
iii
February 2018 Table of Contents

Table of Contents

Page

1 1Introduction

1.1 1About the Joshua Language

1.2 2 About the Joshua Documentation

1.2.1 2The User’s Guide to Basic Joshua

1.2.2 3The Joshua Reference Manual

2 5Getting Started with Joshua

2.1 5Setting up the Joshua Context and File Attributes

3 7Overview of Joshua

3.1 7Some Basic Joshua Protocol Functions

3.2 9List of Basic Joshua Symbols

4 11Joshua Predications

4.1 11Predications and Predicates

4.2 14Predications, Truth Values, and the Database

4.2.1 15Entering and Displaying Predications in the Database

4.2.2 17Removing Predications From the Database

4.2.3 20Truth Values

4.2.4 23Querying the Database

4.3 26Predications and Logic Variables

4.4 31Predications and Logical Connectives

4.5 35Formatting Predications: the SAY Method

4.6 37Tracing Predications

4.7 38Miscellaneous Predication Facilities

5 41Joshua Rules and Inference�

5.1 42Defining Joshua Rules

5.1.1 43How Forward Rules Work

5.1.2 46How Backward Rules Work

5.2 50Removing Joshua Rule Definitions

5.3 50Tracing Rules

5.4 54Joshua Rule Basics At a Glance

6 55Asking the User Questions

6.1 55Adding and Removing Joshua Question Definitions

6.2 56Default Joshua Questions

6.3 58Writing Custom Questions

iv
Table of Contents February 2018

7 61Pattern Matching in Joshua: Unification

7.1 61Unification Rules

7.2 62Variables and Scoping in Joshua

7.3 63Some Examples of Joshua Unification

7.4 65Basic Unification Facilities

8 67Using Joshua Within Lisp Code

9 69Advanced Features of Joshua Rules

10 71Justification and Truth Maintenance

10.1 72Justification

10.1.1 72Primitive Justifications

10.1.2 74Compound Justifications

10.1.3 74Database Predications Can Have Multiple Justifications

10.2 75Explaining Program Beliefs

10.3 77Revising Program Beliefs

10.3.1 78An LTMS Example

10.3.2 84Retracting Predications with joshua:unjustify

11 87Dictionary Notes: Basic Joshua Dictionary

11.1 88List of Entries in the Basic Joshua Dictionary

12 91Basic Joshua Dictionary

A 167A Figure of the Joshua Protocol of Inference

v
February 2018 List of Figures

�

List of Figures

Page

1 8A Basic Subset of the Joshua Protocol

2 26Simple example using function graph-query-results

3 43Forward Rule Trigger and Action Parts

4 46Backward Rule Trigger and Action Parts

5 49Graphing query support from backward rule

6 54Summary of Joshua Rule Operation

7 76Sample Graph of TMS Support

8 78TMS Example -- New Fact Contradicts Existing Fact

9 79TMS Example -- Trace and Debugger Displays, and First Retraction

10 80TMS Example, Continued -- Deduced Fact Contradicts Existing Fact

11 81TMS Example, Continued -- Trace Display and Second Retraction

12 82TMS Example, Concluded -- TMS Automatically Retracts Unsupported

Fact

13 83TMS Example, Concluded -- Automatic Retraction by the TMS

1
February 2018 Introduction

1. Introduction

1.1. About the Joshua Language

Joshua is an extensible software product for building and delivering expert system

applications. It is implemented on the Symbolics 3600 family, on top of the Symbol-

ics Genera environment. Joshua is optimized for applications where performance

and delivered functionality are important.

Joshua is a very compact system, organized around a small number of core func-

tions. Joshua’s default structures provide a simple declarative core language with

built-in facilities for application development. Programming with the defaults is

very straightforward, allowing you to build effective applications quickly. This is

due to several features:

• The syntax of Joshua is uniform, statement-oriented, and Lisp-like, so that you

need not learn an entirely new language.

• The interface to the database (any database) is simple and uniform, consisting

of the three functions, joshua:ask, joshua:tell, and joshua:clear.

• Special Zmacs facilities like bracket matching and special characters ease pro-

gram development.�

������ ����� �� ����� ������, the first manual in the Joshua documentation set,

covers everything you need to know to program using Joshua’s built-in facilities.

Among Joshua’s strengths is that this system is a coherent, multi-level environ-

ment, making advanced features available when you need them. Joshua is built

around some 30 core functions, the Protocol of Inference, which are ���������� ��

��������������������������

This modularity and accessibility offer powerful advanced features: user interfaces,

control structures, storage structures can all be customized to reflect what is most

natural for the application; external databases can be accessed; existing software

tools can be seamlessly integrated into the Joshua application; performance can be

fine-tuned. We present all these topics in the companion documentation volume:

See the document �����������������������.

Joshua dovetails with Genera and Symbolics Common Lisp in much the same way

that Lisp and Flavors do. Joshua itself is implemented with Flavors. Joshua is

closely integrated with Lisp, and Lisp code can be used within Joshua rules. All of

Genera’s program development facilities are available to Joshua, namely, the

Zmacs editor, Dynamic Windows, formatted output, debugging support, and the

User Interface Management System.

2
Introduction February 2018

1.2. About the Joshua Documentation

Joshua is a powerful and sophisticated tool that can be used at many levels, by

people with varying AI programming experience, ranging from the relatively inex-

perienced to the expert. While the Joshua documentation is designed to help users

at any level get the most out of Joshua, it is not an introductory AI text; we as-

sume you have at least a passing acquaintance with AI programming concepts and

terms.

Since Joshua is very closely integrated into its Symbolics Common Lisp environ-

ment, we also assume that you are familiar with the Genera facilities, Symbolics

Common Lisp, and the Zmacs editor. Extensive documentation on these areas is

provided elsewhere in the Symbolics documentation set.

The Joshua documentation consists of two manuals,

������ ����� �� ����� ������ and ������ ��������� ������, as well as online doc-

umentation.

This division reflects a different task orientation as well as a different stage of fa-

miliarity with AI programming.

1.2.1. The User’s Guide to Basic Joshua

������ ����� �� ����� ������ gives you everything you need to know to start devel-

oping Joshua applications.

The goal of this manual is to let you develop a feel for Joshua, together with the

ability to do all of the most common programming tasks using only Joshua’s built-

in facilities. For this reason, we will work with a subset of the Joshua commands,

and with only those top-level Protocol functions that are directly usable for stan-

dard operations and that do not represent special-purpose functions or subcompo-

nents of the protocol. The manual is designed to answer questions such as "How

do I interact with the Joshua database?", "What kind of reasoning operations can I

do with Joshua?", and "How does Joshua handle Truth Maintenance?"

���������������������������� covers the following topics:

• Predications

• Rules and Inference

• Questions

• Unification

• Using Joshua Within Lisp Code

• Justification and Truth Maintenance

������ ����� �� ����� ������ is organized into a conceptual discussion, followed by

the "Basic Joshua Dictionary". This is an alphabetized dictionary of reference en-

tries for the basic subset of Joshua symbols that let you program Joshua’s default

structures. Each entry provides a complete description of a single Joshua function

or command, its syntax, what it returns, examples of its use, and cross-references

to related functions or commands.

3
February 2018 Introduction

1.2.2. The Joshua Reference Manual

������ ��������� ������, the companion volume to this, is a much deeper presen-

tation of the concepts you need to understand in order to put Joshua to the fullest

possible use. This manual is for experienced programmers who need to write tai-

lored, optimized applications.

Topics presented earlier are revisited here in more depth, with cross-references to

the earlier manual. The focus here is on all levels of the Joshua Protocol func-

tions, so that you can see how each works. With this understanding you can make

changes to any component for efficiency. ��������, that is, tailoring any of the

Joshua components to your application, is introduced in some detail, including ex-

amples of modeling data structures, rule storage, and writing your own TMS.

These are some of the topics covered in

�����������������������:

• The Database Protocol

• Trigger Indexing Protocol

• The Rule Compiler

• The TMS

• Modeling�

As in the earlier volume, the conceptual discussion is followed by the "Joshua Lan-

guage Dictionary", an alphabetized dictionary of reference entries for ��� Joshua

symbols, methods, and commands. Each entry provides a complete description of a

single Joshua function or command, its syntax, what it returns, examples of its

use, and cross-references to related functions or commands.

Among the major goals of the documentation is to give you fast access to the in-

formation you need, to minimize your reading, and to let you work directly with

the information presented. Topics are clearly cross-referenced to point you from

basic to advanced coverage, as well as to related topics; important information is

summarized visually in tables or figures for quick reference; the majority of the

examples in the manual show output, and they can be yanked from Document Ex-

aminer into the Lisp Listener so that you can experiment with them yourself.

4
Introduction February 2018

5
February 2018 Getting Started with Joshua

2. Getting Started with Joshua

2.1. Setting up the Joshua Context and File Attributes

In order to get to a correct Joshua package and to inform the Lisp reader that you

are expecting it to deal properly with Joshua syntax, you must set your working

context to Joshua.

From the Lisp Listener, enter:

Set Lisp Context Joshua

This sets the current context to use Joshua syntax, and sets the current package

to Joshua. For information on Lisp contexts: See the section "Set Lisp Context

Command" in ���������������.

To set your file attribute list, enter the following from a Zmacs buffer:

��� Create Initial Joshua Attribute List �

This creates an attribute list similar to the one below:

;;; -*- Mode: Joshua; Package: JOSHUA-USER; Syntax: Joshua; Vsp: 0 -*-

;;; Created 3/18/88 10:24:45 by Covo running on LADY-PEREGRINE at SCRC.�

For information on file attribute lists: See the section "Buffer and File Attributes

in Zmacs" in ����������������. You are now ready to use Joshua.

6
Getting Started with Joshua February 2018

7
February 2018 Overview of Joshua

3. Overview of Joshua

Since the core of Joshua is a rule-based inference language, its chief building

blocks might already be familiar to you from other AI programming languages. We

will briefly review these elements as we present the Joshua context and terminolo-

gy.

One can think of Joshua as having five major components:

������������ are ways of expressing knowledge; they are often called ����������,

�����, or ���������� in other languages, and we occasionally use these terms as well.

The �������� is a collection of predications and related information that the sys-

tem remembers;

����� are ways of expressing and remembering relationships among predications,

as well as procedural knowledge;

The �������� �� ��������� is the mechanism that integrates these components and

performs the reasoning;

The ����� ����������� ������ (TMS) keeps track of the reasoning that was used

so that it can:

• Maintain explanations of Joshua’s reasoning

• Maintain the logical consistency of the system�

Basic programming in Joshua consists of supplying predications and rules and de-

termining how to use this knowledge to deduce additional knowledge, or how to

use it to answer questions. We cover these topics in the present manual.

Advanced programming in Joshua consists of ��������, that is, tailoring appropri-

ate parts of the Joshua Protocol routines to your particular application; you might

want to model for any number of reasons (to increase efficiency, incorporate spe-

cialized tools, access external databases, and the like). We cover these topics in the

�����������������������, the companion volume to this.

We begin with a summary of the Joshua protocol.

3.1. Some Basic Joshua Protocol Functions

The Joshua Protocol of Inference consists of some 30 generic functions broken

down into five functional groups:

• Database Interface: Manages addition/deletion of facts to the database

• Truth Maintenance System (TMS) Protocol: Manages deductive dependencies

• User Interface Protocol: Manages interaction with the user

• Rule Indexing Protocol: Manages the rule database

• Rule Customization Protocol: Manages the rule compiler

8
Overview of Joshua February 2018

Because of the modular nature of the Joshua Protocol, most Protocol functions are

broken into subcomponents, each of which performs a specific part of the func-

tion’s contract. This modularity lets you fine-tune and localize changes to function-

ality at any level, letting them remain transparent to the end user.

In this manual we cover some basic top-level protocol functions in the Database

Interface, User Interface, and TMS groups. The functions for Rule Indexing and

Rule Customization are used only for modeling, and are not of immediate interest

here. Similarly, we will not be concerned with the details of modularization in

each of the five protocol groups, since this information is only relevant for model-

ing.

Figure 1 is a depopulated picture of the basic protocol functions we are covering

here. For the complete protocol: See the section "A Figure of the Joshua Protocol

of Inference", page 167.

USER INTERFACE

say

TMS PROTOCOL

justify unjustify

DATABASE INTERFACE
tell clearaskuntell

support

Figure 1. A Basic Subset of the Joshua Protocol

Here is a summary explanation of each of these functions.

9
February 2018 Overview of Joshua

������������������

• joshua:tell: Installs new information

° joshua:justify: Gives the TMS a reason for believing the predication

• joshua:ask: Retrieves known or implied data

• joshua:untell: Removes a single fact that joshua:tell put into the database

° joshua:unjustify: Manages the TMS issues related to removing the fact

• joshua:clear: Removes all facts from the database�

��

• joshua:justify: Installs a new TMS justification

• joshua:unjustify: Removes a TMS justification

• joshua:support: Finds the set of facts or assumptions that a statement de-

pends on�

��������������

joshua:say: Prints out the meaning of predications in natural language, or some-

thing similar.

For a subset of Joshua symbols introduced in this manual: See the section "List of

Basic Joshua Symbols", page 9.

3.2. List of Basic Joshua Symbols

Here is the list of functions and commands whose basic functionality we present in

this manual.

joshua:ask

joshua:ask-database-predication

joshua:ask-derivation

joshua:ask-query

joshua:ask-query-truth-value

joshua:clear

"Clear Joshua Database Command"
joshua:*contradictory*

joshua:copy-object-if-necessary

joshua:define-predicate

10
Overview of Joshua February 2018

joshua:defquestion

joshua:defrule

joshua:different-objects

"Disable Joshua Tracing Command"
"Enable Joshua Tracing Command"
"Explain Predication Command"
joshua:explain

joshua:*false*

joshua:graph-query-results

joshua:graph-tms-support

joshua:known

joshua:make-predication

joshua:map-over-database-predications

joshua:predication

joshua:predicationp

joshua:print-query

joshua:print-query-results

joshua:provable

"Reset Joshua Tracing Command"
"~\\Say\\"
joshua:say

joshua:say-query

"Show Joshua Predicates Command"
"Show Joshua Rules Command"
"Show Joshua Tracing Command"
"Show Rule Definition Command"
joshua:succeed

joshua:tell

joshua:*true*

joshua:undefine-predicate

joshua:undefquestion

joshua:undefrule

joshua:unify

joshua:unjustify

joshua:*unknown*

joshua:untell

joshua:variant

joshua:with-statement-destructured

joshua:with-unbound-logic-variables

joshua:with-unification

To begin using Joshua, you need to work with ������������, learning how to define,

store, look up, and delete them. For these and related topics: See the section

"Predications and Predicates", page 11.

11
February 2018 Joshua Predications

4. Joshua Predications

AI and Joshua programming activities involve working with facts that represent

knowledge. Programs build and store facts and reason with them, which leads to

the building and storing (or removal) of other new facts to reason with.

Joshua facts are called ������������. This chapter covers the essentials of building

and storing predications. We also introduce related topics such as truth values as-

sociated with predications, and the use of logic variables to build ����������� ����

�����. Reasoning with predications is the province of rules and is covered in that

context: See the section "Rules and Inference", page 41.

4.1. Predications and Predicates

Macro: joshua:define-predicate

Function: joshua:undefine-predicate

Command: Show Joshua Predicates

Zmacs Command: ��� Kill Definition �

������������ are statements about the world. When predications are stored in a

��������, the knowledge they embody becomes available to the system, to be ma-

nipulated by rules.

Terminology note: Occasionally we use the terms ���������, ���������, ����, and ���

���� synonymously with �����������. These are broadly equivalent terms that have

wide currency in AI programming.

The protocol lets you manipulate predications in numerous ways. You can, for ex-

ample:

• Insert them into a database

• Look them up in a database

• Infer them by rules

• Supply justifications that are remembered in the database

Bear in mind, also, that predications can be manipulated like other ordinary Lisp-

world objects (you can store them in arrays, print them, joshua::accept them, and

so on). In fact, predications are just flavor instances.

These are examples of predications:

[healthy John]

[has-pneumonia John]

[author-of (poems plays) Marlowe]�

Predications consist of ���������� such as healthy, has-pneumonia and author-of in

the above example, together with their arguments, if any. A predication is always

enclosed in brackets [].

12
Joshua Predications February 2018

Predicates thus are names of relationships, and they organize the knowledge in a

predication and express relationships among its parts. A predicate is always the

first item in a predication; it can take zero or more arguments, depending on how

you define it.

You must define a predicate before using it in a predication. Defining the predi-

cate sets up its format and specifies the kinds of information you expect to see af-

ter the predicate name (things like the arguments and, optionally, any customized

ways of controlling the predicate’s behavior); At runtime the system checks your

predication’s pattern against the format you set up in the predicate definition, and

notifies you if there is a discrepancy.

Use the macro joshua:define-predicate to define new predicates. As an example,

we’ll define a predicate, healthy, to take a single argument, ������. This predicate

uses the default implementations for data storage and representation, so no further

arguments are needed in the definition.

(define-predicate healthy (object))�

Once a predicate has been defined, we can use it in any number of predications

with different arguments. This makes it possible to organize related knowledge by

grouping it together.

Note that you can use backquote with the bracket notation for predications. For

example:

‘[healthy ,(find-a-healthy-thing)]

Here are some examples of predications:

[healthy vegetables]

[healthy long-vacations]

[healthy "an apple a day"]�

Since there is no one set way of thinking about a world, we can express a given

piece of knowledge in a variety of different predications, depending on what as-

pects of it are important to our problem. We can, for instance, use several differ-

ent predicates to express the fact that a person is healthy, or that a person is ill:

[healthy John]

[has-health John]

[has-pneumonia John]

[illness John pneumonia]

[pneumonia John]

Or we can relate health and illness conceptually as reflecting different states of

being, and generalize them to a single condition by using a single predicate:

[has-condition John health]

[has-condition John pneumonia]�

Or, if John is the only patient whose condition interests us, we can omit explicit

mention of John’s name from the statements altogether.

[has-condition health]

[has-condition pneumonia]�

13
February 2018 Joshua Predications

Thus, your choice of predicates reflects your analysis of the problem, the kinds of

reasoning you expect your program to do, and the amount of knowledge you need

to express explicitly or implicitly. Since predicates are your vocabulary for defining

and exploring a knowledge domain, predicate selection is a major problem-solving

challenge; choosing the correct set of predicates to model your knowledge can

greatly simplify your programming task. Poor choices can lead to clumsy programs

with too many rules.

You can "undefine" predicate definitions from either Zmacs or the Lisp Listener.

(Undefining a predicate is a rare event that corresponds to a major reorganization

of the program.) To remove a predicate definition while you are in Zmacs, place

the cursor on the predicate definition and use the extended command ��� Kill

Definition. In the Lisp Listener, use the function joshua:undefine-predicate.

For example:

(undefine-predicate ’healthy)�

Note that while joshua:undefine-predicate removes the ���������� ����������, any

������������ built with this predicate remain in the world until you explicitly re-

move them. However, almost any attempt to use these predications will cause an

error. (See the section "Removing Predications From the Database", page 17.)

To find out what predicates are defined in your current world, use the command

Show Joshua Predicates. This prints the predicate names and their arguments.

There are command options to let you tailor the display. Please consult the dictio-

nary entry for this command.

Free-floating predications such as those we’ve just built are not usable for reason-

ing operations because the system does not keep track of them. To be on record,

predications must be collected in a database that the system recognizes and re-

members. Also, once predications are in a database, the system stores additional

information about them, such as their truth value. The next section deals with

these topics. See the section "Predications, Truth Values, and the Database", page

14.

14
Joshua Predications February 2018

Advanced Concepts Note:

In Joshua, predicates are an implementation-organizing as well as a knowledge-

organizing tool. Since you can organize related facts in similar fashion by consis-

tent predicate choice, it can also be convenient to implement them in the same

way. So predicates, rather than their arguments, have specific protocol implemen-

tations associated with them. This means that in Joshua you can, if you wish,

deal with each predicate independently, and give it its own unique way of inter-

acting with the protocol; while defining a predicate you can specify such things

as where predications using it are to be stored (this could be in any number of

places, even on separate computer systems), or whether or not justifications for

it are to be remembered. For some predicates you might want to specify algorith-

mic methods for answering questions about a problem, while for others you

might request reasoning methods. In other words, you can ����� the behavior of

each predicate, mixing and matching various built-in models, or adding your own.�

The various models you might use are also independent of each other. You can,

for example, define a TMS model (mostly) without affecting the storage model; in

this way you need only change those portions of the protocol directly affected by

your model. Similarly, your modeling choices require no modification of other

knowledge-level structures, such as rules.

This flexibility is one of Joshua’s major advantages. However, the extent to

which you exercise it is strictly up to you, since it is possible to program effec-

tively in Joshua using only the defaults.

All this is implemented using the generic functions and flavors mechanism of

Symbolics Common Lisp.

We cover customized predicate models in �����������������������.�

4.2. Predications, Truth Values, and the Database

To make a predication available to Joshua, you joshua:tell it into a ��������. A

database is an extensible collection of predications together with associated infor-

mation about each predication. Predications are generated by the programmer or

as a result of reasoning done by rules; they are entered into the database by the

programmer (or by the system if they are inferred by rules). A database thus con-

tains all the facts Joshua knows about at this point in time, and it changes dynam-

ically with new facts being added or removed as a result of inference or computa-

tion.

Predications in the database differ from free-floating predications first because

they are remembered by the system, and second, because they have additional in-

formation, such as truth values, associated with them. (See the section "Truth Val-

ues", page 20.)

As a Joshua user, your main interaction with the database takes place via two

functions, joshua:tell and joshua:ask. joshua:tell stores statements into the

15
February 2018 Joshua Predications

database. (See the section "Entering and Displaying Predications in the Database",
page 15.) joshua:ask, among its other functions, looks up knowledge in the

database. (See the section "Querying the Database", page 23.)

Database operations include the following:

• Inserting predications into the database

• Displaying the database contents (text, or graphic format)

• Looking for predications in the database

• Removing predications from the database

This section covers the basics of the above operations. We also introduce the relat-

ed topic of truth values that are associated with predications in the database.

Advanced Concepts Note:

The Joshua database protocol provides a default mechanism for data representa-

tion and storage. (See the section "The Joshua Database Protocol" in ������ ����

������ ������.) If you provide an alternate implementation of the relevant com-

ponents of joshua:tell and joshua:ask, you can customize data indexing for your

application. This will, for example, let you access knowledge in any existing

database, or combinations of databases in various locations. The Joshua concept

of a ������� �������� expresses this idea. (See the section "Customizing the Data

Index" in �����������������������.)�

4.2.1. Entering and Displaying Predications in the Database

Functions: joshua:tell

joshua:untell

joshua:clear

Commands: Show Joshua Database

Clear Joshua Database�

We use the Command Processor command Show Joshua Database to display the con-

tents of the database. An empty database generates the following display:

Show Joshua Database

True things

 None

False things

 None�

The display headings "True things" and "False things" are for grouping predica-

tions that the system knows to be true (those with a truth value of joshua:*true*),

and predications that the system knows to be false (those with a truth value of

joshua:*false*), respectively. (See the section "Truth Values", page 20.)

Let’s define a new predicate:

(define-predicate has-eye-color (person color))�

Now assume you or a rule application generate a predication such as:

16
Joshua Predications February 2018

[has-eye-color fred green] �

This new predication is "free-floating", that is, it does not automatically become

part of the database, unless you explicitly enter it there by giving it to joshua:tell.

joshua:tell takes the "free-floating" predication, and returns a �������� �����������,

that is, an object that it stored in the database and that can be accessed and rea-

soned with. It is important to note that this object, because it is stored with infor-

mation about itself, is conceptually (and often physically) distinct from the "free-
floating" predication you supplied as an argument to joshua:tell.

Whenever you need to do something with a stored predication (for example, to re-

move it from the database), you need to access the actual object that is stored.

Later on we’ll discuss ways of retrieving this object.

For clarity we use the terms �������� �����������, whenever it is important to

refer to the actual object that is stored in the database rather than to a predica-

tion in more general terms.

Using joshua:tell is very straightforward; you apply the joshua:tell function to the

predication, as in this example:

(tell [has-eye-color Fred green])

[HAS-EYE-COLOR FRED GREEN]

T

joshua:tell returns the predication object it stored in the database. It also returns

a boolean value indicating whether the predication is being inserted for the first

time, as in the example above (T), or whether it already existed in the database

(nil). This information is of interest primarily to the Truth Maintenance System,

so we won’t always reproduce it in the output from our examples; we mention it

here only because you’ll be seeing this every time you enter a joshua:tell.

Now display the database once more, and you will find that it includes the predica-

tion we have just entered with joshua:tell. [has-eye-color fred green] appears un-

der "True things", indicating that Joshua knows the statement represented by the

predication to be true.

Show Joshua Database

True things

 [HAS-EYE-COLOR FRED GREEN]

False things

 None�

To indicate that a statement is false, prefix the predication representing that

statement with the predicate joshua::not. For example, here we tell Joshua that

we know Jane doesn’t have green eyes.

(tell [not [has-eye-color Jane green]])

¬[HAS-EYE-COLOR JANE GREEN]

T

Here joshua:tell returns the database predication as usual. The Lisp printer pre-

fixes the predication with the Not-sign logic symbol, (¬), denoting that the state-

ment is false.

17
February 2018 Joshua Predications

In the database display the predication appears under the heading "False things"
without any prefix.

Show Joshua Database

True things

 [HAS-EYE-COLOR FRED GREEN]

False things

 [HAS-EYE-COLOR JANE GREEN]�

Let’s define a few more predications, add them to the database and then display it.

(define-predicate loves (lover beloved))

(tell [loves bonzo jane])

(tell [not [loves jane bonzo]])

 Show Joshua Database

True things

 [HAS-EYE-COLOR FRED GREEN]

 [LOVES BONZO JANE]

False things

 [LOVES JANE BONZO]

 [HAS-EYE-COLOR JANE GREEN]

The database display always shows the actual predications currently stored there.

Click on any item in the display for use in Joshua commands that require database

predications.

The Show Joshua Database command by default displays the entire contents of the

database. This can become cumbersome with very large databases. Later on, we’ll

show how you can limit the database display by requesting only specific patterns

or specific truth values. See the section "Predications and Logic Variables", page

26.

You can remove predications from the database as well as enter them.

See the section "Removing Predications From the Database", page 17.

Advanced Concepts Note:

The default database is implemented as a �������������� ��� stored in the value

of the global variable ji:*data-discrimination-net*. See the section "Joshua’s De-

fault Database: the Discrimination Net" in �����������������������.

4.2.2. Removing Predications From the Database

There are several ways of removing predications from the database. Note that

��������������������� are not eliminated, but only the ������������ built with them.

The function joshua:untell removes a single predication from the database, and

frees up some related storage. As its name implies, joshua:untell is the opposite

of the function joshua:tell.

18
Joshua Predications February 2018

Another way to remove a predication from the database conceptually is to use the

function joshua:unjustify if your application includes a TMS model.

joshua:unjustify differs from joshua:untell in important respects. See the section

"Retracting Predications with joshua:unjustify", page 84. The command Clear

Joshua Database provides a convenient interface to the joshua:untell function. It

asks the database for all predications matching those specified by the arguments,

prompts you for confirmation, and joshua:untells each predicate. (It also allows

you to undefine all the Joshua rules, resulting in a fresh Joshua environment.) You

can specify predications matching a certain pattern, all predications, or none. You

can also specify whether or not to remove predications that match the pattern

specified but have the opposite truth value. (Using logic variables to build predica-

tion patterns is described elsewhere: See the section "Predications and Logic Vari-

ables", page 26.)

Command: Clear Joshua Database (predications, All, or None [default All]) All

Clear all predicates from the database? [default Yes]: Yes�

To remove ��� predications from the database, use the function joshua:clear.

(clear)

Show Joshua Database

True things

 None

False things

 None

4.2.2.1. Removing a Database Predication with Untell
In the section "Entering and Displaying Predications in the Database", we men-

tioned that several Joshua operations require the actual predication object that is

stored in the database. joshua:untell is one such operation. There are several

ways of retrieving a predication object.

One method is to display the database contents and use the mouse to pick up the

object you want to operate on. (Position the mouse cursor at the start of the line

displaying the object, and click left on the mouse.) This picks up the object and po-

sitions it wherever your cursor is. The object so moved displays in capital italics

(see example below).

For example, to remove the database predication [has-eye-color Jane grey], display

the database, enter (joshua:untell, move the cursor one space to the right, and

click left on the target predication from the database display. Joshua inserts the

predication at the cursor position (after the joshua:untell). Now enter a closing

right parenthesis to end the command.

19
February 2018 Joshua Predications

 Show Joshua Database (matching pattern [default All]) All

True things

 [HAS-EYE-COLOR JANE GREY]

 [HAS-EYE-COLOR FRED GREEN]

 [LOVES BONZO JANE]

 [FAVORITE-MEAL MONKEYS BANANAS]

False things

 [LOVES JANE BONZO]

 (untell �������������������������) ;enter the predication by clicking left

 ;on the object in the database display

NIL

 Show Joshua Database

True things

 [HAS-EYE-COLOR FRED GREEN]

 [LOVES BONZO JANE]

 [FAVORITE-MEAL MONKEY BANANAS]

False things

 [LOVES JANE BONZO]

After the joshua:untell the database no longer contains the predication [has-eye-

color Jane grey].

Another way to get at the predication object is to specifically save the result of

the joshua:tell. For example:

 (setq db-object-1 (tell [loves Narcissus Narcissus]))

[LOVES NARCISSUS NARCISSUS]

 Show Joshua Database (matching pattern [default All]) All

True things

 [HAS-EYE-COLOR FRED GREEN]

 [LOVES BONZO JANE]

 [LOVES NARCISSUS NARCISSUS] ;new predication object is added

 [FAVORITE-MEAL MONKEYS BANANAS]

False things

 [LOVES JANE BONZO]

 (untell db-object-1) ;db-object-1 is [loves Narcissus Narcissus]

NIL

20
Joshua Predications February 2018

 Show Joshua Database (matching pattern [default All]) All

True things

 [HAS-EYE-COLOR FRED GREEN]

 [LOVES BONZO JANE]

 [FAVORITE-MEAL MONKEYS BANANAS]

False things

 [LOVES JANE BONZO]

The predication [loves Narcissus Narcissus] is no longer in the database.

Other ways of retrieving a database predication involve database queries and using

predication patterns. We’ll get to these topics later.

See the section "Querying the Database", page 23.

See the section "Predications and Logic Variables", page 26.

4.2.3. Truth Values

A truth value is a value denoting what the system currently knows about the truth

state of a database predication. A truth value becomes associated with a predica-

tion when Joshua adds the predication to the database. Predications commonly

change their truth value as knowledge is updated.

A predication can be in any one of four possible truth states:

• joshua:*true* (appears under "True things" in the database display)
• joshua:*false* (appears under "False things" in the database display)
• joshua:*unknown* (does not appear in the database display)

• joshua:*contradictory* (a transient state; does not appear in the database dis-

play)�

The truth value of a predication can be manipulated directly by the user. It can al-

so be manipulated by the TMS (Truth Maintenance System). We cover the TMS in

a separate section, touching on it here only as necessary. (See the section "Justifi-
cation and Truth Maintenance", page 71.)

Joshua has a three-valued logic. A statement (predication) is joshua:*true* if its

arguments are believed to satisfy the predicate, and joshua:*false* if it is known

that they do not.

When making new predications, joshua::not is prefixed to a fact that is known to

be joshua:*false*, as in [not [loves Jane Bonzo]].

If a fact is neither known to be joshua:*true*, nor known to be joshua:*false*, it

is joshua:*unknown*. In languages such as Prolog, if a fact cannot be proved to

be true, it is assumed to be false. Joshua does ��� subscribe to this so-called

"Closed World Assumption".

A predication is (or becomes) joshua:*unknown* when there is no valid reason

that supports it. (For example, if a predication was joshua:*true* but the reason

underlying this truth status is removed, the predication becomes

21
February 2018 Joshua Predications

joshua:*unknown*.) The predication does remain physically in the database as an

efficiency measure; however, since most reasoning operations look for a truth value

of joshua:*true* or joshua:*false*, a predication with a truth value of

joshua:*unknown* is conceptually not seen. That is to say, from the point of view

of the reasoning process, a predication that has a truth value of

joshua:*unknown* is indistinguishable from one that is not in the database at all.

When a predication’s truth value changes from joshua:*unknown* to either

joshua:*true* or joshua:*false*, the predication is once more "visible" and used in

the inferencing process.

The joshua:*unknown* truth state is used primarily by the TMS as it modifies

the database for logical consistency.

As its name implies, the truth value of a predication is joshua:*contradictory* if

there are reasons to believe that the predication is both true and false at the same

time. This truth value also is primarily meaningful in conjunction with a TMS: if

a TMS is present, it detects contradictory truth states and does not allow them to

remain in the system. If no TMS is present, contradictions go undetected, and the

most recent truth value is remembered. See the section "Revising Program

Beliefs", page 77.

The truth value of a predication can change either because you explicitly modify

it, or as a result of the monitoring activities of the TMS.

If you have not included a TMS in your predicate definition, you can change the

truth value of a predication from joshua:*true* to joshua:*false* by reasserting

the predication with joshua:tell. In this case, the system simply accepts the most

recent fact you joshua:tell it, with no regard to logical consistency. Here, for ex-

ample, are two joshua:tell statements.

(tell [loves Medea Jason])

[LOVES MEDEA JASON]

T

(tell [loves Medea her-children])

[LOVES MEDEA HER-CHILDREN]

T �

Here’s the database display containing these joshua:*true* predications.�

 Show Joshua Database

True things

 [LOVES MEDEA HER-CHILDREN]

 [LOVES MEDEA JASON]

False things

 None

 �

Say we now discover that Medea no longer loves her husband, Jason, and we want

to modify the database to reflect this new fact. To change the truth value of

[loves Medea Jason] from joshua:*true* to joshua:*false*, re-enter the predication

into the database, this time prefixing it with joshua::not:

22
Joshua Predications February 2018

(tell [not [loves Medea Jason]])

¬[LOVES MEDEA JASON]

NIL �

A Truth Maintenance System would insist that Medea cannot both love and ���

love Jason simultaneously. Since we have no TMS in this example, Joshua accepts

this new version of the predication without noting the contradiction. So the latest

version entered ([not [loves Medea Jason]]), simply supersedes the old version

([loves Medea Jason]).

Note that the result of these two joshua:tell operations about Medea and Jason is

the same database entry in each case. The Lisp printer prints the predication with

the Not-sign symbol, (¬), the second time, to indicate that it changed its truth

value. The second joshua:tell also returns the boolean nil, to indicate that the

predication already existed in the database.

 Show Joshua Database

True things

 [LOVES MEDEA HER-CHILDREN]

False things

 [LOVES MEDEA JASON]

 �

To change a predication’s truth value from joshua:*false* to joshua:*true*, use

joshua:tell to reassert the predication into the database, without the joshua::not

prefix.

Modifying truth values without using a TMS can introduce inconsistencies into

your database. Since the system does not follow up the logical consequences of a

change in truth value, any such inconsistencies remain undetected.

Suppose, for example, that the second predication in our database, [loves Medea

her-children], was deduced by some forward chaining rule, based on the belief

[loves Medea Jason]. That is, the rule concluded that Medea loves her children be-

cause of the fact that she loves Jason.

Since we have now told the system that Medea does ��� love Jason, the conclusion

that she loves her children no longer follows. (As we know, the mythical Medea

went through some such thought process, killing her children to show her hatred

of Jason.)

Without a TMS the system ignores these issues. Specifically, as we see from the

last database display, it allows the fact [loves Medea her-children] to remain as a

valid belief, even though it has lost its reason for being believed.

The TMS on the other hand follows up the logical consequences of a change in

truth value and signals any resulting inconsistencies in the database. In this situa-

tion the TMS might have prevented infanticide, since asserting [not [loves Medea

Jason]] would immediately cause a warning that Medea’s love for her children is

no longer a true fact. The TMS would then request you to correct the contradic-

tion by removing one of the inconsistent statements.

23
February 2018 Joshua Predications

As we can see, due to the TMS efforts to maintain a logically consistent database,

adding a new predication can result in changed truth values for several existing

predications. See the section "Revising Program Beliefs", page 77.

The Joshua predicates joshua:known and joshua:provable help us determine

what we know. joshua:provable tells us whether a fact is currently known to have

a particular truth value. joshua:known tells us if we have knowledge of a fact (re-

gardless of whether the fact is joshua:*true* or joshua:*false*). Both these predi-

cates are more useful in their negative form ([not [provable [...]]], and [not

[known [...]]]). For some examples of their use, please consult the dictionary en-

tries.

Predications combined with the standard predicate calculus connectives and, or,

and not can be joshua:*true* or joshua:*false*, according to the rules in the

truth tables listing the truth value for each possible combination of argument

truth values. See the section "Predications and Logical Connectives", page 31.

4.2.4. Querying the Database

Functions: joshua:ask

joshua:graph-query-results

joshua:print-query

joshua:print-query-results

joshua:say-query�

Here are some predicate definitions and joshua:tell statements that create a sim-

ple database.

(define-predicate has-condition (object condition when))

(define-predicate adult (person))

(clear)

(tell [has-condition Fred measles today])

(tell [adult John])

(tell [adult Fred])�

We need a way to query this database so that we can find out what Joshua knows.

The generic function joshua:ask does this. The main purpose of joshua:ask is to

find solutions to queries such as "Is John an adult?" "Who are the adults we know

about?" "Do any adults currently have diseases?" It does this by looking in the

database and by invoking backward rules (and questions) to derive answers by rea-

soning.

Because joshua:ask is your main interface to the knowledge and rule structures,

many of its typical uses depend on concepts we have not yet covered; so, for the

moment, we introduce joshua:ask in its most basic form. Further examples of its

use appear throughout the rest of the manual.

See the section "Predications and Logic Variables", page 26. See the section "How

Backward Rules Work ", page 46. See the section "Asking the User Questions",
page 55. See the section "Justification and Truth Maintenance", page 71.

24
Joshua Predications February 2018

joshua:ask works as follows: you give it a ����� �������, that is, some pattern like

"John is an adult" that you want to validate. The query pattern is a predication

that may, or may not, contain logic variables. (Logic variables are covered else-

where: See the section "Predications and Logic Variables", page 26.)

joshua:ask looks for answers to the query, collecting information about its search

process as it goes along.

As soon as it finds an answer, joshua:ask passes a list containing the answer, to-

gether with the related information about how the answer was derived, to a func-

tion called a ������������. The continuation can do what it likes with the answer.

The information received from joshua:ask resides in the single continuation argu-

ment called ����������������. ���������������� is a list whose elements are: the

answer to the query, the truth value of the query, and the derivation for the an-

swer - that is, what line of reasoning was followed to determine the answer. Note

that although the support is only one element of this list, we refer to the entire

list as backward support. Also note that this list is usually stack-consed.

There are two ways of dealing with the backward support information. One way is

to use Joshua’s �������� ��������� in the joshua:ask continuation. These functions

break up the backward support into separate elements and let you interpret these

elements as you wish. We discuss accessor functions in the dictionary entry for

joshua:ask.

An easier way of processing answers to queries is to use Joshua’s ����������� �����

����� in the joshua:ask continuation. These functions extract parts of the back-

ward support and interpret it for you. Generally we’ll be using the convenience

functions throughout this first manual. Here is a list of these functions. The first

two deal with the answer to the query, and the other two interpret the reasons for

the answer.

joshua:print-query Extracts and prints the answer to the query.

joshua:say-query Extracts the query and displays it in formatted form. See

the section "Formatting Predications: the SAY Method",
page 35.

joshua:print-query-results

Extracts and prints the support for the answer. The sup-

port varies depending on whether the answer was found

in the database or derived from rules.

joshua:graph-query-results

Draws a graph of the query support, labeling rules and

questions.�

An additional convenience function, joshua:map-over-database-predications (in-

stead of backward rules) is useful when you want to find answers only in the

database and do some operation with those predications that you find. We mention

this function here for completeness; for an example of its use: See the section

"Predications and Logic Variables", page 26.

25
February 2018 Joshua Predications

When Joshua is asked a question such as, (ask [has-condition Fred measles today]

...), it tries to derive the answer from the database before looking for backward

rules and questions to run. Here we discuss the database lookup.

When trying to answer a query, joshua:ask (conceptually) goes through the whole

database, trying to match the predication pattern in the query against all predica-

tions in the database. We refer to pattern matching in Joshua as �����������. A

query pattern ������� with a predication either because the two patterns are ������

����� (that is, they look the same and both predicate and arguments match exact-

ly), as in

Query pattern: (ask [has-condition Fred measles today] ...)

Database predication: [has-condition Fred measles today]�

or because appropriate values can be substituted for any variables in the two pat-

terns to make them equivalent. See the section "Pattern Matching in Joshua: Uni-

fication", page 61.

When a query pattern succeeds in unifying with a predication, the query pattern

becomes temporarily ������������ as that predication. That is, the logic variables in

the query pattern are temporarily bound to the corresponding values in the

database predication. At this point Joshua calls the joshua:ask continuation to

process this answer. (The continuation is called once for each time the query can

be satisfied.)

Here’s the query, using the convenience function joshua:print-query in the con-

tinuation. Since the query can be answered (by finding a matching predication in

the database), the continuation is called to process the answer. joshua:print-query

displays the query with its variables instantiated, ignoring all the rest of the back-

ward support information.

(ask [has-condition Fred measles today] #’print-query)

[HAS-CONDITION FRED MEASLES TODAY]�

For illustration, let’s use the continuation function joshua:print-query-results to

show how Joshua derived the answer to our query.

(ask [has-condition Fred measles today] #’print-query-results)

[HAS-CONDITION FRED MEASLES TODAY] succeeded

 [HAS-CONDITION FRED MEASLES TODAY] was true in the database

As expected, Joshua tells us that the answer was found in the database, and re-

turns the support for the satisfied query, that is, the actual database object that

matched the query. When the answer is derived from rules, joshua:print-query-

results traces the chain of reasoning that joshua:ask followed.

What would a graph of the support look like? Figure 2 shows the graph drawn by

joshua:graph-query-results for the above query.

The graph tells us that the predication was in the database, and displays the

database predication inside a rectangle. Rectangles in support graphs denote

queries that were satisfied by the database (rather than by rules, or questions).

26
Joshua Predications February 2018

Figure 2. Simple example using function graph-query-results

If you joshua:ask about a predication that is not in the database, and that cannot

be derived from rules or questions, the system does not call the continuation and

nothing is returned.

(ask [adult mary] #’print-query)

You can trace joshua:ask and joshua:tell operations in Joshua. See the section

"Tracing Predications", page 37.

Asking questions about specific facts is of limited usefulness. It would be prefer-

able to be able to ask the system more general questions, such as asking it to

identify all the adults in our database. In other words, we need to joshua:ask the

system questions using variables for which it will try to find the appropriate val-

ues. Joshua provides ��������������� for this purpose. See the section "Predications

and Logic Variables", page 26.

4.3. Predications and Logic Variables

A logic variable is a special type of object used by Joshua and recognized by Sym-

bolics Common Lisp. Building predications with logic variables instead of constant

values lets you create patterns; patterns let you move from the particular object to

the level of generalized queries or statements.

If we are looking for a listing of all the adults the system knows about, we could

joshua:ask Joshua about every single person we can think of:

(ask [adult Fred] #’print-query)

(ask [adult John] #’print-query)

.

.

.�

Or (preferably), we could joshua:ask the question in a more general form such as,

"Name everyone who is an adult". For example:

(ask [adult ?x] #’print-query)�

[adult ?x] is a ����� ������� containing a predicate followed by a ��������������, ?x.

We don’t know who ?x might stand for, but Joshua can give us this information. A

logic variable stands for something (in this case for a person); Joshua determines

what the something is, depending on the query.

27
February 2018 Joshua Predications

Joshua recognizes both the question-mark (?) and the equivalence symbol (≡) (typed

�������‘), by itself or followed by a symbol, as a logic variable:

[adult ?]

[adult ≡]
[adult ?person]

[adult ≡person]
[adult ?x]

[adult ≡x]�

Regardless of whether you used logic variables or constants to enter your predica-

tion in the database, you can use logic variable arguments in an joshua:ask query.

For example:

(define-predicate healthy (object))

(tell [healthy John])

(ask [healthy ?person] #’print-query)

[HEALTHY JOHN]

Choosing descriptive names for logic variables within query patterns is useful for

documenting the predicate’s arguments and their order.

Here are some joshua:tell statements about adults:

(define-predicate adult (person))

(tell [adult Fred])

(tell [adult John])

(tell [adult Rose])

If we joshua:ask the system to find all the adults in the database (ask [adult

?person] ...), it does so by first matching the predicate adult, and then succes-

sively substituting the value of the predicate’s argument (here a name), for the

logic variable ?person in the query. So queries with logic variables are satisfied by

finding correct matches for the variables.

Since we want joshua:ask to look for solutions only in the database, we should

prevent it from looking at backward rules or questions as well. We do this by us-

ing :do-backward-rules nil. For example:

(ask [adult ?person] #’print-query :do-backward-rules nil)

[ADULT ROSE]

[ADULT JOHN]

[ADULT FRED]�

As we can see, the continuation is invoked three times, once for each time the

query was satisfied. Let’s walk through this example.

At the outset of the query, the logic variable ?person in the query pattern [adult

?person] does not stand for any particular value; that is, it is as yet

��������������. An uninstantiated variable can match any object. So when Joshua

searches through the database with an uninstantiated variable as an argument in

the query, this variable is allowed to match any argument in the same position in

the database predication, provided, of course, the predicates match.

28
Joshua Predications February 2018

The logic variable ?person in our example can match any first argument in a pred-

ication beginning with the predicate adult. When Joshua finds the first predication

whose predicate is adult (here [adult Rose]), the argument, Rose, is temporarily

substituted for the logic variable ?person in the query, so that ?person stands for

Rose (becomes ������������ as Rose). In this way the query pattern matches the

database predication. Joshua calls the continuation to print this answer as re-

quested.

Once the continuation has finished executing, Joshua discards its temporary value

assignments, resets logic variable ?person to be once more uninstantiated, and con-

tinues the search through the database to find the next match for the query, that

is, another name that ?person could stand for. Joshua calls the continuation each

time ?person is successfully instantiated. This process repeats until no more

matching predications are found in the database.

Repeating the query and asking why it succeeded confirms that the query pattern

was successfully matched against facts in the database.

(ask [adult ?person] #’print-query-results :do-backward-rules nil)

[ADULT ROSE] succeeded

 [ADULT ROSE] was true in the database

[ADULT JOHN] succeeded

 [ADULT JOHN] was true in the database

[ADULT FRED] succeeded

 [ADULT FRED] was true in the database

This is a somewhat simplified explanation of the pattern matching process. For

more detail: See the section "Pattern Matching in Joshua: Unification", page 61.

Logic variables can substitute for any argument in the argument list of a query

pattern and can be combined with other, non-variable arguments such as con-

stants.

Let’s add some statements about the health of people in our database, and ask var-

ious questions. For instance, to determine the current health status of the persons

in our sample, the query can combine logic variables with a constant that specifies

"today" as the time argument:

(tell [has-condition John measles last-year])

(tell [has-condition Rose pneumonia today])

(tell [has-condition Fred measles today])

(tell [has-condition Skip tendonitis today])

(tell [has-condition Fred cold last-week])

(tell [has-condition Marina sunburn today])

(tell [has-condition Fred infection last-month])

(tell [has-condition Dagwood hunger ?always]) ;note logic variable in database

 ;predication

29
February 2018 Joshua Predications

(ask [has-condition ?person ?condition today] #’print-query :do-backward-rules nil)

[HAS-CONDITION MARINA SUNBURN TODAY]

[HAS-CONDITION SKIP TENDONITIS TODAY]

[HAS-CONDITION ROSE PNEUMONIA TODAY]

[HAS-CONDITION DAGWOOD HUNGER TODAY] ;variable in database is instantiated to

 ;constant in query

[HAS-CONDITION FRED MEASLES TODAY]�

While matching has-condition predications, Joshua instantiates ?person to the first

argument in the predication and ?condition to the second argument. Since we

specified no logic variable for the third argument in the query pattern, Joshua

matches it exactly. (Notice that since one database predication, namely [has-condi-

tion Dagwood hunger ?always] contains a logic variable, this variable became tem-

porarily instantiated to the constant today in the query pattern.)

Here are some other examples.

(ask [has-condition Fred ?condition ?when] #’print-query :do-backward-rules nil)

[HAS-CONDITION FRED INFECTION LAST-MONTH]

[HAS-CONDITION FRED COLD LAST-WEEK]

[HAS-CONDITION FRED HEALTH YESTERDAY]

[HAS-CONDITION FRED MEASLES TODAY]

 �

Logic variables have lexical scope and can be referred to by any Lisp code embed-

ded in the joshua:ask continuation. The variables have their instantiated values

until the continuation for a given answer has finished executing.

We can modify the continuation of our previous query about current health status

to display a formatted answer using the logic variables as instantiated for each

match:

(ask [has-condition ?person ?condition today]

 #’(lambda (ignore) (format t "~% ~A is ill with ~A." ?person ?condition))

 :do-backward-rules nil)

 MARINA is ill with SUNBURN.

 SKIP is ill with TENDONITIS.

 ROSE is ill with PNEUMONIA.

 DAGWOOD is ill with HUNGER.

 FRED is ill with MEASLES.

Adding some simple Lisp produces output with a heading:

(progn (format t "~% Today’s Patient Status:")

 (ask [has-condition ?person ?condition today]

 #’(lambda (&rest ignore)

(format t "~% ~A is ill with ~A." ?person ?condition)))

 :do-backward-rules nil)

30
Joshua Predications February 2018

 Today’s Patient Status:

 MARINA is ill with SUNBURN.

 SKIP is ill with TENDONITIS.

 ROSE is ill with PNEUMONIA.

 DAGWOOD is ill with HUNGER.

 FRED is ill with MEASLES.

NIL

Giving a predication pattern to the convenience function joshua:map-over-

database-predications is a very useful way of doing some operation on database

predications that match the pattern. For example, suppose you are no longer inter-

ested in storing facts about persons with measles, so you want to find and remove

these facts all at once. Give the appropriate pattern to joshua:map-over-database-

predications. This function uses joshua:ask to search only the database, extracts

the matching database predication from the joshua:ask continuation and executes

the specified operation on that predication. In this case, we request that it

joshua:untell every matching predication it finds.

(map-over-database-predications [has-condition ?person measles ?when] #’untell)

(cp:execute-command "Show Joshua Database")

True things

 [HAS-CONDITION DAGWOOD HUNGER ?ALWAYS] [HAS-CONDITION FRED INFECTION LAST-MONTH]

 [HAS-CONDITION MARINA SUNBURN TODAY] [HAS-CONDITION FRED COLD LAST-WEEK]

 [HAS-CONDITION SKIP TENDONITIS TODAY] [HAS-CONDITION ROSE PNEUMONIA TODAY]

False things

 None�

You can, of course, also use the Clear Joshua Database command with a predica-

tion pattern to remove matching predications from the database. To illustrate, sup-

pose Fred has left this group of people we were monitoring, and all information

about him needs to be removed from the database.

 Clear Joshua Database (predications, All, or None [default All])

 [has-condition Fred ?x ?when]

Predications being removed:

 [HAS-CONDITION FRED INFECTION LAST-MONTH]

 [HAS-CONDITION FRED COLD LAST-WEEK]

Untell the above predications? [default Yes]: Yes

Logic variables are also useful for narrowing down database displays to match only

specified patterns. The default version of the Show Joshua Database command dis-

plays every item in the database.

 Show Joshua Database (matching pattern [default All)]

If instead of the default you give the Show Joshua Database command a specific

pattern to look for, Joshua displays only predications matching that pattern. This

31
February 2018 Joshua Predications

lets you isolate those portions of the database that immediately interest you. Addi-

tionally, when you specify a pattern to match, you can limit the display to match-

ing predications of only a single truth value, joshua:*true* or joshua:*false*. The

default is both. To select one value, answer "No" to the question "(opposite truth-

value too?)"

For example, we want to look at only those joshua:*true* predications that relate

to hunger and ignore the rest of the database.

 Show Joshua Database (matching pattern) [has-condition ?person hunger ?when]

 (opposite truth-value too? [default Yes]) No

True things

 [HAS-CONDITION DAGWOOD HUNGER ?ALWAYS]�

Predication patterns as well as predications can be combined to express related

ideas in combination. The next concept in our consideration of predications is that

of logical connectives. See the section "Predications and Logical Connectives", page

31.

4.4. Predications and Logical Connectives

Predicates: joshua::and

joshua::or

joshua::not�

So far we have been considering predications in their simplest form: a single pred-

ication made up of a predicate and its arguments. Such constructs have allowed us

to express ideas in isolation, for example:

[has-condition Don-Quixote delusion today]�

Knowledge is often more usefully expressed in some logical combination. For ex-

ample, we might want to relate two ideas: that Don Quixote was suffering from

delusions ��� that he believed windmills to be giants. Such combinations are made

possible with the built-in Joshua predicates joshua::and, joshua::or, and

joshua::not. So, after defining the appropriate predicates, we can write a com-

pound predication such as:

[and [has-condition Don-Quixote delusion today]

 [believes Don-Quixote windmills giants]]�

Nesting predications inside each other is another way of building more complex

predications out of single ones.

You can use logical connectives in joshua:tell and joshua:ask statements (they are

particularly useful, though, in rules and questions).

Compound joshua:tell statements using joshua::and just save some of the labor of

entering multiple predications into the database. Once entered, the predications

don’t remain yoked together, that is, each of the component predications is insert-

ed ������������. You cannot use or with joshua:tell statements in the current re-

lease (joshua:telling a disjunction is a statement of partial knowledge).

32
Joshua Predications February 2018

joshua:ask queries can define more complex goals by using logical connectives.

To write compound joshua:tell and joshua:ask forms, wrap the predications with

the appropriate connective. For example:

(tell [and [has-condition Don-Quixote delusion today]

 [believes Don-Quixote windmills giants]])

[AND [HAS-CONDITION DON-QUIXOTE DELUSION TODAY]

 [BELIEVES DON-QUIXOTE WINDMILLS GIANTS]]

(ask [or [has-condition ?person measles now]

 [has-condition ?person pneumonia now]] #’print-query)

[HAS-CONDITION FRED MEASLES NOW]

[HAS-CONDITION ROSE PNEUMONIA NOW] �

Note that when you joshua:tell compound forms, joshua:tell does not return a

boolean value.

For the next example, we build part of a library database of authors, book titles,

and author information. We’ll embed several Joshua operations inside a Lisp func-

tion that clears the database, enters the compound joshua:tell predications, and

displays the newly created database. To display the database within Lisp code, we

use the function cp:execute-command "Show Joshua Database".

First, the predicate definitions.

(define-predicate author-of (work author))

(define-predicate lived (object when))

(define-predicate profession-of (person profession))�

Next we build up part of the library.

33
February 2018 Joshua Predications

(defun library ()

 (clear)

 (tell [and [author-of Tempest Shakespeare]

 [lived Shakespeare 16th-century]

 [profession-of Shakespeare actor]

 [author-of "Art of Love" Ovid]

 [lived Ovid 1st-century-BC]

 [profession-of Ovid poet]

 [author-of poems Henry-VIII]

 [lived Henry-VIII 16th-century]

 [profession-of Henry-VIII king]

 [author-of "Art of Love" Capellanus]

 [lived Capellanus 12th-century]

 [profession-of Capellanus chaplain]

 [author-of "Art of Love" Fromm]

 [lived Fromm 20th-century]

 [profession-of Fromm sociologist]

 [author-of poems Ralegh]

 [lived Ralegh 16th-century]

 [profession-of Ralegh soldier]])

 (cp:execute-command "Show Joshua Database"))

LIBRARY

(library)

True things

 [PROFESSION-OF RALEGH SOLDIER] [LIVED HENRY-VIII 16TH-CENTURY]

 [PROFESSION-OF FROMM SOCIOLOGIST] [LIVED OVID 1ST-CENTURY-BC]

 [PROFESSION-OF CAPELLANUS CHAPLAIN] [LIVED SHAKESPEARE 16TH-CENTURY]

 [PROFESSION-OF HENRY-VIII KING] [AUTHOR-OF POEMS RALEGH]

 [PROFESSION-OF OVID POET] [AUTHOR-OF POEMS HENRY-VIII]

 [PROFESSION-OF SHAKESPEARE ACTOR] [AUTHOR-OF "Art of Love" FROMM]

 [LIVED RALEGH 16TH-CENTURY] [AUTHOR-OF "Art of Love" CAPELLANUS]

 [LIVED FROMM 20TH-CENTURY] [AUTHOR-OF "Art of Love" OVID]

 [LIVED CAPELLANUS 12TH-CENTURY] [AUTHOR-OF TEMPEST SHAKESPEARE]

False things

 None

Now we use a compound query to joshua:ask who wrote the book "Art of Love,"
when the author lived, and what the author’s profession was; the continuation for-

mats the answers into discursive English.

(ask [and [author-of "Art of Love" ?author]

 [lived ?author ?century]

 [profession-of ?author ?profession]]

 #’(lambda (ignore) (format t "~%~% ~A, a ~A ~A, wrote a version

 of The Art of Love." ?author ?century ?profession)))

34
Joshua Predications February 2018

 FROMM, a 20TH-CENTURY SOCIOLOGIST, wrote a version

 of The Art of Love.

 CAPELLANUS, a 12TH-CENTURY CHAPLAIN, wrote a version

 of The Art of Love.

 OVID, a 1ST-CENTURY-BC POET, wrote a version

 of The Art of Love.

Logical connectives focus and refine queries and cut down the system’s search

time. In a compound joshua:ask using joshua::and, the logic variables that are

common to all component predications must be instantiated to a common object for

the query to succeed.

In our example, the logic variable ?author is instantiated to a name matching the

first query pattern, [author-of "Art of Love" ?author], namely Fromm.

?author remains instantiated to Fromm and the search for predications to match

the rest of the queries above ([lived ?author ?century] and [profession-of ?au-

thor ?profession]), is narrowed down to only those predications matching [lived

Fromm ?century] and [profession-of Fromm ?profession]. Only when all the predi-

cations in the compound query have been satisfied is the continuation called.

After the continuation executes, ?author, ?century, and ?profession become unin-

stantiated in the first two predication patterns. The last predication pattern still

has ?author instantiated. Joshua looks for the next solution to [profession-of Fromm

?profession]. It finds none, so it backs up and tries solutions to [lived Fromm ?cen-

tury]. It finds none of these either, so it backs up and looks for solutions to the

first query pattern, [author-of "Art of Love" ?author]. If we had joshua:asked

the three questions separately,

(ask [author-of "Art of Love" ?author] ...)

(ask [lived ?author ?century] ...)

(ask [profession-of ?author ?profession] ...)

the system would have produced three separate lists containing a great deal of ex-

traneous information, especially if we had a very large database: we would have

gotten a list of authors of "The Art of Love"; a list of every author in the database

and his century; and a list of every author in the database and his profession.

The logical connective joshua::or instantiates its logic variables separately for

each predication in a query. The effect is the same as asking separate queries.

Logical connectives can, of course, be combined, as in this example. Here we look

for all persons who are not children, and who are currently ill with either measles

or mumps. (Assume the appropriate joshua:tell statements have been entered.)

(define-predicate child (person))

35
February 2018 Joshua Predications

(ask [and [not [child ?person]]

 [or [has-condition ?person measles today]

 [has-condition ?person mumps today]]]

 #’print-query :do-backward-rules nil)

[AND [NOT [CHILD HELEN]] [OR [HAS-CONDITION HELEN MEASLES TODAY]

[HAS-CONDITION HELEN MUMPS TODAY]]]

Now that we’ve seen how to build predications and predication patterns, it would

be useful to display the meaning of predications in natural language. See the sec-

tion "Formatting Predications: the SAY Method", page 35.

4.5. Formatting Predications: the SAY Method

Function: joshua:say

Format directive: ~\\SAY\\

Macro: joshua:define-predicate-method�

To print the meaning of a predication in natural language (or some other alterna-

tive, such as graphics), as opposed to the predicate calculus notation in which pro-

grams are written, you can use the format function, as we have been doing in

some of our joshua:ask continuations; or we can embed formatting directives into

a special method available for that purpose, the joshua:say method. joshua:say is

actually a multi-purpose "hook" for using natural language, or graphics, or any

other predicate-dependent approach you wish. Judicious use of joshua:say methods

can make it easier to generate user interfaces quickly.

You define a joshua:say method by using the general method definition function,

joshua:define-predicate-method. (This is the same function you would use to

modify other parts of the Joshua protocol, and its advanced use is covered in the

�����������������������.)

The arguments to joshua:define-predicate-method are:

• The function-spec of the protocol method you are defining, for example, (say

foo).

• The argument list. In the case of joshua:say methods, this should almost al-

ways be (&optional (stream *standard-output*)).

• The body of the method.�

The body of the method contains any Lisp code, presumably doing output to the

stream mentioned in the argument list.

For example, suppose you want to write a joshua:say method for the predicate

[favorite-meal ...]. This predicate takes two arguments, namely, eater, and food.

You’ll want to bind Lisp variables to the arguments of the predication so that you

36
Joshua Predications February 2018

can use the arguments within the predicate method. To do this, wrap the macro

joshua:with-statement-destructured around the body. The predicate arguments

then become lexically available, and can be referred to by the Lisp forms. (If you

have already defined the predicate with its instance variables destructured, you

don’t need to use joshua:with-statement-destructured. For more on methods of

making predicate arguments lexically available: See the macro joshua:define-

predicate, page 109.)

A joshua:say method for the predicate [favorite-meal ...] might look something

like this:

(define-predicate favorite-meal (eater food))

(define-predicate-method (say favorite-meal) (&optional (stream *standard-output*))

 (with-statement-destructured (eater food) self

 (format stream

 "~& You can please ~A by giving them ~A to eat" eater food)))�

Having defined this joshua:say method, you can use it in a variety of ways, as

shown here. You can call the method directly, giving it an instantiated predication

argument:

(say [favorite-meal monkeys bananas])

 You can please MONKEYS by giving them BANANAS to eat

NIL

 �

Or you can use a joshua::format directive included in Joshua to call joshua:say

instead of joshua::prin1 or joshua::princ:

(format t "~% Is it true that: ~\\SAY\\?" [favorite-meal monkeys bananas])

 Is it true that:

 You can please MONKEYS by giving them BANANAS to eat?

NIL

Joshua provides the convenience function, joshua:say-query to display a satisfied

query using either the default joshua:say method, or your own joshua:say

method, if any. (The default joshua:say method simply prints out the answer to

the query.)

Let’s fatten up our database of foods and eaters before using the joshua:say

method.�

(defun eat-it ()

 (clear)

 (tell [and [favorite-meal bears honey]

 [favorite-meal mosquitoes people]

 [favorite-meal spiders flies]

 [favorite-meal Joshuas predications]

 [favorite-meal monkeys bananas]])

 (cp:execute-command "Show Joshua Database"))

37
February 2018 Joshua Predications

(eat-it)

True things

 [FAVORITE-MEAL MONKEYS BANANAS] [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL JOSHUAS PREDICATIONS] [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL SPIDERS FLIES]

False things

 None

(ask [favorite-meal ?eater ?food] #’say-query :do-backward-rules nil)

 You can please MONKEYS by giving them BANANAS to eat

 You can please JOSHUAS by giving them PREDICATIONS to eat

 You can please SPIDERS by giving them FLIES to eat

 You can please MOSQUITOES by giving them PEOPLE to eat

 You can please BEARS by giving them HONEY to eat�

Note: Technically our joshua:say method is correctly defined and it certainly

works. But we purposely misphrased it, in order to make a point: the phrasing

makes an implicit, new (and unwarranted) connection between the idea "favorite-
meal" and the idea "to please by giving to eat". Much confusion in programming

comes from such casual redefinition. A better phrasing would have been something

like "The favorite meal of ... is ...".

4.6. Tracing Predications

Commands: Enable Joshua Tracing

Disable Joshua Tracing

Because database operations like joshua:tell and joshua:ask are so fundamental to

the operation of Joshua programs, we often want to watch as things are stored in-

to or retrieved from the database. You can trace the basic operations on predica-

tions by using the command:

Enable Joshua Tracing (type of tracing) Predications

This turns on the tracing of joshua:ask and joshua:tell. Each time your program

calls joshua:ask or joshua:tell, the tracing facility prints a message saying which

operation is being done and on what predication.

Example:

(defun tell-and-ask-foods ()

 (clear)

 (tell [and [favorite-meal bears honey]

 [favorite-meal mosquitoes people]

 [favorite-meal spiders flies]

 [favorite-meal Joshuas predications]

 [favorite-meal monkeys bananas]])

 (ask [favorite-meal ?eater ?food] #’say-query

:do-backward-rules nil))�

38
Joshua Predications February 2018

In order to disable the tracing of predications use the command:

Disable Joshua Tracing (type of tracing) Predications

This turns off all tracing of predications.

You can get a greater degree of control over tracing by using the menu option to

the Enable Joshua Tracing command:

Enable Joshua Tracing (type of tracing) Predications :Menu Yes

This shows a menu of all of the tracing options available for predications, letting

you trace only predications matching a particular pattern, only predications using

a particular predicate (or type of predicate), and to specify at which events you

would like to see trace information.

In addition to the above commands you can set some tracing options by mousing

right on a predication. This gives you a menu of the available options.

4.7. Miscellaneous Predication Facilities

Several predication facilities are available for use within Lisp code. We have al-

ready used one, namely, joshua:with-statement-destructured. Here are some oth-

ers. We suggest you look up their dictionary entries for more detail.

joshua:different-objects If the arguments are joshua::eql, or if either argument

is an uninstantiated logic variable, joshua:different-

objects returns nil. Otherwise it returns t.

39
February 2018 Joshua Predications

joshua:make-predication Constructs a predication (does not enter it into the

database). The [] syntax is a reader macro that ex-

pands into this.

joshua:predication The base flavor for all predications in Joshua. This

works well with functions like joshua::typep and

joshua::typecase.

joshua:predicationp Checks whether an object is built on

joshua:predication.

joshua:with-statement-destructured

Lets you bind Lisp variables to predication arguments.�

This chapter has shown you how to generate information in Joshua by building

predications, storing them in a database, and searching the database to answer

queries. The next major concept is using Joshua to derive information by reason-

ing about predications with rules and questions. See the section "Rules and Infer-

ence", page 41.

40
Joshua Predications February 2018

41
February 2018 Joshua Rules and Inference

5. Joshua Rules and Inference�

Macro: joshua:defrule

Function: joshua:undefrule

Command: Show Joshua Rules

Zmacs command ��� Kill definition

Concepts: Forward Chaining (joshua:tell)

Backward Chaining (joshua:ask)�

Often the information one looks for by searching the database is not there explic-

itly, but must be inferred by reasoning about the knowledge that is already there.

While predications define the relationships between objects and supply us with in-

formation about the domain, rules define the ��������� that is performed about

predications, and control how we deduce knowledge from existing knowledge.

A rule is an independent piece of declarative and procedural information that de-

termines how Joshua responds to a specified set of circumstances. Unlike conven-

tional programming constructs, rules automatically execute in the proper order

whenever the appropriate circumstances occur, rather than executing when a pro-

gram’s control structure reaches a specific portion of the code. In other words,

rules can execute at any time, regardless of the order in which they are written.

The reasoning done by rules involves either ������� or �������� chaining. Joshua

programs can use either or both of these rule types.

Forward chaining is ������������� ���������, that is, reasoning from ����� facts to

some conclusion. This form of reasoning says: "I now know fact X. What can I con-

clude from this?" For example, given the facts that birds can fly and that Tweety

is a bird, a forward chaining rule can deduce the new fact that Tweety can fly.

Thus, forward chaining is instrumental in adding to the database.

Forward chaining is activated by joshua:tell. That is, whenever you joshua:tell

Joshua a new predication, the system looks for forward chaining rules that it can

use (combined with knowledge already in the database) to draw conclusions from

the new knowledge you gave it.

Backward chaining is ������������� ���������, that is, reasoning to satisfy some de-

sired conclusion. This form of reasoning says: "I want to know fact X. How do I

determine its validity?" For example, given the goal of determining whether

Tweety can fly, a backward chaining rule would look for the facts it needs in order

to support this goal, asking, for example, whether birds can fly and whether

Tweety is a bird.

Backward chaining is activated by an joshua:ask. The ����� ������� becomes the

����, and the system then looks for the facts and rules and questions that might

substantiate this goal. Backward chaining is thus useful in helping you determine

the validity of a conclusion or goal.

42
Joshua Rules and Inference

February 2018

Forward and backward rules look the same, except for the keyword :forward or

:backward that indicates the rule’s ������� ��������� (its inference method). If the

rule doesn’t use Lisp code, it should work equally well in either direction. Either

method of reasoning accomplishes the same result; the choice of inference method

depends on the problem being solved. Some problems are ���� more efficiently ap-

proached with one control structure than with the other.

This chapter summarizes basic information about forward and backward rules in

Joshua.

Advanced Concepts Note:

The Joshua protocol has functions that determine how rules are stored, deleted,

and looked up. See the section "The Joshua Rule Indexing Protocol" in ������

��������� ������. If you provide a consistent alternate implementation of these

generic functions, you can customize rule management for your application. See

the section "Customizing the Rule Index" in �����������������������.�

5.1. Defining Joshua Rules

A rule is defined with joshua:defrule. A rule has a ����, a keyword argument

specifying its ������� ��������� (whether it is a forward or a backward chaining

rule), and a combination of patterns divided into an ��-part and a ����-part.

The control structure argument :importance lets you prioritize rules (the higher

the value you give to :importance, the higher the priority). Higher priority rules

run before lower priority rules.

Another control structure argument, :documentation, lets you add a documenta-

tion string explaining what the rule does. Use the Lisp function documentation to

retrieve the rule’s documentation string.

For example, this forward chaining rule describes some facts that let you deduce

an identity for an unknown creature.

(defrule dragon-id-kit (:forward :documentation "Identifies dragons")

 if [and [huge ?creature]

 [breathes ?creature fire]

 [or [guards ?creature gold]

 [guards ?creature maiden]]]

 then [dragon ?creature])�

(documentation ’dragon-id-kit)

"Identifies dragons"�

This backward chaining rule describes how to compute the grandfather relation-

ship along paternal lines.

43
February 2018 Joshua Rules and Inference

(defrule paternal-grandfather (:backward)

 if [and [father ?person ?dad]

 [father ?dad ?gramps]]

 then [grandfather ?person ?gramps])�

Except for their control structure, both rules look similar.

A rule’s ������� parts are its ������� structure. The ���part of a rule logically de-

scribes conditions under which the rule is applicable. The �����part of a rule logi-

cally describes the rule’s conclusions.

The ��� and ����� clauses in a rule can occur in any order. That is, both

if [...] then [...]�

and

then [...] if [...]

are valid.

While the ���� of the ������� parts is identical for forward and backward rules,

������������ the parts differ for each rule type. This is because the logical struc-

ture maps into an ���������� structure that reflects the inferencing method being

used (forward or backward chaining). Forward and backward chaining rules differ

in their mapping of logical to imperative parts.

A rule’s imperative parts consist of a ������� part and an ������ part. The trigger

part determines if a rule is applicable to a given situation. The action part deter-

mines what operations the rule performs when it executes. Forward and backward

rules have different trigger and action parts, so we discuss each rule type sepa-

rately.

The command Show Joshua Rules displays the currently defined rules. Various op-

tions let you tailor the display. Please consult the dictionary entry for this com-

mand.

5.1.1. How Forward Rules Work

In a forward rule, the ��-part is the trigger, and the �����part is the action. See

figure 3.

(defrule dragon-id-kit (:forward)

if [and [huge ≡creature]
[breathes ≡creature ≡fire]

[or [guards ≡creature gold]

[guards ≡creature maiden]]]

then [dragon ≡creature])

Trigger Part

Action Part

Figure 3. Forward Rule Trigger and Action Parts

44
Joshua Rules and Inference

February 2018

In a forward rule the trigger is a single (possibly a compound) predication pattern

stating conditions that must be satisfied for the rule to fire. The trigger can also

contain Lisp code which is discussed below.

Data-directed inference is triggered by the addition of ��� facts into the database

with joshua:tell. That is, new facts cause Joshua to look for forward rule triggers

that can be satisfied by these facts.

What are new facts? A fact is new only when you joshua:tell it for the first time.

A fact that you joshua:tell more than once is no longer new knowledge. Similarly,

a fact that you joshua:unjustify and then joshua:tell again is not new knowledge,

since it was never removed from the database. In contrast, a fact that you remove

from the database (joshua:untell) and then joshua:tell again ���� represent new

knowledge for Joshua.

There is no special order in which forward rule patterns are triggered. This is de-

termined entirely by the order in which the new facts are entered.

To satisfy part of a rule’s trigger, the pattern of that trigger must match that of

the newly added database predication. This matching, called ����������� in Joshua,

happens either because the two patterns are already equivalent, or because Joshua

succeeded in finding substitutions for logic variables so that the two patterns be-

come equivalent. To understand the basics of forward rule operation we can post-

pone looking at the details of unification. We cover this topic in the section"Pat-

tern Matching in Joshua: Unification" along with the scoping rules that determine

when two logic variables with the same name are the same and when they differ.

If a rule’s trigger parts are joined by and, all conditions must be satisfied for the

rule to trigger. If the trigger parts are joined by or, satisfying any of the condi-

tions triggers the rule.

Note that backward rules are not automatically invoked while trying to satisfy a

forward trigger. Since you can use Lisp code in forward triggers, your forward

rules can explicitly call (ask [foo ?x] ...) in order to use a backward rule to sat-

isfy foo.

When all of a forward rule’s conditions (��-parts) are satisfied, the rule is fully

triggered; it then ����� and executes the action(s) in its action (����) parts. The ac-

tion part can specify any action, including the new facts to be deduced directly

from the current facts. If the action involves deducing a new fact, that fact is au-

tomatically added to the database (that is, a joshua:tell is implicit for forward rule

deductions).

When the firing of forward chaining rules results in the addition of new facts to

the database, this in turn can cause more forward rules to be triggered and fired,

generating chains of conclusions until no more new facts can be generated.

Can you define a forward rule ����� adding a new fact that will trigger the rule in-

to the database? The answer is that you can enter new rules and new facts in any

order, because Joshua ensures that the right forward rules always get triggered.

Here’s an example of forward chaining in Joshua. Rule danger-sign says that if a

person is known to be a smoker and to have hypertension, then we can deduce

45
February 2018 Joshua Rules and Inference

that this person is in a high-risk category. We also want the system to notify us if

it makes such a deduction so that we can take some appropriate action.

(define-predicate smoker (person))

(define-predicate has-condition (person condition when))

(define-predicate at-risk (person))�

(defrule danger-sign (:forward)

 if [and [smoker ?person]

 [has-condition ?person hypertension today]]

 then [and [at-risk ?person]

 (format t "Suggest to ~S that smoking is dangerous to hypertensive persons"

 ?person)])

Our database already contains the predication [smoker Ashley]. When that predica-

tion was first added, it satisfied the first ��-part of rule danger-sign, namely [smok-

er ?person]. Now we joshua:tell the system that Ashley is suffering from hyper-

tension. This satisfies the rule’s second ��-part and triggers the rule. The rule

fires and executes its ����-part (the action part). This causes it to display a mes-

sage and to add the newly deduced predication, [at-risk Ashley], to the database.

(tell [has-condition Ashley hypertension today])

Suggest to Ashley that smoking is dangerous to hypertensive persons

[HAS-CONDITION ASHLEY HYPERTENSION TODAY]

 Show Joshua Database (matching pattern) [at-risk ?person]

True things

 [AT-RISK ASHLEY]

False things

 None

Assume we have another forward rule, preventive-care, as follows:

(define-predicate needs-checkup (person when))

(defrule preventive-care (:forward)

 if [at-risk ?person]

 then [needs-checkup ?person monthly])

The addition of the new fact, [at-risk Ashley], to the database now satisfies the

rule trigger of the above rule, causing it to fire in its turn, and to generate yet

another new fact, namely, [needs-checkup Ashley monthly].

 Show Joshua Database (matching pattern) [needs-checkup ?person ?frequency]

True things

 [NEEDS-CHECKUP ASHLEY MONTHLY]

False things

 None�

This chain of inferences continues as long as there are forward rules that can be

fully triggered by newly generated facts.

46
Joshua Rules and Inference

February 2018

Forward chaining rules can contain Lisp code in both their ��� (trigger) and �����

(action) parts. Such Lisp code can refer to any logic variables that appear inside

the body of the rule.

Our earlier rule, danger-sign, for example, uses Lisp in its action part. Lisp code

in the �����part of a forward rule is just put into the rule body, to be run when

the rule fires.

Here is an example using Lisp code in a forward rule trigger. We refer to such

code as a ���������� ����. Procedural nodes can introduce new variables, have

side-effects, call joshua:succeed, and so on.) Lisp code in the ���part of a forward

rule returns non-nil if it wants the match to continue.

(defrule acceptable-price-rule (:forward)

 if [and [price-ceiling ?available-cash]

 [todays-price ?cost]

 (≤ ?cost ?available-cash)]
 then [acceptable-price ?cost])

You can watch forward rule execution by enabling Joshua tracing. See the section

"Tracing Rules", page 50.

5.1.2. How Backward Rules Work

Since backward rules are goal-directed inference, it is the rule’s �����part that

specifies the desired goal. Thus, backward rule inferencing is triggered by the

rule’s �����part, while the ���part is the action part. See figure 4.

Note that the order of the ��-���� clauses does not matter. Those who like to place

the �����part of backward rules first, so that the trigger always comes first, can

safely do so.

(defrule paternal-grandfather (:backward)

if [and [father ≡person ≡dad]

[father ≡dad ≡gramps]]

then [grandfather ≡person ≡gramps])

Action Part

Trigger Part

Figure 4. Backward Rule Trigger and Action Parts

Currently, backward rule inferencing is triggered by a single goal, that is, a back-

ward trigger must be a single predication pattern. This restriction may be re-

moved in the future.

A backward rule can contain Lisp code in its action (��-) part, but not in its trig-

ger (�����) part. For example:

(defrule good-condition-rule (:backward)

 if (not (eql ?condition ’rusted))

 then [good-condition ?condition])

47
February 2018 Joshua Rules and Inference

In the section "Querying the Database", we introduced joshua:ask for the limited

purpose of looking up items in the database. Typically, the main purpose of

joshua:ask is to find solutions through reasoning (finding backward rules and

questions to run) as well as through database lookup.

To satisfy a query, joshua:ask always looks in the database first, trying to match

the query pattern with a database predication. Next, joshua:ask by default search-

es for backward chaining rules whose trigger pattern (����-part) matches the

query pattern. When such a match occurs, the backward rule is triggered. In

Joshua, this pattern matching is called �����������. For more on the mechanics of

unification and the scoping of variables: See the section "Pattern Matching in

Joshua: Unification", page 61.

Once a backward rule is triggered, it processes its ��-parts (the action parts) from

the top in the order given, searching for facts to validate the desired conclusion.

(If the ���part is a compound predication joined by and, each component becomes a

subgoal that is the subject of an implicit joshua:ask.)

The rule �������� when all its ��-parts (subgoals) have been satisfied. Satisfied

means that there is a fact in the database that can serve as the bottom of the sup-

port structure for each subgoal.

joshua:ask collects information describing the solution process; when it finds a

solution, joshua:ask calls its continuation, passing it the answer, along with the

information collected about it. The continuation then executes on this result. We’ll

look at some typical continuation requests shortly.

(For the basics of joshua:ask: See the section "Querying the Database", page 23.)

The information resulting from the success of a backward chaining rule is not au-

tomatically added to the database, unless you explicitly do this in your program (in

the continuation of the joshua:ask, for example).

Note that for special cases where you don’t want joshua:ask to use backward

rules, you can disable this feature by specifying :do-backward-rules nil to

joshua:ask.

Here’s a backward chaining example. Assuming your goal is to find a treatment

for patients with a given condition, you might formulate a backward chaining rule

something like this:

(define-predicate has-condition (person condition when))

(define-predicate effective-treatment (drug condition))

(define-predicate allergic (person drug))

(define-predicate appropriate-treatment (drug person condition))

(defrule find-cure (:backward)

 if [and [has-condition ?person ?condition today]

 [effective-treatment ?drug ?condition]

 [not [allergic ?person ?drug]]]

 then [appropriate-treatment ?drug ?person ?condition])

48
Joshua Rules and Inference

February 2018

If you then joshua:ask what drug is appropriate for a certain condition, in a cer-

tain patient, Joshua first searches the database, after which the query triggers

rule find-cure by matching its ����-part. When the rule fires, Joshua works back-

wards from this goal to satisfy each of the component parts of the rule.

• Checks that the patient you specified has that condition (or, if you gave a vari-

able for the patient, it iterates over all patients with that illness);

• Tries to find an effective drug for that condition; if successful, checks whether

the patient is allergic to this drug.

• If the patient �� allergic to this drug, or if Joshua simply doesn’t know, it dis-

cards the drug and repeats the process of searching for another effective drug

and testing for patient allergy, until it finds a drug to which the patient is not

allergic, or fails trying.�

For example, assume the database contains the following predications:

 (tell [and [has-condition primadonna sore-throat today]

 [effective-treatment gargle-with-ammonia sore-throat]

 [not [allergic primadonna gargle-with-ammonia]]])�

When you ask the system for a treatment for sore throat for all patients with that

affliction, the backward rule find-cure triggers, satisfies its subgoals, and executes

the continuation which in this case uses the convenience function joshua:print-

query to print out the answer.

 (ask [appropriate-treatment ?drug ?person sore-throat] #’print-query)

[APPROPRIATE-TREATMENT GARGLE-WITH-AMMONIA PRIMADONNA SORE-THROAT]

5.1.2.1. Explaining Backward Chaining Support
As mentioned earlier, joshua:ask passes its continuation a list containing the an-

swer it found (or derived) together with information tracing the reasoning process

that was followed (for example, whether the answer was found in the database or

came from backward rules, and if so, which one(s), and so on).

Joshua provides two convenience functions that extract and interpret the support

information for you. We’ve introduced these earlier. (See the section "Querying the

Database", page 23.) We mention them again here, since their usefulness becomes

far more apparent in a rule context.

joshua:print-query-results extracts and displays the successful query and tells you

why it succeeded.

This, for example, is the reasoning Joshua went through to answer our query

about the right treatment for sore throat.

49
February 2018 Joshua Rules and Inference

 (ask [appropriate-treatment ?drug ?person sore-throat] #’print-query-results)

[APPROPRIATE-TREATMENT GARGLE-WITH-AMMONIA PRIMADONNA SORE-THROAT] succeeded

 It was derived from rule FIND-CURE

 [HAS-CONDITION PRIMADONNA SORE-THROAT TODAY] succeeded

 [HAS-CONDITION PRIMADONNA SORE-THROAT TODAY] was true in the database

 [EFFECTIVE-TREATMENT GARGLE-WITH-AMMONIA SORE-THROAT] succeeded

 [EFFECTIVE-TREATMENT GARGLE-WITH-AMMONIA SORE-THROAT] was true in the database

 �����[ALLERGIC PRIMADONNA GARGLE-WITH-AMMONIA]� succeeded

 [ALLERGIC PRIMADONNA GARGLE-WITH-AMMONIA] was false in the database�

This tells us that the query pattern triggered rule find-cure, and that each of this

rule’s three subgoals was satisfied from a database lookup. Since backward chain-

ing stops when it reaches database predications, that is the end of the support in-

formation; there is no attempt to trace why those database predications are valid.

If more than one backward rule had been invoked to find the answer,

joshua:print-query-results would have interpreted that information as well, trac-

ing the support through each rule to the predications used to satisfy parts of the

rule.

The convenience function joshua:graph-query-results gives you the same informa-

tion as joshua:print-query-results but in graph form.

Figure 5 shows what this graph looks like for our previous query.

The top of the graph shows the satisfied query and names the rule that satisfied

it. Ovals denote queries that were ��� satisfied in the database. Rectangles denote

queries (in this case subgoals) that were satisfied from the database. The arrows

point from the support to the object being supported.

In our example, the graph shows the database predications that satisfied the rule’s

subgoals. Note that the Database heading indicates when the truth value for a

given predication is joshua:*false*.

Figure 5. Graphing query support from backward rule

If you prefer to extract and interpret the support information yourself rather than

have it interpreted for you, Joshua provides ������������������ to let you do this.

Consult the dictionary entry for joshua:ask to see how these accessor functions

work.

(If you have a TMS, you can get an explanation of forward support, also. That is,

with a TMS Joshua can tell you the reasons why a database predication is in the

database. The function joshua:explain displays the support in a manner similar to

50
Joshua Rules and Inference

February 2018

the output of joshua:print-query-results; joshua:graph-tms-support graphs the

explanation in a manner similar to joshua:graph-query-results.)

You can trace backward rule operation by using the tracing facility. See the sec-

tion "Tracing Rules", page 50.

5.2. Removing Joshua Rule Definitions

You can remove rule definitions from the system either individually or collectively.

The function joshua:undefrule removes a single rule definition.

For example:

(undefrule ’danger-sign)

You can do this same operation from a Zmacs editor buffer with the extended

Zmacs command ��� Kill Definition. For a sample interaction with this command:

See the macro joshua:undefine-predicate, page 152. Note that any predications

previously deduced by a rule still remain in the database after you remove the

rule’s definition.

To remove all rule definitions at once, use the function joshua:clear. We have

been using this function to clear the database, but it has a second optional argu-

ment to let you clear all rule definitions.

The full argument list of joshua:clear is:

CLEAR: (&OPTIONAL (CLEAR-DATABASE T) UNDEFRULE-RULES)

Thus, typing (clear t t) clears the database ��� at the same time removes all

rule definitions. Be aware that this is a rather drastic step, as applications depend-

ing on these rules ���� �� ������ ����, until you reload these rules.

The command Clear Joshua Database has an option to let you clear all Joshua

rules. The cautions just mentioned apply here as well.

5.3. Tracing Rules

Commands: Enable Joshua Tracing

Disable Joshua Tracing

While debugging Joshua programs you often want to be able to watch the rules

execute. You can trace the behavior of rules by using the command

Enable Joshua tracing (type of tracing) Forward Rules

for forward rules, or the command

Enable Joshua Tracing (type of tracing) Backward Rules

for backward rules.

This causes a trace message to be printed every time a rule runs. With forward

rules the message appears each time the ���part of the rule (the trigger) is suc-

51
February 2018 Joshua Rules and Inference

cessfully completed, and the �����part (the action) is about to be executed. Here’s

a simple example of tracing forward rules.

Example:

(define-predicate higher-in-food-chain (eater lower-in-food-chain))

(define-predicate favorite-meal (eater food))

(defrule basic-food-chain (:forward)

 if [favorite-meal ?eater ?eatee]

 then [higher-in-food-chain ?eater ?eatee])

(defrule transitive-food-chain (:forward)

 if [and [favorite-meal ?eater ?eatee]

 [higher-in-food-chain ?eatee ?food]]

 then [higher-in-food-chain ?eater ?food])

(defun meals ()

 (clear)

 (tell [and [favorite-meal red-herring worm]

 [favorite-meal worm algae]])

 (tell [favorite-meal Miss-Marple red-herring])

 (cp:execute-command "Show Joshua Database"))�

True things

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE RED-HERRING]

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE WORM]

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE ALGAE]

 [HIGHER-IN-FOOD-CHAIN WORM ALGAE]

 [HIGHER-IN-FOOD-CHAIN RED-HERRING ALGAE]

 [HIGHER-IN-FOOD-CHAIN RED-HERRING WORM]

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING]

 [FAVORITE-MEAL WORM ALGAE]

 [FAVORITE-MEAL RED-HERRING WORM]

False things

 None�

Notice that as one rule firing joshua:tells a predication that causes another rule

52
Joshua Rules and Inference

February 2018

to fire, the tracing facility indents another level. This shows you the dependency

between the rules. Also, various items in the trace display are mouse sensitive and

can provide more information about the program execution.

Tracing backward rules is a little more complicated, as they can be used to gener-

ate multiple solutions to a query. There are four events associated with the run-

ning of a backward rule.

First, when we try to match the trigger of the rule (the ����-part of a backward

rule), the trace message says that we are Trying the rule. When we successfully

complete the rule action (the goals in the ���part), the message says that we are

Succeeding from the rule. As we try to find another way to satisfy the rule, the

message says that we are Retrying the rule. And lastly, when there are no more

solutions for the rule, the trace message says that the rule is Failing.

The backward rule tracing facility uses this terminology to let you follow the exe-

cution of the rules as Joshua tries to satisfy a query. In order to demonstrate the

tracing of backward rules we will first enable the tracing of both predications and

backward rules. Tracing predications along with rules shows you the joshua:asks

or joshua:tells corresponding to each rule firing. Here’s a simple example of back-

ward rule tracing.

Example:

(define-predicate has-condition (person condition when))

(define-predicate effective-treatment (drug condition))

(define-predicate allergic (person drug))

(define-predicate appropriate-treatment (drug person condition))

(defrule find-cure (:backward)

 if [and [has-condition ?person ?condition today]

 [effective-treatment ?drug ?condition]

 [not [allergic ?person ?drug]]]

 then [appropriate-treatment ?drug ?person ?condition])

(tell [and [has-condition primadonna sore-throat today]

 [effective-treatment gargle-with-ammonia sore-throat]

 [not [allergic primadonna gargle-with-ammonia]]])�

53
February 2018 Joshua Rules and Inference

Notice that even after the rule derives the only possible answer and prints the

unified query, backward rule tracing displays the Retrying and Failing events as

the rule tries and fails to find another answer.

You can get a greater degree of control over rule tracing by providing the :menu

keyword to Enable Joshua Tracing. This lets you specify particular rules to trace,

trace only rules triggered by certain predications, and trace rule importance queu-

ing and dequeuing.

To disable rule tracing use the command

Disable Joshua Tracing (type of tracing) Forward Rules

for forward rules, or

Disable Joshua Tracing (type of tracing) Backward Rules

for backward rules.

You can also adjust rule tracing options by mousing on rule names and predica-

tions. Mouse right on the object to show the possible options.

54
Joshua Rules and Inference

February 2018

5.4. Joshua Rule Basics At a Glance

Figure 6, page 54 summarizes the basic rule information we’ve just covered.

Rule Type Triggered
by

Forward

Backward

if-part

then-part

TELL

ASK

Compound

Single

then-part

if-part

Rule executes
action part

ASK calls
continuation

Rule Success
(all if-parts

Trigger
Part

Predications
In Trigger

Rule Fires
When

Action
Part

Trigger
Asked

Triggers
Satisfied

satisfied)

Figure 6. Summary of Joshua Rule Operation

Sometimes the knowledge needed to satisfy a rule trigger can be elicited from the

user through the question facility. This works somewhat similarly to backward

rules, and we discuss it in the chapter that follows. See the section "Asking the

User Questions", page 55.

55
February 2018 Asking the User Questions

6. Asking the User Questions

We have seen that knowledge stored in the database can be extended by reasoning

about it with rules. Questions behave similarly to rules, and are another way of

extending knowledge by seeking out information from the user. "User" in this con-

text is a very general term denoting any person, process, or device that a question

can interact with.

Questions are like backward chaining rules. A question has a name, a trigger pat-

tern and a body, and you use it in goal-directed inference to satisfy backward

chaining goals.

This chapter assumes that you are familiar with the basics of rule operation pre-

sented in the chapter"Rules and Inference".

joshua:ask does not automatically invoke questions, unless you specify :do-

questions t. (In contrast, rules are used by default, unless you specify :do-

backward-rules nil.)

Joshua searches for applicable questions ����� searching the database and running

all appropriate backward rules. When a question trigger unifies with the query

pattern, the question body runs, and, if successful, calls the joshua:ask continua-

tion.

Joshua supplies a default question facility that you can customize if you wish.

6.1. Adding and Removing Joshua Question Definitions

joshua:defquestion defines a question. The basic arguments to

joshua:defquestion are a rule ����, a ����������������� that specifies forward or

backward questions (currently can only be :backward), and a ������� specifying

the question’s trigger.

Like rules, questions have control structure arguments :importance and

:documentation. The former lets you prioritize the order in which questions are

run. The latter lets you add a documentation string to explain what your question

does.

In the custom version you supply a question ����, using the keyword argument

:���� before the custom code.

Please consult the dictionary entry for joshua:defquestion for a full description of

this macro.

The function joshua:undefquestion removes a single question definition. To re-

move a question from a Zmacs buffer, use ��� Kill Definition.

56
Asking the User Questions February 2018

6.2. Default Joshua Questions

The basic components are a name, a :backward control structure, optional control

structure arguments, and a trigger pattern. For example:

(defquestion question1 (:backward)

 [author-of Winnie-the-Pooh Milne])

(defquestion question2 (:backward

 :documentation "Get information about authorship")

 [author-of ?work ?author])�

Here’s what happens if the question is invoked:

• If the query contains no logic variables at run time, a Yes or No question is

generated once. (A No answer means the proposition is false or unknown.)

• If the query does contain logic variables at run time, the question loops, pre-

senting iterations of an AVV (Accept Variable Values) menu, each looking for

values of the variables that would make the triggers true.

Either the default joshua:say method or a user-written joshua:say method if

available is used in formatting the question.

Here are some examples:

(define-predicate lost (person object))

(define-predicate in-possession-of (object suspect))

(define-predicate suspects (person spouse))

(define-predicate unfaithful (person to-spouse))

(defquestion where-is-it? (:backward)

[lost ?person ?object]) �

Now we do an joshua:ask, specifying that we want questions to be run.

Example 1: No variables in the query that triggers the question

 (ask [lost Desdemona handkerchief] #’print-query :do-questions t)

Is it true that "[LOST DESDEMONA HANDKERCHIEF]"? [default No]: Yes

[LOST DESDEMONA HANDKERCHIEF]

Let’s add a user-defined joshua:say method to the above example and do another

joshua:ask.

Example 2:

(define-predicate-method (say lost) (&optional (stream *standard-output*))

 (with-statement-destructured (person object) self

 (format stream "~A lost the ~A" person object)))

57
February 2018 Asking the User Questions

 (ask [lost Desdemona handkerchief] #’print-query :do-questions t)

Is it true that "DESDEMONA lost the HANDKERCHIEF"? [default No]: Yes

[LOST DESDEMONA HANDKERCHIEF]

In the next example, the query that triggers the question at run time contains

variables. The question loops until we indicate that no more solutions exist by

clicking on No and on End.

Example 3:

Example 4 uses information obtained from the question to satisfy a backward

rule’s subgoal. The rule imitates Othello’s emotional logic when he concludes that

Desdemona is unfaithful to him because her lost handkerchief turns up in the pos-

session of Cassius (whom Othello suspects of being her lover). We use the question

to establish that Desdemona has indeed lost her handkerchief and thus to satisfy

the rule’s first subgoal.

Here’s the rule definition and a function that shows how to use it. To see how

joshua:ask arrived at its answer we use the convenience function, joshua:graph-

query-results.

Example 4:

(defrule fidelity-test (:backward)

 if [and [lost ?person ?object]

 [in-possession-of ?object ?a-suspect]

 [suspects ?spouse ?a-suspect]]

 then [unfaithful ?person ?spouse])

(defun desdemoniad ()

 ;; see if Desdemona is unfaithful to Othello

 (clear)

 (tell [and [in-possession-of handkerchief Cassius]

 [suspects Othello Cassius]])

 (ask [unfaithful Desdemona Othello] #’graph-query-results

 :do-questions t))

58
Asking the User Questions February 2018

6.3. Writing Custom Questions

To write a custom version of a question, use the basic question format adding the

keyword, :code, and its arguments before you write the question body.

(defquestion <question-name> (:backward)

 <trigger-pattern>

 :code

 ((query truth-value continuation &optional query-context)

 <body>)

����� is the query for joshua:ask, unified with the trigger pattern of the question.

If ����������� is joshua:*true*, the system is asking whether the statement in

true, as opposed to being false or unknown. If ����������� is joshua:*false*, the

system is asking whether the statement is joshua:*false*, as opposed to being true

or unknown.

The �����-������� argument can almost always be ignored.

The question ���� can be Lisp forms or Joshua commands, and it works like Lisp

code in the body of a backward rule. If the value of ���� is nil, the query that

triggered the question fails. If the value of ���� is non-nil, the query succeeds.

Calling the joshua:succeed function explicitly within the ���� allows the query to

succeed many times. This is how questions with variables at run-time can loop,

eliciting all possible bindings from the user.

���� can do anything, including an joshua:ask or joshua:tell. It should, however,

do the following:

• If there are no logic variables in the query, decide somehow (perhaps by asking

the user a question), if the query is true. If so, call the continuation.

• If there are logic variables present, solicit sets of bindings for them from some-

where (for example, the user). For each such set, call joshua:succeed.

59
February 2018 Asking the User Questions

The question in this example tries to find one or more languages to which a given

word belongs. Standard choices are offered in a languages menu. The user can

click on one or more of these choices, as well as enter any others. We also ask the

function joshua:succeed to return a user-id telling us who answered the question.

To see the results and how they came about, we use the convenience function,

joshua:print-query-results in the joshua:ask continuation.

(define-predicate valid-word (word language))

;;; The customized defquestion

(defquestion check-if-valid-word (:backward)

 [valid-word ?word ?language]

 :code

 ((query truth-value continuation &optional ignore)

 (unless (eql truth-value *true*)

 (error "I don’t know how to ask if ~S is false." query))

 (typecase ?word

 (unbound-logic-variable

(error "I don’t know how to ask questions about every

possible word: ~S" query))

 (otherwise

(typecase ?language

 (unbound-logic-variable

 (let ((list-of-languages

 (dw:accepting-values

 (*query-io* :label "Languages" :own-window t)

 (format *query-io*

 "Languages in which ~A is a word" ?word)

 (append

 (accept ’(subset english french german swahili sanskrit)

 :prompt nil)

 (accept ’(sequence symbol) :prompt "Others" :default nil)))))

 (loop for the-language in list-of-languages

 do (with-unification

 (unify ?language the-language)

 (succeed sys:user-id)))))

 (otherwise

 (when (dw:accepting-values

 (*query-io* :label "Languages" :own-window t)

 (format *query-io*

 "Is ~A a word in ~A? " ?word ?language)

 (accept ’boolean :prompt nil :prompt-mode :raw :default t))

 (succeed sys:user-id))))))))

(ask [valid-word boutique ?language] #’print-query-results :do-questions t)

60
Asking the User Questions February 2018

Click on your selections, and they are highlighted. As the next screen shows, we

selected two languages from the default, and added another one from the "Others"
option. After we click on Done, the joshua:ask continuation executes, printing out

the answers to the query and the reason why each answer succeeded. Since we

asked joshua:succeed to return a user id telling us who answered the question,

we get this information as well.

�

 (ask [valid-word boutique ?language] #’print-query-results :do-questions t)

[VALID-WORD BOUTIQUE FRENCH] succeeded

 It was derived from question CHECK-IF-VALID-WORD

 "Pinhead"

[VALID-WORD BOUTIQUE ENGLISH] succeeded

 It was derived from question CHECK-IF-VALID-WORD

 "Pinhead"

[VALID-WORD BOUTIQUE ESPERANTO] succeeded

 It was derived from question CHECK-IF-VALID-WORD

 "Pinhead"

 �

61
February 2018 Pattern Matching in Joshua: Unification

7. Pattern Matching in Joshua: Unification

Functions joshua:unify

joshua:variant

joshua:succeed

Macro joshua:with-unification�

As described in the section "Rules and Inference", pattern matching underlies all

inferencing operations in Joshua. In forward chaining, Joshua matches rule trigger

patterns with database predications. In backward chaining, it matches goals with

database predications and with rule trigger patterns. The type of pattern matching

used is called �����������.

7.1. Unification Rules

Two predications that contain no variables match (or unify), if they are structural-

ly ����������, that is, if they "look the same". This is much the same test as the

Lisp equal function. For example:

[fact a b c] matches [fact a b c]

[fact a b c] does not match [fact a b d]

The more interesting case for pattern matching is when the predication patterns

contain logic variables. Then predications unify if there is a way of ������������

������ ��� ��� ��������� so that both predications become structurally equivalent. In

the simple case, an uninstantiated logic variable matches any object in the equiva-

lent position, becoming instantiated as that object. In the pattern pairs below, for

example, these are the matches and substitutions :

Pattern 1: [fact a b c] }

Pattern 2: [fact a b ?x] }

 fact = fact (fact matches fact)

 a = a (a matches a)

 b = b (b matches b)

 ?x --> c (c is substituted for ?x)

Pattern 1: [fact a b] }

Pattern 2: [fact ?x ?y] }

 fact = fact (fact matches fact)

 ?x --> a;

 ?y --> b;

62
Pattern Matching in Joshua: Unification February 2018

Advanced Concepts Note:

The "occur-check" states that it is not valid to substitute for a variable a struc-

ture containing that variable. One reason for this is that such a substitution

might cause the system to draw logically unsound inferences.

The following do not unify:

[f ?x ?x]

[f (g ?y) ?y]

For a detailed discussion of the "occur-check": See the function joshua:unify,

page 154.�

To determine the correct match in the next example, one needs to know when

variables with the same name are identical and when they differ. For instance,

why does a trigger pattern like this:

[f ?x ?x]

match the first predication pattern below, but not the second one.

[f goo goo] ;matches trigger pattern

[f silly putty] ;does not match trigger pattern

Section "Variables and Scoping in Joshua" covers these scoping rules.

7.2. Variables and Scoping in Joshua

In general terms, the scope of a variable is the area within which it is visible and

can be referred to. For more on scoping within Symbolics Common Lisp: See the

section "Scoping" in ���������������������������������������.

In Joshua, since logic variables typically have names (?x, ?item, and so on), valid

matching is based on understanding when variables with the same name are iden-

tical and when they differ. The scoping rules for Joshua determine this.

Logic variables are ��������� ������ within rule bodies. That is, ����� ��������� ����

���.

Trigger pattern using ?x: [f ?x 1] ;this ?x is different from

Database predication using ?x: [f 2 ?x] ;this ?x

Matches and substitutions:

In trigger [f ?x 1] ?x --> 2 becomes [f 2 1]

In predication [f 2 ?x] ?x --> 1 becomes [f 2 1]

Used by itself, the question-mark or the equivalence symbol (?) is an anonymous

logic variable. Each one you type is different, imposing no scoping constraints, and

can therefore be used for "no care" slots. For example:

63
February 2018 Pattern Matching in Joshua: Unification

 [foo ? ?] matches [foo 1 2]

 and [foo ≡ ≡] matches [foo 1 2]
whereas [foo ?x ?x] does not

Logic variable names are new each time a rule is triggered. Conceptually the sys-

tem makes a copy of the triggered rule. The variable names in the "copy" are the

same names as those in the original, but are a different version of these variables.

During rule execution this "copy" of the rule is successively modified as new unifi-

cations occur. Once rule execution terminates, all bindings are undone and the

rule "copy" is discarded.

7.3. Some Examples of Joshua Unification

Here are some simple examples:

[father ?x ?y] unifies with [father john john-jr]

[father ?x john] unifies with [father george ?y]

[father ?x ?y] unifies with [father ?z ?z]

[father ?x john] does not unify with [father ?y george]

Here’s a forward rule example with a format statement to help us see what is

happening.

(define-predicate plays-instrument (person instrument))

(define-predicate owns (person thing))

(define-predicate invite-to-audition (person))

(tell [plays-instrument Jane tuba])

(defrule test-eligibility (:forward)

 if [and [plays-instrument ?person ?instrument]

 [owns ?person ?instrument]]

 then [and [invite-to-audition ?person]

 (format t "~% In the rule body ?person is bound to ~A, and ?instrument

 is bound to ~A." ?person ?instrument)])

When this rule’s trigger pattern ([plays-instrument ?person ?instrument]) is

matched against the database, it unifies with [plays-instrument Jane tuba]. That

is, ?person is unified with Jane, and ?instrument is unified with tuba.

If we add another joshua:tell statement such as [owns Jane tuba], this unifies with

the second part of the rule’s trigger, and the rule fires. The action part then adds

the rule’s inference to the database with the bindings that have been established

by unification. The format message we added to the action part confirms these

bindings:

64
Pattern Matching in Joshua: Unification February 2018

 (tell [owns Jane tuba])

 In the rule body ?person is bound to JANE, and ?instrument

 is bound to TUBA.

[OWNS JANE TUBA]

The next example uses backward chaining and compound subgoals.

Backward rule ownership-1 states that a person owns whatever object s/he has paid

for. Backward rule ownership-2 states that if Fred and Bob own the same item

then it is a desirable item. We then joshua:ask a query whose goal is to deter-

mine what items are desirable. The query succeeds. What items unified?

The query [desirable item] unifies with the trigger of backward rule ownership-2;

that rule’s subgoal [owns ?person ?object], then unifies with the trigger of rule

ownership-1. The latter’s subgoal [paid-for ?person ?object] unifies with the

database predication [paid-for Fred stereo]. The goal of rule ownership-1 is satis-

fied. Next Joshua tries to satisfy the second part of rule ownership-2’s subgoal,

[owns Bob ?item] and so on, until the goal succeeds.

Here are the definitions and joshua:tell statements for this example.

;;; Define some additional predicates

(define-predicate paid-for (person thing))

(define-predicate desirable (thing))

(tell [and [paid-for Fred stereo]

 [paid-for Bob stereo]])

(defrule ownership-1 (:backward)

 if [paid-for ?person ?object]

 then [owns ?person ?object])

(defrule ownership-2 (:backward)

 if [and [owns Fred ?item]

 [owns Bob ?item]]

 then [desirable ?item])�

If we could look inside the unifier during execution of the query, this is what we

would see:

(ask [desirable ?x] #’print-query)

65
February 2018 Pattern Matching in Joshua: Unification

Asking [DESIRABLE ?X]

Firing backward rule OWNERSHIP-2

| Unifying [DESIRABLE ?X] with [DESIRABLE ?ITEM]

| Unifying ?ITEM with ?X

| Asking [OWNS FRED ?X]

| Firing backward rule OWNERSHIP-1

| | Unifying [OWNS FRED ?X] with [OWNS ?PERSON ?OBJECT]

| | Unifying ?PERSON with FRED

| | Unifying ?OBJECT with ?X

| | Asking [PAID-FOR FRED ?X]

| | Unifying ?X with STEREO

| | Asking [OWNS BOB STEREO]

| Firing backward rule OWNERSHIP-1

| | Unifying [OWNS BOB STEREO] with [OWNS ?PERSON ?OBJECT]

| | Unifying ?PERSON with BOB

| | Unifying ?OBJECT with STEREO

| | Asking [PAID-FOR BOB STEREO]

[DESIRABLE STEREO] �

7.4. Basic Unification Facilities

Joshua provides some unification facilities for use within Lisp code. The dictionary

entry for each facility details its use and provides examples.

The function joshua:unify unifies expressions within Lisp code embedded in the

���part of rules, or in the body of a joshua:defquestion, or wherever you find it

convenient to call it yourself.

The macro joshua:with-unification establishes the scope of unifications done with-

in its body, and establishes a place to be thrown to if a unification in its body

fails. That is:

• If a unification cannot be done, joshua:unify throws to the dynamically inner-

most enclosing joshua:with-unification, and

• The extent of the unification is the dynamic extent of the dynamically innermost

enclosing joshua:with-unification.�

The function joshua:succeed will, based on its context, find the continuation and

call it accordingly.

The function joshua:variant is related to joshua:unify, but shouldn’t be confused

with it. Whereas joshua:unify tries to see if two objects can be ���� the same,

joshua:variant checks whether two objects ��� the same. Predications that differ

only in the names of the logic variables they contain are equivalent, and are �����

���� of each other. (joshua:tell uses joshua:variant to check whether the predica-

tion it is adding to the database is already there.)

66
Pattern Matching in Joshua: Unification February 2018

joshua:variant is based on the notion that it should not matter what the names of

the logic variables are, so long as the structures are the same. This is a much

stronger condition than joshua:unify. Pairs that satisfy joshua:unify are not nec-

essarily variants, but every pair that satisfies joshua:variant also satisfies

joshua:unify.

67
February 2018 Using Joshua Within Lisp Code

8. Using Joshua Within Lisp Code

Here are several basic functions that you can use inside Lisp code. These func-

tions can be grouped under predication facilities and unification facilities. The

tables below summarize each function’s use. Please consult the respective dictio-

nary entries for more detail and examples.

Predication Facilities:

joshua:different-objects If the arguments are joshua::eql, or if either argument

is an uninstantiated logic variable, joshua:different-

objects returns nil. Otherwise it returns t.

joshua:make-predication Constructs a predication (does not enter it into the

database). The [] syntax is a reader macro that ex-

pands into this.

joshua:predication The base flavor for all predications in Joshua. This

works well with functions like joshua::typep and

joshua::typecase.

joshua:predicationp Checks whether an object is built on

joshua:predication.

joshua:with-statement-destructured

Lets you bind Lisp variables to predication arguments.�

Unification Facilities:

joshua:succeed Based on context, finds and calls continuation

joshua:unify Unifies two Joshua patterns, while side-effecting any

logic variables for the extent of the enclosing

joshua:with-unification

joshua:variant Checks whether two predications are equivalent, differ-

ing only in the names of the logic variables they con-

tain. This does not need to be done under a

joshua:with-unification; it merely returns nil if it

fails.

joshua:with-unification Establishes the scope within which substitutions speci-

fied by joshua:unify take effect; establishes a place to

be thrown to if a unification in its body fails.�

68
Using Joshua Within Lisp Code February 2018

69
February 2018 Advanced Features of Joshua Rules

9. Advanced Features of Joshua Rules

This section summarizes the full syntax of both forward and backward chaining

rules.

Both forward and backward rules allow various keywords to be attached to the pat-

terns of the If-part of the rule. Both Forward and Backward rules allow the Key-

word :support followed by a logic-variable:

(defrule foobar (:forward)

 If [and [foo ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2]

 Then (format t "~&I won with F1 = ~s and F2 = ~s" ?f1 ?f2))

(defrule foobar (:backward)

 If [and [bar ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2]

 Then [foo ?x ?z])�

This indicates that the logic-variable should be bound to the "support" for this

pattern. In the case of a forward rule, the support is simply the fact which

matched the corresponding pattern. Thus

(tell [and [foo 1 2] [bar 2 3]])�

will cause the first rule above to print:

I won with F1 = [FOO 1 2] and F2 = [BAR 2 3]

Backward rules turn their If-part into a series of nested joshua:ask’s. When the

first joshua:ask finds a match, it calls a continuation which performs the next

joshua:ask. The argument to this continuation is a "backward-support" structure,

see the section "Continuation Argument", page 92.

The support keyword in a backward rule binds the logic-variable to the backward

support corresponding to its query.

Thus with the following rule and data:

(defrule foobar (:backward)

 If [and [bar ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2

 (progn (format t "~&I won with F1 = ~s and F2 = ~s" ?f1 ?f2)

 (succeed))

]

 Then [foo ?x ?z])

(tell [and [bar 1 2] [bar 2 3]])�

70
Advanced Features of Joshua Rules February 2018

The query:

(ask [foo 1 3] #’print-query)�

will cause the following output:

I won with F1 = ([BAR 1 2] 1 [BAR 1 2]) and F2 = ([BAR 2 3] 1 [BAR 2 3])

[FOO 1 3]

This backward support may be used to provide a justification (for a TMS) when a

backward rule caches the results of its work, as follows:

(defrule foobar (:backward)

 If [and [bar ?x ?y] :support ?f1

 [bar ?y ?z] :support ?f2

 (progn

 (tell [foo ?x ?z]

 :justification ‘(foobar

 (,(ask-database-predication ?f1)

 ,(ask-database-predication ?f2))))

 (succeed))

]

 Then [foo ?x ?z])�

Backward rules also support two other keywords :do-backward-rules and :do-

questions. These can be used to control the behavior of the joshua:ask corre-

sponding to a backward action. If the :do-backward-rules keyword is present then

the value following it should evaluate to either joshua::t or joshua::nil; if it is

joshua::nil, then this query will not attempt to use rules to satisfy the query, oth-

erwise rules will be used. Similarly, the :do-questions questions controls whether

backward questions will be invoked to query the user. The default value is that

backward rules are used and that questions will be attempted if the query which

caused this rule to be invoked allowed questions to be used.

71
February 2018 Justification and Truth Maintenance

10. Justification and Truth Maintenance

Functions: joshua:explain

joshua:unjustify

joshua:graph-tms-support

Keyword: :justification

Symbols: :premise

:assumption

:none

A Truth Maintenance System (TMS) is a tool used by deductive systems to keep

track of interdependencies among statements in a database.

A TMS has two main functions:

• Recording and maintaining the reasoning that supports the current set of predi-

cations in the database

• Maintaining the logical consistency of these predications

Since very often database predications logically depend on each other as deter-

mined by rules, keeping track of these dependency relationships lets the system ex-

plain its reasoning process. Moreover, knowing the dependencies for each predica-

tion lets the system work out the consequences of changes to the truth values of

predications and modify the database to keep it current and consistent. Database

modifications involve ���������� (removing) facts. This means that a justification is

a bidirectional link, from fact to conclusion ��������.

Since a TMS may not always be necessary, its inclusion is optional in Joshua.

Without a TMS, Joshua records the truth value of each predication, and changes

this value if new joshua:tell statements assert a different truth value. See the sec-

tion "Truth Values", page 20.

However, without a TMS, the system has no knowledge of the reasons supporting

its beliefs, and hence no awareness of logical contradictions. Once the database be-

comes inconsistent it remains so unless you modify it under program control. On

the other hand, you don’t pay either the space or time penalties of having a TMS.

The tradeoff is up to you.

An inconsistent database may or may not be acceptable depending on the problem.

If you do want to use a TMS, Joshua currently supports a clausal TMS (LTMS)

that you can mix into your predicate definitions. This TMS is based on David

McAllester’s three-valued TMS (Massachussetts Institute of Technology, Artificial

Intelligence Lab, A.I. Memo 473, 5 May, 1978).

This chapter is an overview of how Joshua works with the LTMS.

To include a TMS in your application, you specify the particular TMS model you

are using (LTMS, JTMS, any other) as an argument to your predicate definition.

For instance:

72
Justification and Truth Maintenance February 2018

(define-predicate temperature-of (object temperature)

 (ltms:ltms-predicate-model))

Here, as in the following examples, we use the supplied LTMS model, which re-

sides in its own package.

Advanced Concepts Note:

You can incorporate any TMS of your choice into your Joshua application. As

with any other tool you want to build into Joshua this is straightforward, since

Joshua talks to Truth Maintenance Systems via a generic protocol; thus you need

only write protocol methods for the TMS generic functions. Joshua’s facilities for

supporting external TMS systems are discussed in the �����������������������.

With a TMS model Joshua can �������, �������, and ������ its beliefs. We explore

each of these activities in the following sections.

10.1. Justification

Joshua �������� a fact to be valid if it is in the database and has a truth value of

joshua:*true* or joshua:*false*. (A truth value of joshua:*unknown* denotes a

fact whose validity is currently not known.) Without a TMS the system records

truth values, but not the reasons for them.

See the section "Truth Values", page 20.

When a TMS is present, a believed predication must have a �������������. This

means there must be at least one currently valid reason supporting the predica-

tion’s truth status. When joshua:tell enters a new predication it provides a justifi-

cation for it. The TMS records this justification as part of the information it main-

tains about the database predication. Truth values and their justification status

can change as a result of new information and resulting action taken by the TMS,

or as a result of program action.

Because the LTMS ensures data consistency, it does not accept logically contradic-

tory facts; thus it cannot believe simultaneously predication [P ...] and predication

[NOT [P ...]] (that is, a predication cannot be joshua:*true* and joshua:*false* at

the same time). If this happens, one of these statements must be retracted by re-

moving its justification (joshua:unjustify).

TMS justifications can be either ���������, or ��������. The terms ��������� and

�������� refer to the degree of reasoning used in generating the justification.

10.1.1. Primitive Justifications

Primitive justifications are primitive with respect to the reasoning process. (The

system remembers no further explanation.) Primitive justifications are usually

specified by the programmer or by system defaults in a joshua:tell used outside a

rule. This type of justification which depends on nothing except itself is the basic

component of the belief structure.

73
February 2018 Justification and Truth Maintenance

There are three types of primitive justification:

• �����������
•� ��������
•� ����

����������� justify predications whose retraction you are willing to leave to the

TMS.

�������� justify predications whose retraction you want to control yourself, rather

than leave them to the TMS.

As we shall see, when the TMS finds a logical contradiction that can be traced

back to a single assumption, it retracts that assumption automatically. If the in-

consistent predication depends only on premises, or if there is more than one as-

sumption in the support, the LTMS signals a condition and requests you to take

care of correcting the inconsistency. That usually means using the Debugger; pro-

grams can handle the condition to do otherwise. For more on condition-handling:

See the section "Conditions" in ��.

���� justifications are justifications that don’t really cause the predication to be

believed. That is,

(tell [foo ?x] :justification :none)

puts the predication in the datbase, but keeps its truth value at

joshua:*unknown*. (You might want to do this because you are using joshua:tell

to canonicalize the predication, but you don’t yet want the system to believe it.)

When the LTMS is given a justification for a predication in the database, the

LTMS builds a ������ consisting of the predication and its support.

If a new predication is being added by a joshua:tell outside a rule context and if

you supply no explicit justification, the default justification is �������. To see this,

enable the tracing of TMS operations for the next examples.

Enable Joshua Tracing (Type of tracing) TMS Operations

(define-predicate temperature-of (object temperature)

 (ltms:ltms-predicate-model))

Now joshua:tell a fact about the temperature of some object. The trace shows that

the new predication by default is being established in the database as a premise.

74
Justification and Truth Maintenance February 2018

To specify a justification yourself, use the keyword :justification within a

joshua:tell statement, followed by the justification (a symbol or a list). If the justi-

fication is a symbol, a primitive justification is built whose mnemonic is the sym-

bol. :assumption is the symbol for the primitive justification assumption. :premise

is the symbol for the primitive justification premise, and :none is the symbol for

the primitive justification none.

10.1.2. Compound Justifications

There are several types of compound justification. Here we deal with the most ba-

sic type, namely, ���������. We discuss others in the �����������������������.

When Joshua joshua:tells the database a new predication inferred from a forward

chaining rule, the default justification is ���������; this states that the fact de-

pends on the executing rule and the predications that triggered it. These predica-

tions may in turn be deductions from other rules; ultimately the chain of depen-

dencies leads to primitive support (premises and/or assumptions).

Joshua can extract the primitive and compound justification for a database predica-

tion and interpret it for you. See the section "Explaining Program Beliefs", page

75.

10.1.3. Database Predications Can Have Multiple Justifications

Every time you (or the program) joshua:tell a statement, it is given a new justifi-

cation. So although there is only one version of the statement in the database, it

can have multiple justifications. For example, earlier we added the predication

[temperature-of surface very-hot] to the database as an ����������. Now we add a

joshua:tell statement that triggers the forward rule determine-temp1.

(define-predicate condition-of (object condition) (ltms:ltms-predicate-model))

(tell [condition-of surface melting])

(defrule determine-temp1 (:forward)

 if [condition-of ?object melting]

 then [temperature-of ?object very-hot])�

When this rule fires, it infers [temperature-of surface very-hot]. Since this predi-

cation is already in the database, the system does not reinsert it. Rather, it adds a

new justification for it that mentions the rule determine-temp1. Note, however, that

the "support" is always the current justification; the system only uses the new jus-

tification if the current one for some reason becomes obsolete. For example, if you

remove the current justification, the next justification, if any, becomes the predi-

75
February 2018 Justification and Truth Maintenance

cation’s support. The predication’s truth value does not become joshua:*unknown*

until every one of its justifications has been removed. For more on removing a

predication’s support:

See the section "Retracting Predications with joshua:unjustify", page 84.

10.2. Explaining Program Beliefs

The function joshua:explain provides information about the justification(s) for a

database predication. joshua:explain is the forward chaining dual to joshua:ask

continuation functions such as joshua:graph-query-results and joshua:print-

query-results that trace backward chaining support for a satisfied query. (The

LTMS does keep some notes about the results of backward chaining, namely the

facts in the database from which you have chained.)

Here’s a forward rule, love-medieval-style, to help us deduce who might properly

engage in a courtly love affair. One of the facts that triggers this rule, the predi-

cation [is-attached ...], is deduced by the forward rule engaged.

(define-predicate is-engaged (lady husband) (ltms:ltms-predicate-model))

(define-predicate is-attached (lady husband) (ltms:ltms-predicate-model))

(defrule engaged (:forward)

 if [is-engaged lady husband]

 then [is-attached lady husband])

(define-predicate noble-lady (lady) (ltms:ltms-predicate-model))

(define-predicate outranks (lady gentleman) (ltms:ltms-predicate-model))

(define-predicate in-proximity (lady gentleman) (ltms:ltms-predicate-model))

(define-predicate good-to-accept-as-lover (lady gentleman)

 (ltms:ltms-predicate-model))

(defun courtly-setup ()

 (clear)

 (tell [and [noble-lady Isolde]

 [outranks Isolde Tristan]

 [in-proximity Isolde Tristan]

 [is-engaged Isolde Mark]]))

(courtly-setup)

76
Justification and Truth Maintenance February 2018

(defrule love-medieval-style (:forward)

 if [and [noble-lady ?lady]

 [outranks ?lady ?gentleman]

 [in-proximity ?lady ?gentleman]

 [is-attached ?lady ?husband]

 (different-objects ?gentleman ?husband)]

 then [good-to-accept-as-lover ?lady ?gentleman])�

Now we ask what the system knows about acceptable lover candidates, and why.

joshua:explain must be given the actual database predication in order to extract

its justification. One simple way to do this is to use the convenience function,

joshua:map-over-database-predications.

(map-over-database-predications [good-to-accept-as-lover ?x ?y] #’explain)

[GOOD-TO-ACCEPT-AS-LOVER ISOLDE TRISTAN] is true

 It was derived from rule LOVE-MEDIEVAL-STYLE

 [NOBLE-LADY ISOLDE] is true

 It is a :PREMISE

 [OUTRANKS ISOLDE TRISTAN] is true

 It is a :PREMISE

 [IN-PROXIMITY ISOLDE TRISTAN] is true

 It is a :PREMISE

 [IS-ATTACHED ISOLDE MARK] is true

 It was derived from rule ENGAGED

 [IS-ENGAGED ISOLDE MARK] is true

 It is a :PREMISE�

joshua:explain extracts and displays the chain of support through forward rules to

primitive support (premises and assumptions) together with their truth values.

To see the same information in graph form, use the function joshua:graph-tms-

support. (This is analogous to the function joshua:graph-query-results that

graphs backward support.)

Figure 7 uses the previous example and shows the graph of the justification.

Figure 7. Sample Graph of TMS Support

Since all objects in the graph are in the database, all are drawn inside rectangles.

77
February 2018 Justification and Truth Maintenance

The top of the graph shows the database predication whose justification is being

traced. The graph traces the justification through rules to underlying premises.

The arrows move up from the primitive support through intermediate support to

the object being explained.

Justifying and explaining the reasons underlying current knowledge are not static

activities, since the flow of new information makes the database subject to con-

stant modification. The next section surveys the role played by the TMS in keeping

the knowledge base updated and logically consistent. See the section "Revising Pro-

gram Beliefs", page 77.

10.3. Revising Program Beliefs

To reason effectively, a program must be able to revise beliefs when new knowl-

edge contradicts them. A contradiction comes about when a valid justification for

accepting a new belief conflicts with the justification for believing an already ex-

isting predication. A truth value of joshua:*contradictory* is temporarily assigned

to the new predication; this alerts the TMS to correct the contradiction. Since con-

tradictory facts cannot be simultaneously accepted, one of them must be retracted

by having its justification(s) removed (joshua:unjustify). The TMS keeps current

information consistent with new information by allowing the updating of current

knowledge in accord with new reasons.

You can let the TMS handle contradictions, or you can bind into your program

your own code to handle these conditions. For more on the signalling and handling

of conditions: See the section "Conditions" in ��������� ������ ���� ��������

���������������.

This is what happens in the absence of bound condition handlers: when the TMS

detects a contradictory predication (in the case of an LTMS, a clause that cannot

be satisfied) it traces backward through the reasons for the conflicting belief and

finds the primitive support underlying it.

If a single assumption is causing the contradiction, the TMS automatically does an

joshua:unjustify operation on it, and continues processing. joshua:unjustify re-

moves the current support for the predication. If the predication had a single sup-

port, joshua:unjustify changes its truth value to joshua:*unknown*. If there

were auxiliary justifications, they may change the truth value from

joshua:*unknown* back to either joshua:*true* or joshua:*false*. (See the sec-

tion "Retracting Predications with joshua:unjustify", page 84.)

If more than one assumption underlies the contradiction, or if the contradiction

rests on premises rather than assumptions, the TMS signals an appropriate condi-

tion; if no program has bound a handler for this condition the TMS invokes the

Debugger, listing all the asumptions and premises on which the contradiction de-

pends.

The Debugger offers you the choice of retracting some justifications or of aborting

out. After you make your retraction(s), processing continues until the current oper-

ation succeeds, or the TMS finds another contradiction.

78
Justification and Truth Maintenance February 2018

10.3.1. An LTMS Example

Following is a sequence of examples showing the changes to a database as the pro-

cessing of new joshua:tell statements gives rise to contradictions and subsequent

retractions. (For simplicity, we assume a single justification for each predication.)

The first example, shown in figure 8, illustrates a contradiction resulting from the

attempt to enter a new fact into the database. Circled numbers in the figure indi-

cate the sequence of events.

We’ve added step-by-step comments as well as Trace and Debugger displays to

show interaction with the system. The comments are numbered to correspond to

the figure numbers.

The definitions and joshua:tell statements for this example appear at the end of

this section. See the section "Definitions for the LTMS Example", page 83.

[ALLERGIC JOHN PENICILLIN]
[HAS-CONDITION JOHN PNEUMONIA TODAY]
[TEST-FOR ALLERGIES JOHN NEVER-DONE]

[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

True things

False things
None

(tell [not [has-condition john pneumonia today]]

Initial Database

New tell Statement Is Entered

1

2

TMS intervenes:
tell statement contradicts

existing fact

3

(defrule schedule-tests (:forward)
if [and [allergic ≡person ≡drug]

[test-for ≡problem ≡person never-done]
then [schedule-test-for allergies ≡person now])

(defrule allergy-test (:forward)
if [and [had-treatment ≡person ≡condition ≡drug yesterday]

[has-condition ≡person health today]]
then [not [allergic ≡person ≡drug]])

Rules

[ALLERGIC JOHN PENICILLIN]

[HAS-CONDITION JOHN PNEUMONIA TODAY]

[TEST-FOR ALLERGIES JOHN NEVER-DONE]
[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

True things

False things
[HAS-CONDITION JOHN PNEUMONIA TODAY]

Database after first retraction
6

User retracts fact

4

tell statement is
added to database

5

Figure 8. TMS Example -- New Fact Contradicts Existing Fact�

1. We begin with an initial database and two forward chaining rules, as shown

in figure 8. To see what happens, we turn on the Trace facility for TMS op-

erations before proceeding.

Enable Joshua Tracing (Type of tracing) TMS Operations�

79
February 2018 Justification and Truth Maintenance

2. A new joshua:tell statement is entered and the system attempts to insert it

into the database.

3. The TMS detects a contradiction between the new joshua:tell statement, [not

[has-condition John pneumonia today]], and its opposite assertion, [has-

condition John pneumonia today], currently residing in the database. The con-

tradiction rests on premises and since we have not specified how to handle

the condition, the Debugger is invoked. (Without a TMS, Joshua would simply

have changed the truth value of the old statement to joshua:*false*.) Figure9

shows the Trace display and the user interaction with the system after the

TMS intervenes.

Figure 9. TMS Example -- Trace and Debugger Displays, and First Retrac-

tion

4. We decide to joshua:unjustify the belief that John does have pneumonia.

Note that we do so by pressing the ������ key and clicking on those leaves

of the support graph that we want to joshua:unjustify. The Trace display in

figure9 shows that the truth value of the statement [has-condition John

pneumonia today] is now changed from joshua:*true* to joshua:*unknown*.

5. The removal of the original statement allows the system to insert the new

joshua:tell statement, [not [has-condition John pneumonia today]], into the

database.

6. The database with one former statement retracted, and one new statement

added under the heading "False things".

80
Justification and Truth Maintenance February 2018

Continuing from this situation, the next example illustrates a contradiction

generated by the firing of a forward chaining rule. Figure 10 shows what

happens.

deduction contradicts
existing fact

Rule fires; TMS
intervenes:

[ALLERGIC JOHN PENICILLIN]

[TEST-FOR ALLERGIES JOHN NEVER-DONE]

[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

True things

False things
[HAS-CONDITION JOHN PNEUMONIA TODAY]

[HAD-TREATMENT JOHN PNEUMONIA PENICILLIN YESTERDAY]
[HAS-CONDITION JOHN HEALTH TODAY]

Database with New tell Statements

(defrule schedule-tests (:forward)
if [and [allergic ≡person ≡drug]

[test-for ≡problem ≡person never-done]
then [schedule-test-for allergies ≡person now])

(defrule allergy-test (:forward)
if [and [had-treatment ≡person ≡condition ≡drug yesterday]

[has-condition ≡person health today]]
then [not [allergic ≡person ≡drug]])

Rules

(tell [and [had-treatment john pneumonia penicillin yesterday]
[has-condition john health today]])

8

[ALLERGIC JOHN PENICILLIN]

True things

False things
[ALLERGIC JOHN PENICILLIN]

New tell Statements Trigger Rule

[HAD-TREATMENT JOHN PNEUMONIA PENICILLIN YESTERDAY]
[HAS-CONDITION JOHN HEALTH TODAY]

[TEST-FOR ALLERGIES JOHN NEVER-DONE]

[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

[HAS-CONDITION JOHN PNEUMONIA TODAY]

7

User retracts fact

9

Deduced statement
is added to database

10

True things
[HAD-TREATMENT JOHN PNEUMONIA PENICILLIN YESTERDAY]
[HAS-CONDITION JOHN HEALTH TODAY]

Modified Database

False things
[ALLERGIC JOHN PENICILLIN]

[HAS-CONDITION JOHN PNEUMONIA TODAY]

[TEST-FOR ALLERGIES JOHN NEVER-DONE]

[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

11

Changes to Database

Figure 10. TMS Example, Continued -- Deduced Fact Contradicts Existing Fact

7. A compound joshua:tell statement of two predications joined by joshua::and

is added to the database. These statements trigger the forward rule, allergy-

test.

81
February 2018 Justification and Truth Maintenance

8. Rule allergy-test fires and attempts to add a newly deduced fact, [not [al-

lergic John penicillin]], to the database. Once again, there is a contradic-

tion; the database has a belief that John is allergic to penicillin, while the

rule deduces that he is not. (Evidently, someone performed the experiment of

giving John penicillin despite John’s known allergy to it and John is still

alive, thus posing a problem for the TMS.)

9. Bowing to the facts, we ask the system to joshua:unjustify the belief that

[allergic John penicillin].

Figure 11 shows the Trace display as the new statements are added to the

database, the user interaction with the system after the TMS intervenes, and

the Trace display showing the retraction. [We have artificially broken up the

system displays into separate figures to make each step easier to follow. In

real life, the entire sequence happens in one continuous event until all con-

tradictions arising from a joshua:tell statement are resolved.]

Figure 11. TMS Example, Continued -- Trace Display and Second Retraction�

As the Trace display at the bottom of the figure shows, the truth value of the

predication [allergic John penicillin] that we have retracted is changed

from joshua:*true* to joshua:*unknown*.

10. The belief deduced by rule allergy-test, namely, [not [allergic John peni-

cillin]], is now inserted into the database.

11. This is the modified database.

Continuing from this point, the final sequence shows how retractions can

cause inconsistencies in the database, and how the TMS automatically cor-

rects these. Figure 12 illustrates.

82
Justification and Truth Maintenance February 2018

[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

True things

False things

[TEST-FOR ALLERGIES JOHN NEVER-DONE]

True things
[HAD-TREATMENT JOHN PNEUMONIA PENICILLIN YESTERDAY]

[HAS-CONDITION JOHN HEALTH TODAY]

False things

Final, Updated Database
14

12

13

Retraction removes
support for
deduced fact

(defrule schedule-tests (:forward)
if [and [allergic ≡person ≡drug]

[test-for ≡problem ≡person never-done]
then [schedule-test-for allergies ≡person now])

(defrule allergy-test (:forward)
if [and [had-treatment ≡person ≡condition ≡drug yesterday]

[has-condition ≡person health today]]
then [not [allergic ≡person ≡drug]])

Rules

[HAD-TREATMENT JOHN PNEUMONIA PENICILLIN YESTERDAY]
[HAS-CONDITION JOHN HEALTH TODAY]
[TEST-FOR ALLERGIES JOHN NEVER-DONE]

True things

False things
[ALLERGIC JOHN PENICILLIN]

[HAD-TREATMENT JOHN PNEUMONIA PENICILLIN YESTERDAY]
[HAS-CONDITION JOHN HEALTH TODAY]

[TEST-FOR ALLERGIES JOHN NEVER-DONE]

[SCHEDULE-TEST-FOR ALLERGIES JOHN NOW]

[HAS-CONDITION JOHN PNEUMONIA TODAY]

[ALLERGIC JOHN PENICILLIN]

TMS retracts
unsupported fact

Changes to Database

Database

[ALLERGIC JOHN PENICILLIN]

[HAS-CONDITION JOHN PNEUMONIA TODAY]

[ALLERGIC JOHN PENICILLIN]

[HAS-CONDITION JOHN PNEUMONIA TODAY]

Figure 12. TMS Example, Concluded -- TMS Automatically Retracts Unsupported

Fact

12. One predication in the database, namely, [schedule-test-for-allergies John

now] depended for its support on a predication [allergic John penicillin]

that we retracted in step 9. Without support, a predication can no longer be

believed.

13. The TMS knows about all dependencies, and automatically retracts the unsup-

ported predication [schedule-test-for-allergies John now]. The Trace display

in Figure 13, shows this retraction.

14. This shows the final, updated, and consistent database.

83
February 2018 Justification and Truth Maintenance

Figure 13. TMS Example, Concluded -- Automatic Retraction by the TMS

10.3.1.1. Definitions for the LTMS Example
;;; Predicate definitions

(define-predicate allergic (person drug)

 (ltms:ltms-predicate-model))

(define-predicate had-treatment (person condition drug when)

 (ltms:ltms-predicate-model))

(define-predicate test-for (problem person when-done)

 (ltms:ltms-predicate-model))

(define-predicate schedule-test-for (problem person when)

 (ltms:ltms-predicate-model))

(define-predicate has-condition (person condition when)

 (ltms:ltms-predicate-model))

;;; Rule definitions

(defrule schedule-tests (:forward)

 if [and [allergic ?person ?drug]

 [test-for ?problem ?person never-done]]

 then [schedule-test-for allergies ?person now])

(defrule allergy-test (:forward)

 if [and [had-treatment ?person ?condition ?drug yesterday]

 [not [has-condition ?person ?condition today]]

 [has-condition ?person health today]]

 then [not [allergic ?person ?drug]])

;;; tell statements to set up starting database

(defun setup-initial-conditions ()

 (clear)

 (tell [and [allergic john penicillin]

 [has-condition john pneumonia today]

 [test-for allergies john never-done]]))

;;; Create first contradiction

(defun create-contradiction ()

 (tell [not [has-condition john pneumonia today]]))

;;; Create second contradiction

(defun create-contradiction2 ()

 (tell [and [had-treatment John pneumonia penicillin yesterday]

 [has-condition john health today]]))

84
Justification and Truth Maintenance February 2018

10.3.2. Retracting Predications with joshua:unjustify

You can use the function joshua:unjustify to remove the support for specific pred-

ications from the database independently of action by the TMS. (Without a TMS,

joshua:unjustify just sets the truth value of the predication to

joshua:*unknown*.)

Note that when more than one justification supports a predication,

joshua:unjustify must be called once for each justification. (Like joshua:explain,

joshua:unjustify needs the actual database predication that you want to operate

on, not a copy of it that you type in.)

In an earlier example we used a predication with two justifications. See the section

"Database Predications Can Have Multiple Justifications", page 74. First we insert-

ed this predication, [temperature-of surface very-hot], into the database as an as-

sumption. Later it was deduced from forward rule determine-temp1 shown below,

thus receiving an additional justification as a deduction.

(define-predicate condition-of (object condition) (ltms:ltms-predicate-model))

(define-predicate temperature-of (object temperature) (ltms:ltms-predicate-model))

(tell [condition-of surface melting])

(defrule determine-temp1 (:forward)

 if [condition-of ?object melting]

 then [temperature-of ?object very-hot])

Let’s enable the tracing of TMS operations to see what happens when we try to

joshua:unjustify this predication. (We get at the predication by clicking on it in

the database display.)

 Show Joshua Database

True things

 [TEMPERATURE-OF SURFACE VERY-HOT]

 [CONDITION-OF SURFACE MELTING]

False things

 None

Although joshua:unjustify removed the current support for the predication, the

Trace display shows that the predication is still joshua:*true*, because it was sup-

ported by an additional justification which has now become its current support.

The support says that the predication was deduced from a forward rule. This de-

duction remains valid as long as the predications supporting the rule’s conclusion

are valid. Thus, trying to joshua:unjustify this deduced predication now would

85
February 2018 Justification and Truth Maintenance

cause an error (with the LTMS you can only joshua:unjustify primitive support).

 (unjustify ���������������������������������)

Error: Predication [TEMPERATURE-OF SURFACE VERY-HOT] can’t be unjustified,

 its support is #<DETERMINE-TEMP1

 [CONDITION-OF SURFACE MELTING] → [TEMPERATURE-OF SURFACE VERY-HOT]>

.

.

.

This section concludes our survey of basic Joshua concepts. You now have a work-

ing knowledge of Joshua that enables you to build applications using the default

Joshua facilities.

The Joshua functions and commands covered in this manual appear in the "Basic

Joshua Dictionary" immediately following this section.

Advanced Joshua concepts are covered in the companion volume to this. See the

document �����������������������.

86
Justification and Truth Maintenance February 2018

87
February 2018 Dictionary Notes: Basic Joshua Dictionary

11. Dictionary Notes: Basic Joshua Dictionary

The entries in this dictionary are a ������ of those in the "Joshua Language Dic-

tionary". We have included here only those functions and commands that you will

find useful for getting started and whose operation has been discussed in the con-

ceptual portions of this manual. Advanced functions and functions needed for mod-

eling are omitted.

Here is the alphabetized list of Joshua language objects included in this dictionary.

88
Dictionary Notes: Basic Joshua Dictionary February 2018

11.1. List of Entries in the Basic Joshua Dictionary

joshua:ask

joshua:ask-database-predication

joshua:ask-derivation

joshua:ask-query

joshua:ask-query-truth-value

joshua:clear

"Clear Joshua Database Command"
joshua:*contradictory*

joshua:copy-object-if-necessary

joshua:define-predicate

89
February 2018 Dictionary Notes: Basic Joshua Dictionary

joshua:defquestion

joshua:defrule

joshua:different-objects

"Disable Joshua Tracing Command"
"Enable Joshua Tracing Command"
"Explain Predication Command"
joshua:explain

joshua:*false*

joshua:graph-query-results

joshua:graph-tms-support

joshua:known

joshua:make-predication

joshua:map-over-database-predications

joshua:predication

joshua:predicationp

joshua:print-query

joshua:print-query-results

joshua:provable

"Reset Joshua Tracing Command"
"~\\Say\\"
joshua:say

joshua:say-query

"Show Joshua Predicates Command"
"Show Joshua Rules Command"
"Show Joshua Tracing Command"
"Show Rule Definition Command"
joshua:succeed

joshua:tell

joshua:*true*

joshua:undefine-predicate

joshua:undefquestion

joshua:undefrule

joshua:unify

joshua:unjustify

joshua:*unknown*

joshua:untell

joshua:variant

joshua:with-statement-destructured

joshua:with-unbound-logic-variables

joshua:with-unification

90
Dictionary Notes: Basic Joshua Dictionary February 2018

91
February 2018 Basic Joshua Dictionary

12. Basic Joshua Dictionary

joshua:ask� �������������������������� &key���������������������t������

���������

Queries the virtual database and backward rules and questions.

Note: joshua:ask is a macro, and as such it cannot be used as an argu-

ment to the function funcall.

����� Should be a predication.

������������ Should be a function of one argument, describing what

you want done with the answers to the query.

Note that the argument given to ������������ might be

ephemeral in one of two ways: it could be stack-consed,

and it could contain logic variables whose bindings will

be undone when you exit this frame. Instantiated

queries almost always need to be copied with

joshua:copy-object-if-necessary, because the variable

bindings are ephemeral. See example 6 below.

If, on the other hand, you are collecting database predi-

cations, they are not ephemeral, and you don’t want to

copy them. (Copying a database predication causes loss

of the database information associated with the predi-

cation.)�

Keywords:

:����������������� If this keyword has a non-nil value, backward chaining

rules are checked for solutions. The default is t. Use

:��-��������-����� nil to check out just the database

solution.

:������������ If this keyword has a non-nil value, any questions that

claim to answer ����� are run to solicit more solutions

from the user. The default is nil.�

joshua:ask uses the database, backward rules, and questions to satisfy the

query predication. Each time joshua:ask finds a solution to ����� it calls

the continuation, passing it a list that contains the answer and information

about how the answer was derived.

joshua:ask doesn’t return an interesting value. Normally the continuation

performs some action with each solution. You can collect values in the con-

tinuation, or return a value to some caller of joshua:ask using throw,

return-from, or some similar Lisp form. Such uses of throw and return-

from are like the Prolog cut feature. See examples 6 through 9.

92
Basic Joshua Dictionary February 2018

Any logic variables used in ����� can be referred to as though they were

lexical Lisp variables within ������������; joshua:ask establishes a binding

contour for the logic variables. (See example 1 below.) In this sense,

joshua:ask is like let combined with mapc. Like let, joshua:ask establish-

es lexical binding contours for the logic variables in the query. Like mapc,

it iteratively calls the continuation on the answer. For a discussion of scop-

ing rules: See the section "Variables and Scoping in Joshua", page 62.

joshua:ask calls the continuation function with a single argument, �����

������������, a list containing information about the solution process. The

list contains the instantiated query, its truth value, and the support for the

query; the form of the support varies, depending on how the query was sat-

isfied.

Typically you’ll want to deal only with part of the information provided in

���������������� rather than with the entire list. For instance, you might

want to see only the answer, or only the database predication that matched

the answer, or only the support for the answer.

Joshua supplies �������� ��������� to extract various elements of the list in

����������������, making it available to you for interpretation.

In addition, Joshua provides ����������� ��������� that extract some element

of the list in ���������������� and interpret it for you. These functions let

you postpone dealing with the details of ���������������� and accessor

functions until you need them for more advanced work. So before reading

on you might want to skip ahead to the section "Streamlining Typical Con-

tinuation Requests with Convenience Functions" and see if these functions

meet your current needs.

Continuation Argument

���������������� A list of the following form:

• The first element is always the unified query, that is, the query that was

passed to joshua:ask, with appropriate variables instantiated as a side-

effect of unification.

• The second element is the truth value of the query. This corresponds to

the truth value of the matching predication in the database at the time

joshua:ask looked at it.

• The rest of the elements are the support for the instantiated query. The

support can take several forms, depending on how the query was satis-

fied.

° When the query is satisfied by matching a predication in the database,

the support is that database object.

93
February 2018 Basic Joshua Dictionary

° When the query answer comes from a conjunction (and), the support

is the symbol and, followed by the backward support for each of the

compound predications.

° When the query answer comes from a disjunction (or), the support is

the symbol or, followed by the support for the single predication from

the or that succeeded.

° When the query answer is derived from a backward rule, the support

has the format

((rule rule-name) . rule-support)

where

• ���� is the symbol rule

• ��������� is the name of the rule used to satisfy the query

• ������������ is a list containing (recursively) the backward support

used to satisfy parts of the rule body.

° When the query answer comes from a question, the support is like

that for rules, except that it uses the question name instead of the

rule name.

° When the query answer comes from the predicates joshua:known or

joshua:provable, the support is the respective symbol name

(joshua:known or joshua:provable), followed by the support for the

predication that served as the symbol’s argument.

° When the query originates from an joshua:ask or an joshua:ask-data

method, the support is whatever the writer of that method provided.

See the section "Customizing the Data Index" in ������ ���������

������.

In schematic form, the ���������������� list looks as follows:

The backward-support list:

(<unified query> <truth-value> . <derivation>)

(<(unified) query>)

(<t/f>)

94
Basic Joshua Dictionary February 2018

(<derivation>) Possibilities for these elements are:

 (<database predication>)

 (AND <conjunct1 derivation> <conjunct2 derivation> ...)

 (OR <successful disjunct derivation>)

 ((RULE <rule name>) <conjunct1 t/f derivation> <conjunct2 t/f derivation> ...)

 ((QUESTION <question name>) <succeed argument>)

 (KNOWN <derivation>)

 (PROVABLE <derivation>)�

Extracting Parts of the Continuation with Accessor Functions

Joshua provides four accessor functions to extract specific portions of �����

������������. Use these functions if you want to interpret the answer your-

self. Use the convenience functions described below if you want the system

to interpret the information for you.

joshua:ask-query Extracts the instantiated query (the first element) from

����������������. For example:

(ask [...] #’(lambda (backward-suppport)

 (print (ask-query backward-support))))

joshua:ask-query-truth-value

Extracts the truth value of the instantiated query (the

second element) from ����������������. For example:

(ask [...] #’(lambda (backward-support)

 (print

 (ask-query-truth-value backward-support))))�

joshua:ask-database-predication

Extracts the database object that matched �����. If the

backward support is a rule, displays the rule name (see

example 4). Use this function only when you know the

support is a database object (that is, with :do-

backward-rules nil. For example:

(ask [...]

 #’(lambda (backward-support)

 (print (ask-database-predication backward-support)))

 :do-backward-rules nil)

joshua:ask-derivation

Extracts the support information in ����������������.

Makes fewer assumptions than joshua:ask-database-

predication about where the support came from. For

example:

(ask [...] #’(lambda (backward-support)

 (print (ask-derivation backward-support))))

95
February 2018 Basic Joshua Dictionary

Streamlining Typical Continuation Requests with Convenience Functions

When an joshua:ask query succeeds, there are some standard things you

might want to do with the answer, such as: printing or formatting the uni-

fied query, operating on the database predication supporting the query, or

interpreting all of the backward support.

Joshua provides five convenience functions that extract an appropriate part

of the answer and interpret it in some specific way. The first four are

joshua:ask continuation functions. The fifth is a special-purpose function

that lets you do database lookup only, and interpret the answer in some

way. joshua:map-over-database-predications uses joshua:ask to search

the database and extract the predication(s) matching its argument pattern.

These functions are:

joshua:print-query Extracts and displays the unified query. For exam-

ple:

(ask [...] #’print-query)�

joshua:say-query Extracts the unified query and displays it in format-

ted form.

joshua:print-query-results

Takes the information in ���������������� and dis-

plays it with annotations.

joshua:graph-query-results

The above in graph form.

joshua:map-over-database-predications

For special cases of the solution process, where you

look only in the database for an answer, extracts all

database predications that unify with a predication

pattern and applies some function to each. For ex-

ample:

(map-over-database-predications [foo ?x] #’untell)

joshua:map-over-database-predications is equiva-

lent to:

(ask query #’(lambda (x) (funcall continuation

 (ask-database-predication x)))

 :do-backward-rules nil)

We use some of the convenience functions in the examples to joshua:ask.

For more on each function, please consult its dictionary entry.

96
Basic Joshua Dictionary February 2018

Examples of Using joshua:ask

Let’s define some predicates, enter them into the database, then add a

backward rule and a backward question. The rule determines what is an

eater’s favorite food. The question elicits information to satisfy the rule’s

subgoal.

(define-predicate favorite-meal (eater food))

(define-predicate guzzles (eater food))

(defun eat-it ()

 (clear)

 (tell [and [favorite-meal bears honey]

 [favorite-meal mosquitoes people]

 [favorite-meal spiders flies]

 [favorite-meal monkeys bananas]

 [guzzles ted ice-cream]])

 (cp:execute-command "Show Joshua Database"))

Show Joshua Database

 True things

 [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES]

 [FAVORITE-MEAL MONKEYS BANANAS]

 [GUZZLES TED ICE-CREAM]

 False things

 None

(defrule not-finicky (:backward)

 if [guzzles ?eater ?food]

 then [favorite-meal ?eater ?food])

(defquestion guzzler? (:backward)

 [guzzles ?eater ?food])

Next we joshua:ask what Joshua knows about everybody’s favorite meals.

Example 1 uses the variables in the unified query to print an English-like

sentence (not fussy about number agreement between subject and verb)

about everybody’s meals. It ignores the ���������������� argument and us-

es a format directive. It looks in the database and rules, but not in ques-

tions.

97
February 2018 Basic Joshua Dictionary

Example 1.

(ask [favorite-meal ?eater ?food]

 #’(lambda (ignore)

 (format t "~%~S is the preferred food of ~S." ?food ?eater)))

BANANAS is the preferred food of MONKEYS.

FLIES is the preferred food of SPIDERS.

PEOPLE is the preferred food of MOSQUITOES.

HONEY is the preferred food of BEARS.

ICE-CREAM is the preferred food of TED.�

Example 2 prints the instantiated query for everybody’s meals, using the

convenience function, joshua:print-query. It uses the database only, ignor-

ing both rules and questions.

Example 2.

(ask [favorite-meal ?eater ?food] #’print-query :do-backward-rules nil)

 ;print just those in the database

[FAVORITE-MEAL MONKEYS BANANAS]

[FAVORITE-MEAL SPIDERS FLIES]

[FAVORITE-MEAL MOSQUITOES PEOPLE]

[FAVORITE-MEAL BEARS HONEY]�

Example 3 prints the instantiated query for the meals of bears, using the

convenience function, joshua:print-query. It looks in the database and

backward rules, but not in questions.

Example 3.

(ask [favorite-meal bears ?food] #’print-query)

 ;print out bears’ favorite-meal foods

[FAVORITE-MEAL BEARS HONEY]�

Example 4 prints the predication object that satisfied the query for every-

body’s meals using the accessor function joshua:ask-database-predication.

It looks in the database and backward rules, but not in questions. Notice

that when the query is satisfied from a rule, the rule name is printed, not

a predication object. It is best to use joshua:ask-database-predication with

:do-backward-rules nil, that is, when you know the support is only in the

database.

Example 4.

(ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (print (ask-database-predication backward-support))))

[FAVORITE-MEAL MONKEYS BANANAS]

[FAVORITE-MEAL SPIDERS FLIES]

[FAVORITE-MEAL MOSQUITOES PEOPLE]

[FAVORITE-MEAL BEARS HONEY]

(RULE NOT-FINICKY) �

Example 5 prints the instantiated query for everybody’s meals. It uses the

database, backward rules, ��� questions. Note that we supplied just one an-

swer interactively to the question, although we could have supplied more.

98
Basic Joshua Dictionary February 2018

Example 5.

(ask [favorite-meal ?eater ?food] #’print-query :do-questions t)

 ;look for backward questions as well

[FAVORITE-MEAL MONKEYS BANANAS]

[FAVORITE-MEAL SPIDERS FLIES]

[FAVORITE-MEAL MOSQUITOES PEOPLE]

[FAVORITE-MEAL BEARS HONEY]

[FAVORITE-MEAL TED ICE-CREAM]

[FAVORITE-MEAL CHRISTOPHER BANANA-PIE]�

Example 6 collects a list of patterns that describe everybody’s meals. It us-

es the database and rules, but not questions. Note the use of joshua:copy-

object-if-necessary. This is because the bindings in the query are undone

upon exit from the continuation, so we must make a copy in which to pre-

serve them.

Note that the resulting list is ��� a list of things that are in the database,

but rather a list of free-floating predications that are copies of the query. If

you want the latter, use joshua:ask-database-predication with :do-

backward-rules nil and don’t copy it. See example 7.

Example 6.

(defun collect-answers ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (copy-object-if-necessary

 (ask-query backward-support)) answers)))

 answers))

COLLECT-ANSWERS

 (collect-answers)

([FAVORITE-MEAL TED ICE-CREAM] [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES] [FAVORITE-MEAL MONKEYS BANANAS])

Example 7 is identical to example 6, except that here we collect database

predications instead of instantiated queries, and the former don’t need to be

copied. Since we are only looking in the database we specify :do-backward-

99
February 2018 Basic Joshua Dictionary

rules nil.

(defun collect-answers-database-predications ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (ask-database-predication backward-support)

 answers)

 :do-backward-rules nil))

 answers))

COLLECT-ANSWERS-DATABASE-PREDICATIONS

(collect-answers-database-predications)

([FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES] [FAVORITE-MEAL MONKEYS BANANAS])

Better style for the above example would be:

(collect-answers-database-predications2 ()

 (let ((answers nil))

 (map-over-database-predications [favorite-meal ?eater ?food]

 #’(lambda (db-predication)

(push db-predication answers)))

 answers))

Often you’re interested in whether there �� a solution, but not any ��������

��� solution. Example 8 illustrates the use of return-from in a continuation

to return when the first solution is found.

Example 8.

(defun solution-exists-p ()

 (ask [favorite-meal ?eater ?food]

 #’(lambda (ignore)

 (return-from solution-exists-p t)))

 ;; return nil if nothing succeeded

 nil))

 (solution-exists-p)

T

Example 9 is like the example above, but it returns a copy of the query, in-

stead of a boolean. This is useful if you want to know something about the

solution, in addition to its existence. (However, if you want to use database-

related properties, such as TMS-relation, use joshua:ask-database-

predication and don’t copy it).

100
Basic Joshua Dictionary February 2018

Example 9.

(defun first-solution ()

 (block find-a-solution

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (return-from find-a-solution

 (copy-object-if-necessary (ask-query backward-support)))))

 ;; return nil if nothing succeeded

 nil))

 (first-solution)

[FAVORITE-MEAL MONKEYS BANANAS]

Modeling Note:

Chances are that you seldom want to define a method that takes over the

entire functionality of joshua:ask. It’s more likely you want to define a

method for one of the generic functions it calls, such as joshua:fetch,

joshua:ask-data, joshua:ask-rules, joshua:ask-questions, or joshua:map-

over-forward-rule-triggers.

Also, there is a sys:downward-funarg declaration on ������������, so your

implementations of joshua:ask should not use ������������ in other than

stack-like ways.

Related Functions:

joshua:tell

joshua:clear

joshua:copy-object-if-necessary

joshua:map-over-database-predications

See the section "Querying the Database", page 23. See the section "The

Joshua Database Protocol" in ������ ��������� ������. See the section

"Customizing the Data Index" in �����������������������.�

joshua:ask-database-predication� ������������������������

An accessor function for use in an joshua:ask continuation. It extracts the

database predication that matched the query from the continuation argu-

ment, ����������������, that contains information about the satisfied query.

We describe this continuation argument fully in the dictionary entry for

joshua:ask.

Note that if the backward support did not come from the database,

joshua:ask-database-predication gives a bogus answer; in some cases,

such as user-written models, it may even cause a trip to the debugger.

Thus, you should use joshua:ask-database-predication only with :do-

backward-rules nil.

Examples:

We build a library database using joshua:tell statements as well as a for-

ward rule that says the library owns any work authored by Shakespeare.

101
February 2018 Basic Joshua Dictionary

We also include an LTMS in our predicate definitions so that we can later

apply joshua:explain to the database predications we find.

(define-predicate author-of (work author) (ltms:ltms-predicate-model))

(define-predicate owns-library (work) (ltms:ltms-predicate-model))

(defrule Shakespeare-holdings (:forward)

 if [author-of ?work Shakespeare]

 then [owns-library ?work])

(defun build-author-title-index2 ()

 (clear)

 (tell [and [author-of "King Lear" Shakespeare]

 [author-of "Hedda Gabler" Ibsen]

 [owns-library "Trumpeting Joshua"]

 [author-of "A Doll’s House" Ibsen]])

 (cp:execute-command "Show Joshua Database"))

BUILD-AUTHOR-TITLE-INDEX2

(build-author-title-index2)

True things

 [OWNS-LIBRARY "Trumpeting Joshua"] [AUTHOR-OF "Hedda Gabler" IBSEN]

 [OWNS-LIBRARY "King Lear"] [AUTHOR-OF "King Lear" SHAKESPEARE]

 [AUTHOR-OF "A Doll’s House" IBSEN]

False things

 None�

Now we ask Joshua to find and joshua:explain the database predications

that tell what the library owns.

(ask [owns-library ?work]

 #’(lambda (backward-support)

 (explain (ask-database-predication backward-support))))

[OWNS-LIBRARY "Trumpeting Joshua"] is *True*.

 It’s a :Premise.

[OWNS-LIBRARY "King Lear"] is *True*.

 It’s derived from the rule Shakespear-Holdings, using:

 [AUTHOR-OF "King Lear" SHAKESPEARE]�

Usually you can use the convenience function joshua:map-over-database-

predications instead of joshua:ask-database-predication.

For comparison we use the same library example for both functions.

For more on these and related functions: See the function joshua:ask, page

91.�

joshua:ask-derivation� ������������������������

An accessor function for use in an joshua:ask continuation. It extracts the

support information about the satisfied query from the continuation argu-

ment ����������������.

102
Basic Joshua Dictionary February 2018

Note that the accessor function joshua:ask-database-predication makes

more assumptions about the support than joshua:ask-derivation does.

Here is a schematic representation of the contents of ����������������.

joshua:ask-derivation extracts only the derivation portion. For more detail

please consult the dictionary entry for joshua:ask.

The backward-support list:

(<unified query> <truth-value> . <derivation>)

(<(unified) query>)

(<t/f>)

(<derivation>) Possibilities for these elements are:

 (<database predication>)

 (AND <conjunct1 derivation> <conjunct2 derivation> ...)

 (OR <successful disjunct derivation>)

 ((RULE <rule name>) <conjunct1 t/f derivation> <conjunct2 t/f derivation> ...)

 ((QUESTION <question name>) <succeed argument>)

 (KNOWN <derivation>)

 (PROVABLE <derivation>)�

Like the other accessor functions, joshua:ask-derivation does not interpret

the information it extracts. Generally you won’t need to use it very often.

Note that the convenience functions joshua:print-query-results and

joshua:graph-query-results, respectively, display and graph an annotated

version of the support information, so that you don’t have to interpret it

yourself.

For comparison we’ll use the same examples to illustrate all three of these

functions.

Examples:

The first example shows the support for a query satisfied by database

lookup  the database predication that satisfied the query is printed.

(define-predicate type-of (object type))

(tell [type-of Iliad epic])

Example 1.

(ask [type-of ?book epic]

 #’(lambda (backward-support)

 (print (ask-derivation backward-support))))

([TYPE-OF ILIAD EPIC])

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

103
February 2018 Basic Joshua Dictionary

the definitions.

; Example 2. Query is derived from backward rules

; Define the predicates

(define-predicate edible (object))

(define-predicate is-food (object))

(define-predicate contains (object substance))

(define-predicate sweet (object))

; Define the rules

(defrule food? (:backward)

 if [edible ?object]

 then [is-food ?object])

(defrule sweet? (:backward)

 if [or [contains ?object chocolate]

 [contains ?object sugar]

 [contains ?object honey]]

 then [sweet ?object])

(defrule dessert? (:backward)

 if [and [is-food ?object]

 [sweet ?object]]

 then [type-of ?object dessert])

; tell some sticky facts

(tell [edible chocolate-coated-ants])

(tell [contains chocolate-coated-ants honey])�

Now we joshua:ask what foods qualify as desserts and why. The display is

a list starting with rule dessert? that satisfied the query; next is the first

subgoal that was satisfied, together with its truth value, and the name of

the rule which satisfied it (rule food?). That rule’s first subgoal is then

listed with its truth value and the database predication that satisfied it,

and so on, through all the backward support.

(ask [type-of ?object dessert]

 #’(lambda (backward-support)

 (print (ask-derivation backward-support))))

((RULE DESSERT?)

 ([IS-FOOD CHOCOLATE-COATED-ANTS] 1 (RULE FOOD?)

 ([EDIBLE CHOCOLATE-COATED-ANTS] 1 [EDIBLE CHOCOLATE-COATED-ANTS]))

 ([SWEET CHOCOLATE-COATED-ANTS] 1 (RULE SWEET?)

 ([CONTAINS CHOCOLATE-COATED-ANTS HONEY] 1

 [CONTAINS CHOCOLATE-COATED-ANTS HONEY])))

For more on these and related functions: See the function joshua:ask, page

91.�

104
Basic Joshua Dictionary February 2018

joshua:ask-query� ������������������������

An accessor function for use inside an joshua:ask continuation. It extracts

the instantiated query from the continuation argument ����������������.

���������������� is fully described in the dictionary entry for joshua:ask.

Example:

Here we collect and save all the answers from a query. (See example 6 in

the dictionary entry for joshua:ask.)

(defun collect-answers ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (copy-object-if-necessary

 (ask-query backward-support))

 answers)))

 answers))�

To extract and print out the instantiated query, use the convenience func-

tion joshua:print-query.

For more on these and related functions: See the function joshua:ask, page

91.�

joshua:ask-query-truth-value� ������������������������

An accessor function for use inside an joshua:ask continuation. It extracts

the truth value of the instantiated query from the continuation argument

����������������.

���������������� is fully described in the dictionary entry for joshua:ask.

The truth value is a number, as follows:

0 Truth value of joshua:*unknown*

1 Truth value of joshua:*true*

2 Truth value of joshua:*false*

3 Truth value of joshua:*contradictory*

The joshua:truth-value presentation type translates these numbers into

symbols naming a truth value.

Most of the time you know the query’s truth value from the query pattern

itself, so that you have little need of this function. The truth value infor-

mation is mostly there for system use, to let the system interpret the

query.

Examples:

(define-predicate status-of (object status))

(tell [status-of smoke-alarm off])

105
February 2018 Basic Joshua Dictionary

; Example 1.

(ask [status-of ?indicator off]

 #’(lambda (backward-support)

 (print (ask-query-truth-value backward-support))))

1

; Example 2. Use truth-value-name to translate the number

(ask [status-of ?indicator off]

 #’(lambda (backward-support)

 (print (truth-value-name (ask-query-truth-value backward-support)))))

TRUE �

For more on this and related functions: See the function joshua:ask, page

91.

joshua:clear� ��������&optional�(���������������t)�(����������������nil)

With arguments t t, empties the database and "undoes" all rule definitions.

�������������� Specifies whether or not to clear the database. Default

is t.

��������������� Specifies whether or not to delete all rule definitions.

Default is nil.�

Clearing the database is equivalent to joshua:untelling each fact in the

database.

Note that undefining all rule definitions is a drastic thing to do, as it

clears out ��� rules in your world. Any application depending on these rules

will no longer work. Clear out all rules only if you want a "clean" environ-

ment, for example, if you need to get rid of a runaway rule that you cannot

stop by other means.

Examples:

Show Joshua Database

 True things

 [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES]

 [FAVORITE-MEAL MONKEYS BANANAS]

 False things

 None

(clear)

106
Basic Joshua Dictionary February 2018

Show Joshua Database

 True things

 None

 False things

 None

Related Command:

"Clear Joshua Database Command"

See the section "Removing Predications From the Database", page 17.

See the section "The Joshua Database Protocol" in ������ ���������

������.

See the section "Customizing the Data Index" in �����������������������.�

Clear Joshua Database Command

Clears predications from the Joshua Database.

������������ Which predications to remove from the database. Clear Joshua

Database asks the database for all predications matching those

specified in the ������������ argument and joshua:untells

them from the database. The value of ������������ can also be

All or None.

:����� ����� ������ ���

Whether or not to clear the predications in the database which

match those specified by the ������������ argument, but have

the opposite truth value. This argument defaults to Yes.

:����� Whether to ask you before making changes to the database. By

default, the command stops and asks before removing any pred-

ications or rules.

:�������� ����� If �������� ����� is Yes, the command will undefine all of the

Joshua Rules. This argument defaults to No.

:������� Whether to print information about what the command is do-

ing.

Clear Joshua Database provides a convenient interface to the joshua:untell func-

tion. It asks the database for all predications matching those specified by the ar-

guments, prompts you for confirmation, and joshua:untells each predicate. It also

allows you to undefine all the Joshua rules, resulting in a fresh Joshua environ-

ment.

Note that undefining all rule definitions is a drastic thing to do, as it clears out

��� rules in your world. Any application depending on these rules will no longer

work. Clear out all rules only if you want a "clean" environment, for example, if

you need to get rid of a runaway rule that you cannot stop by other means.

107
February 2018 Basic Joshua Dictionary

Related Functions:

joshua:clear

joshua:untell

joshua:*contradictory*� ��������

A named constant used by Joshua to denote an interim state of computation

wherein a predication is believed to be both joshua:*true* and

joshua:*false*. When this occurs, Joshua invokes the appropriate Truth

Maintenance System to resolve the contradictory state.

joshua:*contradictory* is not meaningful unless a TMS is present. Howev-

er, not all Truth Maintenance Systems are required to use this value.

Related Topics:

joshua:*true*

joshua:*false*

joshua:*unknown*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values", page 20. See the section "Justification and

Truth Maintenance", page 71.�

joshua:copy-object-if-necessary� ��������������

Copies the ������ handed to it if it contains variables, or is otherwise

ephemeral.

������ Any object, for example, a list, or a predication

Variables in ������ are renamed during copying, so that variables in the

copy differ from variables in the original.

joshua:copy-object-if-necessary is useful for making copies of predications

that may be stack-consed, or whose variables may be temporarily unified.

The latter, for example, is true of variables in the query to joshua:ask.

joshua:copy-object-if-necessary creates a separate copy of its argument in

the heap.

Examples: Here we reuse some of the examples introduced with

joshua:ask. We define some predicates and a rule, then enter some facts

into the database.

(define-predicate favorite-meal (eater food))

(define-predicate guzzles (eater food))

108
Basic Joshua Dictionary February 2018

 (clear)

 (tell [and [favorite-meal bears honey]

 [favorite-meal mosquitoes people]

 [favorite-meal spiders flies]

 [favorite-meal monkeys bananas]

 [guzzles ted ice-cream]])

Show Joshua Database

 True things

 [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES]

 [FAVORITE-MEAL MONKEYS BANANAS]

 [GUZZLES TED ICE-CREAM]

 False things

 None

(defrule not-finicky (:backward)

 if [guzzles ?eater ?food]

 then [favorite-meal ?eater ?food])

Example 1.

;;;If you don’t copy the query, you lose the information!

(defun collect-answers-wrong ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (ask-query backward-support) answers)))

 answers))

COLLECT-ANSWERS-WRONG

 (collect-answers-wrong)

#<Error printing object CONS 42353464>

Example 2.

;;;Using copy-object-if-necessary saves the information

(defun collect-answers ()

 (let ((answers nil))

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (push (copy-object-if-necessary

 (ask-query backward-support)) answers)))

 answers))

COLLECT-ANSWERS

109
February 2018 Basic Joshua Dictionary

 (collect-answers)

([FAVORITE-MEAL TED ICE-CREAM] [FAVORITE-MEAL BEARS HONEY]

 [FAVORITE-MEAL MOSQUITOES PEOPLE]

 [FAVORITE-MEAL SPIDERS FLIES] [FAVORITE-MEAL MONKEYS BANANAS])

(defun first-solution ()

 (block find-a-solution

 (ask [favorite-meal ?eater ?food]

 #’(lambda (backward-support)

 (return-from find-a-solution

 (copy-object-if-necessary (ask-query backward-support)))))

 ;; return nil if nothing succeeded

 nil))

FIRST-SOLUTION

 (first-solution)

[FAVORITE-MEAL MONKEYS BANANAS]

Related Functions:

joshua:ask�

joshua:define-predicate� �������������� &optional������������������

�����������’(default-predicate-model)� &body

�������

Defines a predicate for use in building predications.

���� Any symbol that does not conflict with the name of an exist-

ing flavor or presentation type. So, for example, integer,

cons, and array are not good predicate names. In fact, they

can be disastrous. Doing joshua:define-predicate on these

will likely cause problems in both the CL type system and

the presentation system.

���� A list of symbols, similar to Lisp lambda lists. &optional ar-

guments can be defaulted as in Lisp. Note that, unlike Lisp,

&rest arguments can also be defaulted. &rest arguments can

be used in "tail" fashion, as in: [foo A B . ?quux], which

matches all foo predicates with arguments A and B, followed

by anything else. &key, &aux, and other lambda-list keywords

are not supported.

��������������������������

Lists optional models defined with joshua:define-predicate-

model. You can also use any flavor, as long as it doesn’t use

:ordered-instance-variables. The rules of procedure are iden-

tical to those of defflavor.

110
Basic Joshua Dictionary February 2018

������� Any option acceptable to defflavor. :constructor is unlikely

to be useful, as joshua:define-predicate already uses it. In

addition, see :destructure-into-instance-variables, below.

There are two ways that you can make the predicate arguments lexically

available to methods. For frequent use, specify the option :destructure-into-

instance-variables in your predicate definition. This keeps the predicate ar-

guments destructured permanently in each predication, taking up more

space but providing faster access. For occasional use you can call the macro

joshua:with-statement-destructured. Since the macro destructures the ar-

guments each time you call it, it is slower, but such predications take up

less space. The latter, for example, is usually appropriate for joshua:say

methods. The former might be more appropriate for inner loops.

Examples:

(define-predicate fruit (a-fruit))

(define-predicate bird (bird) (ltms:ltms-predicate-model))

(define-predicate things-to-pack (traveller &rest objects))

(define-predicate gun (range calibre)

 :destructure-into-instance-variables)

(define-predicate has-disease (patient disease &rest symptoms)

 (:destructure-into-instance-variables disease)) ; partial destructuring

Related Functions:

joshua:undefine-predicate

joshua:make-predication

joshua:predicationp

Related Flavor:

joshua:predication

See the section "Joshua Predications", page 11.�

joshua:defquestion� ���������������������������� &rest���������

����������������������� &key������

Defines a question.

���� The name of the question.

����������������� Specifies the direction of chaining the question responds

to. Currently, only :backward chaining questions are

supported.

�������-���������-����

Like joshua:defrule, these are arguments to the control

structure. Currently supported are :importance and

111
February 2018 Basic Joshua Dictionary

:documentation. Both work as they do in rules: The

former lets you specify the priority in which you want

your questions to run (however, they’ll always run after

rules); the latter lets you add a string to document the

meaning of the question. This string can then be re-

trieved with the Lisp function joshua::documentation.

������� A single predication. The question triggers when this

pattern is matched in an joshua:ask, for :backward

question.�

Keywords:

:���� Any Lisp code. This is for customized versions of

joshua:defquestion.

Backward questions behave like backward chaining rules, except that they

run ����� all backward rules. They treat the user as an extension of the

database, and solicit more solutions from him. (For the basics of rule oper-

ation: See the section "Rules and Inference", page 41.)

Like rules, questions have a name, a trigger pattern, and a body. Like

rules, questions are a way of generating information.

When you joshua:ask something with :do-questions joshua::t and the

query pattern unifies with ������� in the question, the question body runs.

Questions run only after the database has been searched and all appropriate

backward rules have been triggered.

If you don’t supply the :code keyword, joshua:defquestion supplies a body

for you.

At run time, the query unifies with the question trigger. If there are no

logic no logic variables in the unified query, a Yes or No question is gener-

ated once. The default answer is No. Answering Yes makes the query that

triggered the question succeed. Answering No makes the query fail, which

can mean either that the query is known to be joshua:*false*, or that it is

not known to be joshua:*true*.

If the unified query contains logic variables, the question loops, presenting

iterations of an AVV (Accept Variable Values) menu, each soliciting bind-

ings for those variables.

Questions can be used to interact with a user, with some other process run-

ning on the machine, or even some other device. For example, a question

could go out over the network and ask some other device to answer a ques-

tion.

Joshua has a default way of asking questions; you can also write your own.

The default version uses either the default joshua:say method to format

������� or a user-defined joshua:say method if available.

Examples:

112
Basic Joshua Dictionary February 2018

We define a predicate and then we define a question that triggers on a

predication pattern built from this predicate.

(define-predicate foo (something something-else))

(defquestion question1 (:backward :documentation "This has no apparent use")

 [foo 1 ?x])�

Example 1 is a query with no logic variables in the unified query pattern.

Example 1:

 (ask [foo 1 2] #’print-query :do-questions t)

Is it true that "[FOO 1 2]"? [default No]: Yes

[FOO 1 2]

NIL�

For example 2 we define a joshua:say method, and the question uses that

method.

Example 2:

(define-predicate-method (say foo) (&optional (stream *standard-output*))

 (with-statement-destructured (something something-else) ()

 (format stream "the arguments ~A and ~A are correct"

 something something-else)))

 (ask [foo 1 2] #’print-query :do-questions t)

Is it true that "the arguments 1 and 2 are correct"? [default No]: Yes

[FOO 1 2]

NIL�

Example 3 uses a query with logic variables in the query pattern.

Example 3:

To write your own code to do questions, use the :code keyword. This key-

word takes arguments and a body, as follows:

���� (query truth-value continuation &optional query-context)

113
February 2018 Basic Joshua Dictionary

���� The ���� of a joshua:defquestion works like Lisp code

in the body of a backward rule. If the value of ���� is

nil, the query that triggered the question fails. If the

value of ���� is non-nil, the query succeeds. Calling the

joshua:succeed function explicitly within the ���� al-

lows the query to succeed many times.�

Within ����, ����� is the query predication given to joshua:ask, after the

query has been unified with the question’s trigger.

If ����������� is joshua:*true*, Joshua is trying to determine whether the

query is known to be true, as opposed to false or unknown. Similarly for a

����������� of joshua:*false* Joshua tries to determine whether the query is

known to be false, as opposed to true or unknown.

The �����-������� argument can almost always be ignored.

���� should do the following:

• If there are no logic variables in the query, decide somehow (perhaps by

asking the user a question) if the query is true. If so, call ������������.

You usually rely on the form (joshua:succeed) to call ������������ for

you.

• If there are logic variables present, solicit sets of bindings for them from

somewhere (for example, the user). For each such set, call ������������

(usually via (joshua:succeed)).�

Examples of custom-written questions:

First we define the predicates, a joshua:say method, a question, and a

backward rule.

(define-predicate wrote (author book))

(define-predicate understands (reader book))

(define-predicate-method (say understands)

 (&optional (stream *standard-output*))

 (with-statement-destructured (reader book) self

 (format stream "~A understands ~A." reader book))) �

114
Basic Joshua Dictionary February 2018

(defquestion writings-of-caesar (:backward) [wrote caesar ?book]

 :code

 ((query truth-value continuation &optional ignore)

 (unless (eql truth-value *true*

 (error "I can only ask positive questions.")))

 (typecase ?book

 (unbound-logic-variable

 ;;asked with ?book unbound

 (loop for prompt = "Tell me something that Caesar wrote: "

 then "Tell me something else Caesar wrote: "

 for answer = (accept

 ’((token-or-type (("No more" . no-more))

 ((string))))

 :prompt prompt :default "De Bello Gallico")

 until (eq answer ’no-more)

 do (with-unification

 (unify ?book answer)

 (succeed))))

 (otherwise

 ;;asked with ?book bound

 (yes-or-no-p "~&Did Caesar write ~A? " ?book))))) �

(defrule writers-understand-their-work (:backward)

 if [wrote ?author ?work]

 then [understands ?author ?work])

Now we joshua:ask the query.

 (ask [understands Caesar ?book] #’say-query :do-questions t)

Tell me something that Caesar wrote: [default "De Bello Gallico"]:

 De Bello Gallico

CAESAR understands De Bello Gallico.

Tell me something else Caesar wrote: [default "De Bello Gallico"]:

 A Canticle for Leibowitz

CAESAR understands A Canticle for Leibowitz.

Tell me something else Caesar wrote: [default "De Bello Gallico"]: No more

NIL

 (ask [understands Caesar "Passion on the Nile"] #’say-query :do-questions t)

Did Caesar write Passion on the Nile? (Yes or No) Yes

CAESAR understands Passion on the Nile.

NIL

 �

Related Functions:

joshua:undefquestion

joshua:ask

joshua:ask-questions

joshua:map-over-backward-question-triggers

joshua:locate-backward-question-trigger�

115
February 2018 Basic Joshua Dictionary

See the section "Asking the User Questions", page 55.�

joshua:defrule� ������������������������������������ &rest�������������������

�������������������������������

Defines a forward or backward chaining rule. The ����������������� argu-

ment specifies the direction of the rule.

Forward chaining rules respond to new facts entered with joshua:tell; the

response (that is, the rule body or �����part), can involve deducing addition-

al facts that are automatically added to the database, or it can involve exe-

cuting any Lisp program.

Backward chaining rules respond to a goal entered with joshua:ask by try-

ing to satisfy it; this can involve satisfying a series of successive subgoals,

or any Lisp program. Backward chaining does not automatically add new

facts to the database. See the section "Rules and Inference", page 41.

��������� Any symbol that uniquely identifies the rule.

����������������� One of the keywords :forward or :backward corre-

sponding, respectively, to a forward rule or a back-

ward rule. Future releases may add more possible con-

trol structures.

���������������������� :importance lets you control the order of rule execu-

tion. :documentation lets you add a string that docu-

ments the meaning of the rule. Future releases may

add more keywords.

:importance takes a ����� argument that can be:

• Numeric; any non-complex number, including +1e∞
or -1e∞ (infinity).

• A symbol (in which case, the system treats it as a

special variable whose runtime value should be a

number).

• A form; the compiler enwraps it with (lambda () ...)

and compiles it. It should return a number when

called.

The larger the ����� argument, the higher the priori-

ty. Rules with no ����� argument run first, after

which rules with a ����� argument are run in order

from the highest to the lowest �����.

Some expense is associated with ordering using

:importance. In forward chaining rules it causes a

"best-first" search through a heap of rules according

116
Basic Joshua Dictionary February 2018

to the value associated with :importance. Backward

chaining only orders the local "best-first" search of

rules at the current choice point.

A more symbolic type of reasoning, or some level of

modeling are usually preferable to the indiscriminate

use of :importance.

�� The symbol joshua::if.

������� Specifies the conditions under which the rule suc-

ceeds. The ���� of the ���part is identical for forward

and backward rules. ������������, the ���parts differ

depending on rule type:

In ������� rules the ���part is the ������� part. It can

be one or more predications, joined by joshua::and or

joshua::or. Lisp forms (called ���������� �����) can

be included in the ���part of forward rules, as well.

See the section "The Joshua Rule Compiler" in ������

����������������.

In �������� rules the ���part is the ������ part. It can

be one or more predications as above, as well as any

Lisp construct. These become ��������.

���� The symbol joshua::then.

��������� Specifies the conclusions drawn from the rule. The

���� of the �����part is identical in forward and back-

ward rules. ������������, the �����parts differ depend-

ing on rule type:

In ������� rules the �����part is the ������ part. Can

be one or more predications, joined by joshua::and or

joshua::or, as well as any Lisp construct.

In �������� rules this is the ������� part. Must be a

single (not a compound) predication.�

Note that the �� and ���� clauses can occur in either order. For example,

some programmers prefer to place the �����part of backward rules first, so

that the trigger (procedure head) always comes first. Either of the arrange-

ments shown below is valid.

If [...] Then [...]�

and

Then [...] If [...]�

A rule’s action part (the ����-part of forward rules, and the ���part of back-

ward rules) can specify any suitable action(s), such as adding or retracting

predications, using Lisp code to perform embedded tests or computations,

calling joshua:ask or joshua:tell, interacting with the user, or displaying

117
February 2018 Basic Joshua Dictionary

messages. When your Lisp code does iterations, call the function

joshua:succeed inside it to let Joshua know that the current set of bind-

ings is correct. Otherwise, Lisp code "succeeds" by returning non-nil. See

examples below.

If the action part of a forward rule contains a predication that is not em-

bedded in Lisp code, this newly deduced fact is automatically added to the

database when the rule executes (a joshua:tell is implicit). Note that such

a predication can be backquoted. If the predication is embedded in Lisp,

however, you must explicitly use a joshua:tell to insert the fact into the

database.

The action part of a backward rule has an implicit joshua:ask around it.

Backward rule action parts add no predications to the database, unless you

explicitly use a joshua:tell to accomplish this.

A backward rule’s trigger part (the �����part) must consist of a single

predication. The trigger can contain logic variables. These variables are

bound by the unifier when the trigger part of the rule is matched against

the query; they are then passed to the action part (the ��-part).

A forward rule’s trigger part (the ��-part) may contain an arbitary number

of predications and Lisp forms. The triggers can contain logic variables. A

forward rule’s triggers behave as follow:

• If the trigger is a predication, it is ��������� when it has been matched

against a predication in the database. The logic variables in the trigger

are bound by the unifier when the trigger part of the rule is matched

against the database predication.

• The trigger may be a Lisp form (we call such triggers ����������

��������). Such a trigger may be satisfied in two ways: If it returns

joshua::t, it is regarded as satisfied. It is also regarded as satisfied each

time it calls joshua:succeed.

• If a procedural trigger never calls joshua:succeed, but merely returns

joshua::t or joshua::nil, then it acts as a ������ on the previous triggers

(either accepting or rejecting the bindings produced by its predecessors).

• A procedural trigger may also act as a ���������, producing several ac-

ceptable sets of bindings and calling joshua:succeed for each one.

• Logic variables which occur for the first time in a procedural trigger

may be bound by calling joshua:unify. Logic variables that are refer-

enced in a procedural trigger but which occur in an earlier trigger, are

bound to the value established by the earlier trigger during the execution

of the Lisp trigger.

• The logical connective ��� can be used to group the triggers into sub-

groups all of which must be satisfied. The logical connective �� can be

118
Basic Joshua Dictionary February 2018

used to group the patterns into subgroups any one of which must be sat-

isfied.

• The trigger part of a forward rule can include the keyword :support fol-

lowed by a logic variable after any trigger pattern. During the execution

of the rule, this logic variable is bound to the predication that matched

the trigger pattern immediately preceding the keyword :support.

• A procedural trigger may provide an argument to joshua:succeed which

should be a ��������������������. If it does so, this predication is treated

as if it had matched a normal trigger of the rule. If there is a :support

keyword following the procedural trigger, then the logic variable follow-

ing it will be bound to the ��������������������.�

Joshua stores and retrieves rules by their triggers. When a new rule is de-

fined, the rule compiler stores the rule’s trigger in a place appropriate to

the rule type. The system finds and executes applicable rules by locating

their triggers; similarly, it deletes unwanted rules by removing their trig-

gers. See the section "The Joshua Rule Indexing Protocol" in ������ ������

�����������.

Here are some examples. First, here’s how to use the :documentation key-

word. We use a forward rule as an example, but :documentation works

identically for backward rules.

(define-predicate reads (person how-much))

(define-predicate is-bookworm (person))

(defrule simple (:forward :documentation "Identifies bookworms")

 if [reads ?person constantly]

 then [is-bookworm ?person])�

To retrieve the documentation string of this rule, use the Lisp function

joshua::documentation.

(documentation ’simple)

"Identifies bookworms" �

Here are some examples of forward chaining. This first a simple declarative

rule:

(defrule good-cake (:forward)

 if [and [rises ?cake justright]

 [color ?cake evenly-gold]

 [texture ?cake moist]

 [taste ?cake justright]]

 then [good ?cake])

Next is an example of using the :support keyword to allow the body of the

rule to reference the triggering facts:

119
February 2018 Basic Joshua Dictionary

(defrule good-cake (:forward)

 if [and [rises ?cake justright] :support ?f1

 [color ?cake evenly-gold] :support ?f2

 [texture ?cake moist] :support ?f3

 [taste ?cake justright] :support ?f4

]

 then [and (Format t "~%The reason I thing that ~s is good is that:"

 ?cake)

 (say ?f1) (say ?f2) (say ?f3) (say ?f4)

 [good ?cake]])

Here we show how a Procedural Trigger can be used as a generator. Once

all triggers before the procedural trigger are matched, it executes and gen-

erates two acceptable bindings for ?color.

(defrule good-cake (:forward)

 if [and [rises ?cake justright]

 [texture ?cake moist]

 (loop for color in ’(evenly-gold nicely-brown)

 do (unify ?color color)

 (succeed))

 [taste ?cake justright]

]

 then [and (format t "~&~s is a good cake with color ~s"

?cake ?color)

 [good ?cake]])

Here is an example of a procedural trigger being used as a filter:

(defrule check-temperature (:forward)

 if [and [temperature-used ?object ?temp]

 (< 325 ?temp 400)] ; example of Lisp used as a filter

 then [correct-temperature-used ?object ?temp])

(defun check-oven-setting ()

 (clear)

 (tell [temperature-used jelly-roll 375])

 (ask [correct-temperature-used jelly-roll ?temp] #’print-query))

(check-oven-setting)

[CORRECT-TEMPERATURE-USED JELLY-ROLL 375]

NIL

Finally, here is an example using nested ���’s and ��’s:

(defrule deduce-ancestry (:forward)

 if [or [is-parent-of ?old ?young]

 [and [is-ancestor-of ?old ?middle]

 [is-parent-of ?middle ?young]]]

 then [is-ancestor-of ?old ?young])

Here are some examples using backward chaining:

120
Basic Joshua Dictionary February 2018

(defrule sailor-alert (:backward)

 if [or [condition-of wind gusting]

 [weather-forecast squalls]]

 then [issue-warning small-craft alert])

;;; Lisp code in action part of backward rule

(define-predicate good-to-read (book))

(defparameter *books* ’(decameron canterbury-tales gargantua-and-pantagruel

 tom-jones catch-22))

(defrule reading-list (:backward)

 if (typecase ?candidate-book

 (unbound-logic-variable

 (loop for book in *books*

 doing (with-unification

 (unify ?candidate-book book)

 (succeed))))

 (otherwise

 (member ?candidate-book *books*)))

 then [good-to-read ?candidate-book])

(ask [good-to-read ?x] #’print-query)

[GOOD-TO-READ DECAMERON]

[GOOD-TO-READ CANTERBURY-TALES]

[GOOD-TO-READ GARGANTUA-AND-PANTAGRUEL]

[GOOD-TO-READ TOM-JONES]

[GOOD-TO-READ CATCH-22]

NIL �

You can inhibit backward chaining rule invocation by passing joshua::nil as

the :do-backward-rules keyword argument to joshua:ask (the default value

is joshua::t). In this case the system does only a database lookup.

You can cause backward question invocation by passing joshua::t as the

:do-questions keyword argument to joshua:ask (the default is joshua::nil).

121
February 2018 Basic Joshua Dictionary

Advanced Concepts Note:

Six built-in models are available for predicates in joshua:ask goals. These

flavors do subsets of what joshua:ask normally does, by leaving out one

or more of the steps joshua:ask-data, joshua:ask-rules, or joshua:ask-

questions. Thus the models save a certain amount of overhead when their

predicates are used as goals to joshua:ask. The steps that ��� done are

indicated by the names:

• joshua:ask-data-only-mixin

• joshua:ask-rules-only-mixin

• joshua:ask-questions-only-mixin

• joshua:ask-data-and-rules-only-mixin

• joshua:ask-data-and-questions-only-mixin

• joshua:ask-rules-and-questions-only-mixin�

Related Functions:

joshua:undefrule

joshua:tell

joshua:ask

joshua:ask-rules�

See the section "Rules and Inference", page 41. See the section "The Joshua

Rule Facilities " in �����������������������.�

joshua:different-objects� �����������������������

Returns nil if the arguments are eql or if either argument is an uninstanti-

ated logic variable (in the latter case the two objects can potentially be

���� to be the same by the unifier). Otherwise, joshua:different-objects

returns t.

������� A Lisp object.

������� A Lisp object.

This function is useful in making rules that weed out inappropriate self-

referential behavior. For example, in a program simulating the behavior of

a monkey that can pick up objects, it is important to ensure that the mon-

key does not try to pick up itself.

This function is often useful in the ���part of rules, or in Lisp code.

(defrule pick-up (:backward)

 if (different-objects ?obj ’monkey)

 then [can-pick-up monkey ?obj])

To invoke this rule, you would type something like:

(ask [can-pick-up monkey wrench] #’print-query)

See the section "Using Joshua Within Lisp Code", page 67.�

122
Basic Joshua Dictionary February 2018

Disable Joshua Tracing Command

Turns off Joshua tracing.

���� �� ������� The type of tracing to disable. It can be one of forward rules,

backward rules, predications, TMS operations, or all. The type-

of tracing defaults to all.

Disable Joshua Tracing turns off the Joshua tracing facility.

Related Commands:

"Enable Joshua Tracing Command"
"Reset Joshua Tracing Command"�

Enable Joshua Tracing Command

Turns on Joshua Tracing.

���� �� ������� The type of tracing to enable. You can enable the tracing of

forward rules, backward rules, predications, TMS operations, or

All. Unless otherwise specified (by using the :���� option for

example), tracing is turned on with the same options and trac-

ing events that were in effect the last time you used tracing.

:���� Brings up a menu of detailed tracing options for the ���� ��

������� being enabled. This menu provides a greater degree of

control over exactly what gets traced and when the tracing fa-

cility interacts with the user.

:����� ������ When enabling a particular type of tracing this option allows

you to specify precisely which events will be displayed during

tracing. These can also be set by using the :���� option.

:���� ������ Allows you to specify at which events the tracing facility will

stop and prompt for interaction. These can also be set by using

the :���� option.

The Enable Joshua Tracing command turns on the Joshua tracing tools and allows

you to customize tracing to your particular application or preference. The Joshua

tracing facility is very flexible. You can, for example, trace just forward rules that

are triggered by predications matching a particular pattern:

 Enable Joshua Tracing Forward Rules :Menu Yes

123
February 2018 Basic Joshua Dictionary

Or, you can even just trace predications built on a particular model:

Enable Joshua Tracing Predications :Menu Yes

The best way to familiarize yourself with this facility is to type Enable Joshua

Tracing All :Menu Yes. This brings up a menu of all the types of Joshua tracing

and the options available for each one. By moving the mouse over each option you

can see the documentation for that option in the mouse documentation line.

Related Commands:

"Disable Joshua Tracing Command"
"Reset Joshua Tracing Command"

See the section "Tracing Predications", page 37. See the section "Tracing Rules",
page 50.

Explain Predication Command

Traces the chain of TMS justifications for �������������������� through rules to

primitive support (premises and assumptions).

��������������������A predication object that is in the database. Must be the actual

database object, and not a copy of it.

����� Specifies how many layers deep into the explanation to go be-

fore cutting off.

This is a command interface to Joshua’s joshua:explain function.

joshua:explain� ���������������������������� &optional��������������

standard-output�

Traces the chain of TMS justifications for �������������������� through

rules to primitive support (premises and assumptions).

��������������������A predication object that is in the database. Must be

the actual database object, and not a copy of it.

����� Specifies how many layers deep into the explanation to

go before cutting off.

������ Specifies a stream to which to display the output.

In general, joshua:explain is useful only if �������������������� is built on

some model that supports the TMS protocol.

124
Basic Joshua Dictionary February 2018

Examples:

(define-predicate higher-in-food-chain (eater lower-in-food-chain)

 (ltms:ltms-predicate-model))

(define-predicate favorite-meal (eater food) (ltms:ltms-predicate-model))

; A good example of how to implement transitive relations

(defrule basic-food-chain (:forward)

 if [favorite-meal ?eater ?eatee]

 then [higher-in-food-chain ?eater ?eatee])

(defrule transitive-food-chain (:forward)

 if [and [favorite-meal ?eater ?eatee]

 [higher-in-food-chain ?eatee ?food]]

 then [higher-in-food-chain ?eater ?food])

(defun meals ()

 (clear)

 (tell [and [favorite-meal red-herring worm]

 [favorite-meal worm algae]])

 (tell [favorite-meal Miss-Marple red-herring] :justification :assumption)

 (cp:execute-command "Show Joshua Database"))

(meals)

True things

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE RED-HERRING]

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE WORM]

 [HIGHER-IN-FOOD-CHAIN MISS-MARPLE ALGAE]

 [HIGHER-IN-FOOD-CHAIN WORM ALGAE]

 [HIGHER-IN-FOOD-CHAIN RED-HERRING ALGAE]

 [HIGHER-IN-FOOD-CHAIN RED-HERRING WORM]

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING]

 [FAVORITE-MEAL WORM ALGAE]

 [FAVORITE-MEAL RED-HERRING WORM]

False things

 None

125
February 2018 Basic Joshua Dictionary

(ask [higher-in-food-chain Miss-Marple ?food]

 #’(lambda (backward-support)

 (explain (ask-database-predication backward-support))))

[HIGHER-IN-FOOD-CHAIN MISS-MARPLE RED-HERRING] is true

 It was derived from rule BASIC-FOOD-CHAIN

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING] is true

 It is an :ASSUMPTION

[HIGHER-IN-FOOD-CHAIN MISS-MARPLE WORM] is true

 It was derived from rule TRANSITIVE-FOOD-CHAIN

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING] is true

 It is an :ASSUMPTION

 [HIGHER-IN-FOOD-CHAIN RED-HERRING WORM] is true

 It was derived from rule BASIC-FOOD-CHAIN

 [FAVORITE-MEAL RED-HERRING WORM] is true

 It is a :PREMISE

[HIGHER-IN-FOOD-CHAIN MISS-MARPLE ALGAE] is true

 It was derived from rule TRANSITIVE-FOOD-CHAIN

 [FAVORITE-MEAL MISS-MARPLE RED-HERRING] is true

 It is an :ASSUMPTION

 [HIGHER-IN-FOOD-CHAIN RED-HERRING ALGAE] is true

 It was derived from rule TRANSITIVE-FOOD-CHAIN

 [FAVORITE-MEAL RED-HERRING WORM] is true

 It is a :PREMISE

 [HIGHER-IN-FOOD-CHAIN WORM ALGAE] is true

 It was derived from rule BASIC-FOOD-CHAIN

 [FAVORITE-MEAL WORM ALGAE] is true

 It is a :PREMISE

Related Functions:

joshua:graph-tms-support

See the section "Explaining Program Beliefs", page 75.�

joshua:*false*� ��������

A named constant used by Joshua to denote a truth value of false. You can

compare truth values using eql.

Related Topics:

joshua:*true*

joshua:*unknown*

joshua:*contradictory*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values", page 20.�

126
Basic Joshua Dictionary February 2018

joshua:graph-query-results� ������������������������ &key��������������

:vertical�����������*standard-output*�

A convenience function for use in an joshua:ask continuation.

joshua:graph-query-results draws a graph of the support information in

����������������, that is, the successful query, and the reasons it succeed-

ed.

���������������� is fully described in the dictionary entry for joshua:ask.

joshua:graph-query-results both extracts and interprets the information

for you.

���������������� A support argument passed by joshua:ask to a continu-

ation.

:����������� Specifies the graph orientation. Default is vertical.

:������ The stream on which the graph is output. Default is

standard-output.

The convenience function joshua:print-query-results prints the same infor-

mation as joshua:graph-query-results.

The accessor function joshua:ask-derivation extracts all the support for a

satisfied query but without interpreting it. For the sake of comparison we’ll

use the same examples to illustrate all three of these functions.

Examples: First, a query satisfied from the database. The graph shows the

database predication that matched the query.

(define-predicate edible (object))

(define-predicate is-food (object))

(define-predicate contains (object substance))

(define-predicate sweet (object))

(define-predicate type-of (object type))

(tell [edible chocolate-coated-ants])

(tell [contains chocolate-coated-ants honey])

�

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the rule definitions.

(defrule food? (:backward)

 if [edible ?object]

 then [is-food ?object])

127
February 2018 Basic Joshua Dictionary

(defrule sweet? (:backward)

 if [or [contains ?object chocolate]

 [contains ?object sugar]

 [contains ?object honey]]

 then [sweet ?object])

(defrule dessert? (:backward)

 if [and [is-food ?object]

 [sweet ?object]]

 then [type-of ?object dessert])�

Now we joshua:ask what foods qualify as desserts and why. In the graph,

ovals denote queries that were ��� satisfied directly by the database. Rect-

angles denote queries that were satisfied by the database.

The top of the graph shows the satisfied goal, and names the rule that sat-

isfied it. The rest of the graph shows successive subgoals and how each

was satisfied.

Since backward chaining stops when it finds database predications, the bot-

tom leaves of the graph tree are queries that were satisfied by the

database. Hence they are rectangles, whereas intermediate nodes are ovals.

The arrows move in the ������� (logical conclusion) direction.

Here’s an extension to the previous example, to show how the graph dis-

plays truth values of joshua:*false*. We add a rule to eliminate first

course choices: the rule says that things that are liquid and are not

desserts are not a main course.

(define-predicate is-consistency-of (food consistency))

(defrule soup? (:backward)

 if [and [not [type-of ?food dessert]]

 [is-consistency-of ?food liquid]]

 then [not [type-of ?food main-course]])

128
Basic Joshua Dictionary February 2018

(tell [not [type-of chicken-broth dessert]])

(tell [is-consistency-of chicken-broth liquid])�

The graph displays the satisfied query prefixed by [not ...]. The database

predication matching the query appears without the prefix, just as it would

in the database display. The label above it indicates that its truth value is

joshua:*false*. (Predications with a truth value of joshua:*true* are not

labelled as such in the graph Database heading.)

Related Functions:

joshua:ask

joshua:print-query-results�

See the section "Querying the Database", page 23. See the section "Explain-

ing Backward Chaining Support", page 48.�

joshua:graph-tms-support� ��������&rest�������������

Displays a graph of the TMS support for ������������, that is, of the depen-

dency information which a Truth Maintenance System stores in the

database along with ������������. The graph traces the support chain

through the dependency records created by forward rules (or other callers

of joshua:justify such as the the :justification keyword argument to

joshua:tell) to the underlying primitive support (assumptions and premis-

es). (Backward chaining support is not graphed, since the rule result is not

stored in the database. For that, you probably want joshua:graph-query-

results.)

Example:

(define-predicate dreams-in (language dreamer) (ltms:ltms-predicate-model))

(define-predicate counts-in (language person) (ltms:ltms-predicate-model))

(define-predicate native-speaker-of (language speaker)

 (ltms:ltms-predicate-model))

(defrule native-speaker? (:forward)

 if [and [dreams-in ?language ?person]

 [counts-in ?language ?person]]

 then [native-speaker-of ?language ?person])

129
February 2018 Basic Joshua Dictionary

(tell [dreams-in Spanish Violet] :justification :assumption)

(tell [counts-in Spanish Violet])

Show Joshua Database (matching pattern [default All])

 [native-speaker-of ?x ?y] (opposite truth-value too? [default Yes]) Yes

True things

 [NATIVE-SPEAKER-OF SPANISH VIOLET]

False things

 None

You must give joshua:graph-tms-support the actual predication object that

resides in the database, rather than a copy of it. In our example we re-

trieve the predication object by clicking the mouse over it in the database

display.

Since the support graph traces the support for facts that are in the

database, all nodes are rectangles. (Compare the display of joshua:graph-

query-results.) The top of the graph tree shows the predication whose sup-

port we want to know about. We see that this predication was derived from

a forward rule, which in turn was derived from some predications. The bot-

tom leaves of the graph tree show primitive support (premise or assump-

tion) denoting the end of the forward chaining process. The arrows point in

the ������� (logical conclusion) direction.

Here’s an example showing the support graph for a predication whose truth

value is joshua:*false*.

(define-predicate has-ticket (claimant)(ltms:ltms-predicate-model))

(define-predicate admissible (claimant)(ltms:ltms-predicate-model))

(defrule no-free-lunch (:forward)

 if [not [has-ticket ?x]]

 then [not [admissible ?x]])

(tell [not [has-ticket Jane]])�

130
Basic Joshua Dictionary February 2018

Predications with a truth value of joshua:*false* appear with an indication

that they are false.

See the section "Explaining Program Beliefs", page 75.�

joshua:known� ���������������������������

This modal operator checks if ����������� is known to be either

joshua:*true* or joshua:*false*.

����������� A Joshua predication pattern to match.�

The query: (ask [known [foo ?x]] #’ ...)

Succeeds when: either [foo ?x] or [not [foo ?x]] succeed

If successful, joshua:known calls the continuation on the instantiated

query.

Examples:

We use the predicate shape-of and the statements about shapes that we

used to illustrate the predicate joshua:provable. Here they are.

(define-predicate shape-of (object shape))

(tell [and [shape-of door oval]

 [not [shape-of leaf pointed]]])

[AND [SHAPE-OF DOOR OVAL] [NOT [SHAPE-OF LEAF POINTED]]]

 Show Joshua Database

True things

 [SHAPE-OF DOOR OVAL]

False things

 [SHAPE-OF LEAF POINTED]]�

The database contains one statement about shapes that is joshua:*true*

and one that is joshua:*false*. joshua:known succeeds in each case, re-

turning the instantiated query. Note that there is no indication of truth

131
February 2018 Basic Joshua Dictionary

value in the instantiated query. That is because when we ask if something

is joshua:known, we are interested only in the existence of an answer, not

in its particular truth value. (���������������� for the joshua:ask does in-

dicate what the truth value of the instantiated query was.)

 (ask [known [shape-of ?object ?shape]] #’print-query)

[KNOWN [SHAPE-OF DOOR OVAL]]

[KNOWN [SHAPE-OF LEAF POINTED]] ; argument was actually false

A more interesting question is to ask whether a predication is ��� known to

Joshua.

The query: (ask [not [known [foo ?x]]] #’ ...)

Succeeds when: [foo ?x] and [not [foo ?x]] both fail

Examples:

; The proposition is not in the database or in rules

 (ask [not [known [shape-of nose pointed]]] #’print-query)

�����[KNOWN [SHAPE-OF NOSE POINTED]]�

joshua:known can also be used in backward rules. The goal of the very in-

considerate rule in the next example is to select a dancing partner. The

rule filters out those whose ability at ?activity is unknown, keeping those

who are good or bad.

(define-predicate need-a-partner (activity))

(define-predicate is-good-at (activity person))

(define-predicate use-as-partner (person activity))

(defrule two-left-feet-will-do (:backward)

 if [and [need-a-partner ?activity]

 [known [is-good-at ?activity ?person]]]

 then [use-as-partner ?person ?activity])

(defun test-known ()

 (clear)

 (tell [and [need-a-partner dancing]

 [is-good-at dancing Tom]

 [not [is-good-at dancing Fred]]])

 ’Done.)

(test-known)

DONE.

 (ask [use-as-partner ?person ?activity] #’print-query)

[USE-AS-PARTNER TOM DANCING]

[USE-AS-PARTNER FRED DANCING]

132
Basic Joshua Dictionary February 2018

The goal of the rule in the next example is to hire an applicant if his/her

qualifications are excellent, even if nothing is known about the applicant’s

experience level.

(define-predicate has-qualifications (person qualifications))

(define-predicate previous-experience (person experience))

(define-predicate hire-candidate (name))

(tell [and [has-qualifications Fred poor]

 [has-qualifications Joan excellent]])

[AND [HAS-QUALIFICATIONS FRED POOR] [HAS-QUALIFICATIONS JOAN EXCELLENT]]

(defrule inexperience-no-obstacle (:backward)

 if [and [has-qualifications ?applicant excellent]

 [not [known [previous-experience ?applicant ?how-much]]]]

 then [hire-candidate ?applicant])

(ask [hire-candidate Fred] #’print-query)

(ask [hire-candidate ?applicant] #’print-query)

[HIRE-CANDIDATE JOAN]

Related Predicate:

joshua:provable�

joshua:make-predication� ����������������� &optional�����

Construct a predication out of the specified ��������� (in the optional ����

supplied). The newly constructed predication is ��� entered in the database,

unless you combine joshua:make-predication with joshua:tell.

You should seldom need to know about this, as the [] syntax is used in

Joshua contexts as a reader macro for joshua:make-predication.

��������� A list whose first element is the name of a (defined)

predicate. The rest of the list elements are the argu-

ments to the predicate.

���� Storage area to cons in�

Examples:

(define-predicate shape-of (object shape))

(make-predication ’(shape-of window round))

[SHAPE-OF WINDOW ROUND] ; this is not in the database

(tell (make-predication ’(shape-of window round)))

[SHAPE-OF WINDOW ROUND] ; new predication added to the database

T

133
February 2018 Basic Joshua Dictionary

joshua:make-predication is useful for constructing Joshua predications

from data generated within Lisp code. (Still, backquoting [] expressions

should suffice most of the time.)

Related Functions:

joshua:define-predicate

See the section "Predications and Predicates", page 11.�

joshua:map-over-database-predications� ������������������������������

����

A convenience macro for joshua:ask. Use it whenever you want to find an

answer to a query in the database without using rules or questions.

joshua:map-over-database-predications finds all database predications that

unify with ������������������� and applies �������� to each.

������������������� A pattern to match against database predications.

�������� Specifies the operation to do on each database predica-

tion that unifies with predication-pattern. Should be a

function of one argument.�

(map-over-database-predications <predication> <continuation>) is equiva-

lent to:

(ask [foo ?x]

 #’(lambda (support)

 (funcall <cont>

 (ask-database-predication support)))

 :do-backward-rules nil) �

Example:

We’ll build an author-title index for a library, using joshua:tell statements.

We’ll include an LTMS in our predicate definitions, so that we can later

get joshua:explain to tell us about some database predications.

(define-predicate author-of (work author) (ltms:ltms-predicate-model))

(defun build-author-title-index1 ()

 (clear)

 (tell [and [author-of "The Interpretation of Dreams" Freud]

 [author-of "Hedda Gabler" Ibsen]

 [author-of "Totem and Taboo" Freud]

 [author-of "A Doll’s House" Ibsen]])

 (cp:execute-command "Show Joshua Database"))

BUILD-AUTHOR-TITLE-INDEX1

134
Basic Joshua Dictionary February 2018

(build-author-title-index1)

True things

 [AUTHOR-OF "A Doll’s House" IBSEN]

 [AUTHOR-OF "Totem and Taboo" FREUD]

 [AUTHOR-OF "Hedda Gabler" IBSEN]

 [AUTHOR-OF "The Interpretation of Dreams" FREUD]

False things

 None�

The first example looks in the library database and removes from it all of

Freud’s books (perhaps for rebinding due to overuse). We use joshua:map-

over-database-predications to get our hands on the actual predication ob-

jects so that we can remove them.

To allow easy replacement of this information we’ll joshua:unjustify the

facts rather than actually removing them with joshua:untell. The truth

value of each of these facts becomes joshua:*unknown*, even though they

physically remain in the system.

(defun away-with-sigmund ()

 (map-over-database-predications [author-of ?work Freud] #’unjustify)

 (cp:execute-command "Show Joshua Database"))

AWAY-WITH-SIGMUND

(away-with-SIGMUND)

True things

 [AUTHOR-OF "A Doll’s House" IBSEN]

 [AUTHOR-OF "Hedda Gabler" IBSEN]

False things

 None�

Let’s add a forward rule that says the library owns any work that was au-

thored by Shakespeare, and then build another database.

(define-predicate owns-library (work) (ltms:ltms-predicate-model))

135
February 2018 Basic Joshua Dictionary

(defrule Shakespeare-holdings (:forward)

 if [author-of ?work Shakespeare]

 then [owns-library ?work])

(defun build-author-title-index2 ()

 (clear)

 (tell [and [author-of "King Lear" Shakespeare]

 [author-of "Hedda Gabler" Ibsen]

 [owns-library "Trumpeting Joshua"]

 [author-of "A Doll’s House" Ibsen]])

 (cp:execute-command "Show Joshua Database"))

BUILD-AUTHOR-TITLE-INDEX2

(build-author-title-index2)

True things

 [OWNS-LIBRARY "Trumpeting Joshua"] [AUTHOR-OF "Hedda Gabler" IBSEN]

 [OWNS-LIBRARY "King Lear"] [AUTHOR-OF "King Lear" SHAKESPEARE]

 [AUTHOR-OF "A Doll’s House" IBSEN]

False things

 None

We can now ask Joshua to joshua:explain the database predications about

works the library owns.

(map-over-database-predications [owns-library ?work] #’explain)

[OWNS-LIBRARY "Trumpeting Joshua"] is true

 It is a :PREMISE

[OWNS-LIBRARY "King Lear"] is true

 It was derived from rule SHAKESPEARE-HOLDINGS

 [AUTHOR-OF "King Lear" SHAKESPEARE] is true

 It is a :PREMISE�

Here’s an example showing the display when the database predication has a

truth value of joshua:*false*. The predication displays without indicating

its truth value; that information is supplied by the accompanying explana-

tion.

(tell [not [owns-library "Everyday Sanskrit"]])

¬[OWNS-LIBRARY "Everyday Sanskrit"]

T

(map-over-database-predications [not [owns-library ?work]] #’explain)

[OWNS-LIBRARY "Everyday Sanskrit"] is false

 It is a :PREMISE�

The accessor function joshua:ask-database-predication can also be used to

extract database predications from the backward support supplied to the

joshua:ask continuation. Most of the time joshua:map-over-database-

predications probably serves just as well, and it is easier to use. For com-

parison we are using the same examples to illustrate both functions.

136
Basic Joshua Dictionary February 2018

Related Functions:

joshua:ask

See the section "Querying the Database", page 23.�

joshua:predication� ������

The non-instantiable base flavor for all predications in Joshua. It is mixed

into new predications via joshua:define-predicate.

You can test for this flavor by using typep or joshua:predicationp (into

which typep is optimized).

Related Presentation Types:

joshua:predication

joshua:database-predication�

joshua:predicationp� ��������������

Checks whether ������ is a Joshua predication, that is, whether the object is

built on the base flavor joshua:predication. joshua:predication is the root

of the Joshua model tree.

joshua:predicationp returns t if the object is a Joshua predication, other-

wise nil.

������ An object in the Lisp world.

Examples:

 (define-predicate valid-word (word language))

 (tell [valid-word incarnadine English])

[VALID-WORD INCARNADINE ENGLISH]

T

 (predicationp ��������������������������������)

 ; click on object returned by tell

(PREDICATION FLAVOR:VANILLA)

 (ask [valid-word incarnadine ?language]

 #’(lambda (backward-support)

 (when (predicationp (ask-database-predication backward-support))

 (print (ask-database-predication backward-support)))))

[VALID-WORD INCARNADINE ENGLISH] �

You can use typep to do the same test as joshua:predicationp. In fact, the

compiler optimizes the form:

(typep x ’predication)

into the form:

(predicationp x)

For example:

137
February 2018 Basic Joshua Dictionary

 (ask [valid-word incarnadine ?language]

 #’(lambda (backward-support)

 (when (typep (ask-database-predication backward-support)

’predication)

 (print (ask-database-predication backward-support)))))

[VALID-WORD INCARNADINE ENGLISH]

Related Functions:

joshua:predication

typep�

joshua:print-query� ������������������������ &optional��������

standard-output�

A convenience function for use in an joshua:ask continuation.

joshua:print-query displays the joshua:ask query with its variables in-

stantiated.

���������������� The backward support supplied to the joshua:ask con-

tinuation.

������ A stream to which to output the information. Defaults

to *standard-output*.

Examples:

(define-predicate type-of (object type))

(tell [type-of Iliad epic])

(ask [type-of ?book epic] #’print-query)

[TYPE-OF ILIAD EPIC]

If you want to use the instantiated query in ways other than printing it, ex-

tract it yourself using the accessor function joshua:ask-query.

Related Functions:

joshua:ask

joshua:graph-query-results

joshua:print-query-results

joshua:say-query

See the section "Querying the Database", page 23.�

joshua:print-query-results� ������������������������ &key���������

standard-output������������#’prin1�
A convenience function for use in an joshua:ask continuation.

joshua:print-query-results displays and interprets the support information

in the joshua:ask continuation argument, ����������������; that is, it tells

you what queries succeeded, and why.

138
Basic Joshua Dictionary February 2018

��������-������� A list containing the satisfied query and information

about its support.

������ A stream to which to output the information. Default is

standard-output.

������� A function of two arguments, like prin1, that is used to

print elements of the support. prin1 is the default, but

another reasonable value to give is joshua:say.

Use joshua:graph-query-results to see a graph of the information provided

by joshua:print-query-results.

The accessor function joshua:ask-derivation extracts the support portion of

���������������� but does not interpret the information.

For comparison, we use the same examples to illustrate all three functions.

Examples:

The first example shows a query satisfied by database lookup. Both the in-

stantiated query and its support (here the matching database predication)

are printed.

(define-predicate type-of (object type))

(tell [type-of Iliad epic])

(ask [type-of ?book epic] #’print-query-results)

[TYPE-OF ILIAD EPIC] succeeded: [TYPE-OF ILIAD EPIC] was TRUE in the database

The next example shows the support for a query that is satisfied from

rules. We have a rule, dessert?, that determines if a given food is a

dessert. Each of this rule’s subgoals is derived from other rules. Here are

the definitions.

(define-predicate edible (object))

(define-predicate is-food (object))

(define-predicate contains (object substance))

(define-predicate sweet (object))

(defrule food? (:backward)

 if [edible ?object]

 then [is-food ?object])

139
February 2018 Basic Joshua Dictionary

(defrule sweet? (:backward)

 if [or [contains ?object chocolate]

 [contains ?object sugar]

 [contains ?object honey]]

 then [sweet ?object])

(defrule dessert? (:backward)

 if [and [is-food ?object]

 [sweet ?object]]

 then [type-of ?object dessert])

;tell some sticky facts

(tell [edible chocolate-coated-ants])

(tell [contains chocolate-coated-ants honey])�

Now we joshua:ask what foods qualify as desserts and why. A single food,

chocolate-covered-ants, succeeded. The display shows the instantiated

query, explaining why it succeeded: support is traced backward from rule

dessert? that satisfied the query, through the support used to satisfy parts

of the rule body.

 (ask [type-of ?object dessert] #’print-query-results)

[TYPE-OF CHOCOLATE-COATED-ANTS DESSERT] succeeded

 It was derived from rule DESSERT?

 [IS-FOOD CHOCOLATE-COATED-ANTS] succeeded

 It was derived from rule FOOD?

 [EDIBLE CHOCOLATE-COATED-ANTS] succeeded

 [EDIBLE CHOCOLATE-COATED-ANTS] was true in the database

 [SWEET CHOCOLATE-COATED-ANTS] succeeded

 It was derived from rule SWEET?

 [CONTAINS CHOCOLATE-COATED-ANTS HONEY] succeeded

 [CONTAINS CHOCOLATE-COATED-ANTS HONEY] was true in the database

Related Functions:

joshua:ask

joshua:graph-query-results

joshua:print-query

joshua:say-query

See the section "Querying the Database", page 23. See the section "Explain-

ing Backward Chaining Support", page 48.�

joshua:provable� ���������������������������

Checks if ����������� is known to be joshua:*true*, (or if it is known to be

joshua:*false*, if [not ...] is wrapped around it.)

This is a modal operator. [provable ...] and [not [provable ...]] corre-

spond to the "box" and "diamond" operators of some modal logics.

140
Basic Joshua Dictionary February 2018

����������� A Joshua predication pattern to match.

The query: (ask [provable [foo ?x]] #’ ...)

Succeeds when: [foo ?x] would succeed

The query: (ask [provable [not [foo ?x]] #’ ...)

Succeeds when: [not [foo ?x]] would succeed

If successful, joshua:provable calls the continuation on the instantiated

query.

Examples:

Let’s define a predicate, shape-of, joshua:tell some statements about the

shape of objects, and then display the database.

(define-predicate shape-of (object shape))

(tell [and [shape-of door oval]

 [not [shape-of leaf pointed]]])

[AND [SHAPE-OF DOOR OVAL] [NOT [SHAPE-OF LEAF POINTED]]]

 Show Joshua Database

True things

 [SHAPE-OF DOOR OVAL]

False things

 [SHAPE-OF LEAF POINTED]]�

Now we can check which statements about shapes are joshua:*true*, and

which are joshua:*false*.

;; Check if the proposition is joshua:*true*

(ask [provable [shape-of door oval]] #’print-query)

[PROVABLE [SHAPE-OF DOOR OVAL]]

;; Comparing provable to known

(ask [provable [shape-of leaf pointed]] #’print-query)

 ;this fails

(ask [known [shape-of leaf pointed]] #’print-query)

[KNOWN [SHAPE-OF LEAF POINTED]]

;; Check if the proposition is joshua:*false*

 (ask [provable [not [shape-of�leaf�pointed]]] #’print-query)

[PROVABLE [NOT [SHAPE-OF LEAF POINTED]]]

 (ask [provable [not [shape-of ?object ?shape]]] #’print-query)

[PROVABLE [NOT [SHAPE-OF LEAF POINTED]]]

141
February 2018 Basic Joshua Dictionary

;; Comparing provable to known

(ask [provable [not [shape-of door oval]]] #’print-query)

 ;this fails

(ask [known [not [shape-of door oval]]] #’print-query)

[KNOWN [NOT [SHAPE-OF DOOR OVAL]]]�

It is more interesting to ask if something is ��� provable.

The query: (ask [not [provable [foo ?x]]] #’ ...)

Succeeds when: [foo ?x] would have failed�

;; Check if we don’t know the proposition to be joshua:*true*

 (ask [not [provable [shape-of starfish round]]] #’print-query)

�����[PROVABLE [SHAPE-OF STARFISH ROUND]]�

;; Check if we don’t know the proposition to be joshua:*false*

 (ask [not [provable [not [shape-of hill conical]]]] #’print-query)

�����[PROVABLE [NOT [SHAPE-OF HILL CONICAL]]]�

joshua:provable can also be used in backward rules.

Related Predicate:

joshua:known�

Reset Joshua Tracing Command

Resets the tracing options to the original defaults.

��������������� Which type of tracing to reset. The possible types are forward

rules, backward rules, predications, TMS operations and All.

��������������� Whether to reset the traced and stepped events for the ���� ��

��������as well.

The Reset Joshua Tracing command sets the Joshua tracing options back to their

initial defaults. This command is useful if you have been selectively tracing rules

or predications and would like to go back to tracing all rules or all predications.

The ������� ������ option comes in handy when you have been tracing or stepping

particular events and would like to go back to just tracing the default events. This

command does not disable or enable tracing, it just affects which things are

traced.

Related Commands:

"Enable Joshua Tracing Command"
"Disable Joshua Tracing Command"�

~\\say\\ ����������� ����������������

A format directive that makes it easy to combine the use of joshua:say

with other kinds of formatted output. It takes one format-argument, the

predication to be joshua:say’d to the output stream.

142
Basic Joshua Dictionary February 2018

Examples:

(format t "~&The registry of deeds says that ~\\say\\."

[frobozz Prospero 1616 remote-island])�

This would print the following sentence:

The registry of deeds says that PROSPERO was an owner of a frobozz

in 1616 at REMOTE-ISLAND.�

You can also use ~\\say\\ in other places format strings are used, for in-

stance prompt-and-accept:

(prompt-and-accept ’integer "For what values of ~S is it true that ~\\say\\?"

 ?x [Riemann-zeta 3 ?x])�

Related Functions:

joshua:say

See the section "Formatting Predications: the SAY Method", page 35.
joshua:say� ������������������� &optional���������*standard-output*�

Prints out ����������� on ������, possibly in a way other than prin1 would.

This is good for printing the meaning of a predication in natural language,

as opposed to the predicate calculus notation in which programs are writ-

ten. However, you needn’t restrict your thinking about joshua:say to just

natural language. For example, joshua:say could present a predication as a

piece of graphics; see examples below. Judicious use of joshua:say methods

can make it easier to generate user interfaces.

It usually doesn’t matter what value the implementations of joshua:say re-

turn, since joshua:say is usually done for side-effect. The exception is that

if ������ is explicitly supplied as nil, the implementations should do what

format would do, that is, return a string if possible. (Graphical joshua:say

methods can’t do this.)

Examples:

(define-predicate frobozz (who when where) ()

 :destructure-into-instance-variables)

(define-predicate-method (say frobozz) (&optional (stream *standard-output*))

 (format stream "~S was an owner of a frobozz in ~S at ~S." who when where))

(say [frobozz Prospero 1616 remote-island])

prints the sentence:

PROSPERO was an owner of a frobozz in 1616 at REMOTE-ISLAND.

An example using graphics would be:

143
February 2018 Basic Joshua Dictionary

(define-predicate-method (say frobozz) (&optional (stream *standard-output*))

 (dw:with-output-as-presentation

 (:stream stream :object self :type (type-of self))

 (format-graph-from-root (list who (list where) (list when))

 #’(lambda (x s) (prin1 (car x) s))

 #’cdr

 :stream stream)))�

The joshua:say method now draws a graph representing Prospero’s rela-

tionship to his property and the time at which he owned it.

Related Functions:

"~\\Say\\"

See the section "Formatting Predications: the SAY Method", page 35.�

joshua:say-query� ������������������������ &optional���������*standard-

output*�

A convenience function for use in an joshua:ask continuation. joshua:say-

query displays the instantiated query using a user-defined joshua:say

method if available, or the default joshua:say method. The latter simply

prints the instantiated query.

���������������� The support supplied to the joshua:ask continuation.

������ A stream to which to output the information. The de-

fault is *standard-output*.

Examples:

;; say-query with default say method

(define-predicate loves (person object))

(tell [loves Bob chocolate])

(ask [loves Bob ?x] #’say-query)

 [LOVES BOB CHOCOLATE]

;; say-query with user-defined say method

(define-predicate type-of (object type))

144
Basic Joshua Dictionary February 2018

(define-predicate-method (say type-of) (&optional (stream *standard-output*))

 (with-statement-destructured (object type) ()

 (format stream

 "~% The ~A is an example of the ~A literary form." object type)))

(tell [type-of Iliad epic])

[TYPE-OF ILIAD EPIC]

(ask [type-of ?book epic] #’say-query)

 The ILIAD is an example of the EPIC literary form.

To use the instantiated query in some other way rather than joshua:saying

it, extract it from the continuation argument using the accessor function

joshua:ask-query, and interpret the information.

Related Functions:

joshua:ask

joshua:graph-query-results

joshua:print-query

joshua:print-query-results

See the section "Querying the Database", page 23.�

Show Joshua Database Command

Displays the contents of the Database, or a subset of the contents matching a cer-

tain pattern.

�������� ������� Specifies the predication patterns to display. The default is the

entire database.

The display groups predications under the headings True and False, for predica-

tions with a truth value of joshua:*true* and joshua:*false*, respectively.

When specifying a pattern you can further limit the display to patterns with either

truth value.

Examples:

 Show Joshua Database (matching pattern [default All]) All

True things ; indication of truth value is in the heading

 [DREAMS-IN SPANISH LUCINDA] [NATIVE-SPEAKER-OF SPANISH LUCINDA]

 [DREAMS-IN SUMERIAN DR-PARCHMENT] [NATIVE-SPEAKER-OF GERMAN DR-PARCHMENT]

 [COUNTS-IN SPANISH LUCINDA]

False things

 [COUNTS-IN GERMAN HENRY] ; indication of truth value is in the heading

145
February 2018 Basic Joshua Dictionary

 Show Joshua Database (matching pattern [default All]) [dreams-in ?x ?y]

 (opposite truth-value too? [default Yes]) Yes

True things

 [DREAMS-IN SPANISH LUCINDA]

 [DREAMS-IN SUMERIAN DR-PARCHMENT]

False things

 None

 �

See the section "Entering and Displaying Predications in the Database", page 15.

Show Joshua Predicates Command

Shows the currently defined Joshua predicates.

:������� ������ Whether to include predicates that are used as base flavors for

building other predicates in the output.

:�������� Show only predicates whose names contain a substring or sub-

strings.

:������ ����������� Where to display the information.

:�������� Only show predicates in the specified package or packages.

Supply a value of All to see all the currently defined Joshua

predicates. Unless you otherwise specify the package, you see

only the predicates defined in the current package.

:������ ��������� �������

Whether to include predicates that are inherited by the pack-

ages specified in :��������.

:������ Show only the predicates that are defined in a particular sys-

tem.

The Show Joshua Predicates command provides a convenient tool for browsing

through all the predicates defined in the current world. The output is a table of

predicate names and arguments. There are a number of mouse behaviors defined

for the predicate names that this command displays. These can be seen by mous-

ing right on the name.

Show Joshua Predicates :Packages TME

TME:ABNORMAL (WHO FOR-WHAT) TME:LOVES (LOVER LOVEE)

TME:BIRD (BOID) TME:ONE-PER-ROW-OR-COL (R-OR-C INDEX)

TME:FLY (BOID) TME:PENGUIN (BOID)

IS-EXAMPLE-OF (NAME TYPE) PROVABLE (PROPOSITION)

TME:JEALOUS (WHO) TME:QUEEN (ROW COL)

TME:KILLS (KILLER VICTIM) TME:TRAGEDY (EVENT)

KNOWN (PROPOSITION)�

Related Commands:

146
Basic Joshua Dictionary February 2018

"Show Joshua Rules Command"
"Show Joshua Tracing Command"

Show Joshua Rules Command

Displays the currently defined rules.

:��������� �� Show rules with one or more triggers that unify with the spec-

ified predication.

:�������� Show rules with names containing one or more substrings.

:������ ����������� Where to display the output from this command.

:�������� Show the rules defined in which package or packages. This de-

faults to the current package.

:������ ��������� �������

Include rules that are inherited by ��������.

:������ Show only the rules defined in a particular system.

:���� Show only backward or forward rules. By default the command

shows both backward and forward rules.�

The Show Joshua Rules command provides a tool for browsing through all the

Joshua rules. It displays a table of all the rules satisfying the given arguments.

Mousing middle on a rule name displays the most recent definition of that rule.

Example:

Show Joshua Rules :Triggered By [tme:loves ? ?] :Packages All

Forward Rules:

JEALOUSY LOVE-IN-IDLENESS ONLY-ONE-LOVE QUALITY-NOT-QUANTITY

UNREQUITED-LOVE

The above example lists all of the rules that could be triggered by a predication of

the form [tme:loves ? ?].

Related Commands:

"Show Joshua Predicates Command"
"Show Joshua Tracing Command"

Show Joshua Tracing Command

Shows information about Joshua tracing.

������� ������� Which type of tracing to describe. It can be one of forward

rules, backward rules, predications, TMS operations, or all.

:������ ����������� Where to display the output from this command.

The Show Joshua Tracing command describes the current state of Joshua tracing,

147
February 2018 Basic Joshua Dictionary

saying whether each ���� �� ������� is on or off. For each active ���� �� �������,

Show Joshua Tracing prints out information about the current options and traced

events.

Example:

Show Joshua Tracing (type of tracing) All

Related Commands:

"Show Joshua Rules Command"
"Show Joshua Predicates Command"�

Show Rule Definition Command

Shows the latest definition of a Joshua rule.

���� Show the definition of which rule or rules.

:���� This argument controls the behavior of the command when the

desired rule definition is not currently in an editor buffer. If

you enter Yes, the command loads the definition into an editor

buffer. If you enter No, it does not. The value of ���� defaults

to Query, meaning the command should ask you before loading

any file into the editor.

:������ ����������� Where to display the output from this command.

The Show Rule Definition command allows you to see the definition of a Joshua

rule in a Lisp Listener without having to enter the editor. When the rule defini-

tion can be found in the editor the command displays the latest version. Other-

wise, depending on the value of ����, the command offers to read in the latest

definition from the file containing the rule definition.

Example:

148
Basic Joshua Dictionary February 2018

Show Rule Definition JEALOUSY

Rule Jealousy:

(defrule jealousy (:forward :importance 3)

 IF [and [jealous ?x]

 [loves ?x ?y]

 [loves ?z ?y]

 (different-objects ?x ?z)]

 THEN [kills ?x ?z])

joshua:succeed� ��������&optional��������

Joshua is a success-continuation-passing language. In most places, calling

the continuation means "go ahead with the rest of the computation". Based

on context, the form joshua:succeed finds the continuation and calls it ac-

cordingly.

You can use joshua:succeed within Lisp code embedded in:

• The ���part of rules (in Lisp code in forward rules, and in multiply-

succeeding Lisp forms of backward rules)

• The body of a joshua:defquestion�

It makes no sense to call joshua:succeed elsewhere.

The optional ������� argument allows the Lisp code to specify the deriva-

tion information for the query.

Example:

(define-predicate good-to-read (book))

(defparameter *books* ’(decameron canterbury-tales gargantua-and-pantagruel

 tom-jones catch-22))

(defrule reading-list (:backward)

 if (typecase ?candidate-book

 (unbound-logic-variable

 (loop for book in *books*

 doing (with-unification

 (unify ?candidate-book book)

 (succeed ’Humor-101-reading-list))))

 (otherwise

 (when (member ?candidate-book *books*)

 (succeed (succeed ’Humor-101-reading-list)))))

 then [good-to-read ?candidate-book])

149
February 2018 Basic Joshua Dictionary

(ask [good-to-read ?x] #’print-query-results)

[GOOD-TO-READ DECAMERON] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ CANTERBURY-TALES] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ GARGANTUA-AND-PANTAGRUEL] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ TOM-JONES] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

[GOOD-TO-READ CATCH-22] succeeded

 It was derived from rule READING-LIST

 HUMOR-101-READING-LIST

Related Functions:

joshua:unify

joshua:with-unification�

joshua:support� ���������������������������� &optional�������

Examines the TMS justification structures currently supporting belief in

��������������������, tracing them back to primitively justified predications

(i.e. to those whose support does not depend on any other predications). Re-

turns a list of the primitive support (assumptions and premises). ������, if

provided, is a predicate to be applied to the support. Only those elements of

the primitive support which satisfy the predicate are collected.

�������������������� A predication object that is in the database. Must be

the actual database object, and not a copy of it.

������ If ������ is not supplied the value default to nil which

means that all the primitive support should be col-

lected and returned. Otherwise, ������ should be a

function of one argument that returns non-nil on the

support you want. (For example, you might want to

look at just the assumption support of ���������

�����������.) When the �������������������� argument

is based on a TMS, this function is passed a justifica-

tion as its argument. It may examine the justification

using joshua:destructure-justification.�

Examples:

Prospero, curious about his daughter’s relationship with Caliban, might do:

150
Basic Joshua Dictionary February 2018

(ask [is-friend-of Miranda ?]

 #’(lambda (backward-support)

 (format t "~&The support for ~S is ~S."

 (ask-database-predication backward-support)

 (support (ask-database-predication backward-support))))

 :do-backward-rules nil)�

If he wanted to see just the assumptions underlying it, he would do:

(ask [is-friend-of Miranda ?]

 #’(lambda (backward-support)

 (format t "~&The support for ~S is ~S."

 (ask-database-predication backward-support)

 (support (ask-database-predication backward-support)

 #’(lambda (justification)

 (multiple-value-bind (ignore mnemonic)

 (eq mnemonic :assumption))))))

 :do-backward-rules nil)�

See the section "The Truth Maintenance Protocol" in ������ ���������

������.�

joshua:tell� ������������������� &key���������������

Puts a predication into the virtual database.

Note: joshua:tell is a macro, and as such it cannot be used as an argument

to the function funcall.

����������� should be thought of as a pattern argument, not as the actual

data in the database. If something already exists in the database that is a

joshua:variant of �����������, the returned (canonical) value will not be eq

to �����������. Thus joshua:tell serves as an interner for �����������, that

is, it gives you the canonical copy in the database, creating it if necessary.

If ����������� is not already in the database, the returned values are ������

������ and the symbol t.

If something already exists in the database that is a joshua:variant of

�����������, ����������� is not put into the database, since that would be

duplication. Instead, the canonical version found in the database is re-

turned, along with the symbol nil.

������������� can be one of the following:

• nil, in which case a default justification is used. If the joshua:tell occurs

outside a rule, the default justification is :premise. If the joshua:tell is

inside a rule, the default justification includes the rule name and the

current support set.

• A symbol. A justification which is a symbol means that the truth-value

of ����������� does not depend on that of any other predication; we say

that ����������� has a ��������� �������������, in such a case. One primi-

tive justification is specially treated by the LTMS provide with Joshua,

151
February 2018 Basic Joshua Dictionary

namely :premise. :premise justifications will never be removed by the

LTMS without querying the user. Other primitive justifications are treat-

ed as assumptions that can be removed by the LTMS if necessary to re-

solve a contradiction.

• A List of Four fields. These are identical to the arguments to the

Joshua protocol function joshua:justify, namely a ��������, ������������,

������������� and ���������������. These fields are used (or discarded)

by whatever TMS is present.�

The database into which ����������� is put depends on the data model of its

predicate. The default is the discrimination net.

Examples:

(tell [is-magician Prospero])

(tell [not [is-magician Caliban])

(tell [is-daughter-of Miranda Prospero])

(tell [is-servant-of Caliban Prospero] :justification :premise)

(tell [is-friend-of Miranda Caliban] :justification :assumption)

 ;later retracted!

(tell ‘[is-exiled-from Prospero ,(find-exile-country ’Prospero)])

Note:

Chances are that you seldom want to define a method that takes over the

entire functionality of joshua:tell. It’s more likely that you would want to

define a method for one of the generic functions it calls, such as�

joshua:insert, joshua:justify, or joshua:map-over-forward-rule-triggers.

Related Functions:

joshua:untell

joshua:clear

joshua:ask

joshua:justify

See the section "Entering and Displaying Predications in the Database",
page 15.

See the section "The Joshua Database Protocol" in ������ ���������

������.

See the section "Customizing the Data Index" in �����������������������.

See the section "Truth Maintenance Facilities" in �����������������������.�

joshua:*true*� ��������

A named constant used by Joshua to denote a truth value of true. You can

compare truth values using eql.

Related Topics:

152
Basic Joshua Dictionary February 2018

joshua:*false*

joshua:*unknown*

joshua:*contradictory*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values", page 20.�

joshua:undefine-predicate� ���������

"Undoes" a predicate definition. Predications built with this definition re-

main in the world, but an attempt to do almost anything to them results in

an error.

Example:

(define-predicate fruit (a-fruit))

(undefine-predicate ’fruit)

You can perform the same operation from the Zmacs editor. Place your cur-

sor on the predicate definition to be removed and use the command ���

Kill Definition. The system asks for confirmation in the minibuffer; then it

offers you the options of removing the definition from the editor buffer it-

self, and of inserting the joshua:undefine-predicate command into the edi-

tor buffer.

Example:

1. Interaction During m-X Kill Definition

2. Zmacs Buffer After Completion of m-X Kill Definition

153
February 2018 Basic Joshua Dictionary

Related Functions:

joshua:define-predicate

"Zmacs Command: Kill Definition"�

joshua:undefquestion� ������������

Removes a question definition from the system.

���� The name of the question

(define-predicate foo (something something-else))

(defquestion question1 (:backward) [foo 1 ?x])

 (ask [foo 1 2] #’print-query :do-questions t)

Is it true that "[FOO 1 2]"? [default No]: Yes

[FOO 1 2]

 (undefquestion ’question1)

QUESTION1

 (ask [foo 1 2] #’print-query :do-questions t)

To kill a question definition from a Zmacs buffer, use the command ���

Kill Definition. For a sample interaction with the command: See the macro

joshua:undefine-predicate, page 152.

Related Functions:

joshua:defquestion

"Zmacs Command: Kill Definition"

See the section "Asking the User Questions", page 55.�

joshua:undefrule� �����������������

Removes a rule definition so that the rule cannot execute.

You can also remove a rule from a Zmacs buffer with ��� Kill Definition.

For a sample interaction with the command: See the macro

joshua:undefine-predicate, page 152.

��������� The name of the rule to be removed.�

Examples:

(defrule parched (:forward)

 if [condition-of plant-soil dry]

 then [needs plant-soil water])

(undefrule ’parched)

154
Basic Joshua Dictionary February 2018

Modeling Note:

joshua:undefrule calls one of the generic functions joshua:delete-

forward-rule-trigger or joshua:delete-backward-rule-trigger which re-

moves the rule’s trigger from its storage place, so that it is no longer

found by the trigger locating and trigger mapping functions.

See the section "The Contract of the Trigger Deleting Functions" in

�����������������������.�

Related Functions:

joshua:defrule

joshua:clear

"Clear Joshua Database Command"
"Zmacs Command: Kill Definition"

See the section "Rules and Inference", page 41.�

joshua:unify� �����������������������

If ������� and ������� unify, does so, while side-effecting any logic variables

for the duration of the unification.

������� A pattern in Joshua, that is, a predication containing

other predications, lists, symbols, numbers, or logic

variables.

������� Another pattern.�

Pattern matching underlies the inferencing process. In forward chaining,

Joshua matches rule trigger patterns with database predications. In back-

ward chaining, it matches goals with database predications and with rule

and question trigger patterns.

Two patterns containing no logic variables ����� if they are structurally

equivalent (if they "look the same").

Two patterns containing logic variables ����� when one can substitute val-

ues for the variables so that both patterns become structurally equivalent.

The process of doing so is called �����������.

joshua:unify is useful for assigning values to logic variables within Lisp

code in rule bodies. If the expressions are unifiable, the appropriate substi-

tutions are made and rule execution continues.

If the expressions are not unifiable, rule execution fails. "Fails" means that

it throws to the nearest (dynamically) containing joshua:with-unification

clause.

Always wrap the macro joshua:with-unification around joshua:unify (or

calls to functions that call joshua:unify) to establish the scope within

which the substitutions remain in effect.

155
February 2018 Basic Joshua Dictionary

The Joshua unifier does what is called an ����� �����, that is, prevents the

formation of certain circular structures by refusing to unify a logic variable

with a structure in which it occurs. For example, if you tried to unify ?x

with [f ?x], you would get something whose printed representation would

look (partially) like this:

[f [f [f [f [f [f ...�

This is exactly the same thing that happens when you make certain conses

point at themselves  you get circular lists.

To see how this might happen, consider example 3 below.

Examples:

Example 1:

(define-predicate yearly-salary (employee salary))

(define-predicate balance-due (person balance))

(define-predicate deny-credit (person))

(defrule test-1 (:forward)

 if [and [balance-due ?applicant ?balance]

 [yearly-salary ?applicant ?salary]

 (unify ?cash-flow (- ?salary ?balance))

 (≤ ?cash-flow ?balance)]
 then [and [deny-credit ?applicant]

 (format t "~% Sorry, ~S, your cash-flow of ~S is insufficient."

 ?applicant ?cash-flow)])

(defun test-it ()

 (clear)

 (tell [yearly-salary Fred 20000])

 (tell [balance-due Fred 15000])

 (tell [yearly-salary George 200000])

 (tell [balance-due George 15000])

 ’done-testing)

TEST-IT

(test-it)

Sorry, FRED, your cash flow of 5000 is insufficient.

DONE-TESTING

156
Basic Joshua Dictionary February 2018

 Show Joshua Database

True things

 [BALANCE-DUE FRED 15000]

 [YEARLY-SALARY FRED 20000]

 [YEARLY-SALARY GEORGE 200000]

 [BALANCE-DUE GEORGE 15000]

 [DENY-CREDIT FRED] ;Inference added to database

False things

 None

Example 2:

(with-unbound-logic-variables (x)

 (let ((p1 ‘[foo ,x])

 (p2 [foo 1]))

 (with-unification

 (unify p1 p2)

 ; If p1 and p2 don’t unify, the next

 ; expression is not executed

 (format t "~&The value of x is ~s." x))))

The value of x is 1.

NIL �

Example 3 shows a case where the occur-check feature makes the unifica-

tion fail.

Example 3:

(define-predicate f (arg))

(define-predicate g (arg1 arg2))

(defun test-occur ()

 (with-unbound-logic-variables (x y)

 (with-unification

 (unify ‘[g ,x ,x] ‘[g ,y [f ,y]])

 ;; if you get here, print Y and return

 (format t "~&You blew it. Y is now circular: ~S" y)

 (return-from test-occur :loser))

 ;; if you got here, the unification failed

 :occur-check-forbids))

(test-occur)

:OCCUR-CHECK-FORBIDS �

This function attempts to unify [g ?x ?x] with [g ?y [f ?y]]. If it unifies,

the function prints an abusive message and returns the symbol :loser. If

the unification fails, it returns the symbol :occur-check-forbids.

Let’s follow the unification and see what happens:

157
February 2018 Basic Joshua Dictionary

• The predicates in both places are g, so the unifier goes on to inspect the

arguments.

• The first argument on the left is ?x and the first on the right is ?y. The

unifier unifies ?y and ?x, which we can write as the equation ?x = ?y.

• The next argument on the left is ?x and the next on the right is [f ?y].

Thus the unifier attempts to enforce the equation ?x = [f ?y].�

We thus have the two equations ?x = ?y and ?x = [f ?y]. Combining them,

we have the single equation ?y = [f ?y], whose only solution is to unify ?y

to a structure containing itself, that is, a predication that structurally re-

sembles a circular list: [f [f [f [f The unifier forbids this and fails.

When the unifier fails, it throws to the nearest containing joshua:with-

unification. Thus the function above returns :occur-check-forbids.

(test-occur) -> :occur-check-forbids

Why should Joshua attempt to avoid creating such circular structures,

though? (The check does have a cost in performance, which is why most

versions of Prolog won’t do it.) The answer is that if it were permitted,

certain incorrect inferences could be made. Here’s an example. Suppose we

have a predicate is-parent-of, which takes two people as arguments:

(define-predicate has-parent (kid parent))�

This means that parent is a parent of kid. We can then make the (unsur-

prising) statement that every person has a parent:

∀x ∃y : has-parent(x, y)�

or, in quantifier-free language,

[has-parent ?x (p ?x)]�

where p is the Skolem function for the existential variable y. (You can

think of it as a notation for finding the parent of its argument.)

Now try to unify the above statement with [has-parent ?z ?z]. In the ab-

sence of the occur check, we get the equations:

?z = ?x

and

?z = (p ?x)�

(This would end up with ?x = (p ?x) = (p (p (p (p ...). Now substitute for

the arguments in [p ?z ?z] using those equations, to get:

[has-parent (p ?x) ?x]�

which is just the original statement with the arguments reversed. ����� ��

�������. It is not justifiable to infer that has-parent is a symmetric predi-

cate. (Indeed, it is not, since no one is his own parent!) Thus, to be sound,

Joshua must forbid occur-check-type matches.

158
Basic Joshua Dictionary February 2018

Related Functions:

joshua:with-unification

joshua:succeed

See the section "Pattern Matching in Joshua: Unification", page 61.�

joshua:unjustify� ������������������������������������ &optional��������������

Removes a justification from a predication in the database. For example, if

you joshua:tell ����������� and then later change your mind about it, you

can use joshua:unjustify to remove ������������� from the possible supports.

This does not automatically remove all support for ��������������������, as

there might be other justifications for it as well.

��������������������A predication object that is in the database. Must be

the actual database object, and not a copy of it.

������������� Specifies the justification to be removed. If �������������

is not supplied, implementations of joshua:unjustify

should default it to the justification currently being

used to support ��������������������.�

In general, joshua:unjustify is useful only if �������������������� is built

on some model that supports the TMS protocol.

In the default (non-TMS) Joshua model, joshua:unjustify just sets the

truth-value of its argument to joshua:*unknown*.

Examples:

When Prospero is reconciled to his countrymen, he will cast the following

spell:

(map-over-database-predications [is-exiled-from Prospero ?] #’unjustify)

(map-over-database-predications [is-exiled-from Miranda ?] #’unjustify)

(map-over-database-predications [is-friend-of Miranda Caliban] #’unjustify)�

joshua:unjustify and joshua:untell work in similar fashion, but with very

different results. See the generic function joshua:untell, page 159.

joshua:unjustify keeps the unjustified fact in the database. If the fact is

later given again to joshua:tell, it is not considered as a new predication,

but rather as a variant of an existing one, and no forward rules are run.

joshua:untell, on the other hand, actually removes the fact from the

database, freeing up storage, and causing the database to lose previous

knowledge of it; if the fact is later given to joshua:tell again, it is consid-

ered as a new fact, and forward rules are rerun.

Related Functions:

joshua:untell

joshua:uninsert

See the section "Revising Program Beliefs", page 77.

159
February 2018 Basic Joshua Dictionary

See the section "Retracting Predications with joshua:unjustify", page 84.�

joshua:*unknown*� ��������

A named constant used by Joshua to denote a truth value of

joshua:*unknown*. You can compare truth values using eql.

A predication is joshua:*unknown* when there is no valid reason that sup-

ports it. The predication may or may not remain in the database, but is

conceptually "not seen" until its truth value changes to joshua:*true* or

joshua:*false*.

Related Topics:

joshua:*true*

joshua:*false*

joshua:*contradictory*

joshua:truth-value

joshua:predication-truth-value

See the section "Truth Values", page 20.�

joshua:untell� ������������������������������������

Removes a single predication from the database, clearing up storage space.

(This function is a dual of joshua:tell, which ���� a predication to the

database.)

��������������������A predication. Must be the actual predication object

that is in the database, not a copy of it.

joshua:untell first calls joshua:unjustify to make the fact no longer be-

lieved (joshua:*unknown*), clears some internal caches, then calls

joshua:uninsert to remove the fact from the database. The surgical proper-

ties of joshua:untell in actually removing the predication as opposed to on-

ly removing its justification have two effects:

1. Some storage may become garbage-collectible. This can lower the vir-

tual-memory requirements of your program. Of course, you pay for it

by doing the extra work of joshua:uninsert.

2. The predication is no longer in the database. This means that if you

re-joshua:tell it, joshua:tell returns a second value of T, denoting it

has never seen this predication before; in consequence, joshua:tell will

also run forward rules. again.

(If, on the other hand, you merely joshua:unjustify the predication, then

joshua:tell it once again, joshua:tell returns a second value of nil, denot-

ing the predication already existed in the database; joshua:tell does not run

forward rules when an existing predication is retold.) However, if a TMS is

present, the consequences of running those rules will be brought back in.

Examples:

160
Basic Joshua Dictionary February 2018

(define-predicate has-eye-color (creature color))

(tell [and [has-eye-color cat green]

 [has-eye-color rat black]])

 Show Joshua Database

True things

 [HAS-EYE-COLOR CAT GREEN]

 [HAS-EYE-COLOR RAT BLACK]

False things

 None

;; untell a predication by clicking left on it in the database display

 (untell �������������������������)

NIL

 Show Joshua Database (matching pattern [default All]) All

True things

 [HAS-EYE-COLOR RAT BLACK]

False things

 None

;; untell using the predication object returned as the query support

 (ask [has-eye-color rat black]

 #’(lambda (backward-support)

 (untell (ask-database-predication backward-support)))

 :do-backward-rules nil)

 Show Joshua Database (matching pattern [default All]) All

True things

 None

False things

 None�

Note that in the last example above you probably should have used

(map-over-database-predications [has-eye-color rat black] #’untell)

Compare the following examples to see the difference between

joshua:untell and joshua:unjustify.

(define-predicate is-uncle-of (uncle niece-or-nephew) (ltms:ltms-predicate-model))

(define-predicate is-nephew-of (nephew uncle) (ltms:ltms-predicate-model))

(defrule notice-uncles (:forward)

 if [is-uncle-of ?uncle ?nephew]

 then [and (format t "~&I note that ~A is the uncle of ~A." ?uncle ?nephew)

 [is-nephew-of ?nephew ?uncle]))

First we’ll joshua:tell an avuncular fact, joshua:untell it, and then

161
February 2018 Basic Joshua Dictionary

re-joshua:tell it. After the first joshua:tell the fact fires the forward rule.

After the second joshua:tell the forward rule fires again, since joshua:tell

sees the predication as T.

(setq canonicalized-uncle-fact (tell [is-uncle-of Judah Manasseh]))

I note that JUDAH is the uncle of MANASSEH.

[IS-UNCLE-OF JUDAH MANASSEH]

T

Show Joshua Database

True things

 [IS-UNCLE-OF JUDAH MANASSEH]

 [IS-NEPHEW-OF MANASSEH JUDAH]

False things

 None

(untell canonicalized-uncle-fact)

Show Joshua Database

True things

 None

False things

 None

(tell [is-uncle-of Judah Manasseh]) ; this fires the rule again!

I note that JUDAH is the uncle of MANASSEH.

[IS-UNCLE-OF JUDAH MANASSEH]

T�

Now we’ll use a variation of this example.

We start with the fact we just entered in the database above and which

fired the forward rule. Now we joshua:unjustify the fact and then

joshua:tell it again.

After the joshua:unjustify, the fact changes its truth value from

joshua:*true* to joshua:*unknown*, ��� ������� �� ��� ��������. When we

joshua:tell the fact once again, its truth value changes from

joshua:*unknown* to joshua:*true*, but joshua:tell already knows about

the fact, and no forward rules fire. Note, however, that the TMS brings the

is-nephew-of deduction back in. We can tell it does so without re-executing

the rule, since the side-effect (the format message) in the rule-body did not

recur.

Show Joshua Database

 True things

[IS-UNCLE-OF JUDAH MANASSEH]

[IS-NEPHEW-OF MANASSEH JUDAH]

 False things

None

162
Basic Joshua Dictionary February 2018

 (unjustify ����������������������������)

NIL

Show Joshua Database

 True things

None

 False things

None

(tell [is-uncle-of Judah Manasseh])

 ; tell knows this fact is old, and it doesn’t rerun the forward rule

[IS-UNCLE-OF JUDAH MANASSEH]

NIL

Show Joshua Database

 True things

[IS-UNCLE-OF JUDAH MANASSEH]

[IS-NEPHEW-OF MANASSEH JUDAH]

 False things

None�

In sum, joshua:unjustify and joshua:untell do similar things, but with sig-

nificant differences. If you want to change your mind about believing a fact

but reserve your right to return to that fact later, you probably want to use

joshua:unjustify. If, on the other hand:

• You just did a scratch calculation and want to flush it now that you have

the answer, or

• You want the storage back, or

• You don’t intend to come back and raise the issue of re-running rules.

you probably want to use joshua:untell.

Related Functions:

joshua:tell

joshua:unjustify

"Clear Joshua Database Command"�

See the section "Removing Predications From the Database", page 17.

See the section "The Joshua Database Protocol" in ������ ���������

������.

See the section "Customizing the Data Index" in �����������������������.�

163
February 2018 Basic Joshua Dictionary

joshua:variant� �����������������������

Two predications that differ ���� �� ��� ����� of the logic variables they

contain are equivalent, and are said to be �������� of each other.

The function joshua:variant checks whether two objects are �������� of

each other. If they are, it returns t, otherwise nil.

When joshua:tell has to add a predication to the database it uses

joshua:variant to determine if the predication is already there.

������� A predication

������� Another predication�

"Variant" means there is a �������� of variables that makes one variable

look like the other. For example:

(define-predicate foo (object))

(variant [foo 1 ?x] [foo 1 ?y])

T ; you can rename ?x → ?y.

(variant [father ?x ?y] [father ?a ?b])

T�

joshua:variant should not be confused with joshua:unify. The latter tries

to see if two objects can be ���� �� �� the same. joshua:variant checks if

they ��� the same. It doesn’t ever ��� logic variables, but merely looks for a

renaming. joshua:variant is based on the notion that it should not matter

what the names of logic variables are, so long as the structures are the

same. This is a much stronger condition than joshua:unify. Thus, every

pair that satisfies joshua:variant also satisfies joshua:unify, but not vice

versa.

 (variant [foo 1 ?x] [foo 1 bar])

NIL ; these unify, but are not variants

 ; variables cannot be renamed

 (variant [father ?x ?x] [father ?a ?b])

NIL

joshua:variant also works on other structures such as lists.

Examples:

 (variant ’a ’a)

T

 (variant ’([foo baz] [foo bar]) ’([foo baz] [foo bar]))

T

See the section "Variables and Scoping in Joshua", page 62.�

164
Basic Joshua Dictionary February 2018

joshua:with-statement-destructured� ������������������������ &body

����

Provides access to the ������� of �����������. Wrap this macro around a ����

of code within methods in which you want to refer to the arguments of a

predication that are not already in instance variables. (This macro works

outside of methods, too.)

������� The argument list of the specified �����������. This can

be anything suitable for destructuring-bind.

����������� A Joshua predication.

For example, inside a joshua:say method for the predication foo:

(define-predicate enough-already (number-of servings food))

(define-predicate-method (say enough-already)

 (&optional (stream *standard-output*))

 (with-statement-destructured (how-many servings food) self

 (format stream "~% You’ve just had ~A ~A of ~A. Hadn’t you better quit?"

 how-many servings food)))

(say [enough-already 5 platters pickled-pigs-feet])

You’ve just had 5 PLATTERS of PICKLED-PIGS-FEET. Hadn’t you better quit?

NIL

Related Functions:

joshua:define-predicate�

joshua:with-unbound-logic-variables� �������������������&body�����

This macro provides a way to generate a set of logic variables for use in

code. Each (Lisp) variable within the ������������� is bound within the scope

of the macro to a distinct, non-unified logic variable within the ���� of the

macro. In essence a Lisp variable in ������������� has as its Lisp value a log-

ic variable, for the duration of ����.

�������������

Is a list of variables

���� Is any lisp form

Example:

The predicate presidential-candidate is defined in the following example.

The macro is used to temporarily set ������� to be a logic variable. Then

two predications are compared to see if they unify with one another. Unifi-

cation occurs in this case so the format statement prints the value of ����

����.

(define-predicate presidential-candidate (somone))

165
February 2018 Basic Joshua Dictionary

(with-unbound-logic-variables (anybody)

 (with-unification

 (unify ‘[presidential-candidate ,anybody] [presidential-candidate Abe])

 (format t "~&The value of anybody is ~s." anybody))))

The value of anybody is ABE.

NIL

joshua:with-unification� �����&body�����

Establishes the scope within which substitutions specified by the

joshua:unify function take effect. This temporary unifying mechanism is

useful within Lisp code in the body of Joshua rules, since it lets the pro-

grammer try out a variety of different matching options.

Whenever unification fails, joshua:unify goes to the end of the dynamically

innermost joshua:with-unification and undoes all the bindings established

so far.

Thus, joshua:with-unification establishes both of the following:

• The scope of unifications done in its body

• A place to be thrown to if a unification in its body fails

Examples:

(define-predicate candidate-word (a-word))

(define-predicate is-computer-jargon (some-word))

(defvar *computer-jargon* ’(foo bar baz quux))

(defrule jargon-finder (:backward)

 IF (typecase ?candidate-word

 (unbound-logic-variable

(loop for word in *computer-jargon*

 doing (with-unification

(unify ?candidate-word word)

(succeed))))

 (otherwise

(member ?candidate-word *computer-jargon*)))

 THEN [is-computer-jargon ?candidate-word])

(ask [is-computer-jargon ?x] #’print-query)

[IS-COMPUTER-JARGON FOO]

[IS-COMPUTER-JARGON BAR]

[IS-COMPUTER-JARGON BAZ]

[IS-COMPUTER-JARGON QUUX]

166
Basic Joshua Dictionary February 2018

Related Function:

joshua:unify

See the section "Pattern Matching in Joshua: Unification", page 61.

167
February 2018 A Figure of the Joshua Protocol of Inference

�

Appendix A
A Figure of the Joshua Protocol of Inference

168
A Figure of the Joshua Protocol of Inference February 2018

RULE-INDEXING PROTOCOL
add-forward-rule-trigger delete-forward-rule-trigger

map-over-forward-rule-triggers

USER INTERFACE

positions-backward-question-matcher-can-skip

add-backward-question-trigger

say

delete-backward-question-trigger

locate-backward-question-trigger

RULE CUSTOMIZATION PROTOCOL

expand-forward-rule-trigger expand-backward-rule-trigger
compile-forward-rule-action compile-backward-rule-action

positions-forward-rule-matcher-can-skip

locate-forward-rule-trigger

add-backward-rule-trigger delete-backward-rule-trigger

locate-backward-rule-trigger
map-over-backward-rule-triggers

TMS PROTOCOL

justify
unjustify support

notice-truth-value-change

DATABASE INTERFACE

insert

tell clear

ask

ask-data ask-rules ask-questions

fetch

untell

uninsert

positions-backward-rule-matcher-can-skip

nontrivial-tms-p

current-justification

all-justifications

QUESTION PROTOCOL

map-over-backward-question-triggers

169
February 2018 Index

�

Index

About the Joshua Documentation, 2
About the Joshua Language, 1
Adding and Removing Joshua Question

Definitions, 55
Advanced Features of Joshua Rules, 69
A Figure of the Joshua Protocol of Inference, 167
An LTMS Example, 78
ask function, 15
Asking the User Questions, 55
ask query, 25
Basic Joshua Dictionary, 91
Basic Unification Facilities, 65
Changing truth values without a TMS, 21
clear function, 18
Clear Joshua Database Command, 106
Clear Joshua Database command, 18
Compound Justifications, 74
Continuation Argument, 92
Database Interface, 7
Database objects; see predication objects, 16
database predication, 16
Database Predications Can Have Multiple

Justifications, 74
Default Joshua Questions, 56
define-predicate macro, 12
define-predicate-method function, 35
Defining Joshua Rules, 42
Definitions for the LTMS Example, 83
Dictionary Notes: Basic Joshua Dictionary, 87
Difference between joshua:untell and

joshua:unjustify, 159
different-objects function, 39, 67
Disable Joshua Tracing Command, 122
Disable Joshua Tracing command, 38
Discrimination net default database

implementation, 17
Displaying the database contents, 144
Enable Joshua Tracing Command, 122
Enable Joshua Tracing command, 38
Entering and Displaying Predications in the

Database, 15

170
Index February 2018

Examples of Using joshua:ask, 96
Explaining Backward Chaining Support, 48
Explaining Program Beliefs, 75
Explain Predication Command, 123
Extracting Parts of the Continuation with Accessor

Functions, 94
Formatting Predications: the SAY Method, 35
Free-floating predications, 16
Getting Started with Joshua, 5
graph-query-results function, 24
graph-tms-support function, 76
How Backward Rules Work , 46
How Forward Rules Work, 43
Instantiated logic variables, 34
Instantiated query pattern, 25
Introduction, 1
ji:*data-discrimination-net* variable, 17
joshua:*contradictory* variable, 107
joshua:*false* variable, 125
joshua:*true* variable, 151
joshua:*unknown* variable, 159
joshua::and, 31
joshua:ask function, 91
joshua:ask-database-predication function, 100
joshua:ask-derivation function, 101
joshua:ask-query function, 104
joshua:ask-query-truth-value function, 104
joshua:clear function, 105
joshua:copy-object-if-necessary function, 107
joshua:define-predicate macro, 109
joshua:defquestion macro, 110
joshua:defrule function, 115
joshua:different-objects function, 121
joshua:explain function, 123
joshua:graph-query-results function, 126
joshua:graph-tms-support function, 128
joshua:known joshua predicate, 130
joshua:make-predication function, 132
joshua:map-over-database-predications macro,

133
joshua::not, 31
joshua::or, 31
joshua:predication flavor, 136
joshua:predicationp function, 136
Joshua Predications, 11
joshua:print-query function, 137
joshua:print-query-results function, 137
joshua:provable joshua predicate, 139

171
February 2018 Index

Joshua Rule Basics At a Glance, 54
Joshua Rules and Inference
, 41
joshua:say function, 142
joshua:say-query function, 143
joshua:succeed function, 148
joshua:support function, 149
joshua:tell function, 150
joshua:undefine-predicate macro, 152
joshua:undefquestion function, 153
joshua:undefrule function, 153
joshua:unify function, 154
joshua:unjustify generic function, 158
joshua:untell generic function, 159
joshua:variant function, 163
joshua:with-statement-destructured macro, 164
joshua:with-unbound-logic-variables macro, 164
joshua:with-unification macro, 165
Justification, 72
Justification and Truth Maintenance, 71
Justifications,
 Assumptions, 73
 Deduction, 74
 :one-of, 74
 Premises, 73
known joshua predicate, 23
lexical scope, 29
List of Basic Joshua Symbols, 9
List of Entries in the Basic Joshua Dictionary, 88
Logic variables,
logic variables, 26
 instantiated, 34
 uninstantiated, 34
make-predication function, 39, 67
Miscellaneous Predication Facilities, 38
modeling in Joshua, 7
Modeling predicates, 14
occur-check done by unifier, 154
Overview of Joshua, 7
Pattern Matching in Joshua: Unification, 61
Predicate definitions,
 and predications, 13
Predicates, 12
predication flavor, 39, 67
predication objects, 16
predicationp function, 39, 67
Predications,
 and predicate definitions, 13

172
Index February 2018

Predications and Logical Connectives, 31
Predications and Logic Variables, 26
Predications and Predicates, 11
Predications, free-floating, 16
Predications, Truth Values, and the Database, 14
Primitive Justifications, 72
print-query function, 24
print-query-results function, 24
Propositional-Logic-Based TMS (LTMS), 71
provable joshua predicate, 23
Querying the Database, 23
query pattern, 26
Removing a Database Predication with Untell, 18
Removing Joshua Rule Definitions, 50
Removing Predications From the Database, 17
Reset Joshua Tracing Command, 141
Retracting Predications with joshua:unjustify, 84
Revising Program Beliefs, 77
Rule Customization Protocol, 7
Rule Indexing Protocol, 7
say protocol function, 35
say-query function, 24, 36
Setting up the Joshua Context and File Attributes,

5
Show Joshua Database Command, 144
Show Joshua Database command, 16
 matching a specified pattern with, 30
Show Joshua Predicates Command, 11, 145
Show Joshua Rules Command, 146
Show Joshua Tracing Command, 146
Show Rule Definition Command, 147
Some Basic Joshua Protocol Functions, 7
Some Examples of Joshua Unification , 63
Streamlining Typical Continuation Requests with

Convenience Functions, 95
succeed function, 65
support function, 75
tell function, 15
The Joshua Reference Manual, 3
The User’s Guide to Basic Joshua, 2
Three-valued logic, 20
Tracing predications, 38
Tracing Predications, 37
Tracing Rules, 50
Truth Maintenance System (TMS), 71
Truth Maintenance System (TMS) Protocol, 7
Truth tables, 23
Truth Values, 20

173
February 2018 Index

undefine-predicate function, 13
Unification, 25
Unification Rules, 61
unify Function, 65
Uninstantiated logic variables, 34
unjustify function, 84
unjustify generic function, 18
untell generic function, 17
User Interface Protocol, 7
Using Joshua Within Lisp Code, 67
Variables and Scoping in Joshua, 62
variant function, 66
virtual database concept, 15
weeding out self-referential behavior, 121
with-statement-destructured macro, 39, 67
 used in say method, 36
with-unification macro, 65
Writing Custom Questions, 58
~\\SAY\\ format directive, 36

