking owner) :cached t)))

The corresponding information in the dump file looks like this:

(:RELATION "ACCOUNT" 1 NIL (("%$OF" "ACCOUNT" T T NIL NIL NIL) ("TYPE"

 (CL:MEMBER BOOKS:CHECKING BOOKS:OWNER) NIL NIL NIL NIL NIL) ("BALANCE"

 CL:SINGLE-FLOAT NIL NIL NIL NIL NIL) ("NAME" STRING T NIL NIL NIL NIL)))

This information appears on one line in the dump file. If we wanted to change the

balance attribute’s data type from single-float to double-float, then we’d edit the

"CL:SINGLE-FLOAT" piece of text above. Of course if you change the data type of

an element like this, you’d also have to change all the data in the file, too.

After the schema information, the actual data in the file is dumped to the file us-

ing :ENTITY and :RELATION-DATA entries. The format of an :ENTITY entry is:

(:ENTITY ("ENTRY" 14352 3388287 7463818 3147232 NIL))

This is a list of an entity’s type name (ENTRY), its internal record ID (14352), its

unique ID (three 32-bit fixnums), and its cluster ID. For the most part, these

should be of little interest to the users.

Users are more likely to be interested in the :RELATION-DATA entries. An ac-

count entity might look like this:

(:RELATION-DATA "ACCOUNT" NIL (17441 BOOKS:OWNER 200.53 "Lane"))

To change the value of the balance for the "Lane" account, you’d change the value

200.53 to another value. You can find out the order of the attributes of this by

looking at the real-schema data at the beginning of the file. The attribute order

information will be embodied in the :RELATION entry. For example, the :RELA-

TION line above shows that the order of the attributes in the above :RELATION-

DATA entry are %$OF (an internal attribute), the type attribute, the balance at-

tribute, and the name attribute.

For more detailed information, you can read the comments in the code in the file

SYS:STATICE;UTILITIES;MODEL-DUMPER.LISP.

165
February 2018 Dictionary of Statice Commands

6. Dictionary of Statice Commands

This section documents the commands that are available in the command proces-

sor. Statice also offers a set of commands that are available only in the Statice file

System Operations menu. For documentation on those commands: See the section

"Dictionary of Statice File System Operations Commands", page 157.

Add ASYNCH DBFS PAGE Service Command

Add ASYNCH DBFS PAGE Service host-name keywords�

Updates a host’s namespace object to contain the ASYNCH-DBFS-PAGE service.

keywords :TCP Not Present

:TCP Not Present

{Yes No} If yes, no service entry is added for the TCP medium�

Statice uses the ASYNCH-DBFS-PAGE service for communicating various signals

and commands back to each of the client hosts, and hence should be present on all

Statice clients. It need not be present on Statice servers however, unless they are

clients to some other server.

This command adds the service-medium-protocol triplet for both the TCP and

CHAOS mediums to the namespace object for the host. You should only need to

perform this command once, when the file system is installed on a server. If the

host does not support TCP, supply Yes to the :TCP Not Present keyword option.

Add DBFS PAGE Service Command

Add DBFS PAGE Servicehost-name keywords�

Updates a host’s namespace object to contain the DBFS-PAGE service.

keywords :TCP Not Present

:TCP Not Present

{Yes No} If yes, no service entry is added for the TCP medi-

um.

Statice uses the DBFS-PAGE service uses for communicating database pages and

requests over the network, and hence should be present on all Statice File System

server hosts. It need not be present on client hosts, however.

This command adds the service-medium-protocol triplet for both the TCP and

CHAOS mediums to the namespace object for the host. You should only need to

perform this command once, when the file system is installed on a server. If the

host does not support TCP, supply Yes to the :TCP Not Present keyword option.

166
Dictionary of Statice Commands February 2018

Add Statice Partition Command

Add Statice Partition file-system-name partition-pathname size�

Enables you to add partitions dynamically to a Statice file system (e.g. when it is

running out of space).

file-system-name Name of a Statice file system that is stored on the local host.

partition-pathname Pathname of a partition; this pathname must name a FEPFS

file on the local host (although the file need not exist).

size The size of the new partition, in blocks.�

This command creates the new partition, allocates the space from the size given,

and makes the new partition available to Statice for allocating.

This command may be given when a Statice server process receives a file system

full error. For example, if a server process signals the following error, you can add

a new partition and resume the operation:

Error: The File System "Squash" is full.

(FLAVOR:METHOD UFS::FIND-FREE-BLOCKS UFS:UFS-FILE-SYSTEM-MIXIN)

 proceed options...

 :Add Statice Partition (a file-system) SQUASH

 (the pathname of a file) FEP2:>Statice>SQUASH-part2.file.newest

 (Size in blocks [default 1000]) 1000

Updating file-system object SCRC|SQUASH in namespace... Done

After adding the partition, select the proceed option that resumes the operation.

Copy Statice Database Command

Copy Statice Database from-database to-database keywords�

Copies all the pages of one database to the other (possibly new database) inside a

transaction.

from-database Pathname of the database to copy.

to-database Pathname of the destination, where the database should be

copied.

keywords :Copy Properties, :Create Directories, :Query�

:Copy Properties {any combination of: Author, Comments, Creation Date} This

indicates which properties should be copied to the new

database(s). The default is Author and Creation Date.

167
February 2018 Dictionary of Statice Commands

:Create Directories

{Yes, Error, Query} Yes means that directories that do not ex-

ist should be created silently, Query will ask, and Error will

cause an error if they do not exist.

:Query {Yes, No, Ask} Whether to ask before copying each file. �

Create Statice File System Command

Create Statice File System file-system-name keywords

Creates a new Statice File System on the local host. You cannot use this command

to create a file system on a remote host.

file-system-name A symbol naming the new file system.

keywords :Locally

:Locally {Yes, No} Whether to update only local namespace information

(Yes), or to update the namespace database server as well (No).

The default is No. See the section "The Locally Namespace Ed-

itor Command" in Site Operations.�

The command displays an AVV menu in which you specify the names of various

parameters. Above the menu, you will see a list of all the disk drives on the local

host and the amount of free space available on each of them. The AVV menu asks

for the following items:

Directory Partition: This entry specifies the FEPFS file in which the internal file

system directory resides. Its size is determined by the number

of directory entries which you specify in the Maximum Directo-

ry Entries field. The default file name for the directory parti-

tion is FEPn:>Statice>fs-name-partm.UFD. n is the highest

mounted disk on the system, fs-name is the file-system name

specified for the command, and m is the number of the parti-

tion.

Maximum Directory Entries:

This entry specifies the maximum number of databases which

may reside in the file system at any time. Note that Statice al-

ways takes two of these entries for itselfone for the log file,

and one for the Directory database. These entries are reusable,

so if a database is deleted, using the Delete File command (in

conjunction with a database pathname, not a FEPFS path-

name), that entry in the file system directory is reusable for

another database. On the Symbolics 36xx, there are 71 directo-

ry entries in each FEPFS block. The directory is organized as

a hash file, so it’s desirable to make the directory large

enough that it’s not densely filled.

168
Dictionary of Statice Commands February 2018

Partition: These entries specify the partitions to be used for the file sys-

tem. There may be as many partitions as you want, and they

can live on any of the disks. In general, there should be as few

partitions as possible in order to avoid disk fragmentation. The

default pathname for a partition is

FEPm:>Statice>fs-name-partn.file, where m is the highest

mounted unit number, fs-name is the name of the file system,

and n is the partition number in the ordering of all the parti-

tions entered in the AVV menu.

Blocks: This entry specifies the number of blocks to allocate for the

partition. When you enter a value for this field, the values in

the available disk space headings will change accordingly to

take into account how much of the free space you have allo-

cated. You may click on None in this field to remove the parti-

tion the menu (and hence not include it as part of the file sys-

tem when it is created). �

When all the parameters have been entered, pressing END will cause the file sys-

tem to be created. First, the file system object will be created in the namespace

database (permanently, unless :Locally Yes was specified). Note that the messages

printed by the command do not indicate whether the namespace was updated local-

ly or globally. Second, all of the partitions are created in the FEPFS, and their

:DONT-DELETE properties are set. You don’t need to create any of the partitions

yourselfthis is done automatically for you, including the proper allocation of

space. Third, the log file in the file system is initialized. Finally, the directory

database is created.

Here’s a sample run:

Command: Create Statice File System SQUASH

FEP0: 21464 Available (Originally: 21464 free, 88696/110160 used (81%))

FEP1: 137 Available (Originally: 137 free, 146743/146880 used (100%))

FEP2: 70727 Available (Originally: 71742 free, 38418/110160 used (35%))

Directory Partition: FEP2:>Statice>SQUASH.UFD

Maximum Directory Entries: 1000

Initial Log Size in Blocks: 500

Partition: FEP2:>Statice>part0.file.newest

 Blocks (None to remove): None 1000

Partition: FEP2:>Statice>part1.file.newest

 Blocks (None to remove): None an integer

Creating file-system object SCRC|SQUASH in namespace... Done.

Initializing local UFS with associated directory structure... Done.

Creating local DBFS with associated directory structure... Done.

Initializing DBFS Directory database... Done.

169
February 2018 Dictionary of Statice Commands

Delete Statice File System Command

Delete Statice File System file-system-name keyword�

Expunges an entire Statice file system, and removes all traces of it, including ev-

ery database in it; this is a very dangerous command.

file-system-name A symbol naming a file system that is resident on the local

host.

keywords :Locally

:Locally {Yes, No} Whether to update only local namespace information

(Yes), or to update the namespace database server as well (No).

The default is No. See the section "The Locally Namespace Ed-

itor Command" in Site Operations.�

Because this command permanently removes the Statice File System, and all

databases in it, it is a dangerous command and it asks for confirmation. If you an-

swer Yes, the file system and all the databases in it are destroyed by removing the

file system partitions from the FEP directory in which they were placed by the

Create Statice File System command. The command destroys the file system parti-

tions, even though they may have the :DONT-DELETE flag set for them in the

FEPFS (the Create Statice File System command sets the :DONT-DELETE proper-

ty for each of the partitions in a file system).

If you have done a complete backup dump, you can restore the contents of a delet-

ed file system by using the Complete Restore command of the Statice File System

Operations activity. If you have not done a complete backup, the data cannot be

restored.

Dump Database Command

Dump Database database-pathname destination-pathname�

Writes all the information in the database into a text file.

database-pathname A pathname indicating the location of a Statice database.

destination-pathname

A pathname of a file on any file system; this need not be

stored on a Symbolics machine.�

This command is useful for several purposes. It enables you to:

• Move a database from one place to another, over a channel that can handle only

ordinary text.

• Store the contents of a database on some kind of storage medium (e.g. a partic-

ular tape format) that can handle only ordinary text.

170
Dictionary of Statice Commands February 2018

• Edit the text file to reorganize the database. �

We discuss the details of the Dump Database and Load Database commands else-

where: See the section "High-level Dumper/Loader of Statice Databases", page 163.

Load Database Command

Load Database database-pathname destination-pathname keywords�

Takes a text file produced by Dump Database, and makes a new database contain-

ing the same information.

database-pathname A pathname indicating the location of a Statice database.

destination-pathname

A pathname of a file on any file system; this need not be

stored on a Symbolics machine.

keywords :If Exists�

:If Exists {Error, Create} Specifies the action to be taken if the database

specified by the database-pathname already exists. Error signals

an error, and Create causes the old database to be erased and

replaced by the database being loaded.�

Unless you have edited the text file, Load Database makes an exact copy of the

original database that was dumped, including keeping the unique ids the same.

We discuss the details of the Dump Database and Load Database commands else-

where: See the section "High-level Dumper/Loader of Statice Databases", page 163.

Set Database Schema Name Command

Set Database Schema Name pathname new-schema-name�

Informs the database that its schema name is now the given new-schema-name.

pathname A pathname indicating the location of a Statice database.

new-schema-name A symbol.�

If you move a Statice program from one package to another, and the database al-

ready exists, it is necessary to use this command to update the database to inform

it of the new schema name.

See the section "Warning About Changing the Package of a Statice Program", page

58.

Show All Statice File Systems Command

Show All Statice File Systems namespace�

Lists all the file system objects in the namespace, and the host on which each one

resides.

171
February 2018 Dictionary of Statice Commands

namespace A symbol that specifies a namespace in which to search. By

default, all namespaces in the namespace search path are

searched�

Show Database Schema Command

Show Database Schema pathname�

Prints the definition of the schema of the database specified by pathname. This

command is useful if you see a database in a Statice file system and don’t know

what it is. It’s also useful for seeing what indexes currently exist in a database.

Not all of the information from the template schema is stored in the database it-

self, so when Show Database Schema reconstructs the schema definition from the

database, not all of the original information is recovered. Specifically:

The following attribute options are reconstructed: :unique, :index, :index-average-

size, :inverse-index, :inverse-index-average-size, :inverse-index-exact, :inverse-

cached, :area, :attribute-set, and :no-nulls.

The following attribute options are not reconstructed: :cached, :initform, :inverse,

:inverse-exact, :cluster, :accessor, :reader, :writer, and :read-only.

The following entity-type options are reconstructed: :area, :type-set, :multiple-

index, and :multiple-index-exact.

The following entity-type options are not reconstructed: :conc-name, :constructor,

:default-init-plist, :documentation, :init-keywords, :instance-variables, and :own-

cluster.

See the section "Examining the Schema of a Statice Database", page 110.

Show Statice Partitions Command

Show Statice Partitions file-system-name�

Shows the amount of free space remaining in a file system’s partition(s).

file-system-name Name of a Statice file system which resides on the local host. �

This command may be done only for a file system stored on the local host.

For example:

Show Statice Partitions (a file-system) SQUASH

Partition Free Space

FEP1:>squash>squash.file.newest 0/1056

FEP0:>squash>squash.file.newest 0/3000

FEP2:>Statice>SQUASH-part2.file.newest 54/1000

172
Dictionary of Statice Commands February 2018

Update Database Schema Command

Update Database Schema database-pathname�

Used when you have modified a schema; this command compares the template

schema to the real schema in the database, and updates the real schema to match

the template schema.

database-pathname A pathname indicating the location of a Statice database.�

We discuss this subject in detail elsewhere: See the section "Modifying a Statice

Schema", page 115.

173
February 2018 Summary of Statice Operators

7. Summary of Statice Operators

This section briefly describes the Statice operators. For complete documentation on

each operator: See the section "Dictionary of Statice Operators", page 181.

Basic Use of Statice

statice:define-schema schema-name entity-types

Establishes a new schema and states which entity types comprise the

schema.

statice:define-entity-type type-name component-types attribute-clauses &rest options

Defines a new type of Statice entity; also defines a constructor func-

tion that makes new entities and accessor functions that read and

write information about an entity.

statice:make-database pathname schema-name &key :databases (:if-exists :error)

Creates a new database and initializes it with a schema.

statice:with-database (variable pathname) &body body

Opens database indicated by pathname, binds the specified variable to

an object representing the database, and executes the body.

statice:with-transaction (&key (:automatic-retry ’dbfs:restartable-transaction-

abort)) &body body

The dynamic extent of the statice:with-transaction form delimits a

Statice transaction, which is a unit of work that is guaranteed to be

atomic, isolated, and persistent.

statice:for-each clauses &body body

Selects a set of entities in a database based on criteria stated in its

clauses.

statice:delete-entity entity-handle &optional (database (statice:current-database))

Removes the entity and all traces of it from the database.

Handling Set-valued Attributes

statice:add-to-set set-valued-function-call value

Adds the value to the set identified by set-valued-function-call.

statice:delete-from-set set-valued-function-call value

Removes value from the set identified by set-valued-function-call.

Dealing with Indexes

statice:make-index function-name &key :index-average-size

Creates an index for the Statice accessor function named by function-

name.

statice:make-inverse-index function-name &key :inverse-index-average-size :unique

(:exact t)

174
Summary of Statice Operators February 2018

Creates an inverse index for the accessor function whose name is

function-name.

statice:make-multiple-index list-of-function-names &key :unique (:exact t)

Creates a multiple index, for queries involving more than one func-

tion.

statice:delete-index function-name

Deletes the index for the Statice accessor function whose name is

function-name.

statice:delete-inverse-index function-name &key :exact

Deletes the inverse index for the Statice accessor function whose name

is function-name.

statice:delete-multiple-index list-of-function-names &key (:exact t)

Deletes the multiple index for the Statice accessor functions that are

listed in list-of-function-names.

statice:index-exists function-name

Returns t if an index exists on function-name, otherwise nil.

statice:inverse-index-exists function-name &key (:exact t)

Returns t if an inverse index exists for the accessor function-name,

otherwise nil.

statice:multiple-index-exists list-of-function-names &key (:exact t)

Returns t if a multiple index exists for the functions in list-of-function-

names, otherwise nil.

Dealing with Strings or Arrays

statice:attribute-value-array-portion entity-handle attribute from-start from-end in-

to-array into-start

Reads a portion of an array-valued attribute into a target array.

statice:attribute-value-length entity-handle attribute

Returns the length of the value of the attribute of the given entity-

handle.

statice:set-attribute-value-array-portion entity-handle attribute start end from

from-start

Writes from an array into a portion of an array-valued attribute.

statice:do-text-lines (var string-valued-function-call &key (:delimiter ’#\Return)

(:create-function ’#’default-string-create-function)) &body body

Allows a program to iterate over the actual lines of a string-valued

attribute, thus eliminating the need to cons one big string and break

it into lines.

175
February 2018 Summary of Statice Operators

Opening, Using, and Terminating Databases

statice:open-database pathname &optional ok-if-not-found

Opens the database indicated by pathname, if it’s not already open.

statice:with-current-database (database) &body body

Makes the database object be the current database, for the (dynamic)

extent of its body.

statice:current-database

Returns the current database.

statice:terminate-database pathname

Terminates the database stored in pathname, which is a database

pathname.

Dynamic Statice Operations

statice:attribute-value entity-handle attribute &key :into

Reads the value of an attribute of an entity; this is the all-purpose ac-

cessor function that can choose the entity or attribute at run time.

statice:set-attribute-value-to-null entity-handle attribute

Sets the value of an attribute to null; this function can choose the en-

tity or attribute at run time.

statice:inverse-attribute-value entity-type attribute value &key (:exact t)

Returns the entity handle of the entity whose attribute is the given

value; this is the all-purpose inverse reader function.

statice:attribute-value-null-p entity-handle attribute

Tests whether the value of the attribute of the given entity is the null

value.

statice:make-entity type-name &rest keywords-and-values

Creates a new entity of the type type-name in the current database,

initializes the entity according to the keywords-and-values, and returns

the entity handle.

statice:for-each* function entity-type &key :where :order-by :count (:database

statice-model::*current-database*)

This function is the dynamic version of the statice:for-each special

form.

statice:add-to-set* entity-handle attribute value

This function is the dynamic version of the statice:add-to-set special

form.

statice:delete-from-set* entity-handle attribute value

This function is the dynamic version of the statice:delete-from-set

special form.

statice:count-entities* entity-type &key :where (:database statice-model::*current-

database*)

176
Summary of Statice Operators February 2018

Returns the number of entities of type entity-type in the specified

database that match the :where specs.

statice:do-text-lines* function entity-handle attribute &key (:delimiter ’#\Return)

(:create-function #’default-string-create-function)
This is the dynamic version of statice:do-text-lines.

Miscellaneous

statice:with-cluster (cluster-spec) &body body

Defines the "current cluster" for the dynamic extent of the body:

When you make a new entity within the dynamic extent of body, the

entity is created inside the current cluster.

statice:*restart-testing*

This variable offers a way to help you test your code for robustness in

the face of transaction aborting and restarting.

dbfs:set-buffer-replacement-parameters &key (:page-pool-factor 0.25) (:page-pool-

limit (* 1024 1024))

Enables the user to limit the amount of virtual memory Statice will

use as least-recently-used (LRU) buffer space.

Integrating Statice with a User Interface

statice:view-entity stream pathname entity-handle &optional (setf-function

#’statice::make-browser-attribute-value-setf) values

Displays an arbitrary entity in a window.

statice-utilities:entity-named-by-string-attribute (() &key pathname type attribute

restrictions)

A presentation type for Statice entities that have simple string names,

where the name is the value of a single-valued, string-typed attribute

of the entity.

Defining New Statice Types�

To define a new Statice type, you use statice-type:define-value-type (and, for

some advanced applications, statice-type:define-handler-flavor), and define meth-

ods for some generic functions.

statice-type:define-value-type type-name &body clauses

Defines a new Statice value type.

statice-type:define-handler-flavor handler-name &body clauses

Used only in conjunction with statice-type:define-value-type and

:handler-finder; this special form defines a storage handler flavor rep-

resenting a new type.

statice-type:encode-value handler value

Methods for logical types should return the Lisp object that represents

the value argument in the terms used by the underlying type indicated

by handler.

177
February 2018 Summary of Statice Operators

statice-type:decode-value handler value

Methods for logical types should return the Lisp object that represents

the value argument in terms of the type indicated by handler.

statice-type:read-value handler addressor word-offset n-words-or-bit-offset

Methods for physical types should make and return the Lisp represen-

tation of the value indicated by the arguments.

statice-type:value-equal handler value addressor word-offset n-words-or-bit-offset

Methods for physical types should return true if the value in the

record is considered equal to the value argument. The null value must

be considered equal only to the null value, and no other value.

statice-type:size-of-value handler value

Methods for physical types should return the number of words of a

record that would be used to represent this value. Statice uses this

method to determine how much space must be allocated to store a val-

ue into a record.

statice-type:write-value handler value addressor word-offset n-words-or-bit-offset

Methods for physical types should write the value into the portion of

the record, or write an indication that the value is null.

statice-type:record-equal handler addressor-1 word-offset-1 n-words-or-bit-offset-1

addressor-2 word-offset-2 n-words-or-bit-offset-2

Methods are given two records, and must determine whether they are

equal. Methods should return a true value if and only if the values

stored in both records are not the null value and are equal to each

other.

statice-type:record-compare handler addressor-1 word-offset-1 n-words-or-bit-offset-1

addressor-2 word-offset-2 n-words-or-bit-offset-2

Methods for physical types that are comparable receive two records,

each holding a value; they must return one of the symbols :lessp,

:greaterp, or :equal, based on the comparison of the records.

statice-type:value-compare handler value addressor word-offset n-words-or-bit-offset�

Methods for physical types that are comparable receive a Lisp repre-

sentation of a value and a a record holding a value. They return

:lessp, :greaterp, :equal, or statice-type:*null-value*, depending on

how record compares to the Lisp value.

Examining Schemas

Statice offers a set of functions that enable you to examine any schema. They are

not intended for use in ordinary Statice application programs, but rather in pro-

grams that need to examine all kinds of schemas, such as a browsing tool. We

summarize these functions below.

178
Summary of Statice Operators February 2018

Getting a Schema Instance�

The first step in examining a schema is getting a schema instance, which is an in-

stance of either a real schema or a template schema.

statice:get-real-schema pathname

Returns an instance representing the real schema in the Statice

database stored in the file indicated by pathname, which is a database

pathname.

statice:get-template-schema schema-name

Returns an instance representing the template schema named schema-

name.

If you need only the name of the schema for a particular database, it’s not neces-

sary to get a schema instance; instead, use the following function:

statice:get-real-schema-name pathname

Returns the name of the real schema in the Statice database stored in

the file indicated by pathname, which is a database pathname. The re-

sult is a symbol, not a schema instance.

You can get a template entity type instance by using the following function:

statice:get-template-entity-type entity-type-name

Returns the entity type instance corresponding to entity-type-name, a

symbol. (There is a separate function for getting a template entity

type because template entity types can exist independent of any

schema. As long as there is a statice:define-entity-type form, the en-

tity type is defined, even if it’s not a member of any schema.)�

Operations on Schema Instances

statice:schema-name schema

Returns the name of the given schema.

statice:schema-types schema

Returns a list of entity types of the given schema.

Operations on Entity Type Instances

You get entity type instances by using statice:schema-types, or statice:get-

template-entity-type. The following operations can be used on entity type in-

stances:

statice:type-name entity-type

Returns the symbol that is the name of the given entity-type.

statice:type-parent-names entity-type

Returns the names of the parent types of the given entity-type.

179
February 2018 Summary of Statice Operators

statice:type-attributes entity-type

Returns the names of the attributes of the given entity-type.

statice:type-area-name entity-type

Returns the name of the area in which entities of the given entity-type

are stored.

statice:type-set-exists entity-type

Returns true if a set exists for the given entity-type; otherwise, returns

nil.

statice:type-multiple-indexes entity-type

Returns a list of multiple index instances of the given entity-type.

Operations on Attribute Instances

You get attribute instances by using statice:type-attributes. The following opera-

tions can be used on attribute instances:

statice:attribute-name attribute

Returns the name of the given attribute.

statice:attribute-function-name attribute

Returns the name of the reader function for the given attribute.

statice:attribute-type attribute

Returns the entity type of the given attribute.

statice:attribute-value-type attribute

Returns the value type of the given attribute.

statice:attribute-value-is-set attribute

Returns true if the attribute is set-valued; otherwise, returns nil.

statice:attribute-unique attribute

Returns true if the attribute’s value is defined to be unique; other-

wise, returns nil.

statice:attribute-read-only attribute

Returns true if the attribute is defined to be read-only; otherwise, re-

turns nil.

statice:attribute-area-name attribute

Returns the name of the area (a symbol) in which values of the given

attribute are stored.

statice:attribute-set-exists attribute

Returns true if a set exists for the given attribute; otherwise, returns

nil.

statice:attribute-index-exists attribute

Returns true if an index exists for the given attribute; otherwise, re-

turns nil.

180
Summary of Statice Operators February 2018

statice:attribute-index-average-size attribute

Returns the average size defined for the attribute’s index, or nil if no

average size was specifed for the index.

statice:attribute-inverse-index-exists attribute

Returns true if an inverse index exists for the given attribute; other-

wise, returns nil.

statice:attribute-inverse-index-exact-exists attribute

Returns true if an inverse exact index exists for the given attribute;

otherwise, returns nil.

statice:attribute-inverse-index-average-size attribute

Returns the average size defined for the attribute’s index, or nil if no

average size was specifed for the index.

statice:attribute-no-nulls attribute

Returns true if :no-nulls t was specified for the given attribute; other-

wise, returns nil.

statice:attribute-inverse-function-name attribute

Returns the name (a symbol) of the inverse function for the given at-

tribute, or nil if the attribute has no inverse function.

Operations on Multiple Indexes

You get multiple index instances by using statice:type-multiple-indexes. The fol-

lowing operations can be used on multiple index instances:

statice:multiple-index-attribute-names multiple-index

Returns a list of names (symbols) of the attributes indexed by this

multiple index.

statice:multiple-index-unique multiple-index

Returns true if the multiple-index is defined to be unique; otherwise,

returns nil.

statice:multiple-index-case-sensitive multiple-index

Returns true if the multiple-index is defined to be case sensitive; oth-

erwise, returns nil.

181
February 2018 Dictionary of Statice Operators

8. Dictionary of Statice Operators

statice:*restart-testing* Variable

Offers a way to help you test your code for robustness in the face of trans-

action aborting and restarting. Setting this variable will cause a restartable

transaction abort to be signalled on every call to a Statice operator within a

transaction, as well as when a transaction is about to commit. This is use-

ful for testing whether a transaction causes fatal side effects. Note that

statice:for-each is handled specially, depending on the value of

statice:*restart-testing*:

nil Turns off restart testing mode; this is the default.

:all Triggers aborts on every model-level call on every itera-

tion of a statice:for-each. (Model level is the internal

layer of software implementing the documented Statice

entrypoints.)

:some Triggers aborts only on the model-level calls in the first

iteration of a statice:for-each.

other true value Triggers no aborts during a statice:for-each.�

Note that using restart testing mode is not guaranteed to find all problems

caused by side effects within the code.

Note that using this mode slows down the performance significantly. We

recommend that you not setq the value globally, which would affect all

users of Statice in all processes. Instead, you should dynamically bind it

around the code to be tested.�

statice:add-to-set Special Formset-valued-function-call value

Adds the result of evaluating value to the set identified by set-valued-

function-call. If the set already includes value, this will put a duplicate val-

ue into the set.

The argument set-valued-function-call is not evaluated; it simply identifies

the set. It consists of a form that, if it were evaluated, would return a set,

such as:

(set-valued-function entity-handle)

For example, the following form adds a course to Joe’s set of courses:

(add-to-set (student-courses joe-cool) english-101)

Here, the value of joe-cool is an entity handle of type student; student-

courses is an accessor of a set-valued attribute; and the value of english-

101 is a course. Note that (student-courses joe-cool) is not evaluated.

See the section "Set-Valued Attributes", page 22.�

182
Dictionary of Statice Operators February 2018

statice:add-to-set* Functionentity-handle attribute value

The dynamic version of statice:add-to-set. The semantics and arguments

are analogous to those of statice:add-to-set, but statice:add-to-set* is a

function, whereas statice:add-to-set is a special form.

See the section "Dynamic Set Manipulation", page 102.�

statice:attribute-area-name Functionattribute

Returns the name of the area (a symbol) in which values of the given at-

tribute are stored.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-function-name Functionattribute

Returns a symbol that is the name of the reader function for the given at-

tribute.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-index-average-size Functionattribute

Returns the average size defined for the attribute’s index, or nil if no aver-

age size was specifed for the index.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-index-exists Functionattribute

Returns true if an index exists for the given attribute; otherwise, returns

nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

183
February 2018 Dictionary of Statice Operators

statice:attribute-inverse-function-name Functionattribute

Returns the name (a symbol) of the inverse function for the given attribute,

or nil if the attribute has no inverse function.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-inverse-index-average-size Functionattribute

Returns the average size defined for the attribute’s index, or nil if no aver-

age size was specifed for the index.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-inverse-index-exact-exists Functionattribute

Returns true if an inverse exact index exists for the given attribute; other-

wise, returns nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-inverse-index-exists Functionattribute

Returns true if an inverse index exists for the given attribute; otherwise, re-

turns nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-name Functionattribute

Returns a symbol that is the name of the given attribute.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

184
Dictionary of Statice Operators February 2018

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-no-nulls Functionattribute

Returns true if :no-nulls t was specified for the given attribute; otherwise,

returns nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-read-only Functionattribute

Returns true if the attribute is defined to be read-only; otherwise, returns

nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-set-exists Functionattribute

Returns true if a set exists for the given attribute; otherwise, returns nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-unique Functionattribute

Returns true if the attribute’s value is defined to be unique; otherwise, re-

turns nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

185
February 2018 Dictionary of Statice Operators

statice:attribute-value Functionentity-handle attribute &key :into

An all-purpose reader function, which can be used to read the value of any

attribute of any entity. You can use setf with statice:attribute-value to set

the value of an attribute.

statice:attribute-value returns the same values as other reader functions:

First value The value of the attribute, or nil if the attribute’s value

is the null value.

Second value t if the attribute’s value is not null and nil if the at-

tribute’s value is null.

entity-handle is an entity handle. attribute is a symbol, which can be either

the name of the attribute, or the name of its reader function.

The keyword option is:

:into string Enables you to read a string-valued attribute into the

existing string. This means no new string is consed.

The string should be long enough to hold the value. You

can determine the length of the value with

statice:attribute-value-length. �

In the example below, the entity type is person; the attribute is id-number;

and the value of the variable george is an entity handle:

;;; providing the name of the attribute

(attribute-value george ’id-number) => 123 and t

;;; providing the name of the reader function

(attribute-value george ’person-id-number) => 123 and t

;;; using the setf function

(setf (attribute-value george ’id-number) 72)

See the section "Dynamic Statice Accessor Functions", page 101.�

statice:attribute-value-array-portion Functionentity-handle attribute from-

start from-end into-array into-start

Reads a portion of an array-valued attribute into a target array.

entity-handle An entity handle.

attribute A symbol, which can be either the name of the at-

tribute, or the name of its reader function. The value of

this attribute must be a vector or a string.

from-start The starting position from which to read.

from-end The ending position, where reading should stop.

into-array The array in which to store the portion of the array-

valued attribute.

186
Dictionary of Statice Operators February 2018

into-start Indicates the position in the into-array where the writ-

ing should begin. �

If the attribute is cached, the cache is updated. This function may be called

outside a transaction if the attribute is cached.�

statice:attribute-value-length Functionentity-handle attribute

Returns the length of the value of the attribute of the given entity-handle.

The type of the attribute must be string, vector, or symbol.

entity-handle is an entity handle. attribute is a symbol, which can be either

the name of the attribute, or the name of its accessor function.�

statice:attribute-value-is-set Functionattribute

Returns true if the attribute is set-valued; otherwise, returns nil.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:attribute-value-null-p Functionentity-handle attribute

Tests whether the value of the attribute of the given entity is the null val-

ue. Returns t if it is the null value, otherwise nil.

entity-handle is an entity handle. attribute is a symbol, which can be either

the name of the attribute, or the name of its reader function.

See the section "Dynamic Statice Accessor Functions", page 101.�

statice:attribute-value-type Functionattribute

Returns the value type of the given attribute.

The attribute argument is an attribute instance, such as one of the at-

tributes in the list returned by statice:type-attributes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:count-entities* Functionentity-type &key :where (:database statice-

model::*current-database*)

Returns the number of entities of type entity-type in the specified database

that match the :where specs.

entity-type is a symbol that names an entity type.

The keyword options are:

187
February 2018 Dictionary of Statice Operators

:where where-specs The syntax of where-specs is the same as in statice:for-

each*.

:database database Specifies the database in which to perform the count. �

statice:current-database Function

Returns the current database.�

statice-type:decode-value Generic Functionhandler value

Methods for logical types should return the Lisp object that represents the

value argument in terms of the type indicated by handler.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. In general, each

logical type is required to provide a method for statice-type:decode-value.

See the section "Defining Logical Types", page 85.

For information on the arguments: See the section "Arguments to Methods

for Defining New Statice Types", page 99.

Methods for statice-type:decode-value need not be conerned with null val-

ues: if the underlying type is holding a null value, these methods are not

called.

When two elements of a logical type are compared to each other, for sort-

ing or for "range" queries (that is, :where criteria involving comparisons),

the underlying values are compared. Thus, the methods of encoding and de-

coding determine the equality predicate for values, as well as ordering of

the values for comparison purposes and sorting purposes.�

statice:define-entity-type Special Formtype-name component-types attribute-

clauses &rest options

Defines a new type of Statice entity. We give two examples here, and then

discuss each piece of the syntax.

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))

(define-entity-type student (person)

 ((dept department :inverse students-in-dept)

 (courses (set-of course) :index t :inverse course-students)

 (shirts (set-of shirt) :unique t :inverse shirt-owner)))

Statice automatically defines an entity constructor function for creating new

entities of this type: See the section "Making New Statice Entities", page

12.

Statice automatically defines accessor functions for every attribute of the en-

tity type. A reader function takes an entity as its argument and returns the

value of an attribute. Statice also defines writer functions corresponding to

the readers, so you can use setf with a reader function to set the value of

188
Dictionary of Statice Operators February 2018

an attribute. See the section "Accessing Information in a Statice Database",
page 14.

type-name A symbol naming the entity type.

component-types A list of names (symbols) of other entity types from

which this type should inherit. See the section "Inheri-
tance From Entity Types", page 27.

You can also include in this list the names of flavors to

be components of this entity type. See the section "Mix-

ing Flavors Into a Statice Entity Definition", page 109.

attribute-clauses This is a list, each of whose elements is an attribute-

clause. Each attribute-clause is a list of the form:

(name type attribute-options...)�

name is a symbol naming the attribute. This name must

not be the name of an attribute of a component entity

type.

type is the type of value to be stored in the attribute.

For more information on the type of attributes:

See the section "Entity-Typed Attributes", page 21.
See the section "Set-Valued Attributes", page 22.

The attribute-options are:

:accessor symbol

Specifies that the name of the reader function for

this attribute is the given symbol, and that the

writer is to be called with the setf syntax with

the reader named symbol. Overrides the default

name and the :conc-name option for this at-

tribute only. If you use :accessor, you cannot use

:reader or :writer for the attribute.

:area symbol

Specifies an area, distinct from the default area,

designated by the name symbol. All values of this

attribute will be stored in this area. The name

space of areas is independent of the names of en-

tity types and attributes, so you can have both a

type named student and an area named student.

The area option is not inherited. See the section

"Statice Type Sets, Attribute Sets, and Areas",
page 127.

See the section "How to Control Type Sets, At-

tribute Sets, and Areas", page 131.

189
February 2018 Dictionary of Statice Operators

:attribute-set boolean

Specifies whether an attribute set exists for this

attribute. The default is t. See the section "Stat-
ice Type Sets, Attribute Sets, and Areas", page

127.

See the section "How to Control Type Sets, At-

tribute Sets, and Areas", page 131.

:cached boolean

This option enables you to use the technique

known as "taking snapshots" of the database.

:cached t allocates an instance variable inside the

flavor of the entity type. This instance variable is

called the cache slot for the attribute. When the

function for a :cached attribute is used within a

transaction, it performs its normal accessor func-

tion, and it puts the value of the attribute into

the cache slot. When the accessor function for a

cached attribute is used from outside a transac-

tion, it returns the contents of the cache slot. For

more information: See the section "Taking Snap-

shots with the :cached Attribute Option", page

38.

:cluster boolean

This option can be used for only one attribute of

this entity type, and only for an attribute that is

single-valued and entity-typed. If :cluster t is

specified for an attribute, then the :own-cluster

entity option cannot be used in the same

statice:define-entity-type form. :cluster t identi-

fies the entity type being defined as a child in

the context of clustering, and identifies this at-

tribute as the one that designates the immediate

parent. The goal is to achieve data locality, such

that all children (entities of the type being de-

fined by this statice:define-entity-type form) are

placed in the cluster of the parent (the entity

type that is the value of this attribute). The de-

fault is :cluster nil. For more information: See

the section "Clustering Technique for Statice

Databases", page 133.

:index boolean

If t, creates an index for the accessor of this at-

tribute. See the section "Using Indexes to In-

crease Database Performance", page 45.

190
Dictionary of Statice Operators February 2018

:index-average-size integer-form

Indicates your estimate of the average size of a

set that would use this index; that is, how many

results the set is likely to have. Such an estimate

can sometimes speed up the query. The integer-

form should evaluate to an integer. See the sec-

tion "Statice Indexes", page 120.

:initform form

Provides a form to be the default initial value for

the attribute. This form is evaluated inside the

lexical environment of the containing

statice:define-entity-type form. For information

on exactly when the initform is used: See the sec-

tion "The :initform Attribute Option", page 32.

:inverse symbol

Creates an inverse reader function named symbol.

The argument of an inverse reader is the value of

an attribute; the result is the entity handle for

the entity that has the given value for this at-

tribute. See the section "Accessing Information in

a Statice Database", page 14.

When the attribute is entity-valued, an inverse

writer is also defined: See the section "Inverse
Writer Functions for Entity-typed Attributes",
page 26.

:inverse-cached boolean

Has the same effect as the :cached option, but

works for the inverse function. This option can be

used only if you have specified :inverse, and for

attributes that are entity-valued. There is no

caching on a function whose argument is not an

entity.

:inverse-exact symbol

Creates an exact inverse accessor function named

symbol. The argument of an exact inverse acces-

sor is the value of an attribute; the result is the

entity handle for the entity that has the given

value for this attribute. Whereas an inverse ac-

cessor uses regular comparison, an exact inverse

accessor uses exact comparison. See the section

"Regular Comparison Versus Exact Comparison",
page 69.

See the section "Exact Inverse Accessor

Functions", page 70.

191
February 2018 Dictionary of Statice Operators

:inverse-index boolean

If t, creates an index for the inverse accessor of

this attribute. See the section "Using Indexes to

Increase Database Performance", page 45.

:inverse-index-average-size integer-form

Indicates your estimate of the average size of a

set that would use this inverse index; that is, how

many results the set is likely to have. Such an es-

timate can sometimes speed up the query. The in-

teger-form should evaluate to an integer. See the

section "Statice Indexes", page 120.

:inverse-index-exact boolean

If t, creates an index for the exact inverse acces-

sor of this attribute. See the section "Exact Index-

es", page 70.

:no-nulls boolean

If t, means that values of the attribute are not al-

lowed to be the null value; in other words, this is

a "required attribute". For further information:

See the section "The :no-nulls Attribute Option",
page 31.

:read-only boolean

If t, means that no writer function is defined for

this attribute. Once an entity has been created,

the value of this attribute person never changes.

For set-valued attributes, :read-only t also means

that the special forms statice:add-to-set and

statice:delete-from-set cannot be used. For an

example: See the section "The :read-only At-

tribute Option", page 33.

:reader symbol

Specifies the name of the reader function for this

attribute. Overrides the default name and the

:conc-name option for this attribute only.

:writer symbol

Specifies the name of the writer function for this

attribute. Overrides the default name and the

:conc-name option for this attribute only. You

call the writer function by using the setf syntax

with the symbol.

:unique boolean

If t, then only one entity of this type can have a

particular value for this attribute. However, for

purposes of :unique checking, one null value does

192
Dictionary of Statice Operators February 2018

not equal another null value; this means that sev-

eral entities can have the null value as the value

of this attribute. For more information: See the

section "One-to-One, Many-to-One, and Other Re-

lationships", page 24.

options A list of options pertaining to the entity type as a

whole. The options include:

(:area symbol)

Specifies an area, separate from the default area,

designated by the name symbol. All entities of

this entity type will be placed in this area. The

name space of areas is independent of the names

of entity types and attributes, so you can have

both a type named student and an area named

student. The area option is not inherited. See the

section "Statice Type Sets, Attribute Sets, and

Areas", page 127.

See the section "How to Control Type Sets, At-

tribute Sets, and Areas", page 131.

(:conc-name symbol)

The symbol is used as the prefix of the names of

the reader functions, instead of the default prefix,

which consists of the entity type and the hyphen.

See the section "The :conc-name Entity Type Op-

tion", page 36.

(:constructor symbol)

The symbol is used as the name of the entity con-

structor function, instead of the default construc-

tor name, which consists of the prefix make- fol-

lowed by the the entity type name. See the sec-

tion "Making New Statice Entities", page 12.

(:default-init-plist plist)

Specifies a default-init-plist for the flavor that

represents this entity type. See the section

":default-init-plist Option for defflavor" in Sym-

bolics Common Lisp Programming Constructs.

(:documentation string)

Specifies documentation for the flavor that repre-

sents this entity type. See the section

":documentation Option for defflavor" in Sym-

bolics Common Lisp Programming Constructs.

(:init-keywords symbols...)

Specifies init-keywords for the flavor that repre-

193
February 2018 Dictionary of Statice Operators

sents this entity type. See the section ":init-
keywords Option for defflavor" in Symbolics

Common Lisp Programming Constructs.

(:instance-variables spec-1 spec-2 ...)

Specifies instance variables to be included in the

flavor being defined to represent this entity type.

You can initialize, read, and write these instance

variables (if you use the appropriate options in

the instance variable spec). However, the values

of these instance variables are maintained only in

virtual memory, and are not stored in the Statice

database. This advanced option can be used for

customized caching schemes or for other purpos-

es.

Each spec is a list of the form:

(name option-1 option-2 ...)

name is a symbol naming the instance variable.

The options include:

:accessor symbol

:initform form

:reader symbol

:writer symbol

These options have the same semantics for in-

stance variables as they do for attributes, with

one exception. There are no accessors defined by

default for these instance variables. If you want

to read and/or write the value, you must specify

:accessor option, or the :reader and/or :writer

options. If you use :accessor, you cannot use

:reader or :writer for that instance variable.

(:multiple-index (attr-1 attr-2 ...) option)

Creates a multiple index on the attributes. This

multiple index is a compact table (a B+ tree) that

associates tuples of attribute values with pointers

to entities. The index entries are sorted by the

values of attr-1, and groups of entries that all

have the same value of attr-1 are sorted within

the group by attr-2, and so on.

There are two restrictions on multiple indexes:

1. The attributes must all be single-valued, not

set-valued.

2. The attributes must all be from the entity

type itself, not inherited from component en-

tity types.

194
Dictionary of Statice Operators February 2018

For the option, you can provide :unique t to im-

pose uniqueness constraints on entity types. This

states that no two entities can have both the

same value for attr-1 and the same value for

attr-2, and so on. See the section "Multiple Index-

es", page 51.

(:multiple-index-exact (attr-1 attr-2 ...) option)

Just like the :multiple-index option, but the mul-

tiple index uses exact string comparison. See the

section "Dealing with Strings in Statice", page 69.

(:own-cluster boolean)

If t, then this entity type is defined as a parent

in the context of clustering. Every time an entity

of this type is created, it is placed in a new clus-

ter. This means that a new page is allocated, and

this page is empty except for the entity being

created. Also, this page is not a member of any

other cluster. The default for this option is nil.

For more information: See the section "Clustering

Technique for Statice Databases", page 133.

(:type-set boolean)

If t, then this area has a type set; if nil, it does

not. The default is t. See the section "Statice
Type Sets, Attribute Sets, and Areas", page 127.

See the section "How to Control Type Sets, At-

tribute Sets, and Areas", page 131.

For related information:

See the section "Basic Concepts of Statice", page 3.
See the section "Defining a Statice Schema", page 7.
See the section "A More Complicated Schema: the University Example",
page 20.

See the section "Order of Defining Pieces of a Schema", page 36.�

statice-type:define-handler-flavor Special Formhandler-name &body clauses

A special form whose syntax is just like that of statice-type:define-value-

type, except that it does not accept the :handler-finder clause, and the

name is the name of the flavor itself rather than the name of a type. It ac-

cepts all the other kinds of clauses, such as :built-on and :comparable-p. It

should be used only in conjunction with statice-type:define-value-type and

:handler-finder.

See the section "Flavors Representing a Statice Type", page 97.

195
February 2018 Dictionary of Statice Operators

statice:define-schema Special Formschema-name entity-types

Establishes a new schema and states the entity types that will comprise the

schema. A schema consists of a single statice:define-schema form and a

set of statice:define-entity-type forms.

schema-name is a symbol naming the new schema. entity-types is a list of

symbols, each one the name of an entity type.

For example:

(define-schema university (person student graduate-student

 shirt course instructor department))

statice:define-schema specifies a set of entity types. The entity types in

the schema are the ones specified by define-schema, plus all the other enti-

ty types "referred to" by the ones specified, and the ones "referred to" by

those, and so on. There are two ways that entity type A might "refer to"
entity type B: if B is a component type of A, or if B is the type of an at-

tribute of A. Statice starts with the list of entity types in the define-

schema, and follows all the "refers to" links transitively to get the complete

set of entity types.

The statice:define-schema form should explicitly mention all entity types

that you intend to make available to other programs. If those entity types

"refer to" other entity types that you do not include in the statice:define-

schema form, those entity types will be a part of the schema, but not an

externally-advertised part.

For example, you might provide an entity type A that’s built on B, C, and

D, and then offer A as a useful entity type for other peoples’ schemas. Peo-

ple who use A would just list A in their own statice:define-schema forms,

and would not have to be aware of B, C, and D. This promotes modularity.

For more information:

See the section "Basic Concepts of Statice", page 3.
See the section "Defining a Statice Schema", page 7.
See the section "Order of Defining Pieces of a Schema", page 36.�

statice-type:define-value-type Special Formtype-name &body clauses

Defines a new Statice value type. The type-name is a symbol naming the

new type. The clauses are as follows:

(:format format) format can be :logical, indicating that this is a logical

type; it can be :variable, indicating that this is a vari-

able-format physical type; or it can be :fixed, indicating

that this is a fixed-format physical type. See the section

"Physical and Logical Statice Types", page 84.

(:based-on presentation-type)

This clause is used for logical types, to specify the pre-

sentation-type upon which this new type is based. The

presentation-type must be understood by Statice before

the new type can be used in a database.

196
Dictionary of Statice Operators February 2018

(:based-on-function function)

This clause can be used instead of the :based-on clause

in the definition of a logical type. The clause names a

function. When any presentation type is given to Statice

that is handled by this logical type definition, such as

(statice-type::member a b c), the function is called

with that presentation type as its argument. The func-

tion must return the presentation type of the underly-

ing type, e.g. (statice-type::integer 0 (3)).

(:fixed-space size alignment)

This clause is used for fixed-format physical types, to

specify the amount of fixed space needed to hold a val-

ue. size is the size of the fixed space, in bits. alignment�

describes the alignment of the fixed space. If alignment

is zero, the fixed space must be aligned on a word

boundary. Otherwise, alignment should be a positive in-

teger less than or equal to 16; it indicates that the bit

position of the first bit in the field must be an integer

multiple of the specified alignment. See the section

"Defining a Fixed-Format Physical Type", page 92.

(:comparable-p boolean)

This clause is used for physical types; it indicates

whether the values can be compared. The default is

statice-type::nil. If boolean is statice-type::t, the type

must provide methods for statice-type:value-compare�

and statice-type:record-compare.

(:handler-finder arglist body)

Defines a function called the storage handler finder

function. It is called when a new attribute is made. Its

first argument is the list of data arguments of the pre-

sentation type of the attribute. Its second argument is

the no-nulls parameter of the new attribute. It must re-

turn a symbol that is the name of the storage handler

flavor. When you use the :handler-finder clause, it

should be the only clause. See the section "Flavors Rep-

resenting a Statice Type", page 97.

See the section "Defining New Statice Types", page 84.�

statice:delete-entity Functionentity-handle &optional (database

(statice:current-database))

Removes the entity specified by the entity-handle from the database. delete-

entity also removes all traces of the entity from the database, which

means:

• All functions that were previously valid for the entity are made invalid

for that entity. Any attempt to use the deleted entity signals an error.

197
February 2018 Dictionary of Statice Operators

• If any single-valued attributes of any other entities previously had the

deleted entity as a value, they now have the Statice null value.

• If any set-valued attribute of any other entity previously included the

deleted entity as a member of its set, the entity is removed from the set.

The database argument specifies from which database the entity should be

deleted. By default it is the current database.

There is a potential hazard when using statice:delete-entity within the

body of a statice:for-each; if you delete an entity that the statice:for-each�

normally would have reached, but had not reached yet, an error will be

signalled. That is, you can delete the entity that the current iteration of

statice:for-each is working on, but you should not delete an entity that

statice:for-each has not yet reached.�

statice:delete-from-set Special Formset-valued-function-call value

Removes value from the set identified by set-valued-function-call. If the set

includes value more than once, only one of the values is removed.

statice:delete-from-set signals an error if the set does not include value.

The argument set-valued-function-call is not evaluated; it simply identifies

the set. It consists of a form that, if it were evaluated, would return a set,

such as:

(set-valued-function entity-handle)

For example, the following form deletes a course from Joe’s set of courses:

(delete-from-set (student-courses joe-cool) english-101))

Here, the value of joe-cool is an entity handle of type student; student-

courses is an accessor of a set-valued attribute; and the value of english-

101 is a course. Note that (student-courses joe-cool) is not evaluated.

See the section "Set-Valued Attributes", page 22.�

statice:delete-from-set* Functionentity-handle attribute value

The dynamic version of statice:delete-from-set. The semantics and argu-

ments are analogous to those of statice:delete-from-set, but statice:delete-

from-set* is a function, whereas statice:delete-from-set is a special form.

See the section "Dynamic Set Manipulation", page 102.�

statice:delete-index Functionfunction-name

Deletes the index for the Statice accessor function named function-name.

Note: function-name must name an accessor function, not an inverse func-

tion. statice:delete-index can be used at any point within a transaction.

For example, this form deletes the index on the courses attribute of stu-

dent:

(delete-index ’student-courses)

See the section "Using Indexes to Increase Database Performance", page 45.�

198
Dictionary of Statice Operators February 2018

statice:delete-inverse-index Functionfunction-name &key :exact

Deletes the inverse index for the Statice accessor function whose name is

function-name. Note: function-name must name an accessor function, not an

inverse function. statice:delete-inverse-index can be used at any point

within a transaction.

For example, this form deletes the inverse index on the name attribute of

person:

(delete-inverse-index ’person-name)

The keyword option is:

:exact boolean If t, a case-sensitive inverse index is deleted; if nil, a

case-insensitive inverse index is deleted. This is impor-

tant for string-valued attributes only. See the section

"Regular Comparison Versus Exact Comparison", page

69.

See the section "Using Indexes to Increase Database Performance", page 45.�

statice:delete-multiple-index Functionlist-of-function-names &key (:exact t)

Deletes the multiple index for the Statice accessor functions that are listed

in list-of-function-names. Note: each function name in list-of-function-names

must name an accessor function, not an inverse function. statice:delete-

multiple-index can be used at any point within a transaction.

For example, to delete the multiple index on title and dept:

(delete-multiple-index ’(course-title course-dept))

The keyword option is:

:exact boolean If t, a case-sensitive inverse index is deleted; if nil, a

case-insensitive inverse index is deleted. This is impor-

tant for string-valued attributes only. See the section

"Regular Comparison Versus Exact Comparison", page

69.

See the section "Multiple Indexes", page 51.�

statice:do-text-lines Macro(var string-valued-function-call &key (:delim-

iter ’#\Return) (:create-function ’#’default-string-
create-function)) &body body

If a string-valued attribute is used for storing very long text strings which

consist of multiple lines, the programmer may not want to cons the whole

string if it will later be broken down into many substrings. statice:do-text-

lines allows a program to iterate over the actual lines (or other kinds of

substrings as defined by some delimiter character).

This macro iterates over all the lines of the value specified by string-

valued-function-call, binding var to each line of the value. The following ex-

ample iterates over all the text-entity entities in a database and prints out

199
February 2018 Dictionary of Statice Operators

individual text lines.

(define-entity-type text-entity ()

 ((lines string)))

(with-database (db pathname)

 (with-transaction ()

 (for-each ((ent text-entity))

 (do-text-lines (tl (text-entity-lines ent))

 (princ tl)

 (terpri))))

The arguments and keywords are:

string-valued-function-call

A function call of a reader whose value is a string.

var A symbol.

:delimiter Specifies what character should be used as the delimiter

for the lines. The default is #\return.

:create-function Specifies the function to use for creating strings. The

function should take two arguments: a length, and an

argument specifying whether the string needs to be

able to hold fat characters or not. We show the default

function below.

The individual lines as passed to the :create-function program do not con-

tain the delimiter character. The default function is defined as follows:

;;; Default string creator for do-text-lines and do-text-lines*

(defun default-string-create-function (length thin-p)

 (make-string length :element-type

 (if thin-p ’string-char ’character)))

There is a block around the body of the statice:for-each, with the tag be-

ing nil. This means you can use (return form) to exit from the statice:do-

text-lines.�

statice:do-text-lines* Functionfunction entity-handle attribute &key (:de-

limiter ’#\Return) (:create-function #’default-
string-create-function)

The dynamic version of statice:do-text-lines. The syntax is somewhat dif-

ferent. statice:do-text-lines* takes the following arguments and keywords:

function A function that takes one argument, the text line, and

processes it in whatever way is desired. This argument

takes the place of the body of do-text-lines.

entity-handle The entity handle of an entity. The value of the at-

tribute of this entity is the string which is given to the

function.

200
Dictionary of Statice Operators February 2018

attribute May be the symbol that names the attribute, or the

function object obtained by the schema querying func-

tions.

:delimiter Same as for statice:do-text-lines.

:create-function Same as for statice:do-text-lines.�

statice-utilities:entity-named-by-string-attribute Presentation Type(() &key path-

name type attribute restrictions)

A presentation type for Statice entities that have simple string names,

where the value of a single-valued, string-typed attribute of the entity is

considered the name of the entity. Most applications are expected to make a

presentation type that is an abbreviation for this presentation type.

The first three data arguments are all mandatory; the last one is optional.

pathname is the pathname of the database.

type is the name of the entity type.

attribute is the name of the single-valued, string-typed attribute of the type

that serves to name entities.

restrictions is a list of criteria, just like the :where argument to statice:for-

each*, and it means that only the subset of entities

that pass all of these criteria are considered to be part

of the set.�

For example, here is an entity type that has a simple string name, namely

the person entity type from the university example:

(define-entity-type person ()

 ((name string :unique t :no-nulls t :cached t

 :inverse person-named :inverse-index t)

 (id-number integer :unique t :read-only t)))�

If we want a presentation type that will prompt the user for the name of a

person in the database in *university-pathname*:

‘((statice-utilities:entity-named-by-string-attribute)

 :pathname ,*university-pathname* :type person :attribute name)�

Since that’s rather verbose, you might want to make an abbreviation:

(define-presentation-type name-in-the-university (() &key pathname)

 :abbreviation-for

 ‘((statice-utilities:entity-named-by-string-attribute)

 :pathname ,pathname :type person :attribute name))�

Having defined this abbreviation, you can do things like the following:

(accept ‘((name-in-the-university) :pathname ,*university-pathname*))�

The presentation type implements completion efficiently, by using Statice

queries in the database, rather than reading all the names out of the

database.

201
February 2018 Dictionary of Statice Operators

These examples are in the file sys:statice;examples;university-

example.lisp.�

statice:for-each Special Formclauses &body body

Selects a set of entities in a database. This is the first step in many Statice

programs; once the entities have been located in the database and made

available to the program, you can operate on them in any way you choose.

Within the body of the statice:for-each, you can access each entity by

means of a variable.

Note: statice:for-each is a macro. If you change the definitions of any of

the types that affect a statice:for-each, you must recompile all functions

that use those types.

In the simplest use of statice:for-each you iterate over all entities of a

given type. See the section "Iterating Over an Entity Type", page 16. In the

bank-total function, statice:for-each establishes a variable called a, and

binds a successively to entity handles for each account entity in the

database. It runs the body once for each entity, and the body accumulates

the sum of the balances.

(defun bank-total ()

 (with-database (db *bank-pathname*)

 (with-transaction ()

 (let ((result 0))

(for-each ((a account))

 (incf result (account-balance a)))

result))))

You can use statice:for-each to specify filters to select entities that satisfy

one or more criteria. A :where clause restricts the statice:for-each: instead

of iterating over every member of the set, it only iterates over those for

which the criterion of the :where clause is true. For example, the following

statice:for-each clause selects a person whose id-number is 100:

(for-each ((p person) (:where (= (person-id-number p) 100)))�

The :where clause of statice:for-each is the basic kind of associative

database query provided by Statice. statice:for-each can iterate not only

over the set of all entities of some type, but also over the value of a set-

valued function. A :where clause can be used in the same way no matter

what set is being iterated over.

For examples of using statice:for-each: See the section "Querying a Statice

Database with statice:for-each", page 41.

Syntax of statice:for-each

The notation conventions used here are the same as the modified BNF de-

scribed in Common Lisp the Language, page 8.

(for-each ({variable-spec}+ {clause}*) . body)

202
Dictionary of Statice Operators February 2018

clause ::= count-clause | where-clause | order-by-clause | database-clause

variable-spec ::= (variable set-expression)

variable ::= symbol

set-expression ::= type-name | set-function-form

type-name ::= symbol

set-function-form ::= (set-function-name any-lisp-form)

count-clause ::= (:count integer)

where-clause ::= (:where criterion) | (:where (and {criterion}+))

criterion ::=

(rev-op attribute-spec any-lisp-form) |

(rev-op any-lisp-form attribute-spec) |

(non-rev-op any-lisp-form attribute-spec) |

(equality-op variable attribute-spec) |

(equality-op attribute-spec variable) |

(rev-op attribute-spec attribute-spec) |

(typep attribute-spec any-lisp-form) |

(null attribute-spec)

attribute-spec ::=

(single-function-name variable) |

(:any (set-function-name variable) |

variable

rev-op ::= equality-op | < | > | ≤ | ≥ | <= | >= |
string< | string> | string≤ | string≥ | string≤ | string<= |
string-lessp | string-greaterp | string-not-lessp | string-not-greaterp |

char< | char> | char≤ | char≥ | char≤ | char<= |
char-lessp | char-greaterp | char-not-lessp | char-not-greaterp

equality-op ::= eq | eql | equal | string-equal | = | string=

non-rev-op ::=

string-search | string-search-exact |

string-prefix | string-prefix-exact

order-by-clause ::=

(:order-by {(single-function-name variable) direction}+) |

(:order-by {variable direction}+)

203
February 2018 Dictionary of Statice Operators

direction ::= ascending | descending

database-clause ::= (:database any-lisp-form) �

Additional rules:

A clause has a number of variable-set-expression-clauses; the cross-product of

them indicates the set over which to iterate. A clause can have zero or one

count-clause, zero or one where-clause, zero or one order-by-clause, and zero

or one database-clause. The variable-set-expression-clauses must come before

the other kinds of clauses.

set-function-name means the name of a set-valued accessor function. single-

function-name means the name of a single-valued accessor function. func-

tion-name means the name of an accessor function that is either set-valued

or single-valued.

When several criteria are combined with and, it is valid for more than one

criterion to mention the same function. This is particularly useful with

pairs of inequality operators, to examine a range.

The variable in a criterion or order-by-clause must be the same as the top-

level variable of iteration. The single-function-name in a criterion or order-

by-clause must be a single-valued function of the top-level type-name.

Details of the Execution:

First, all of the Lisp forms that preceed the body are evaluated. The order

in which those evaluations takes place is not defined. These evaluations are

all outside the lexical scope of the variables of iteration.

The particular database to which the functions and types refer is the value

of the database-clause, which must be a database object (or else an error is

signalled). If there is no database-clause, the current database is used.

If there is only one variable-spec, the body is executed repeatedly, with the

value of variable taking on the value of each element of set-expression, re-

stricted to the subset defined by the where-clause if any, in the order speci-

fied by the order-by-clause if any, stopping after the number of times speci-

fied in the count-clause if any. If set-expression is a type-name, then the val-

ues are all entity handles. If set-expression is a set-function-form, then the

values could be entity handles, or data values (numbers, strings, etc).

If there are two or more variable-specs, the body is executed once for every

possible combination of values of each set expression, i.e. for the Cartesian

product the values, restricted to the subset defined by the where-clause if

any, in the order specified by the order-by-clause if any, limited by the

count-clause if any.

A count-clause limits the number of entities for which the body is called. If

the integer after :count is one, the body is called for only one entity. If on-

ly one entity is desired, the count-clause should reduce consing and improve

query performance when you want to just find the first one of something.

204
Dictionary of Statice Operators February 2018

There is a block around the body of the statice:for-each, with the tag be-

ing nil. This means you can use (return form) to exit from the statice:for-

each.

There is an ambiguity in the syntax of a criterion whose operator is a rev-

op, because sometimes either subform could be interpreted as an attribute-

spec. In such a case, the first subform is taken to be the attribute-spec, and

the second subform is taken to be the any-lisp-form.

Performance Implications of statice:for-each

An individual program can specify filtering restrictions by using when

forms in the body of a statice:for-each special form instead of using the

:where clause. However, in most cases Statice can implement the restric-

tions much more efficiently, by using indexes, if you use the :where clause.

This is all done automatically when you use statice:for-each.

When a set-valued function is called as a Lisp function in the ordinary way,

it creates and returns a list of all the values of the set (in this case, a list

of entity handles, each of which represents a course). However, when a set-

valued function is used inside a statice:for-each, no actual list is created.

Since this avoids "consing", it may result in better performance, particularly

if the set is large.

:where Criteria

A :where clause can have one criterion, or many criteria grouped by and.

If there are many criteria, all must be true for the body to be called.

The following sequence of examples of :where criteria illustrate all of the

acceptable forms of criteria.

• (rev-op attribute-spec any-lisp-form)

(for-each ((i instructor)

 (:where (> (instructor-salary i) this-much)))

 (push (person-name i) instructors))�

rev-op is >, attribute-spec is (instructor-salary i), and any-lisp-form is

this-much. For a particular value of i under consideration, the criterion

is true if the value of the salary attribute of i is greater than the value

of the form this-much.

• (rev-op any-lisp-form attribute-spec)

(for-each ((i instructor)

 (:where (< this-much (instructor-salary i))))

 (push (person-name i) instructors))�

Now rev-op is <, and the arguments have been reversed. This is equiva-

lent to the previous example.

205
February 2018 Dictionary of Statice Operators

• (non-rev-op any-lisp-form attribute-spec)

(for-each ((f faculty)

 (:where (string-search "a" (employee-office f))))

 (push (person-name f) result))�

string-search is a non-rev-op, which means that the any-lisp-form must

come before the attribute-spec.

• (equality-op variable attribute-spec)

(for-each ((s student) (d department)

 (:where (eq d (student-dept s))))

 (push (list (person-name s) (department-name d)) results))

There are two variable-specs in this example. The equality-op is eq. The

variable is d, which is one of the variables of iteration. The attribute-spec

is (student-dept s), which refers to the other variable of iteration.

• (equality-op attribute-spec variable)

(for-each ((s student) (d department)

 (:where (eq (student-dept s) d)))

 (push (list (person-name s) (department-name d)) results))�

Now the arguments have been reversed. This is equivalent to the previ-

ous example.�

(rev-op attribute-spec attribute-spec)

(for-each ((s student) (d department)

 (:where (eq (student-advisor s) (department-head d))))

 (push (list (person-name s) (department-name d)) results))�

The rev-op is eq, and there are two attribute-specs: (student-advisor s)

and (department-head d). This query finds all pairs of a student and a

department such that the student’s advisor is the head of the depart-

ment.

• (typep attribute-spec any-lisp-form)

(for-each ((g graduate)

 (:where (typep (student-advisor g) ’faculty)))

 (push (person-name g) result))

When the operator is typep, the attribute-spec is first and the any-lisp-

form is second. This query collects the names of all graduates whose ad-

visor is a faculty member.

206
Dictionary of Statice Operators February 2018

• (null attribute-spec)

(for-each ((p person)

 (:where (null (person-id-number p))))

 (push p no-ids))�

When the operator is null, there’s only one argument. This query collects

a list of people who have no ID number.

• (rev-op attribute-spec any-lisp-form)

(define-entity-type host ()

 ((names (set-of string))

 ...))

(for-each ((n (host-names host-1))

 (:where (string-greaterp n "M")))

 (push n x)) �

This is an example of a familiar criterion syntax, where the attribute-spec

is a variable instead of a list. An attribute-spec can only be a variable

when the variable is iterating over an attribute value whose type is a set

of data values (not a set of entities). In this example, rev-op is string-

greaterp, attribute-spec is n, and any-lisp-form is "M". The query collects

all the names of host-1 that are alphabetically greater than "M".�

statice:for-each* Functionfunction entity-type &key :where :order-by :count

(:database statice-model::*current-database*)

The dynamic version of statice:for-each. statice:for-each* is a function,

whereas statice:for-each is a special form. statice:for-each* lets you speci-

fy at run time which entity type to iterate over, what criteria to use, and

so on.

function This function is called once for every entity that

statice:for-each* finds. The function is called on one

argument, the entity handle, and its returned value is

ignored. It’s analogous to the body of the statice:for-

each special form.

entity-type The name of an entity type.

keywords If no keywords are supplied, the function is called once

for each entity of the entity type. The keywords have

the same semantics as their counterparts in statice:for-

each. �

For example, the following form builds a list, in the variable result, of all

people whose name follows "r", sorted by the person’s ssn:

207
February 2018 Dictionary of Statice Operators

(for-each* #’(lambda (person)

 (push (person-name person) result))

 ’person

 :where ’((person-name string-greaterp "r"))

 :order-by ’(person-ssn descending))�

In Statice 2.0, statice:for-each* does not support the full set of functionali-

ty as does statice:for-each. See the section "Limitations on statice:for-

each* in Statice 2.1".

See the section "Dynamic Statice Queries", page 103.�

statice:get-real-schema Functionpathname

Returns an instance representing the real schema in the Statice database

stored in the file indicated by pathname, which is a database pathname.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:get-real-schema-name Functionpathname

Returns the name of the real schema in the Statice database stored in the

file indicated by pathname, which is a database pathname. The result is a

symbol, not a schema instance. Thus, given an existing database, you can

use statice:get-real-schema-name to find out what symbol was given to

statice:make-database when the database was created, without going

through the full expense of statice:get-real-schema.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:get-template-entity-type Functionentity-type-name

Returns the entity type instance corresponding to entity-type-name, a sym-

bol.

There is a separate function for getting a template entity type because tem-

plate entity types can exist independent of any schema. As long as there is

a statice:define-entity-type form, the entity type is defined, even if it’s not

a member of any schema. Real entity types, on the other hand, always re-

side within databases, and every database has a real schema. Thus, there is

no need for a function called "statice:get-real-entity-type"; you can get real

entity types from the real schema instance.�

statice:get-template-schema Functionschema-name

Returns an instance representing the template schema named schema-name,

a symbol.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

208
Dictionary of Statice Operators February 2018

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:index-exists Functionfunction-name

Returns t if an index exists on function-name, otherwise nil. Note: function-

name must name an accessor function, not an inverse function.

For example, the following form asks whether there is an index on the

courses attribute of student:

 (index-exists ’student-courses)

See the section "Using Indexes to Increase Database Performance", page 45.�

statice:inverse-attribute-value Functionentity-type attribute value &key

(:exact t)

Returns the entity handle of the entity whose attribute is the given value;

this is the all-purpose inverse reader function.

entity-type is the name of the entity type of the attribute. value is the value

whose inverse is desired. attribute is a symbol, which can be either the

name of the attribute, or the name of its reader function.

For example:

;;; providing the name of the attribute

(inverse-attribute-value ’person ’name "george")

;;; providing the name of the reader function

(inverse-attribute-value ’person ’person-name "george")

The keyword option is:

:exact boolean Controls whether the comparison of the given value to

the values of attributes of entities is case-sensitive or

not. A value of t does a case-sensitive comparison, while

nil does a case-insensitive comparison. This is important

only for string-valued inverse functions. See the section

"Regular Comparison Versus Exact Comparison", page

69.

See the section "Dynamic Statice Accessor Functions", page 101.�

statice:inverse-index-exists Functionfunction-name &key (:exact t)

Returns t if an inverse index exists for the accessor function-name, other-

wise nil. Note: function-name must name an accessor function, not an in-

verse function.

The keyword option is:

:exact boolean If t, a case-sensitive inverse index is checked for exis-

tence; if nil, a case-insensitive inverse index is checked

for existence. This is important for string-valued at-

209
February 2018 Dictionary of Statice Operators

tributes only. See the section "Regular Comparison Ver-

sus Exact Comparison", page 69.�

See the section "Using Indexes to Increase Database Performance", page 45.�

statice:make-database Functionpathname schema-name &key :databases

(:if-exists :error)

Creates and returns a new Statice database in the file designated by the

pathname argument. The database is initialized with a new schema, indicat-

ed by schema-name.

schema-name is a symbol naming a schema definition, which was initially

created by statice:define-schema. Any types defined by statice:define-

entity-type that correspond to this schema are also part of the schema def-

inition. After statice:make-database is run, the new database contains this

schema, and all the types are initially empty. That is, there are no entities

of these types.

The keyword options are:

:databases (Ignored)

:if-exists Controls what happens if a database already exists with

that pathname; the possible values are :error and

:create. When :if-exists is :error (the default) an error

is signaled; this is the dbfs:file-already-exists error.

When :if-exists is :create, a new database is created,

and all data in the existing database is erased. The data

cannot be recovered except by a system backup. �

For example:

;;; Save a pathname that refers to database

(defvar *bank-pathname* #p"beet:>finance>bank")

(defun make-bank-database ()

 (make-database *bank-pathname* ’bank))

See the section "Making a Statice Database", page 8.�

statice:make-entity Functiontype-name &rest keywords-and-values

Creates a new entity of the type type-name in the current database, initial-

izes the entity according to the keywords-and-values, and returns the entity

handle. statice:make-entity is the all-purpose entity constructor function.

The keywords-and-values are the same as the arguments to the entity con-

structor function of that entity type; that is, there is a keyword for every

attribute of the entity type. The names of the keywords are the same as the

names of the attributes, but in the keyword package. The value following

the keyword is used to initialize the attribute.

For example, if the entity type named person has attribute named name�

and id-number, the following form creates a new person and initializes the

210
Dictionary of Statice Operators February 2018

person’s name and id-number:

(make-entity ’person :name "Beth" :id-number 23)

For more information:

See the section "Dynamic Entity Creation", page 102.
See the section "Making New Statice Entities", page 12.
See the section "The :initform Attribute Option", page 32.�

statice:make-index Functionfunction-name &key :index-average-size

Creates an index for the Statice accessor function named function-name.

Note: function-name must name an accessor function, not an inverse func-

tion. statice:make-index can be used at any point within a transaction.

For example, the following form makes an index on the shirts attribute of

student:

(make-index ’student-shirts)

The keyword option is:

:index-average-size integer

Gives Statice an estimated size of the indexed set. The

integer should be an estimate of how many results the

query is likely to have.

In general, it is meaningful to make indexes for accessors that return the

value of set-valued attributes. For accessors of single-valued attributes,

there is no need for an index, since Statice can obtain the value directly

without searching. (There is one case in which it does make sense to create

an index for an accessor of a single-valued attribute, involving areas. See

the subheading Areas and Indexes in the section "Statice Type Sets, At-

tribute Sets, and Areas".)

If a large number of entities of the type already exist, it might take some

time for Statice to make the index.

See the section "Using Indexes to Increase Database Performance", page 45.�

statice:make-inverse-index Functionfunction-name &key :inverse-index-

average-size :unique (:exact t)

Creates an inverse index for the Statice accessor function named function-

name. Note: function-name must name an accessor function, not an inverse

accessor function. You can make an inverse index on a function even if

there is no inverse accessor function specified in the statice:define-entity-

type form. statice:make-inverse-index can be used at any point within a

transaction.

For example, the following form makes an inverse index on the size at-

tribute of shirt:

(make-inverse-index ’shirt-size)

The keyword options are:

211
February 2018 Dictionary of Statice Operators

:inverse-index-average-size integer

Gives Statice an estimated size of the indexed set. The

integer should be an estimate of how many results the

query is likely to have.

:unique boolean

:exact boolean Controls whether the index is case-sensitive or not. A

value of t makes a case-sensitive index, while nil makes

a case-insensitive index. This is important only for

string-valued inverse functions. See the section "Regular

Comparison Versus Exact Comparison", page 69.

If a large number of entities of the type already exist, it might take some

time for Statice to make the index.

See the section "Using Indexes to Increase Database Performance", page 45.�

statice:make-multiple-index Functionlist-of-function-names &key :unique

(:exact t)

Creates a multiple index, for queries involving more than one function.

Each element of list-of-function-names is the name of a Statice accessor

function.

You can create a multiple index when all of the following requirements are

met:

• All functions listed are single-valued functions.

• All functions listed are in the same area as the type.

• None of the functions is an inverse function.

• At least two functions are listed.

• The attributes must all be from the entity type itself, not inherited from

component entity types.

For example, the following form makes a multiple index on the size and

color attributes of the shirt entity type:

(make-multiple-index ’(shirt-size shirt-color))

The keyword options are:

:unique boolean If t, this imposes uniqueness constraints on entity

types: no two entities can have both the same value for

all of the attributes indicated by the function names.

That is, if this is a multiple index on three function

names, then the uniqueness contraint ensures that no

two entities have all the same values for the three at-

tributes. If nil, there is no uniqueness constraint. (Note

that for purposes of :unique checking, one null value

does not equal another null value; this means that sev-

eral entities can have the null value as the value of

this attribute.)

212
Dictionary of Statice Operators February 2018

:exact boolean Controls whether the index is case-sensitive or not. A

value of t makes a case-sensitive index, while nil makes

a case-insensitive index. This is important only for

string-valued inverse functions. See the section "Regular

Comparison Versus Exact Comparison", page 69.

See the section "Multiple Indexes", page 51.�

statice:multiple-index-attribute-names Functionmultiple-index

Returns a list of names (symbols) of the attributes indexed by this multiple

index.

The multiple-index argument is a multiple index instance, such as one of

the multiple indexes in the list returned by statice:type-multiple-indexes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:multiple-index-case-sensitive Functionmultiple-index

Returns true if the multiple-index is defined to be case sensitive; otherwise,

returns nil.

The multiple-index argument is a multiple index instance, such as one of

the multiple indexes in the list returned by statice:type-multiple-indexes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:multiple-index-exists Functionlist-of-function-names &key (:exact t)

Returns t if a multiple index exists for the functions in

list-of-function-names, otherwise nil. Each function name in the list should

be a symbol that names a Statice accessor function (not an inverse func-

tion).

For example, the following form asks whether there is a multiple index on

the title and dept attributes of course:

(multiple-index-exists ’(course-title course-dept))

The keyword option is:

:exact boolean If t, a case-sensitive multiple index is checked for exis-

tence; if nil, a case-insensitive multiple index is checked

for existence. This is important for string-valued at-

tributes only. See the section "Regular Comparison Ver-

sus Exact Comparison", page 69.�

See the section "Multiple Indexes", page 51.�

213
February 2018 Dictionary of Statice Operators

statice:multiple-index-unique Functionmultiple-index

Returns true if the multiple-index is defined to be unique; otherwise, re-

turns nil.

The multiple-index argument is a multiple index instance, such as one of

the multiple indexes in the list returned by statice:type-multiple-indexes.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:open-database Functionpathname &optional ok-if-not-found

Opens the database indicated by pathname, if it’s not already open.

statice:open-database returns the database object.

Along with statice:with-current-database, statice:open-database can be

considered a primitive underlying statice:with-database. In some cases,

users can use these primitives to achieve greater speed, or to deal with

more than one database (such as when copying data from one to another).

For details: See the section "Opening and Terminating Databases", page 72.�

statice-storage:read-multiple-record-word Generic Functionrecord-addressor start-

index end-index &key :into :into-start

Reads a contiguous subsequence of words from the record into an array.

The array is made and returned on the data stack, so the caller is required

to provide a sys:with-data-stack special form around the dynamic extent of

the use of the array.

This generic function is used only in the methods for defining physical

types: See the section "Defining Physical Types", page 88.�

statice-storage:read-record-word Generic Functionrecord-addressor index &key

:buffer-p

Reads the word specified by index from the record specified by record-

addressor, and returns it. Always returns a signed 32-bit integer.

You can use statice-type::setf on this function, which has the same effect

as statice-storage:write-record-word.

This generic function is used only in the methods for defining physical

types: See the section "Defining Physical Types", page 88.�

statice-type:read-value Generic Functionhandler addressor word-offset n-words-or-

bit-offset

Methods for physical types should make and return the Lisp representation

of the value indicated by the arguments.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. Each physical

type must provide a method for this generic function. See the section

"Defining a Variable-Format Physical Type", page 89.

214
Dictionary of Statice Operators February 2018

See the section "Defining a Fixed-Format Physical Type", page 92.

For information on the arguments: See the section "Arguments to Methods

for Defining New Statice Types", page 99.

The addressor is read-only (or, in any event, not guaranteed to be writable),

and methods must not write into the record.�

statice-type:record-compare Generic Functionhandler addressor-1 word-offset-1

n-words-or-bit-offset-1 addressor-2 word-offset-2

n-words-or-bit-offset-2

Methods for physical types that are comparable receive two records, each

holding a value; they must return one of the symbols :lessp, :greaterp, or�

:equal, based on the comparison of the records. Null values are considered

to be equal to each other, and greater than all other values. statice-

type:record-compare avoids allocating Lisp storage for rational numbers.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. Each physical

type must provide a method for this generic function. See the section

"Defining a Variable-Format Physical Type", page 89.

See the section "Defining a Fixed-Format Physical Type", page 92.

After the handler itself, the first three arguments designate the first

record. The second three arguments are also just like the first three argu-

ments to designate the second record. For more information on the argu-

ments: See the section "Arguments to Methods for Defining New Statice

Types", page 99.�

statice-type:record-equal Generic Functionhandler addressor-1 word-offset-1

n-words-or-bit-offset-1 addressor-2 word-offset-2

n-words-or-bit-offset-2

Methods are given two records, and must determine whether they are

equal. Methods should return a true value if and only if the values stored

in both records are not the null value and are equal to each other. Note

that the rules for handling null values are not exactly analogous to those of

the statice-type:value-equal method: if the value in either or both record

is the null value, statice-type:record-equal must return statice-type::nil.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. Each physical

type must provide a method for this generic function. See the section

"Defining a Variable-Format Physical Type", page 89.

See the section "Defining a Fixed-Format Physical Type", page 92.

After the handler itself, the first three arguments designate the first

record. The second three arguments are also just like the first three argu-

ments to designate the second record. For more information on the argu-

ments: See the section "Arguments to Methods for Defining New Statice

Types", page 99.�

215
February 2018 Dictionary of Statice Operators

statice:schema-name Functionschema

Returns the name of the schema instance indicated by schema.

The schema argument can be either an instance of a real schema (returned

by statice:get-real-schema) or of a template schema (returned by

statice:get-template-schema).

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:schema-types Functionschema

Returns a list of entity types of the given schema.

The schema argument can be either an instance of a real schema (returned

by statice:get-real-schema) or of a template schema (returned by

statice:get-template-schema).

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:set-attribute-value-array-portion Functionentity-handle attribute

start end from from-start

Writes from an array into a portion of an array-valued attribute.

entity-handle An entity handle.

attribute A symbol, which can be either the name of the at-

tribute, or the name of its reader function. The value of

this attribute can be a vector or a string.

start The position in which to start writing into the array.

end The position in which to stop writing into the array.

from The array from which to read.

from-start The position in the from-array where the reading should

begin.�

statice:set-attribute-value-to-null Functionentity-handle attribute

Sets the value of an attribute to null; this function can choose the entity or

attribute at run time.

entity-handle is an entity handle. attribute is a symbol, which can be either

the name of the attribute, or the name of its reader function.

statice:set-attribute-value-to-null works with any attribute. In contrast, us-

ing setf with statice:attribute-value with nil as the value sets the at-

tribute value to null only if nil is not a valid Lisp representation of some

value of the type.

216
Dictionary of Statice Operators February 2018

The following example asserts that it is not known whether Professor

Smith is a visiting instructor. The value of prof-smith is an entity handle.

(set-attribute-value-to-null prof-smith ’instructor-visiting)

For more information:

See the section "The Statice Null Value", page 29.
See the section "Dynamic Statice Accessor Functions", page 101.�

dbfs:set-buffer-replacement-parameters Function&key (:page-pool-factor

0.25) (:page-pool-limit (* 1024 1024))

Enables the user to limit the amount of virtual memory Statice will use as

least-recently-used (LRU) buffer space. The more pages touched by concur-

rent transactions, the larger the buffer requirements are. The maximum

number of words Statice will use as LRU buffer space is approximately

equal to:

page-pool-factor * (physical-memory-size - page-pool-limit)�

where physical-memory-size is the number of words of physical memory on

the local machine. For example, on a 2MW machine using the default set-

tings, Statice would be authorized to use up to 1/4 of a megaword of virtual

memory to maintain its LRU buffer pool.

The best settings of these parameters depend on your particular application

and hardware configuration. For a machine being used as a dedicated Stat-

ice server, you may wish to specify a page-pool-factor above 25%. For a ma-

chine being used for many applications, with only a moderate use of Stat-

ice, you may wish to specify a page-pool-factor below 25%.�

statice:terminate-database Functionpathname

Terminates the database stored in pathname, which is a database pathname.

Terminating a database is a way to undo the effects of opening a database.

Note that, like opening a database, this does not have any effect on the

persistent state of the database; it affects only the state within your own

Lisp environment.

In the usual case, there is no need to terminate a database. Terminating a

database allows entity handles associated with the database to be garbage

collected. You can terminate and then open a database to inform the

database that the schema name has changed (this is necessary when you

change the package of a Statice program): See the section "Warning About

Changing the Package of a Statice Program", page 58.

The primary reason to terminate a database is to enable you to deal with

two exact copies of a single database. (You might have two exact copies if

you use the Copy Database command or the backup dumper).

Every Statice entity has its own unique identity, represented internally by a

numerical unique ID. Now, if you have databases A and B, and B is a copy

of A, you could access two distinct entities (one in each database) that had

217
February 2018 Dictionary of Statice Operators

the same unique ID. Statice would get very confused, because the unique

IDs would not really be unique. This cannot be allowed. Therefore, you can-

not open two database at once if one of them is a copy of the other.

If A is open, and you try to open B, an error is signalled. The message is

something like this:

The database X:>a exists and has the same

unique ID as the database in file X:>b�

If you really want to open B, you must first terminate A. This is the pur-

pose of statice:terminate-database.

When the above error is signalled, Statice provides a proceed handler that

offers to terminate the database that’s open. In the example, the proceed

handler would offer to terminate X:>a.�

statice:type-area-name Functionentity-type

Returns the name of the area in which entities of the given entity-type are

stored.

The entity-type argument is an entity type instance, such as one of the enti-

ty types in the list returned by statice:schema-types or the result of

statice:get-template-entity-type.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:type-attributes Functionentity-type

Returns the names of the attributes of the given entity-type.

The entity-type argument is an entity type instance, such as one of the enti-

ty types in the list returned by statice:schema-types or the result of

statice:get-template-entity-type.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:type-multiple-indexes Functionentity-type

Returns a list of multiple index instances of the given entity-type. If the en-

tity type has no multiple indexes, this list is empty.

The entity-type argument is an entity type instance, such as one of the enti-

ty types in the list returned by statice:schema-types or the result of

statice:get-template-entity-type.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

218
Dictionary of Statice Operators February 2018

statice:type-name Functionentity-type

Returns the symbol that is the name of the given entity-type.

The entity-type argument is an entity type instance, such as one of the enti-

ty types in the list returned by statice:schema-types or the result of

statice:get-template-entity-type.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:type-parent-names Functionentity-type

Returns the names of the parent types of the given entity-type.

The entity-type argument is an entity type instance, such as one of the enti-

ty types in the list returned by statice:schema-types or the result of

statice:get-template-entity-type.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice:type-set-exists Functionentity-type

Returns true if a set exists for the given entity-type; otherwise, returns nil.

The entity-type argument is an entity type instance, such as one of the enti-

ty types in the list returned by statice:schema-types or the result of

statice:get-template-entity-type.

This function is not intended for use in Statice application programs, but

rather in programs that need to examine all kinds of schemas, such as a

browsing tool. See the section "Examining the Schema of a Statice

Database", page 110.�

statice-type:size-of-value Generic Functionhandler value

Methods for physical types should return the number of words of a record

that would be used to represent this value. Statice uses this method to de-

termine how much space must be allocated to store a value into a record.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. Each physical

type must provide a method for this generic function. See the section

"Defining a Variable-Format Physical Type", page 89.

See the section "Defining a Fixed-Format Physical Type", page 92.

For information on the arguments: See the section "Arguments to Methods

for Defining New Statice Types", page 99.�

219
February 2018 Dictionary of Statice Operators

statice-type:value-compare Generic Functionhandler value addressor word-offset

n-words-or-bit-offset

Methods for physical types that are comparable receive a Lisp representa-

tion of a value and a record holding a value. They must return :lessp if the

value stored in the record is less than the value argument. They return

:greaterp if the record is greater than the value, and :equal if the two val-

ues are equal. If the value in the record is the null value, methods must

return the null value: statice-type:*null-value*. The value passed as an ar-

gument is never the null value.

The advantage of having an explicit statice-type:value-compare method,

instead of using statice-type:read-value and comparing the the Lisp repre-

sentations, is to avoid allocating Lisp storage (consing) to build a Lisp ra-

tional number, resulting in greater efficiency.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. See the section

"Defining a Variable-Format Physical Type", page 89.

See the section "Defining a Fixed-Format Physical Type", page 92.

For information on the arguments: See the section "Arguments to Methods

for Defining New Statice Types", page 99.�

statice-type:value-equal Generic Functionhandler value addressor word-offset

n-words-or-bit-offset

Methods for physical types should return true if the value in the record is

considered equal to the value argument. The null value must be considered

equal only to the null value, and no other value.

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. Each physical

type must provide a method for this generic function. See the section

"Defining a Variable-Format Physical Type", page 89.

See the section "Defining a Fixed-Format Physical Type", page 92.

For information on the arguments: See the section "Arguments to Methods

for Defining New Statice Types", page 99.�

statice:view-entity Functionstream pathname entity-handle &optional (setf-

function #’statice::make-browser-attribute-

value-setf) values

Displays an arbitrary entity in a window.

stream The window on which to view the entity.

pathname Specifies the database which the entity handle is from.

entity-handle The entity to be viewed.

setf-function Should be a function of two arguments, an entity-handle

and the name of an attribute, which returns a list suit-

able for setf’ing. �

220
Dictionary of Statice Operators February 2018

Here’s an example from the university database. Suppose the value of *uni-

versity-pathname* is the pathname of the university database, and that the

value of j is the entity handle for the student named Joe.

(view-entity *standard-output* *university-pathname* j)

#<STUDENT Joe 504260721> (type STUDENT)

NAME: Joe

ID-NUMBER: 827

DEPT: (Null value)

COURSES: (Entity-Handle of COURSE 24/28

 Entity-Handle of COURSE 24/25)

SHIRTS: (Entity-Handle of SHIRT 25/11)�

The default setf-function, #’statice::make-browser-attribute-value-setf is

defined as:

(defun make-browser-attribute-value-setf (entity-handle fname)

 ‘(browser-attribute-value ,entity-handle ’,fname))

This function is called to create the :form argument to present for the at-

tribute values. If ��������� is clicked on (i.e. "Modify this structure slot"),
the user interface management system does a setf operation, using the

:form argument and the new value that was entered. By default, the Brows-

er uses #’statice::make-browser-attribute-value-setf as its :form function,

so that when a attribute slot is modified, the following form is evaluated:

(setf (browser-attribute-value <entity-handle>
 ’name-of-attribute-being-modified)

 new-value-entered)

browser-attribute-value is not defined as a function, but (setf browser-

attribute-value) is, and may be used to setf a single attribute value in an

entity handle. Note that it performs its own transaction.�

statice:with-cluster Special Form(cluster-spec) &body body

Defines the "current cluster" for the dynamic extent of the body. When you

make a new entity within the dynamic extent of body, the entity is created

inside the current cluster. This overrides the declarative interface and any

area specifications. The cluster-spec is evaluated at run time, so it may be a

variable.

cluster-spec is one of these:

:new Places all entities that are created in the dynamic scope

of body in a new cluster. That is, the first entity to be

created in the statice:with-cluster form is placed in its

own cluster, and the rest of the entities are placed in

that same cluster.

:none Turns off clustering.

entity-handle Places all new entities created in the dynamic scope of

body in an existing clusterthat of the entity-handle. If

221
February 2018 Dictionary of Statice Operators

entity-handle is not a clustered entity, then no cluster-

ing takes place, and the entities are allocated wherever

there is free space on non-clustered pages�

See the section "Clustering Technique for Statice Databases", page 133.�

statice:with-current-database Special Form(database) &body body

Makes the value of the form database be the current database, for the (dy-

namic) extent of its body. The value must be a database object.

Along with statice:open-database, statice:with-current-database can be

considered a primitive underlying statice:with-database. In some cases,

users can use these primitives to achieve greater speed, or to deal with

more than one database (such as when copying data from one to another).

For details: See the section "Opening and Terminating Databases", page 72.�

statice:with-database Special Form(variable pathname) &body body

Any use of a Statice database must be surrounded by a statice:with-

database form. statice:with-database does the following:

1. Determines which database should be opened, based on the pathname.

2. Opens the database, unless it is already open.

3. Binds the specified variable to the database instance, during the execu-

tion of the body. Database instances are used as arguments to various

Statice functions. They are needed only by programs that refer to two

different databases at the same time.

4. Makes this the current database, throughout the dynamic scope of the

body.

5. Executes the body.�

For example:

��

�������������������������������������

������������������������

���

See the section "Accessing a Statice Database", page 9.�

statice:with-transaction Special Form(&key (:automatic-retry�

’dbfs:restartable-transaction-abort)) &body

body

Every operation that examines or modifies a database must be done inside

(dynamically) a statice:with-transaction form.

The dynamic extent of the statice:with-transaction form delimits a transac-

tion. A transaction is group of operations on a database that is guaranteed

to be atomic, isolated, and persistent.

222
Dictionary of Statice Operators February 2018

For example:

���

�������������������������������������

������������������������

���

���

��

��

The keyword option is:

:automatic-retry The value is the name of a flavor. Whenever a transac-

tion is aborted, some error is signalled. If the error fla-

vor is a subtype of the specified flavor, the transaction

automatically restarts; otherwise, the error is signalled

in the dynamic context of statice:with-transaction (that

is, a throw is done to the point of the statice:with-

transaction form, and then the error is signalled). By

using this keyword, you can control which errors will

cause automatic restarts and which will not. This key-

word is rarely used.�

See the section "Introduction to Statice Transactions", page 10.�

statice-storage:write-multiple-record-word Generic Functionrecord-addressor

start-index end-index new-value

Writes a contiguous subsequence of words from an array into the record

specified by record-addressor, starting at start-index and ending at

end-index. new-value must be an array of signed 32-bit integers. The array

is made and returned on the data stack, so the caller is required to provide

a sys:with-data-stack special form around the dynamic extent of the use of

the array.

This generic function is used only in the methods for defining physical

types: See the section "Defining Physical Types", page 88.�

statice-storage:write-record-word Generic Functionrecord-addressor index new-

value &key :buffer-p

Writes new-value into the word specified by index of the record specified by

record-addressor. new-value must be a signed 32-bit integer. record-addressor

must be writable.

This generic function is used only in the methods for defining physical

types: See the section "Defining Physical Types", page 88.�

statice-type:write-value Generic Functionhandler value addressor word-offset

n-words-or-bit-offset

Methods for physical types should write the value into the portion of the

record, or write an indication that the value is null.

223
February 2018 Dictionary of Statice Operators

This generic function is not intended to be called by users, but rather to be

specialized with methods, when defining new Statice types. Each physical

type must provide a method for this generic function. See the section

"Defining a Variable-Format Physical Type", page 89.

See the section "Defining a Fixed-Format Physical Type", page 92.�

224
Dictionary of Statice Operators February 2018

225
February 2018 Dictionary of Statice Error Flavors

9. Dictionary of Statice Error Flavors

statice:database-deleted Flavor

A transaction has attempted to use a database that has been deleted.

Function Value

statice:database-deleted-pathname

The pathname of the database.�

statice:database-terminated Flavor

A transaction has attempted to use a database that has been terminated.

See the section "Opening and Terminating Databases", page 72. See the

function statice:terminate-database, page 216.�

statice:entity-handle-deleted Flavor

There was an attempt to use an entity handle whose entity has been delet-

ed.

Function Value

statice:entity-handle-deleted-entity-handle

The deleted entity handle.�

See the section "Deleting Entities". See the function statice:delete-entity,

page 196.�

statice:entity-handle-not-committed Flavor

There was an attempt to use an entity handle that was created in a trans-

action that was aborted. This error probably indicates that you passed an

entity handle out of a transaction which aborted, and then tried to use the

entity handle.

Function Value

statice:entity-handle-not-committed-entity-handle

The entity handle.�

statice:not-inside-transaction Flavor

There was an attempt to use Statice while not inside any transaction.

See the section "Introduction to Statice Transactions", page 10. See the spe-

cial form statice:with-transaction, page 221.�

statice:entity-not-found-in-set Flavor

An attempt was made to delete an item from a set (using statice:delete-

from-set or statice:delete-from-set*), but the item was not a member of

the set.

Function Value

226
Dictionary of Statice Error Flavors February 2018

statice:entity-not-found-in-set-entity-handle

The value that you were trying to remove from the set.

statice:entity-not-found-in-set-set-of-entities

A list of the of values in the set.�

This flavor is built on statice:function-error. See the special form

statice:delete-from-set, page 197. See the function statice:delete-from-set*,

page 197.�

statice:function-error Flavor

All errors at the "function level" of Statice are built on this flavor.

This flavor is built on error.�

statice:function-uniqueness-violation Flavor

There was an attempt to violate an attribute’s :unique t constraint, by

making a new entity or by changing the attribute value of an existing enti-

ty.

Function Value

statice:function-uniqueness-violation-type

The type instance.

statice:function-uniqueness-violation-function

The attribute instance.�

This flavor is built on statice:uniqueness-violation. See the section "One-

to-One, Many-to-One, and Other Relationships", page 24. See the special

form statice:define-entity-type, page 187.�

statice:index-uniqueness-violation Flavor

There was an attempt to violate the :unique t constraint of a multiple in-

dex.

Function Value

statice:index-uniqueness-violation-type

The type instance.

statice::index-uniqueness-violation-functions

A list of attribute instances, specifying the multiple in-

dex.�

This flavor is built on statice:uniqueness-violation. See the section "Intro-
duction to Multiple Indexes", page 51. See the special form statice:define-

entity-type, page 187.�

statice:no-current-database Flavor

There was an attempt to use Statice, but there was no current database.

Possibly the program is missing statice:with-database or statice:with-

current-database.

227
February 2018 Dictionary of Statice Error Flavors

This flavor is built on statice:function-error. See the special form

statice:with-database, page 221.

See the special form statice:with-current-database, page 221.�

statice:no-entity-type-named Flavor

An attempt was made to try to use an entity type that doesn’t exist in the

current database.

This flavor is built on statice:function-error.�

statice:no-function-named Flavor

An attempt was made to try to use a function whose attribute doesn’t exist

in the current database.

This flavor is built on statice:function-error.

statice:schema-not-loaded Flavor

A database was opened that had a real schema for which the corresponding

template schema was not loaded into the Lisp world.

Function Value

statice:schema-not-loaded-pathname

Pathname of the database.

statice:schema-not-loaded-schema-description-name

The name of the template schema that Statice expected

to find.�

This flavor is built on statice:function-error. See the section "Template

Schemas and Real Schemas", page 110. See the section "Warning About

Changing the Package of a Statice Program", page 58.�

statice:uniqueness-violation Flavor

All errors that violate :unique t constraints are built on this flavor.

This flavor is built on statice:function-error.�

statice:value-not-a-set Flavor

The value given as the new value for a set-valued attribute was not a list.

This error can be signalled by attribute writer functions or entity creation

functions. The error message is "Expected a list of values".

This flavor is built on statice:function-error.

See the section "Set-Valued Attributes", page 22.�

statice:wrong-type-entity Flavor

Signalled by many of the dynamic functions, such as statice:add-to-set*

and statice:attribute-value, to indicate that an entity argument was of the

wrong type. You can call statice:wrong-type-entity-entity-handle to get the

entity which is of the wrong type, and statice:wrong-type-entity-expected-

type to find out what type was expected.

228
Dictionary of Statice Error Flavors February 2018

Function Value

statice:wrong-type-entity-entity-handle

 Entity of the wrong type

statice:wrong-type-entity-expected-type

What type was expected.�

This flavor is built on statice:function-error. See the function statice:add-

to-set*, page 182. See the function statice:attribute-value, page 185.

229
February 2018 Index

�

Index

Accessing All Entities of an Entity Type, 6
Accessing a Statice Database, 4, 9
Accessing Information in a Statice Database, 5, 14
:accessor attribute option to statice:define-entity-

type, 187
Add ASYNCH DBFS PAGE Service Command,

165
Add DBFS PAGE Service Command, 165
Add Statice Partition Command, 156, 166
Advanced Techniques for Statice Applications, 57
A More Complicated Schema: the University

Example, 20
:area option for statice:define-entity-type, 131
:area option to statice:define-entity-type, 187
Arguments to Methods for Defining New Statice

Types, 99
Attribute Options, 8
Attributes, 7
:attribute-set attribute option to statice:define-

entity-type, 187
:attribute-set option for

statice:define-entity-type, 131
Attributes for Objects of Type "File System", 147
:based-on option to statice-type:define-value-

type, 195
:based-on-function option to statice-type:define-

value-type, 195
Basic Concepts of Statice, 3
Benefits of Using Statice, 6
boolean statice type specifier, 76
Browsing a Statice Database, 62
Built-In Statice Types, 75
:cached attribute option to statice:define-entity-

type, 187
case-sensitivity of inverse indexes, 120
character statice type specifier, 76
Checking for Disk Write Errors, 61
Choosing the Forward Direction for a Statice

Schema, 57
Choosing the Kind of Tertiary Storage to Use, 151
:cluster, 133

230
Index February 2018

:cluster attribute option to statice:define-entity-
type, 187

Clustering Technique for Statice Databases, 133
:comparable-p option to statice-type:define-

value-type, 195
Compare Backup Volume Set Command, 156, 158
Comparing Values of User-Defined Types, 95
Complete Backup Command, 155, 157
Complete Restore Command, 155, 158
:conc-name option to statice:define-entity-type,

187
Concurrency Control in Statice, 135
:constructor option to statice:define-entity-type,

187
Controlling areas in a Statice program, 127
Coping with Transaction Restarts, 37
Copy Statice Database Command, 166
cost of an index, 120
Create Statice File System Command, 156, 167
Creating a New Statice File System, 18
Current Database, 10
Database Pathnames, 8
dbfs:file-already-exists error, 209
dbfs:set-buffer-replacement-parameters

function, 69, 176, 216
Deadlocks, 137
Dealing with Databases by Their Pathnames, 145
Dealing with Strings in Statice, 69
:default-init-plist option to statice:define-entity-

type, 187
Defining a Fixed-Format Physical Type, 92
Defining a Schema for a University, 20
Defining a Statice Schema, 3
Defining a Variable-Format Physical Type, 89
Defining Lisp and Statice Types, 84
Defining Logical Types, 85
Defining Methods for Entity Types, 108
Defining New Statice Types, 84
Defining Physical Types, 88
Delete Statice File System Command, 156, 169
Describe Backup Volume Command, 156, 159
Describe Statice File System Command, 156, 159
Dictionary of Statice Commands, 165
Dictionary of Statice Error Flavors , 225
Dictionary of Statice File System Operations

Commands, 157
Dictionary of Statice Operators, 181
Disable Statice Command, 156, 159

231
February 2018 Index

Disable Statice File System Command, 156, 160
:documentation option to statice:define-entity-

type, 187
double-float statice type specifier, 76
Dump Database Command, 169
dw:member-sequence statice type specifier, 79
Dynamic Counting of Entities, 105
Dynamic Entity Creation, 102
Dynamic Set Manipulation, 102
dynamic Statice accessor, 185
Dynamic Statice Accessor Functions, 101
Dynamic Statice Operations, 100
Dynamic Statice Queries, 103
Enable Statice Command, 156, 160
Enable Statice File System Command, 156, 160
Entities and Entity Types, 7
Entity Constructor Functions, 4, 7, 13, 23
Entity Constructors and the Null Value, 30
Entity Handles, 13
Entity-Typed Attributes, 21
Entity Types Versus Ordinary Types, 22
Errors and Transactions, 12
Exact Indexes, 70
Exact Inverse Accessor Functions, 70
Examining the Schema of a Statice Database, 110
Example of Schema Examination, 111
FEP File for Generating Statice Unique IDs, 149
File-System Objects in the Namespace, 8
:fixed-space option to statice-type:define-value-

type, 195
Flavors Representing a Statice Type, 97
:format option to statice-type:define-value-type,

195
General Rules of the :where Clause of statice:for-

each, 43
Guide to the Statice Examples, 60
:handler-finder option to statice-type:define-

value-type, 195
hazard with statice:delete-entity and statice:for-

each, 196
High-level Dumper/Loader of Statice Databases,

163
Hints and Techniques for Using Statice, 57
Host, 147
How a Statice File System is Described in the

Namespace, 142
How Locking Affects Performance, 139
How Locking Works in Statice, 135

232
Index February 2018

How to Control Type Sets, Attribute Sets, and
Areas, 131

:index attribute option to statice:define-entity-
type, 187

:index-average-size attribute option to
statice:define-entity-type, 187

Indexes and :order-by, 50
Indexes and statice:for-each, 47
Inheritance From Entity Types, 27
:initform attribute option to statice:define-entity-

type, 187
Initialize Backup Volume Command, 155, 161
:init-keywords option to statice:define-entity-

type, 187
:instance-variables option to statice:define-

entity-type, 187
integer statice type specifier, 77
Integrating Object-oriented Programming with

Statice, 107
Integrating Statice with a User Interface, 105
Introduction to Indexes in Statice, 45
Introduction to Multiple Indexes, 51
Introduction to Statice Transactions, 10
:inverse attribute option to statice:define-entity-

type, 187
:inverse-cached attribute option to statice:define-

entity-type, 187
inverse index, 120
:inverse-index attribute option to statice:define-

entity-type, 187
:inverse-index-average-size attribute option to

statice:define-entity-type, 187
:inverse-index-exact attribute option to

statice:define-entity-type, 187
Inverse Reader Functions, 14
Inverse Writer Functions, 26
Inverse Writer Functions for Entity-typed Attributes,

26
Inverse Writers and Set-valued Attributes, 26
Iterating Over All Entities of an Entity Type, 23
Iterating Over an Entity Type, 16
Iterating Over Members of a Set-valued Attribute,

24
Iterating Over Sets with statice:for-each, 23
Join Condition, 45
Kinds of Tertiary Storage, 150
Labels on Volumes, 153
Limitations to Modifying a Real Schema, 116

233
February 2018 Index

Load Database Command, 170
Making and Deleting Indexes, 49
Making a Statice Database, 4, 8
Making New Statice Entities, 4, 12
member statice type specifier, 79
Mixing Flavors Into a Statice Entity Definition, 109
Modifying a Statice Schema, 115
Modifying the Real Schema, 116
Modifying the Template Schema, 115
multiple index, 120
:multiple-index option for statice:define-entity-

type, 120
:multiple-index option to statice:define-entity-

type, 187
Multiple Indexes, 51
Multiple Indexes and Leading Subsequences, 53
Multiple Indexes and :order-by, 55
Multiple Indexes and Suffix Comparisons, 54
:multiple-index-exact option to statice:define-

entity-type, 187
Nested Transactions, 12
Nickname, 148
:no-nulls attribute option to statice:define-entity-

type, 187
Obtaining a Symbol From a Database, When the

Package is Undefined, 60
One-to-One, Many-to-One, and Other

Relationships, 24
Opening a Database, 9
Opening and Terminating Databases, 72
Operations and Maintenance of Statice Databases,

141
Order of Defining Pieces of a Schema, 36
Organization of the Statice Documentation, 1
Overview of the Statice Backup Facilities, 149
:own-cluster, 133
:own-cluster option to statice:define-entity-type,

187
Paging considerations in a Statice program, 127
Persistence, 6
Physical and Logical Statice Types, 84
Presentation Type for Statice Types with Simple

String Names, 106
Pretty Name, 148
Querying a Statice Database with

statice:for-each, 41
Quick Overview of Statice: the Bank Example, 3

234
Index February 2018

:reader attribute option to statice:define-entity-
type, 187

Reader Functions and the Null Value, 29
real schema instance, 207
Regular Comparison Versus Exact Comparison, 69
Representing Information as an Ordinary Value

Versus an Entity, 58
Root Directory, 147
Selective Restore Command, 155, 161
Services and Protocols Used by Statice, 146
Set Database Schema Name Command, 170
Set-Valued Attributes, 22
Sharing, 6
Short Name, 148
Show All Statice File Systems Command, 156, 170
Show Backup History Command, 156, 162
Show Database Schema Command, 171
Show Statice Partitions Command, 156, 171
single-float statice type specifier, 80
Snapshots, 40
Sorting Entities with the :order-by Clause of

statice:for-each, 44
Specifying Instance Variables for an Entity Handle,

109
statice:*restart-testing* variable, 176, 181
statice:default-string-create-function, 198
statice:for-each Can Use Many Indexes Together,

48
statice:open-database, 72
statice:set-attribute-value-to-null, 29
statice:symbol-package-not-found error, 60
statice:terminate-database, 58, 72
statice:with-cluster, 133
statice:with-current-database, 72
statice:with-database, 72
Statice Accessors, 5, 14, 23
statice:add-to-set special form, 173, 181
statice:add-to-set* function, 175, 182
statice:alist-member statice type specifier, 75
statice:all-but-entity statice type specifier, 75
Statice and CLOS, 109
Statice area scans, 127
statice:attribute-area-name function, 114, 179,

182
statice:attribute-function-name function, 113,

179, 182
statice:attribute-index-average-size function,

114, 180, 182

235
February 2018 Index

statice:attribute-index-exists function, 114, 179,
182

statice:attribute-inverse-function-name function,
114, 180, 183

statice:attribute-inverse-index-average-size
function, 114, 180, 183

statice:attribute-inverse-index-exact-exists
function, 114, 180, 183

statice:attribute-inverse-index-exists function,
114, 180, 183

statice:attribute-name function, 113, 179, 183
statice:attribute-no-nulls function, 114, 180, 184
statice:attribute-read-only function, 114, 179, 184
statice:attribute-set-exists function, 114, 179,

184
statice:attribute-type function, 113, 179
Statice Attribute Types, 33
statice:attribute-unique function, 114, 179, 184
statice:attribute-value function, 175, 185
statice:attribute-value-array-portion function, 72,

174, 185
statice:attribute-value-is-set function, 113, 179,

186
statice:attribute-value-length function, 174, 186
statice:attribute-value-null-p function, 175, 186
statice:attribute-value-type function, 113, 179,

186
Statice Buffer Replacement, 68
statice:count-entities* function, 175, 186
statice:current-database function, 175, 187
statice:database-deleted flavor, 225
Statice Database Pathnames, 144
Statice database pathnames , 144
statice:database-terminated flavor, 225
statice:define-entity-type special form, 173, 187
statice:define-schema special form, 173, 195
statice:delete-entity function, 173, 196
statice:delete-from-set special form, 173, 197
statice:delete-from-set* function, 175, 197
statice:delete-index function, 174, 197
statice:delete-inverse-index function, 174, 198
statice:delete-multiple-index function, 174, 198
statice:do-text-lines macro, 72, 174, 198
statice:do-text-lines* function, 72, 176, 199
statice:entity-handle statice type specifier, 77
statice:entity-handle-deleted flavor, 225
statice:entity-handle-not-committed flavor, 225
statice:entity-not-found-in-set flavor, 225

236
Index February 2018

Statice entity records, 119
Statice File System, 8
Statice File System Operations Program, 149
statice:for-each special form, 173, 201
statice:for-each* function, 175, 206
statice:function-error flavor, 226
statice:function-uniqueness-violation flavor, 226
statice:get-real-schema function, 110, 112, 178,

207
statice:get-real-schema-name function, 112, 178,

207
statice:get-template-entity-type function, 110,

112, 178, 207
statice:get-template-schema function, 110, 112,

178, 207
statice:image statice type specifier, 77
Statice Indexes, 120
statice:index-exists function, 174, 208
statice:index-uniqueness-violation flavor, 226
statice:inverse-attribute-value function, 175, 208
statice:inverse-index-exists function, 174, 208
statice:limited-string statice type specifier, 78
statice:make-database function, 173, 209
statice:make-entity function, 175, 209
statice:make-index function, 173, 210
statice:make-inverse-index function, 173, 210
statice:make-multiple-index function, 174, 211
statice:multiple-index-attribute-names function,

114, 180, 212
statice:multiple-index-case-sensitive function,

115, 180, 212
statice:multiple-index-exists function, 174, 212
statice:multiple-index-unique function, 115, 180,

213
statice:no-current-database flavor, 226
statice:no-entity-type-named flavor, 227
statice:no-function-named flavor, 227
statice:not-inside-transaction flavor, 225
statice:open-database function, 175, 213
Statice Operators for Dealing with Strings and

Vectors, 72
statice:pathname statice type specifier, 79
Statice Performance Issues, 119
Statice Reader and Writer Functions, 5, 7, 14
Statice Records, 119
Statice relationship records, 119
Statice Schema, 7
statice:schema-name function, 113, 178, 215

237
February 2018 Index

statice:schema-not-loaded flavor, 227
statice:schema-types function, 113, 178, 215
statice:set-attribute-value-array-portion function,

72, 174, 215
statice:set-attribute-value-to-null function, 175,

215
statice-storage:read-multiple-record-word

generic function, 88, 213
statice-storage:read-record-word generic

function, 88, 213
statice-storage:write-multiple-record-word

generic function, 88, 222
statice-storage:write-record-word generic

function, 88, 222
statice:terminate-database function, 175, 216
statice:type-area-name function, 113, 179, 217
statice:type-attributes function, 113, 179, 217
statice-type:decode-value generic function, 100,

177, 187
statice-type:define-handler-flavor special form,

99, 176, 194
statice-type:define-value-type special form, 98,

176, 195
statice-type:encode-value generic function, 99,

176
statice:type-multiple-indexes function, 113, 179,

217
statice:type-name function, 113, 178, 218
statice:type-parent-names function, 113, 178,

218
statice-type:read-value generic function, 100,

177, 213
statice-type:record-compare generic function,

100, 177, 214
statice-type:record-equal generic function, 100,

177, 214
statice:type-set-exists function, 113, 179, 218
Statice Type Sets, Attribute Sets, and Areas, 127
statice-type:size-of-value generic function, 100,

177, 218
statice-type:value-compare generic function, 100,

177, 219
statice-type:value-equal generic function, 100,

177, 219
statice-type:write-value generic function, 100,

177, 222
statice:uniqueness-violation flavor, 227

238
Index February 2018

statice-utilities:entity-named-by-string-attribute
presentation type, 106, 176, 200

statice:value-not-a-set flavor, 227
statice:view-entity function, 105, 176, 219
statice:with-cluster special form, 176, 220
statice:with-current-database special form, 175,

221
statice:with-database special form, 173, 221
statice:with-transaction special form, 173, 221
statice:wrong-type-entity flavor, 227
string statice type specifier, 80
string-char statice type specifier, 81
Summary of Functions for Examining a Schema,

112
Summary of Methods for Defining New Statice

Types, 98
Summary of Rules for Initial Values of Attributes,

32
Summary of Statice Operators, 173
symbol statice type specifier, 81
t statice type specifier, 81
Taking Snapshots with the :cached Attribute

Option, 38
template schema instance, 207
Template Schemas and Real Schemas, 110
Tertiary Volumes and Volume Sets, 152
Testing Statice Programs with Transaction

Restarts, 40
The Architecture of Statice, 141
The :conc-name Entity Type Option, 36
The :initform Attribute Option, 32
The :no-nulls Attribute Option, 31
The :read-only Attribute Option, 33
The Statice Null Value, 29
time:time-interval statice type specifier, 82
time:time-interval-60ths statice type specifier, 82
time:universal-time statice type specifier, 82
Transaction Isolation, 15
Transactions and System Failure, 11
Transactions are Atomic, 10
Transactions are Isolated, 11
Tutorial Introduction to Statice, 3
Type, 147
:type-set option for statice:define-entity-type,

131
:type-set option to statice:define-entity-type, 187
Types Not Supported by Statice, 83

239
February 2018 Index

:unique attribute option to statice:define-entity-
type, 187

:unique keyword to :multiple-index for
statice:define-entity-type, 120

uniqueness constraints for multiple attributes, 120
Update Database Schema, 116
Update Database Schema Command, 172
User Property, 148
Using Cached Attributtes, 39
Using Indexes to Increase Database Performance,

45
Using statice:for-each on Many Variables, 45
Using Statice for the First Time, 17
Using Statice Locally or Remotely, 141
Using the :count Clause of statice:for-each, 44
Using the Statice File System Operations Program,

155
Using the :where Clause of statice:for-each, 41
vector statice type specifier, 82
Viewing an Arbitrary Statice Entity, 105
Volume Capacity, 151
Volume Libraries, 154, 162
Warning About Changing the Package of a Statice

Program, 58
:writer attribute option to statice:define-entity-

type, 187
Writing Statice Programs in the Right Package, 20

