
���������������������������������

��

�����������������

0.0.151. Purpose

This document describes the FORTRAN implementation developed for the Symbol-

ics Genera environment. In conjunction with the Symbolics Common Lisp and Sym-

bolics Genera references listed in this section, it provides the information neces-

sary to edit, compile, debug, and run Symbolics FORTRAN programs under Sym-

bolics Genera.�

0.0.152. Scope

This document provides a conceptual overview of Symbolics FORTRAN, and is

designed to get you started using Symbolics FORTRAN. It is not a step-by-step

instruction guide or a comprehensive reference manual. We discuss the following

topics:

• The concepts that distinguish Symbolics’ implementation of FORTRAN 77 from

those on conventional systems.

• The benefits derived from using Symbolics FORTRAN under Symbolics Genera.

• The extensions that Symbolics integrates into FORTRAN 77.

• The tools available for running Symbolics FORTRAN.

• The interface for calling Lisp functions.�

0.0.153. The User and FORTRAN

Symbolics FORTRAN is based on standard FORTRAN 77, so this document does

not discuss the language itself, except to describe the extensions developed for this

implementation. If you have little experience with the standard language, refer to

the �������� �������� �������������������� �������� �������� ���� �����

���� (hereafter called the ANSI Standard or the Standard), which is included with

the purchase of Symbolics FORTRAN. �

0.0.154. The User and Lisp

Be aware that Symbolics FORTRAN depends heavily on the Genera software envi-

ronment. You can use Symbolics FORTRAN knowing relatively little about the Lisp

language and Symbolics Genera, but familiarity with Lisp gives you access to the

wider functionality available in Symbolics Genera.

Page 414

This document, however, does ��� provide detailed instructions for using Symbolics

Genera effectively; information about Symbolics Common Lisp and Symbolics Gen-

era facilities is included only to the extent that it affects Symbolics FORTRAN.�

0.0.155. Symbolics Genera References

If you know little about Symbolics Genera, consult the Genera documentation set

with particular attention to the following sections:

• For a listing of documentation notation conventions used in this document, see

the section "Notation Conventions".

• For a quick reference guide, in particular a summary of techniques for finding

out about the software environment, see the section "Getting Help".

• For a guide to the Symbolics text editor, see the section "Zmacs Manual".

• For information on error handling, see the section "Conditions".�

0.0.156. More Help

For a brief explanation of the Lisp syntax encountered in this manual, see the

section "Lisp Syntax for FORTRAN Users".

0.0.157. Conventions

This ������ ����� uses the standard conventions as well as the following additional

conventions. For a listing of the standard conventions, see the section "Notation

Conventions Quick Reference".

In addition to the standard conventions, this manual uses the following notation:

���������������������� ������������

lispobject FORTRAN reserved words and program, subroutine, li-

brary, and package names in running text; also FOR-

TRAN source code.�

���������������������������������

�������

0.0.158. Introduction

Symbolics FORTRAN implements the full ANSI FORTRAN 77 Standard (FOR-

TRAN X3.9-1978).

The ANSI FORTRAN 77 Standard supersedes earlier dialects of FORTRAN, and,

while supporting most features of these early dialects, it contains several incom-

Page 415

patible extensions. Appendix A of the Standard gives a complete description of

these incompatibilities.�

0.0.159. Components

Symbolics FORTRAN consists of the following components:

• Several language extensions to FORTRAN 77, which are of particular use to

Symbolics Genera programmers and help in porting from other FORTRAN 77

implementations.

• A compiler for the full FORTRAN 77 language, as described in the ANSI

Standard.

• Extensions to Zmacs, the standard text editor, to support FORTRAN language

editing, using the language-specific capability of Zmacs.

• Support of the Metering Interface.

• A Lisp-compatible run-time library, permitting full access to Genera’s in-

put/output facilities, including access to files over network connections.

• A symbolic Debugger, permitting debugging of FORTRAN code at the source

level. You can use the Debugger from the Lisp Listener or from the Display

Debugger interface. �

��

��������������������������������� �������������������������

You must compile entire files Compilation is incremental; you can

even if only a small change compile only the changed function.

is made to the code.�

You leave the editor and then You can compile a routine or file

compile the file. from the editor.

The compiler produces warnings; The editor processes the compiler

you must find the source manually. warnings and provides commands that

help you locate the source associated

with a compiler warning.

A link-and-load step is required Programs are immediately executable

for all programs. after compiling; you do not have to use

 a separate linking step.

The association between a library The association between a library and

and a main program occurs at a main program is made at run time.

link-and-load time.�

After loading and execution, Once loaded, you can rerun programs

a program disappears from without reloading.

memory; you must reload the

Page 416

program to rerun it.�

Block data subprograms are Block data subprograms are associated

associated with main programs with main programs at run time.

at link-and-load time.�

Variables are always reinitialized You can request at run time that vari-

whenever the program is linked ables be initialized at every execution

and loaded. of the program or left with values from

previous executions.

Uninitialized variables are not Uninitialized variables are detected,

detected. unless you specifically request at

compile time or at run time that

all variables be initialized to zero.

To use the debugging facility The Debugger is automatically invoked

you must explicitly call the on run-time errors, and you can enter it

debugger ������ running a at any time during execution.

main program.�

��

������������

0.0.160. Contents

This chapter provides instructions for installing and loading Symbolics FORTRAN.

It then explains how to enter, compile, and run a sample FORTRAN program

called quadratic, which solves the quadratic equation ax2 + bx + c = 0 for un-

known x.�

0.0.161. Scope

This chapter runs through the essential edit-compile-debug cycle, with little expla-

nation of the conceptual underpinnings. Crossreferences point you to the correct

chapters for additional information.�

������������������

0.0.162. Procedure

1. After you have successfully installed the Genera 8.0 system software, boot a

Genera 8.0 world.

2. You need to indicate where the FORTRAN system definition resides; to do

this, create the file SYS:SITE;FORTRAN.SYSTEM and type the following attribute

list and form in the file.

Page 417

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER -*-

(si:set-system-source-file "fortran" "sys: fortran; fortran")�

3. Load the contents of the Symbolics FORTRAN tape into your file system by

typing the following command from a Lisp Listener:

Restore Distribution�

4. Once you load the contents of the tape onto your SYS host, type the following

to the Command Processor:

Load System Fortran :Query No�

You can now use Symbolics FORTRAN.�

0.0.163. Notes

1. To avoid loading the FORTRAN system every time you want to use it, save a

world on disk with FORTRAN already loaded into it. See the section "Save
World Command". We strongly recommend that you run the ephemeral

garbage collector when using the FORTRAN compiler. Ephemeral garbage

collection is usually on by default, but if it is not, type the following to the

Command Processor:

Start GC :Ephemeral Yes�

2. Symbolics FORTRAN includes the ������ ����� �� �����������������. You

can view the online documentation via Document Examiner. To do so, press

��������.

You might want to become familiar with the overall structure of the docu-

mentation before viewing individual chapters. To do so, read in the ����

�����’s table of contents; click Right on [Show] in the Command menu, and

when prompted type the following and press ������.

user’s guide to symbolics fortran �

The Current Candidates window displays the complete list of chapter titles,

section titles, and so on. Each entry displayed in the Current Candidates win-

dow is mouse-sensitive; clicking on any entry brings its associated documenta-

tion into the Viewer.�

���������������

Page 418

0.0.164. Procedure

1. Boot the machine, if necessary.

2. Log in.

3. Look at the ������, the multiline message appearing on the screen after boot-

ing. If the herald lists the FORTRAN software, see the section "Using the

Editor for the First Time".

If the herald does not list the FORTRAN software, use the Load System com-

mand to load Symbolics FORTRAN; the system is called fortran.

Type the following to the Command Processor and press ������:

Load System Fortran :Query No�

�����������������������������������

0.0.165. Purpose

This section enables you to run a simple FORTRAN program immediately
without having to read through the entire manual first or understand the entire

Symbolics Genera environment.

For more thorough descriptions of the topics presented in this section, see the

following sections:

"The Editor"
"Editor Extensions for FORTRAN"
"Summary of Standard Editing Features"�

0.0.166. Procedure

1. Invoke Zmacs by pressing ��������.

2. Use the Find File command, ��� ���, to create a new buffer for the FOR-

TRAN program quadratic that you are creating. To invoke the Find File

command, hold down the ���� key as you press the � and then the � key in

succession.

Choose a name for the buffer. When prompted, type the name into the

minibuffer at the bottom of the screen and press ������. Use the pathname

conventions appropriate for the host operating system where the file resides.

Example: Suppose you want to create a new FORTRAN source file,

quadratic.fortran, which you want to store in your home directory on a

Symbolics computer called Quabbin (q for short). Type the following:

Page 419

�����������������������������������

Make sure the name includes the proper FORTRAN ���� ���� (extension) for

your host; for example, quadratic.fortran is the correct name for a file resid-

ing on LMFS, the Genera file system. For a table of FORTRAN file types, see

the section "FORTRAN File Types".

3. Use ��� Fortran Mode to set the mode of the buffer to FORTRAN: Press the

META and � keys together. Then type fortran mode and press ������. Answer

yes to the quesition of whether to set FORTRAN mode for the file and the

attribute list.

The mode line, located below the editor window, displays "Fortran".

4. Put the buffer in the �������� package. Type ��� Set Package and when

prompted for a package name type ftn-user. Answer yes to the question of

whether to set the package for the file and the attribute list. The attribute

list is the first line of a file and looks something like:

c -*- Mode: FORTRAN Package: FTN-USER -*- �

5. Enter the sample program quadratic:

 program quadratic

 implicit none

 real a,b,c,discriminant,x1,x2

 print 1

1 format (/)

 print 10, ’Solves the equation:’

 print 10, ’A*X**2 + B*X + C = 0 for X’

 print 10, ’Enter A, B, and C:’

10 format (a)

 read *, a, b, c

 discriminant = b**2 - 4*a*c

 x1 = (-b + sqrt(discriminant)) / (2*a)

 x2 = (-b - sqrt(discriminant)) / (2*a)

 print 20, x1, x2

20 format (’The roots are: ’,2g12.5)

 end�

For the editor commands controlling cursor movement and text manipulation:

See the section "Editor Extensions for FORTRAN". See the section "Summary

of Standard Editing Features".

Check the code in your buffer against the example.

6. If you want to save the source code in a disk file, use �������.�

Page 420

��

The material in this section is covered in greater detail in these chapters:

"Compiling Symbolics FORTRAN Programs"
"Executing FORTRAN Programs"
"Debugging Symbolics FORTRAN Programs"�

0.0.167. Procedure

1. With the cursor positioned anywhere within the program text, use ������ to

compile the program. The ������� ������ at the bottom of the screen displays

the stages of the compilation as they complete. If the compilation completes

successfully, the typeout window displays "QUADRATIC compiled". Go to Step

3.

2. If the typeout window displays error messages, press the space bar to erase

the typeout window and return to the editor window; correct the code.

If the typeout window displays compiler warnings, press the space bar, if nec-

essary, to erase the typeout window and use ��� Edit Compiler Warnings to

resolve the warnings.

3. Press ������� to enter a Zmacs breakpoint. A small window appears at the

top of the screen, overlaying a portion of the editor window.

4. Type:

Execute Fortran quadratic�

5. The program prompts:

Enter A, B, and C:�

Type:

1,0,-9 �������

The window displays the following:

The roots are: 3.0000 -3.0000�

6. Rerun the program, this time causing a run-time error. When the program

prompts for input, type:

1 2 3 �������

Symbolics Genera automatically invokes the Debugger (identifiable by Error:),

which displays a descriptive error message ("Attempt to take the square root

of -8.0, which is negative"), and then a list of suggested actions and their

outcomes. If the error occurred in a Lisp function, press ��� to see the back-

trace, and click on the FORTRAN subprogram that caused the error. See fig-

ure !, 154

Page 421

For example, pressing ��� or ����� causes you to return to the editor break-

point, from which you can rerun quadratic. Pressing ����� enters the Dis-

play Debugger, which presents you with a full-screen interface to the Debug-

ger. All the commands available in the full-screen interface to the Debugger

are also available directly in the Lisp Listener, or in the typeout window.

7. Press ����� twice once to leave the Debugger and a second time to leave

the breakpoint and return to the editor window.

This step completes the edit-compile-debug cycle for the sample program. We

suggest that you spend some time editing the code, recompiling, and rerun-

ning the program until you feel comfortable with the process.

Figure 65. Producing a run-time error in the sample program.�

Page 422

������������������������

�������

0.0.168. Eight Major Extensions

Symbolics FORTRAN defines several extensions to standard FORTRAN 77. Several

of these result from the strong hardware data-type checking provided by the Gen-

era computing environment. This feature offers a greatly increased ability to de-

tect errors that on conventional systems are discovered only by more laborious

means, if at all.

Symbolics FORTRAN supports the following language extensions:

• Arbitrary-precision integers

• Detection of uninitialized variables

• Strong data-type checking

• Syntactic extensions

• Interaction with Lisp

• FORTRAN package system

• Integer to logical coercion

• Department of Defense extensions to the Standard

° do statement

° do while statement

° enddo statement

° include statement

° implicit statement

° Binary pattern processing

• Logic operations

• Shift operations�

° Bit substrings�

������������������������

����������������������������

Symbolics FORTRAN supports arbitrary-precision integers, called �������; as a

result, all integers are immune from overflow. Suppose you have a typical iterative

factorial routine:

Page 423

 integer function factorial(n)

 implicit none

integer n,i

factorial=1

do 100 i=n,1,-1

 factorial=factorial*i

100 continue

return

end�

In FORTRAN on conventional machines, this routine works properly until the

product computed in the variable factorial overflows. Then either a hardware

overflow is signalled, or the computation delivers the incorrect answer with no

warning whatsoever. With Genera, however, the computation completes and re-

turns the correct answer independent of the value of �.

Since the Standard does not restrict the range of precision of integers (see the

Standard, section 1.3.2), the accommodation of bignums provides great flexibility

developing code for machines with differing word sizes. It is also helpful in solving

mathematical problems, since integers do not exhibit the anomalous overflow be-

havior of conventional machines.

In conjunction with arbitrary-precision integers, Symbolics FORTRAN supports for-

matted output of large integers. Hence, format specifications such as I200 are

meaningful.

The only operation for which arbitrary-precision integers are ��� valid is unformat-

ted input/output. In this case, integers must be between -231 and 231-1.

������������������������������������

Symbolics FORTRAN detects uninitialized data (other than character data), so that

an error condition results if a variable is used before it is assigned a value.

FORTRAN implementations on conventional machines, which cannot easily check

for uninitialized data, generally initialize all data to zero before beginning program

execution.

If you do not wish to use this feature, a compiler option exists that causes all vari-

ables to initialize to zero. See the section "Compiler Option: Initializing FORTRAN

Program Data".

�������������������������

Genera provides strong hardware data-type checking among logical, integer, and

real data. Thus, the hardware prevents a program error due to falsely regarding

data as equivalent, for example, in the case where the exponent and mantissa of a

real number is interpreted as an integer.

This strong data-type checking does not extend to the complex and double-precision

data types. For example, where data equivalence is used to store values of the

Page 424

complex and real type, the complex data type is represented by a pair of real

numbers, one of which is confused with a single real number. The hardware repre-

sentation for double-precision data is in fact a pair of integers. (See the Standard,

sections 8.2-8.2.5, for information on equivalence.)

��������������������

Symbolics FORTRAN supports five syntactic extensions:

• ���. The ASCII horizontal tab character (HT) is permitted in source code and is

treated as if it were replaced by sufficient spaces to pad out to the next multi-

ple of 8 columns. For example, if the first column is 1, the tab is positioned at

column 9.

• ������. No comma is required between format specification items in a format

statement, with the following exceptions:

° Unless it is necessary to distinguish between Ew.d and Ew.dE.e (or Dw.d and

Dw.dE.e), the edit descriptors for specifying the input/output (I/O) of real,

double-precision, and complex data types.

° In Hollerith items preceded by a digit; for example, without a comma, a41ha

could be read as either a, 41ha, or a4, 1ha.�

See the Standard, chapter 13, particularly section 13.5.9.2.2. The motivation for

this extension is that the ANSI Standard rules for omitting commas are relative-

ly complicated to explain and remember.

• �������� �����. Symbolic names, which identify FORTRAN program units, can

be longer than six characters. For example, program quadratic is a valid state-

ment. See the Standard, chapter 18.

• ��������� ����. Symbolics FORTRAN allows Hollerith data as recommended in

the Standard, appendix C. You can use Hollerith values to initialize a real, logi-

cal integer, complex, or double-precision value. Accordingly, A format is legal for

output of these quantities.

• ����. Symbolics FORTRAN does not distinguish between upper- and lowercase

letters, except in character strings, Hollerith constants, and H edit descriptors.

See the Standard, section 3.1.1.�

���������������������

Symbolics FORTRAN defines two extensions for interacting with Lisp. A new

scalar data type called lispobject allows you to call Lisp routines from FORTRAN.

By declaring a variable the type lispobject, you can represent any Lisp data ob-

ject. See the section "lispobject: FORTRAN Data Type for Handling Lisp".

A new FORTRAN declaration statement, lispfunction, allows the declaration of an

existing Lisp function that you can call from a FORTRAN routine. See the section

"lispfunction: Type Declaration Statement".

Page 425

����������������������

Symbolics are large-scale virtual-memory, single-user computers; many programs
the editor, the compiler, and so on coexist in the same environment (address

space). Once FORTRAN routines (and Lisp functions, as well) are loaded into the

environment, they remain there until they are explicitly removed, replaced by re-

compilation, or until you cold boot the machine (that is, until a fresh version of

the Genera software is loaded).

Since you might have two large FORTRAN programs that both define a subroutine

named load, how can Symbolics Genera distinguish between them? A similar con-

flict might arise between FORTRAN programs and Lisp functions. Symbolics Gen-

era provides a mechanism for separating the like-named functions in different pro-

grams by assigning each its own distinct context, or ���������. The namespace is

called the �������.

The package name precedes and distinguishes two identically named functions.

Example: ������������� and ���������� define two different functions named

����, one in package ��������, the other in package �����.

Packages in Fortran

The names of symbols you use within a FORTRAN package do not conflict with

the names of symbols in any Lisp packages or in any other FORTRAN packages.

Unlike FORTRAN, Lisp programs need to access basic Lisp functions and vari-

ables, such as ���� or ���, from the ������ package, and such symbol names are

reserved. In FORTRAN no symbols are reserved, and it is possible for one of your

FORTRAN routines or variables to have the name of a predefined Lisp symbol like

���.

������������������������������������� is the special form used for declaring your

own FORTRAN packages. Once you declare a FORTRAN package, you can use

names for variables and functions without fear of conflict with the same names in

other FORTRAN or Lisp packages. Symbolics FORTRAN also provides a built-in

FORTRAN package called ��������. �������� is the default package of the FOR-

TRAN system.

For instructions on defining your own packages, see the section "Declaring a FOR-

TRAN Package".

For information on assigning package names to buffers, see the section "Editing

Basics for Symbolics FORTRAN Programs".

For a general discussion of the Lisp package facility, see the section "Packages".

���������������������������

For compatibility with many other FORTRAN 77 implementations, Symbolics FOR-

TRAN supports coercion from integer to logical types. A non-zero integer is treat-

ed as logical .true., and integer zero is treated as logical .false..

Page 426

Example: Assuming that l is declared to be of type logical and i of type integer,

the following statement is valid:

l = i�

It is treated as if it were:

l = i .ne. 0�

The compiler generates a semantic warning regarding the coercion. Note that such

coercion applies only to values, and not to parameters. That is, any time an inte-

ger is passed to a logical formal parameter, no coercion occurs.

�������������������������

In each of the defined functions it is assumed that integer numbers are represent-

ed in binary form.

����� ����������. The logic operations provided are the Boolean functions ��, ���,

���, and ���. These operations are implemented as integer intrinsic functions. The

implicit type for ��, ���, and ��� is indicated by the use of I as the first letter of

their function names. You can make the arguments � and � single variables, array

elements, or expressions of type integer. After execution of the functions, the argu-

ments remain unchanged. The operations are performed on all corresponding bits

of the two operands.

ior (�,�) Inclusive ��. The arguments, � and �, are combined according to

the following truth table.

� � ��������������

0 0 0

1 0 1

0 1 1

1 1 1�

iand (�,�) Logical ���. The arguments, � and �, are combined according to

the following truth table.

� � ��������������

0 0 0

1 0 0

0 1 0

1 1 1�

not (�) Logical complement. The argument � is logically complemented ac-

cording to the following truth table.

� ��������������

0 1

1 0�

Page 427

ieor (�,�) Exclusive ��. The arguments, � and �, are combined according to

the following truth table.

� � ��������������

0 0 0

1 0 1

0 1 1

1 1 0�

����� ����������. The shift operations provided are logical and circular. These oper-

ations are implemented as integer intrinsic functions and have two arguments, �

and �. Simple variables, array elements, or integer expressions are permitted as

arguments.

��� �������

� Specifies the value (binary pattern) to be shifted.

� Specifies the shift count.

����� �������

� > 0 Indicates a left shift.

� = 0 Indicates no shift.

� < 0 Indicates a right shift.�

The arguments are not changed by the shift operations.�

ishft (�,�) Logical shift. All bits representing the argument � shift �

places. Bits shifted out from the right end are lost. Zeros are

shifted in from the right end on a left shift.

ishftc (�,�,��) Circular shift. The right-most �� bits of the argument are shift-

ed circularly � places; that is, the bits shifted out of one end

are shifted into the opposite end. No bits are lost. The unshift-

ed bits of the result are the same as the unshifted bits of the

argument �. The argument �� must be greater than or equal

to 1.�

��������������

In each of the defined functions integer numbers are represented in binary form.

ibits (�,�,���) Bit extraction. �, �, and ��� are integer expressions. This in-

trinsic function extracts a field of ��� bits from string � start-

ing with bit � (counted from right to left where the right-most

bit is bit 0) and extending left for ��� bits. The resulting field

is right-justified and the remaining bits are set to 0.

call mvbits (�,�,���,�,�)

Bit move intrinsic subroutine. ��� bits are moved from position

� of argument � to position � of argument �. Arguments �

and � are permitted to be the same storage unit. All argu-

ments must be of type integer.�

Page 428

��� ����������. You can test and change individual bits of a storage unit with the

following routines for bit processing. The functions have two arguments, � and �.

For both � and �, simple variables and array elements are permitted; � can also be

an expression. Be sure all arguments are of type integer.

��� �������

� Specifies the corresponding binary pattern.

� Specifies the selected bit (right-most bit is bit 0). If � is negative, the re-

sult of the function is undefined.�

btest (�,�) Bit testing. This routine is implemented as a logical intrinsic

function. The �th bit of argument � is tested. If it is 1, the val-

ue of the function is .true.. If it is 0, the value of the func-

tion is .false.. Since the arguments are not changed by the

function reference, � can also be an integer expression.

ibset (�,�) Set bit. The result of this intrinsic function is � with the �th

bit set to 1.

ibclr (�,�) Clear bit. The result of this intrinsic function is � with the �th

bit set to 0.�

��

��������������

0.0.169. Zmacs Commands

The Zmacs text editor provides a full range of general-purpose commands for writ-

ing and editing programs. These commands include reading and writing files, basic

cursor-movement commands, and text-manipulation commands.

In addition, Symbolics FORTRAN includes editor extensions that understand FOR-

TRAN syntax.

• See the section "Editor Extensions for FORTRAN".

• See the section "Summary of Standard Editing Features". See the section "Un-

derstanding Notation Conventions". See the section "Notation Conventions Quick

Reference".

• For a discussion of the ���� key and command ����������: See the section "Pro-

gram Development Help Facilities".

Page 429

0.0.170. Procedure

This procedure summarizes the steps for writing or editing FORTRAN source

code.

1. Select Zmacs in one of the following ways:

• Press ��������.

• Click Left on [Edit] in the System menu.

• Issue the Select Activity command at the Command Processor, supplying

Zmacs or Editor as the activity name.�

2. Use ��� ��� to read an existing file into the buffer, or ��� ��� ��� to create

a buffer for a new file. When you add a FORTRAN file type to the file name,

����������� automatically sets the mode of the buffer to FORTRAN.

When prompted, type the full pathname of the file in the minibuffer (the

small editing window at the bottom of the screen) and press ������. Use the

pathname conventions appropriate for the host operating system.

Example: Suppose you want to create a new FORTRAN source file,

cube.fortran, that you want to store in your home directory on a Symbolics

host called Quabbin (q for short). You type the following:

����������� q:>fred>cube.fortran�

The correct file type for a FORTRAN source file depends on the host. See the

section "FORTRAN File Types".

3. Use the command ��� Fortran Mode to set the buffer mode to FORTRAN if

the mode is not currently in Fortran. This mode allows you to use the special

editor extensions for FORTRAN. The mode line, situated below the editor

window and near the bottom of the screen, displays (Fortran).

If you intend to write FORTRAN code most of the time, you might want to

set the default major mode in your init file to FORTRAN. This sets the mode

automatically to FORTRAN whenever you invoke an editor window. Type the

following form in your init file:

(setf zwei:*default-major-mode* :fortran)�

4. Use ��� Update Attribute List to make the attribute list reflect FORTRAN

mode. Alternatively, you can type the attribute list yourself.

����� The attribute list is optional, but if you choose to supply one, you must

make it the first line of the source file. A sample attribute list might look

like the following:

{-*- Mode: FORTRAN -*- }�

For more information on the attribute list, see the section "File Attribute

Lists".

5. To set or change the package name in the attribute list, use ��� Set Package

and type the package name. The command offers to create the package if it

does not yet exist. Alternatively, you can enter the package name in the at-

Page 430

tribute list by typing; Package: and the name of a package that you have pre-

viously defined with the special form �������������������������������������.

The FORTRAN system provides the predefined FORTRAN package, ��������.

Example:

{-*- Mode: FORTRAN; Package: FTN-USER -*- }�

Once the package is set, FORTRAN routines in the file are defined as belong-

ing to an existing package whenever the file is read into an editor buffer. Un-

less you explicitly override the package in the attribute list, the code in the

buffer compiles into and loads to the indicated package.

The status line, the last line of the screen, reflects the updated package

name.

6. Use ��� Reparse Attribute List whenever you make changes to the attribute

list. Reparsing causes the changes to take effect.

����� Changing packages does not affect previously compiled code.

7. Use editor commands to create or alter file contents, compile the code

(������), save the source file (������� or �������), and so on.

���������������������������������������

������������

This chapter presents information specified by the Standard as implementation-

dependent. The topics covered are:

• I/O processor-dependent values

• Data representation

• FORTRAN file types

• Record length of open statement

• Standard FORTRAN functions

�/����������������������������

Page 431

Currently, the FORTRAN I/O system’s capabilities reflect exactly those in the AN-

SI Standard.

The I/O Processor-Depenedent Values lists the processor-dependent values required

for I/O statements (see the Standard, chapter 12) and particular I/O format specifi-

cations (see chapter 13).

For each value, the page and line in the ANSI Standard are provided.

Arbitrary-precision integers and a syntactic extension regarding the use of commas

in format specifications are discussed elsewhere: See the section "Extensions to

FORTRAN 77".

���������������������������

Symbolics FORTRAN adheres to the proposed IEEE format for floating-point num-

bers (See Jerome Coonen, et al., "A Proposed Standard for Binary Floating Point

Arithmetic: Draft 8.0 of IEEE Task P754", Microprocessor Standards Committee,

IEEE Computer Society, ��������, March 1981, pages 51-62.

Symbolics FORTRAN supports the ASCII character set, as extended for Symbolics

Genera.

The table, Representation of Various Data Types, gives the range for each data

type and the accuracy of the floating-point types.

������������������

Symbolics Genera determines whether a file contains FORTRAN source code by

looking at its file type. The correct type for a FORTRAN source file varies with

the operating system. The table below shows the file types for various systems.

FORTRAN source files are compiled to Lisp compiled-code (object) files. The cor-

rect file type of a compiled-code file is also system-dependent. For a list of the file

types by host: See the section "File Types of Lisp Source and Compiled Code

Files".

��������������������������

Page 432

Table 6. I/O Processor-Dependent Values, by Ref. to ANSI Standard.

���� ���� ����������������� �����������

12-2 1 12.1.1 Formatted The length of a formatted record is

Record limited only by the size of virtual

memory.

12-6 16 12.3.1 Unit Existence Valid unit numbers are non-negative

integers.

12-6 4 12.3.3 Unit Specifier An asterisk identifying an external

and Identifier unit refers to standard input, unit 5,

and standard output, unit 6.

12-17 5 12.9.5.2.3 Printing of Supports standard carriage control

Formatted Records with the blank, 0, 1, and +
characters.

13-7 29 13.5.7 P Editing A scale factor, k, specified by a P

edit descriptor in the form kP, must be

in the range -38 to +38 for complex or

reals, -308 to +308 for double-precision.

13-9 22 13.5.9.1 Integer In the Iw and Iw.m edit descriptors,

Editing w and m are unlimited.

13-10 5 13.5.9.2.1 F Editing In the Fw.d edit descriptor, w and d

are unlimited.

13-10 42 13.5.9.2.2 E and D In the Ew.d, Dw.d, and Ew.dEe edit

Editing descriptors, w.d. and e are unlimited.

13-11 35 13.9.5.2.3 G Editing In the Gw.d and Ew.dEe edit

descriptors, w.d. and e are unlimited.

13-12 33 13.5.10 L Editing In the Lw edit descriptor, w is

unlimited.

13-12 49 13.5.11 A Editing In the Aw edit descriptor, w is

unlimited.

13-15 50 13.6.2 List-Directed Integer output constants are produced

Output with the effect of an Iw edit descrip-

tor, where w is chosen appropriately

to the number being printed.

Page 433

13-15 53 13.6.2 List-Directed d1 = -5; d2 = 6; w, d, and e are

Output chosen appropriately to the number

being printed.�

Table 7. Representation of Various Data Types.

��������� �����

Single-precision ~1.175 x 10-38 to 3.4 x 1038,
accurate to 24 bits (~7 decimal digits)

Double-precision ~2.2 x 10-308 to 1.8 x 10308,
accurate to 53 bits (~16 decimal digits)

Integer Arbitrary-precision ���������

Character 8 bits

Table 8. FORTRAN File Types on Different Systems.

������ ���������

Genera .fortran, .for, .ftn

UNIX4.2 .f, .for, .ftn, .fortran

UNIX4.1 .f

MULTICS .fortran

All others .for

0.0.171. Predicates

Press the following keys to format input from an interactive stream:

�������� ��������������

EOF <��������> <���>

EOLN <������>, <����>, or <���>�

open����������

Page 434

0.0.172. recl Field

The length of the recl field of the open statement is processor-dependent. The

computation of this value in the Symbolics software environment is complicated by

the requirement to store tag information in the record, as well as data.

Record lengths are measured in 32-bit words. Words written to the file are either

���� or ��� words.

��������� ������������

Integer, real, logical 1 data word

Double-precision, complex 2 data words

Character block ������� of (length, 4) data words

Sequence of items of the same type

1 tag word�

Example: For a file of records containing two items of type integer and one of type

double-precision, the recl field = 6 words.

TAG integer integer TAG double-precision

1 1 1 1 2 = 6 words�

A file of records containing items all of the same type has the minimum recl

field. Then only a single word of tag information is required. If � data words were

written, the size is � + �.

A file of records containing items of alternating types has the maximum recl field.

Then the size is somewhere between �� and ��, depending on the mixture of sin-

gle- and double-word types of the data words.�

������������������������������������

��

0.0.173. Lisp Code Is Produced

The Symbolics FORTRAN compiler produces Lisp code, which is compiled into

"machine code" by the standard Lisp compiler. Since Lisp is essentially the ma-

chine language of Symbolics computers, no loss of performance occurs.

The Lisp produced by the compiler is not intended to be examined or maintained

as such; rather, it is just the compiler’s intermediate object language, incidental to

producing machine code. You are never required to think in terms of either Lisp

or the machine code, since the Symbolic debugger works on the FORTRAN source

code level.

Page 435

0.0.174. Benefits of Lisp Code

You derive several important advantages from compiling into Lisp. One is that you

can call Lisp numeric functions from FORTRAN; indeed, many of the FORTRAN

library subroutines, such as sin and cos, are in fact those built into the Lisp sys-

tem.

Another benefit is that you can choose to implement a particular routine in either

Lisp or FORTRAN, whichever language is more suitable for your ends. (The proce-

dure for calling Lisp functions from FORTRAN is described elsewhere: See the

section "lispfunction: Type Declaration Statement".)

0.0.175. Compilation Is Incremental

The software environment allows ����������� ����������� in the editor buffer; that

is, you can compile selected routines rather than whole programs. The compiler

maintains a description of the declaration scope of every routine ever compiled.

This permits you to compile any routine whose calling routine is compiled, usually

without recompiling the calling routine.

This feature encourages frequent and thorough debugging and greatly speeds up

the program development process. �

0.0.176. Compiler Options

Symbolics FORTRAN supports three compiler options. One initializes program da-

ta, one allows you to assign ordinal numbers to unnamed main programs, and one

lets you control whether sequence numbers are recognized during program compi-

lation.

You can exercise these options by setting the initialization variables that control

their behavior. Set these variables either in your init file or at a Lisp Listener.

For more information:

• See the section "Compiler Option: Assigning Names to Unnamed FORTRAN

Main Programs".

• See the section "Compiler Option: Initializing FORTRAN Program Data".

• See the section "Compiler Option: Recognizing Card Sequence Numbers".

In addition, when you are compiling files intended to be part of a run-time system,

you must set the variable �������������������������������. By filtering out infor-

mation needed to support debugging and incremental compilation, this variable re-

duces the size of the binary file produced. For further information, see the section

"FORTRAN Applications with Run-time Systems".

Page 436

0.0.177. Compiler Warnings

The FORTRAN compiler produces diagnostics whenever a program violates the

rules for a legal program, as specified in the ANSI Standard. In this case, the

screen displays compiler warnings, which generally provide useful information re-

garding the cause and location of an error.

Sometimes compilation produces a great many compiler warnings, too many for you

to remember. Fortunately, the warnings are stored in an internal database, whose

contents you can inspect and manipulate through several editor commands.

For example, ��� Edit Compiler Warnings splits the editor window into two

frames: The upper frame displays a warning message; in the lower frame the cur-

sor is positioned at the instance of source code that produced the message dis-

played in the upper frame.

Recompiling the corrected code deletes the old warnings and inserts any new

warnings. Correcting all errors and recompiling the code empties the database.

0.0.178. Compile File

Invoking Compile File at the Command Processor compiles files of FORTRAN rou-

tines.

0.0.179. Zmacs Compiler Commands

Several Zmacs commands are available for compiling FORTRAN routines and re-

solving compiler warnings:

������

Compiles to memory the currently defined ������, a contiguous delimited sec-

tion of text in the editor buffer. If none is defined, it compiles the routine

nearest the cursor. This command does not take a numeric argument.

����Compile And Execute Fortran Program

Checks to see that the cursor is positioned near a valid FORTRAN program

and then compiles and executes the program, without run-time options and

with predefined files input and output bound to the editor typeout window.

��� Compile Buffer

Compiles the entire buffer to memory. With a numeric argument, it compiles

from ����� (the cursor position) to the end of the buffer. You can use this

feature for resuming compilation when a previous attempt fails.

��� Compile Changed Definitions of Buffer

Compiles to memory any FORTRAN routines in the buffer that have

changed. With a numeric argument, it queries about whether to compile each

changed routine.

��� Compile File

Compiles a file, offering to save it first if the buffer is modified. It prompts

for a file name in the minibuffer, using the file associated with the current

Page 437

buffer as the default. The command writes a compiled-code file to disk but

does not create object code in memory.

��� Compile Region

Compiles to memory the currently defined region. If none is defined, it com-

piles the routine nearest the cursor. Same as ������.

��� Compiler Warnings

Places all pending compiler warnings in a buffer and selects that buffer. It

loads the compiler warnings database into a buffer called *Compiler-

Warnings-n*, creating that buffer if it does not exist.

��� Edit Compiler Warnings

Edits some or all routines whose compilation caused a warning message. It

queries you, for each file mentioned in the compiler warnings database,

whether you want to edit the warnings for the routines in that file. It splits

the screen, placing the warning message in the top window and the source

code whose compilation caused the error in the bottom window. Use ��� to

move to the next pair of warning and source code.

��� Load Compiler Warnings

Loads a file containing compiler warning messages into the warnings

database. It prompts you for the name of a file containing the printed repre-

sentation of the warnings.�

��

0.0.180. Small Programs

One method of compilation, appropriate for small programs, is to read the source

into an editor buffer and use ������ to compile the routines to memory.

������ compiles the current ������ (a contiguous region of text defined by the

user) or the routine nearest the cursor, if no region is defined. For each FOR-

TRAN routine, this creates a function in the machine’s virtual memory but does

��� create a file version of the object code.

Note that a region can be as large as the entire buffer. After reading in the

source file, press ��� � to mark the entire buffer as a region. Then use ������ as

usual.

After successful compilation, the routines are available for execution; no separate

linking and loading are necessary. Typically, programmers use the editor compila-

tion facility during the debugging cycle to compile code changes quickly, rerun the

program, and do subsequent testing.

Another method appropriate for programs contained in one file is to compile the

file to disk. The Zmacs command ��� Compile File compiles a file and places the

output in a Lisp compiled-code (binary) file.

The most essential difference between compiling a source file and compiling the

same code in an editor buffer is this: When you compile a file, none of the FOR-

Page 438

TRAN routines is defined at compile time. Instead the compiler puts instructions

into the compiled-code file causing definition to occur at load time. Load the com-

piled-code file into memory with ��� Load File.

0.0.181. Large Programs

The other method of compilation is appropriate for a large FORTRAN program, es-

pecially if it consists of several files. This method requires two steps.

1. Declare a group of FORTRAN files as a system. A ������ is a set of files and

a set of rules defining the relations among these files; together these files

and rules constitute a complete program.

2. Use the Load System or Compile System command to compile the program’s

routines and user libraries, load the object code into virtual memory, or both.�

This method results in the creation of object files in the file system, which you

can then load at your discretion.

The facilities for defining a FORTRAN system are described elsewhere: See the

section "Large FORTRAN Programs".

���

0.0.182. Problem

The Standard allows the use of unnamed main programs. However, in the current

version of Symbolics FORTRAN, the compilation of several unnamed main pro-

grams during one work session might cause problems.

The compiler assigns an unnamed main program (that is, one without a program�

statement) the name .main.. You can run the most recently compiled main pro-

gram with its assigned name:

(f77:execute .main.)�

However, a problem arises when you compile another unnamed program, which the

compiler also calls .main.; the software environment warns about what it thinks is

a redefinition of a previously compiled function, in actuality another unnamed pro-

gram called .main..

0.0.183. Solution

To avoid this problem, you can either place the programs in different packages or

set the initialization variable that controls this behavior ��������������

�����������������.

������������������������������� ��������

Page 439

Controls whether the compiler assigns a unique "name" to an unnamed main pro-

gram; the "name" distinguishes one compiled unnamed program from another.

����� �������

� The compiler assigns each unnamed FORTRAN main program with a

name in the form of .main-�., where � is an ordinal number.

Example: .MAIN-7. is the name of the unnamed main program to be com-

piled.

��� The compiler does not assign a unique name to each unnamed FORTRAN

main program. ��� is the default.�

To set this variable in your init file, type:

(login-forms

 (setq f77:*use-main-sequence-numbers* t))�

However, unless (1) the FORTRAN system is stored on the disk and is therefore

accessible when you log in or (2) your init file loads FORTRAN, do ��� add the

above Lisp expression to your init file.

Alternatively, you can set the variable at a Lisp Listener at any time after loading

the FORTRAN system into memory but before compiling the program. Type:

(setq f77:*use-main-sequence-numbers* t)�

To turn off this option, reset the variable. Type to a Lisp Listener:

(setq f77:*use-main-sequence-numbers* nil)�

0.0.184. Invoking the Last Program

If you want to execute the last unnamed main program but cannot remember its

number, use �����������������.

����������������� ��������

When you are using the ordinal number facility, ����������������� invokes the last

compiled unnamed main program.

(f77:run-last-main)�

0.0.185. Disadvantage

One disadvantage of using the ordinal number facility is that it causes problems

for the editor, which determines the name of the program at the time the file is

read in. It has no knowledge of the ordinal numbers assigned as programs are

compiled. As a result, certain commands, like ��� Edit Compiler Warnings, do not

work correctly.

Page 440

��

0.0.186. Problem

Normally, Symbolics FORTRAN sets variables to the Lisp object Undefined when

they are not explicitly initialized by FORTRAN data statements. The hardware

flags an error if any program attempts to manipulate this value as a number.

However, a problem arises if some of your programs actually depend on the ab-

sence of checking for uninitialized values.

0.0.187. How to Set the Option

To avoid this potential problem, set the initialization variable that controls this be-

havior ����������������������.

���������������������� ��������

Controls whether local FORTRAN variables have an initial value when they are

compiled.

����� �������

� Sets the initial value of all local variables to zero.

��� Sets local variables not explicitly initialized by FORTRAN data state-

ments to the Lisp object Undefined. ��� is the default.�

Example: To set the form in your init file, type:

(login-forms

 (setq f77:*ftn-init-to-zero* t))�

However, unless (1) the FORTRAN system is stored on the disk and therefore ac-

cessible when you log in or (2) your init file loads FORTRAN, do ��� add the

above Lisp expression to your init file.

Alternatively, you can set the variable at a Lisp Listener at any time after loading

the FORTRAN system to memory but before compiling the program. Type:

(setq f77:*ftn-init-to-zero* t)�

To turn off this option, reset the variable. Type to a Lisp Listener:

(setq f77:*ftn-init-to-zero* nil) �

�����������������������������������

Note that the ���������������������� option controls initialization of local variables

by the compiler. To control initialization of arrays, common variables, and other

global variables, use the ������������� option to �����������.

��

Page 441

The following variable is available for use with the FORTRAN compiler.

������������������������������������� ��������

Controls whether it is valid for characters to exist beyond column 72. The default

value is �. Set the value to ��� to have parse errors returned if characters exist be-

yond column 72.

The generated code is not affected by this variable.

����������������������

�������������������������

0.0.188. Introduction

You can split large programs into several files for the sake of modularity, organi-

zation, and ease of editing, searching, and compiling/recompiling small pieces of

code. The main disadvantage of this approach is the extra time spent in loading

individual files and keeping track of which files you have edited but not recom-

piled.

To overcome the drawbacks inherent in manipulating small chunks of a large pro-

gram, Symbolics FORTRAN provides a way to define a collection of FORTRAN

routines, possibly spanning several files, as a FORTRAN ������.

0.0.189. Definition

In general, a system is a set of files and a set of characteristics that describes the

files; together these files and characteristics constitute a complete program that

you can manipulate as a unit. Use the Lisp special operator ��������������� to

declare a group of FORTRAN files (or FORTRAN and Lisp files) a FORTRAN

system. The declaration allows you to specify the files and libraries composing the

system as well as the desired properties of the system, such as the package into

which the object code compiles.

��������������� is analogous to the ��������� function used in Lisp. In fact, the

facilities provided for FORTRAN are simply Lisp macros that expand into

��������� invocations.

0.0.190. Benefits

The FORTRAN system offers several benefits:

• Compiled code is stored on disk.

• You can compile and load all the system files to your environment �� ��������,

and in accordance with the properties specified in the system definition. More-

Page 442

over, you can compile only those files that need compiling, that is, only those

source files you have edited.

• You can call defined FORTRAN libraries.

• You can use certain system utilities, like patching, that operate only on defined

systems.�

0.0.191. Procedure

The procedure below summarizes all the steps necessary for declaring, compiling,

and loading a FORTRAN system. You write all package, library and system decla-

rations in the same file, called the ������ ������������ ����, in the order specified

below. The system declaration file must have a Lisp file type and should be in the

������� package.

1. Make a package declaration for the files composing the system, using

�������������������������������������. Alternatively, you can use the prede-

clared package ��������, in which case you do not need to make a package

declaration. Also add the name of the package to the attribute list of the indi-

vidual files in the system. See the section "Declaring a FORTRAN Package".

2. Make a package declaration for the user library or libraries composing the

system, if any, using �������������������������������������. You can declare

different packages for each library. Alternatively, you can use the predeclared

package ��������.

3. Make a package declaration for the FORTRAN system defined in step 5, if

different from the package declared for the individual files. Use ������������

�������������������������. Typically, the system package is the same as the

package of the individual files.

4. Define a set of routines as a FORTRAN user library, using ���������������.

You have to previously define any libraries cited in the definition of another

library as FORTRAN libraries. See the section "Declaring a FORTRAN Li-

brary".

5. Make a system declaration for all files and libraries, using ���������������.

The system declaration includes the name of the files in the system, the pack-

age into which the files are compiled, and the order of compilation and load-

ing of files. See the section "Declaring a FORTRAN System".

6. Load the system declaration file manually (via ��� Load File) or create a sys-

tem site file to load the declaration. See the section "Loading the System Def-

inition".

7. Compile and load the FORTRAN system defined in step 5, using the Com-

mand Processor. See the section "Compiling and Loading a FORTRAN

System".�

Page 443

���������������������������

0.0.192. Introduction

Once you load FORTRAN and Lisp routines into the software environment, they

remain there until they are replaced by recompilation, explicitly removed, or until

you cold boot the machine. Since you might have two large FORTRAN programs

having the same name, Genera must have a means of distinguishing between

them. Genera provides a mechanism for separating like-named programs by assign-

ing each its own distinct context, or ���������. The namespace is called the pack-

age.

The use of packages prevents naming conflicts; two different FORTRAN programs

can have the same name only if each exists in its own package. For example, you

must place two FORTRAN programs the name primes by the compiler in two dif-

ferent packages.

You can avail yourself of the built-in package provided by Symbolics Fortran, or

you can create your own, using the special form ����������������������������

���������. The facility for declaring FORTRAN systems allows you to specify only

an �������� package in the definition; that is, you must previously define and com-

pile the package. All files in the system are compiled in the package specified in

the system declaration.

������������������������������������� �����&body��������������������

������������

Creates packages appropriate for FORTRAN code.

���� is a symbol that is the name of your package, for example, matrix.

(f77:package-declare-with-no-superiors matrix)�

������������������ are optional keyword arguments. For most users, it is not neces-

sary to include these keywords in the package declaration. However, if you decide

to use them, please read the conceptual material on packages in the Genera docu-

mentation Set. See the section "Packages".

�������������������������

������������������������� for ����������

���������� ������ ����...� for ������������

The package is given these nicknames, in addition to its primary

name.

�������������������

������������������� for ����������

Page 444

������������ ���� for ������������

This name is used when printing a qualified name for a symbol in

this package. You should make the specified name one of the nick-

names of the package or its primary name. If you do not specify

������������, it defaults to the shortest of the package’s names (the

primary name plus the nicknames).

��������������

�������������� for ����������

����� ������ for ������������

The number of symbols expected in the package. This controls the

initial size of the package’s hash table. You can make the ����� spec-

ification an underestimate; the hash table is expanded as necessary.

���

You can make a package declaration in either of two ways:

• You can type the ��������������������������������� form to a Lisp Listener, in

which case the declaration lasts only as long as you are logged in. You must

create the package every time you log in.

• You can type the ��������������������������������� form in a Zmacs buffer

whose mode is Lisp. (To have the editor set the mode automatically, create the

file with the correct Lisp file type for your host system.)

If you intend to specify the package name in a system declaration, place the

package declaration in a file, specifically, the same file in which you enter your

FORTRAN system declaration (called the ������ ����������� ����). The file name

must have a Lisp file type and is typically compiled to the ������� package.

Compile the package declaration. �

����������������������������

Symbolics FORTRAN recognizes two packages that you do not need to explicitly

define.

• ������� is the default Symbolics Genera package.

�������� ������� inherits all the symbols in the ������ package, which contains

the basic symbols of the Lisp language. As a result, FORTRAN routines or vari-

ables in the ������� package can conflict with existing Lisp functions.

Page 445

• �������� is the default package of Symbolics FORTRAN. Since �������� was

originally declared using �������������������������������������, no name con-

flicts can occur for programs in this package.

�������������������������������

You must add the package name to the file’s attribute list. This permits editor-

based compilation of routines in the file, without reference to a system declaration

or the prevailing package.

To change the package name in the attribute list, use ��� Set Package and type

the package name. The command offers to create the package if it does not exist.

Alternatively, you can manually enter the package name in the attribute list by

typing ; Package: and the name of an existing package or a package you have pre-

viously defined with �������������������������������������. Type ��� Reparse At-

tribute List to have the change take effect.

If you plan on including the file as part of a system declaration, we recommend

that you specify the package as the value of the �������� option in the system

declaration. The files you list in the definition become associated with the specified

package. Note that you must compile all FORTRAN files of a system declaration

into the same package or they will not correctly reference each other.

���������������������������

0.0.193. Libraries in Genera

FORTRAN user libraries under Genera have the following characteristics:

• Library routines must be declared as a FORTRAN library.

• Main programs can call routines in a defined library in several ways:

° Use the ���������� keyword to ����������� at run time.

° Define the library as part of a FORTRAN system and use the ������� key-

word to ����������� at run time.

° Define the library as part of a FORTRAN system and use the ���������� key-

word to ����������� at run time. �

• Only one copy of the library resides in memory. This contrasts with convention-

al computing environments, where many copies of a library live in memory if

called by several main programs.

• Many FORTRAN routines can use the same library.

• You do not have to put user libraries in the same package as the FORTRAN

routines calling them.

Page 446

Why? Because at run time, during construction of the main program’s call tree,

a search is made for any routines not present in the package into which the

main program is loaded. This search examines all libraries in the order in which

they were declared in the system definition, until the desired library routine is

found. The library is then made directly accessible from the package of the

FORTRAN system.

• Whenever you recompile a library routine independent of recompilation of a

FORTRAN system, the FORTRAN-system package always has access to the up-

dated object code.�

You must declare a group of routines as a FORTRAN library with ���������������

before you can include that library in the declaration of a FORTRAN system.

��������������� �����&rest��������� ������������

Defines a FORTRAN library, where ���� is a symbol that is the name of the li-

brary. ������� refers to the valid keyword options.

Each of the following keywords to ��������������� is allowed:

������� �������

�������� Specifies the name of an existing package, if any. The package

paired to the �������� keyword overrides the packages associated

with the individual files or libraries of the system.

������ Specifies one or more file specification strings. The strings corre-

spond to the names of files composing the library.

���������� Specifies one or more previously defined FORTRAN libraries, if any,

that you have to include in this library declaration. Libraries can

themselves depend on the existence of other libraries.

In addition to the above keywords, you can use any of the valid keywords for

���������, the analogous function for Lisp. See the section "��������� Options".

Example: Suppose you want to create a library of matrix routines (call it matrix2)

in a file whose pathname is s:>libraries>matrix2.ftn, and have the code compiled

into a package called matrix-pkg. In addition, matrix2 depends on an existing li-

brary, matrix1. To define matrix2 as a library:

(f77:def-library matrix2

 (:default-package "matrix-pkg")

 (:files "s:>libraries>matrix2")

 (:libraries matrix1))�

For instructions on how to make a library declaration, see the section "Declaring a

FORTRAN System".

Page 447

��������������������������

You should read background material before attempting to declare your own FOR-

TRAN system. See the section "System Construction Tool".

��������������� �������������&rest������������� ������������

Declares a set of files as a FORTRAN system, where:

���� is the name you have chosen for your FORTRAN system, not necessarily the

name of a main program.

������� are the valid keywords for ���������, the analogous function for Lisp. See

the section "Defining a System". Note that FORTRAN systems can consist of just

FORTRAN code, or FORTRAN code and Lisp code; however, the Lisp and FOR-

TRAN files must not depend on one another.

����������� are module specifications (Lisp, FORTRAN, or Pascal type modules)

and/or the ������ and �����������keywords, described below.

������ �������

������ Specifies one or more FORTRAN files that composing the system.

���������� Specifies one or more previously defined FORTRAN libraries, if any,

that you wish to include in the system declaration.

0.0.194. Example 1: A FORTRAN System

Suppose you have a FORTRAN program, plot, with three files onedplot, twod-

plot, and axislabels residing on directory f:>fred>plot>. In addition, you want (1)

the object code compiled into an existing package called plot and (2) one user li-

brary, graphics, incorporated into the defined system.

(f77:def-program plot

 (:full-name "Plot System"

 :default-pathname "f:>fred>plot>"

 :default-package "plot")

 (:files "onedplot" "twodplot" "axislabels")

 (:libraries graphics))�

0.0.195. Example 2: A FORTRAN and Lisp System

System declarations can mix FORTRAN and Lisp code. Note carefully that the

Lisp code can in no way depend on the FORTRAN code, and vice versa. In the ex-

ample below, the value of the ���������������� keyword is a FORTRAN package.

Assume that the Lisp code compiles into the ������� package, which is specified in

the attribute list of each Lisp file.

Page 448

(f77:def-program lisp-and-fortran

 (:pretty-name "Registration System"

 :default-package "registrar"

 :default-pathname "f:>sr>registrar>")

 (:module definitions ("vars" "defs")

(:package cl-user) (:type :Lisp))

 (:serial (:parallel definitions "macros")

 "display")

 (:files "dave" "bob" "fred")

 (:libraries foo))�

The ������� and ��������� options provide an abbreviated syntax for defining what

modules (files or sets of Lisp files) compose the system and how these modules de-

pend on one another. In the example above, "display" depends on the prior

compilation/loading of definitions and "macros", but in no particular order. ("Defi-

nitions" is a module containing two Lisp files in package �������, vars and defs).

These options apply only to Lisp code within the ��������������� form. (See the

section "Short-form Module Specifications".)

0.0.196. Example 3: A FORTRAN, Lisp, and Pascal System

You can use ��������� to create a system combining FORTRAN, Pascal, and Lisp

code. Note in the example below that you must specify the files of each language

separately in their own ������� declaration.

�������, considered the long-form module specifier, is used only when more com-

plicated dependency relationships exist among modules or when your system con-

tains modules and packages that are not of the default type for the system. (See

the section "Long-form Module Specifications" in �����������������������������.)

For example, the ������� specifications are required here because the modules are

not of the default type, which is Lisp. Lisp is the default type when the options

list does not specify one for the system; the options list below specifies only a de-

fault pathname.

When you do not specify any compile or load dependencies, each module compiles

and loads in turn. Here, FORTRAN compiles and loads first, then Pascal, then

Lisp.

(defsystem fortran-pascal-lisp-demo

 (:default-pathname "C:>sr>")

 ;; needs a module declaration because of non-default

 ;; type and package

 (:module fortran-part ("fpl-ftn")

 (:package ftn-user)

 (:type :fortran))

 (:module pascal-part ("fpl-pascal")

 (:package pascal-user)

 (:type :pascal))

 (:module lisp-part ("fpl-lisp")

 (:package cl-user))) ; LISP is the default type

Page 449

��������������������������������������

0.0.197. Command Processor

You use the Compile System and Load System comands to compile and load your

FORTRAN system. These commands load the system declaration file if:

1. you have created a system site file, or

2. you have a ������������������������� form in your init file.

Otherwise, use the Load File command for loading the system declaration file:

Load File analysis:analysis;finite-element-analysis-sysdcl.lisp�

To load and compile the system files of finite-element-analysis, type:

Compile System finite-element-analysis :Load :newly-compiled�

��

Symbolics FORTRAN supports features enabling you to build and distribute mini-

mally sized applications including the FORTRAN run-time system. Applications in-

cluding this system can run in environments that are not running the FORTRAN

development system. Customers who distribute an application with the FORTRAN

run-time system ���� sign a ���������� �������� �� ��� �����. See the section

"Sublicense Addendum for Symbolics FORTRAN77".

0.0.199. Components of the Run-time System

A run-time system (as opposed to the development system) is made up of the mini-

mal subset of the FORTRAN development system software required to load and ex-

ecute a program. From a user’s perspective, it contains the library routines de-

fined for the language, the loader, and the function that initiateing execution. The

following functionality, normally present in the development system, is absent in

the run-time system:

• Language-specific Zmacs Editor Mode

• Compiler

• Language-specific Source Level Debugger�

The FORTRAN run-time system is called ���������������.

Page 450

0.0.200. Creating Applications

The normal procedure to develop an application and deliver it with the FORTRAN

run-time system follows these steps:

1. You develop the application software in a development environment.

2. During program compilation you can set a global variable that filters out de-

bugging and other information from binary files. Exercising this option cre-

ates smaller bin files.

3. When writing a system declaration, you include a run-time component system

as part of the system declaration, or sysdcl.

�������������������������������������

During a normal compilation, the compiler produces information that supports de-

bugging and incremental compilation. This information is normally written out to

the bin file, a binary file identified by the file extension bin. You can exclude this

information from the bin file by setting the special variable ���������������������

���������� to the Lisp boolean �� Doing so minimizes the size of the binary files

and can therefore aid in producing applications of minimal size.

By convention, binary files produced in this manner are referred to as rto bins

(but assigned the file extension .bin). Using rto binary files limits your ability to

debug and compile source code, so use this facility judiciously. Use of this facility

does not change the generated code. The section "Program Configurations: Devel-

opment System and Run-time System Options for FORTRAN" specifies the capabil-

ities of rto binary files.

��

You should package the run-time system as a dependent component system of the

application. When defining such a packaged system, the packaged system definition

must cause the run-time system to load before any of the application program

loads. For proper loading, specify the appropriate :serial dependency.

The following example illustrates how you can package an application named a1.

Note that you must include a1 as a component system (with accompanying sepa-

rate sysdcl file) and not just as a separate subsystem.

(defsystem a1

 (:default-pathname "foo:bar;"

 :distribute-binaries t

 :default-module-type :FORTRAN)

 (:serial "f1.fortran" "f2.fortran"))

Page 451

(defsystem packaged-a1

 (:default-pathname "packaged-foo:bar;"

 :distribute-binaries t)

 (:module Fortran-runtime "Fortran-runtime" (:type :system))

 (:module a1 "a1" (:type :system))

 (:serial Fortran-runtime a1))

You can use the distribution software to distribute the packaged software. See the

sections:

"Distribute Systems Command"
"Distribute Systems Frame"
"Restore Distribution Command"
"Restore Distribution Frame"

��

Given the capabilities of a run-time system, and the ability to produce rto bins, a

program can be in one of the configurations obtained by the following cross prod-

uct:

 (normal bin, rto bin) X (development system, run-time system)

The (normal bin, development system) configuration is the usual configuration and

the one that makes the full functionality of the development system available. Oth-

er configurations limit the functionality in various ways.

The following table describes the properties of each possible configuration.

Development System Run-time System

Normal Bin Incremental Incremental

 Compilation: Yes Compilation: No

Batch compilation: Yes Batch compilation: No

Language-specific Language-specific

 debugging: Yes debugging: No

Rto Bin Incremental Incremental

 Compilation: * Compilation: No

Batch compilation: * Batch compilation: No

Language-specific Language-specific

 debugging: No debugging: No

*Incremental compilation is possible, after all references external to the unit you

are incrementally compiling are compiled. For FORTRAN this means that you

must compile a file or buffer before you can compile an individual function within

it.

Page 452

0.0.198. Purpose of Configurations

Normal bin, Development system

This is the normal configuration for software development.

Normal bin, Run-time system

This configuration is advantageous when you are actively de-

veloping software and simultaneously using it in a run-time

system.

Rto bin, Run-time system

This is the desired configuration for software that is released,

and of minimal size.

Rto bin, Development system

This is not a recommended configuration. You should re-create

normal bin files if you plan to do any debugging or develop-

ment work with these files.

��������������������������

����������

0.0.201. No Link-and-Load Step

Symbolics computers are a large-scale virtual memory, single-user machines. Rou-

tines compiled by Symbolics FORTRAN remain in the environment until replaced

by recompilation or until you cold boot the machine, that is, until you load a fresh

version of Genera.

The executable module, as most FORTRAN programmers understand the term, does

not exist. Rather, once routines are brought into virtual memory by compilation in

an editor buffer or by "making" a FORTRAN system, they are immediately exe-

cutable; thus, Symbolics FORTRAN requires no separate link-and-load step.

The Genera environment supports incremental compilation; consequently, the ab-

sence of the link step is of great significance when making small changes to large

FORTRAN programs, since the link step in traditional computing environments is

time-consuming.

0.0.202. Call Tree Is Set Up Before Run

When you first run a main program, it sets up a data structure representing the

program’s call tree (the set of all FORTRAN routines called); all variables initial-

ized by FORTRAN data statements are set up before the program begins execution.

This differs from most implementations, in which data initialization takes place in

the link-and-load step.�

Page 453

0.0.203. Call Tree Exploration

The following example illustrates a concern when setting up a program’s call tree

before execution. It shows some FORTRAN code and a Lisp function calling a

FORTRAN subroutine from this code.

The call tree is explored at execution time to determine the space requirements of

a FORTRAN subprogram. In the following example, since ftn-user::bar is not

called directly from a FORTRAN subprogram, it is not encountered during the call

tree exploration of ftn-user::test. You can solve this problem by putting bar in an

external statement in ftn-user::test. You can also use the more temporary solu-

tion of calling ����������� or the CP command Execute FORTRAN, passing it ftn-

user::bar in the :additional-externals list. Note that ftn-user::boo is found

during the call tree exploration of ftn-user::bar.

FORTRAN code:

C -*- Mode: FORTRAN; Package: FTN-USER -*-

 program test

 lispfunction foo ’cl-user::foo’

 call foo

 end

 subroutine bar

 implicit none

 integer i

 call boo (i)

 end

 subroutine boo (i)

 implicit none

 integer i

 print *,i

 end

Lisp code:

 (defun cl-user::foo () (funcall ’ftn-user::bar))�

���������������������������������

0.0.204. Invoke Only a Main Program

Since only a FORTRAN main program can initialize input/output facilities and pro-

gram data, it is not valid to invoke a FORTRAN routine except in the dynamic

scope of a main program.

All Symbolics FORTRAN programs are compiled into Lisp object code. Invoke

these programs once they are in memory in one of the following ways:

Page 454

• Zmacs commands: ��� Execute Fortran Program or ��� Compile and Execute

FORTRAN Program

• Command Processor command: Execute FORTRAN

• Lisp function: �����������

0.0.205. Zmacs Commands

To run your code in a Zmacs buffer, compile the program to virtual memory using

������ or a related command. Placing the cursor near the program you want to

run, issue ��� Execute Fortran Program. The command checks to see that the cur-

sor is near a valid, compiled FORTRAN program and then executes the program.

Execute FORTRAN Program does not accept any of the run-time options accepted

by �����������. The predefined file input and output are bound to the editor type-

out window.

��� Compile and Execute FORTRAN Program performs identically to Execute For-

tran Program, except that it first compiles the program to virtual memory before

executing it.

0.0.206. Command Processor Command

The Execute FORTRAN command runs a valid, compiled FORTRAN program. The

command takes a FORTRAN main program name and accepts the same set of key-

words as �����������. See the section "FORTRAN Main Program Options".

Note, however, that command keywords use underscores, not hyphens. For exam-

ple, the ������������� option for ����������� is rendered as the :Init_to_zero key-

word to Execute Fortran.

Example: (f77:execute ftn-user:mean :init-to-zero t) is invoked from the Com-

mand Processor as:

Execute Fortran ftn-user:mean :Init_to_zero yes�

0.0.207. Lisp Function

����������� main-program-name &rest options Function

Runs a FORTRAN program, where name is the name of the program. ������� is a

synonym for �����������.

The FORTRAN run-time system supports the options ����������������������

����������, ����������������������, �������������������, �������������, ����������,

�����������������, �������, �����������������, �������, ���������������, and

������.

See the section "FORTRAN Main Program Options".

Page 455

0.0.208. Example 1

To run a main program ftn-user:convert, go to a Lisp Listener and type:

(f77:execute ftn-user:convert)�

0.0.209. Example 2

To run a main program ftn-user:convert, which reads a single line of parameters

from unit 5, go to a Lisp Listener and type:

(f77:execute ftn-user:convert)1 2 3 �������

0.0.210. Lisp Listener Package

Run a FORTRAN main program from a Lisp Listener. But be careful: An error

results if you attempt to invoke a main program when its package differs from

that of the current Lisp Listener and you do not specify the package of the main

program. For example, assuming that the Lisp Listener package is ������� and the

main program package is ��������, the following invocation of convert signals an

error:

(f77:execute convert)

The ������� package does not recognize convert as a FORTRAN main program.

The current package of the Lisp Listener always displays on the status line. In

general the current package is determined by these guidelines:

• At a top-level Lisp Listener, the package is the default �������, unless you

explicitly change it.

• In the editor, the Lisp Listener package corresponds to that of the Zmacs buffer.

Example: If the cursor is in the middle window of a three-window screen and

you invoke a Lisp Listener, the package of the Lisp Listener is the same as that

of the middle window.�

If your main program resides in a different package than that of the Lisp Listener,

specify the package name at run time, for example:

(f77:execute ftn-user:quadratic)

����� Be careful when using the ����������� function to change to the ��������

package, or any package declared with no superiors; specifically note that even ���

requires a package prefix.

����������������������������

Page 456

0.0.211. Introduction

All FORTRAN main program invocations accept several pairs of keywords and

values. These keywords are recognized:

• ���������������������
• ����������
•� ����������������������
•� �������������������
•� �������������
•� ����������
•� �����������������
•� �������
•� �����������������
•� �������
•� ���������������
•� �������

Note that using the ������������� option resets all real variables to the integer

zero.

0.0.212. Format

The options are specified as keyword-value pairs:

(����������� main-program-name option value ...)�

Example: Invoking the main program mean with multiple options looks like this.

(f77:execute ftn-user:mean :units ((3 "f:>tc>abc.ftn"))

 :save-environment :copy)�

���������������������

The ��������������������� option enables you to specify a list of FORTRAN sub-

programs you are adding to the call tree exploration, the program initialization

step. It is especially useful if you intend to use a FORTRAN library from Lisp.

These FORTRAN subprograms are those called directly by a Lisp function and

never referenced in a FORTRAN EXTERNAL statement or called directly or indi-

rectly by the FORTRAN program you are executing.

For further information, see the section "Call Trees in Symbolics FORTRAN 77".

����������

The ���������� option enables you to specify all block data subprograms called by

the main program. (See the Standard, chapter 16.) This contrasts with most sys-

tems, in which block data subprograms are specifically listed at link-and-load time.

Page 457

����� The compiler assigns the name .blockdata. to an unnamed block data sub-

routine.

Value Meaning

block-name Specifies a list of names of block data subroutines.

To run a main program taxes with block data subroutines schedulex, scheduley,

and schedulez, type:

(f77:execute ftn-user:taxes blockdata (schedulex scheduley schedulez))�

����������������������

The ���������������������� option applies only when you use the �����������������

�������������� macro in your program. This option specifies the amount of extra

space to reserve for allocation in the global character array (created by the

macro), in case insufficient space remains. Note that without explicitly allocating

more space, the array would grow automatically to the proper size; this operation,

however, can be inefficient. The value of the ���������������������� option is a

non-negative integer number of characters.

To invoke the program printarrays with 3000 characters of dynamic character

space, type:

(f77:execute ftn-user:printarrays :extra-character-space 3000.)�

�������������������

The ������������������� option is applicable only when you have used the

���������������������������� macro in your program. This option enables you to

specify the amount of extra space to reserve for allocation in the global number

array (created by the macro) in case insufficient space remains. Note that without

explicitly allocating more space, the array grows automatically to the proper size;

this operation is not as efficient. The value of the ������������������� option is a

non-negative integer number of words.

To invoke the program printarrays with 10,000 words of dynamic number space,

type:

(f77:execute ftn-user:printarrays :extra-number-space 10000.)�

�������������

Normally, Symbolics FORTRAN sets variables to the Lisp string "Undefined" when

they are not explicitly initialized by FORTRAN data statements. The hardware

flags an error if any program attempts to manipulate this value as a number.

However, a problem arises if some of your programs actually depend on the ab-

sence of checking for uninitialized values. To avoid this potential problem, use the

������������� option.

Page 458

Value Meaning

� Initializes memory-resident FORTRAN variables, space for which

allocates at run time, to zero.

��� Sets FORTRAN variables to the Lisp string "Undefined". ��� is the

default.�

Note that this option controls initialization of arrays, common variables, and other

global variables. To control initialization of local variables by the compiler, use the

initialization variable ����������������������. See the section "Compiler Option: Ini-

tializing FORTRAN Program Data".

����������

A main program can call a defined FORTRAN library via the ���������� option. See

the section "Declaring a FORTRAN Library".

Value Meaning

library-name Specifies a list of names of FORTRAN libraries.�

To run a main program, taxes, that depends on the library taxtable, type:

(f77:execute ftn-user:taxes :libraries (taxtable))�

�����������������

The ����������������� option specifies the pathname used as the default by the

FORTRAN I/O system when parsing filenames specified in the ������ option, or in

open or inquire statements.

The pathname specified as the default merges with the prevailing default,

������������������������������. If you do not specify the ����������������� op-

tion, the prevailing default is used.

Assume that the prevailing pathname default is "s:>tc>tc.lisp". You run payroll,

supplying the ����������������� option:

(f77:execute ’ftn-user:payroll :pathname-default ".fortran")�

The pathname system constructs a new default "s:>tc>tc.fortran".

Assume also that the statement calling open reads:

open(unit = 3, file = ’>tc>payroll-dir>’, recl = 6)�

When the program executes, the pathname of the opened file is constructed from

the new prevailing default and the value of the file parameter:

"s:>tc>payroll-dir>tc.fortran"�

For more information, see the section "Pathname Defaults and Merging".

�������

Page 459

The ������� option builds a new environment.

Value Meaning

� Discards any previously saved environments and builds a new one.

Use this option when you radically change programs and need to

recoup storage after a large number of incremental loads.

��� Does not build a new environment; ������� has no effect.�

Suppose, after running mean numerous times, you want to flush the environment

and then rerun mean, performing all data initialization only once.

(f77:execute ftn-user:mean :save-environment :no-copy

 :reload t)�

�����������������

For very large programs, especially those with many data statements, exploring the

call tree and initializing the data is time consuming. For this reason, the FOR-

TRAN run-time system supports the ����������������� keyword.

����� An environment remains saved until you discard it using �������.

The value of ����������������� indicates how to save the environment.

Value Meaning

����� Preserves the data space for the main program between executions

of the program.

Suppose you want the data area allocated only once instead of ev-

ery time you run mean, but you also want variables initialized at

every program execution. Type:

(f77:execute ftn-user:mean :save-environment :copy)

�������� Performs the required data initialization only once instead of every

time the program runs. The underlying assumption is that all data

statements initialize variables, which do not change during execu-

tion of the program.

��� Does not save the environment; ����������������� has no effect.�

�������

The files of a FORTRAN system (given as values to the ������ keyword) can con-

tain more than one main program. To run a main program that depends on any of

the elements of the system definition, for example, ����������, use the ������� key-

word to access them. See the section "Declaring a FORTRAN System".

����� If the program depends only on a system library, you can substitute the

���������� keyword.

Page 460

Value Meaning

system-name Specifies the name of a FORTRAN system defined by ��������

�������.�

To run a main program, axis, in the system plot, where axis calls a system li-

brary and a routine in another main program in plot, type:

(f77:execute ftn-user:axis :system plot)�

���������������

By default, Genera signals an underflow if a result is too small for expression as a

normalized single-precision or double-precision floating-point number less than

~1.175 x 10-38 and less than ~2.2 x 10-308, respectively.

To turn off trapping mode, use the ��������������� option, which sets the result

in this case to 0 or to a denormalized number (see Jerome Coonen, et al., :A

Proposed Standard for Binary Floating Point Arithmetic: Draft 8.0 of IEEE Task

P754", Microprocessor Standards Committee, IEEE Computer Society, Computer,

March 1981).

Bear in mind that your result might lose some accuracy.

Value Meaning

��� Turns on nontrapping mode; sets the result, if too small for ex-

pression as a normalized floating-point number, to 0 or a denormal-

ized number.

� Turns off nontrapping mode; underflow is detected if a result is

too small for expression as a normalized floating-point number.

Trapping mode is the system default.�

To prevent the detection of underflow while running a main program, add, type:

(f77:execute ftn-user:add :trap-underflow nil)�

������

In the call to the main program you can specify files associated with FORTRAN

logical units. The value for the keyword ������ is a Lisp list, each element of

which is a pair of values enclosed in parentheses:

((unit-number file-source) (unit-number file-source)) �

Value Meaning

unit-number Specifies the FORTRAN logical unit number associated with the

file-source. Valid unit numbers are non-negative integers.

file-source Refers to the file associated with the FORTRAN logical unit and

can be any of these:

Page 461

• A file specification string, giving the pathname of a file.

The file specification string and the pathname are merged with

the system pathname default (the variable ������������

������������������), as modified by the �����������������

main program option, if present.

• A pathname flavor instance.

• A stream.�

During execution of the main program mean, unit 3 is associated with the file

"f:>tc>abc.ftn" and unit 4 with "f:>sr>xyz.ftn".

(f77:execute mean :units ((3 "f:>tc>abc.ftn") (4 "f:>tc>xyz.ftn")))�

The Standard specifies that you can backspace and rewind any file operations

not permitted on normal Genera files. Symbolics FORTRAN allows these normal

FORTRAN operations, however, with some associated run-time cost. Thus, if your

programs do not use the backspace and rewind statements, it is more efficient to

pass in Genera-style streams, as in the following example.

When the main program mean executes, standard input associates with the file

"f:>tc>abc.text" and standard output with the file "f:>tc>xyz.text". Output to logical

unit 14 is discarded.

(with-open-file (input "f:>tc>abc.text"

 :direction :input :characters t)

 (with-open-file (output "f:>tc>xyz.text"

 :direction :output :characters t)

 (eval ‘(f77:execute mean :units ((5 ,input)

 (6 ,output)

 (14 ,#’si:null-stream))))))�

������������������������������������

������������

0.0.213. Standard Debugger

The standard Debugger starts automatically when an error occurs, and provides

information about the Lisp or FORTRAN routine causing the error.

The Debugger provides features enabling you to:

• Examine the backtrace of routines leading to the error at the source level. If

the error occurred in a FORTRAN routine, a small arrow on the left side of the

Inspect pane of the Debugger points at the location of the error in the source

file. In any case, you can examine the sequence of calls, at the source level,

from the FORTRAN program to the error site.

Page 462

• Examine variables and arguments at the source level.

• Enter executable FORTRAN statements and have them evaluated at the debug

level.

• Set and clear breakpoints.

The standard debugger presents these capabilities in the Listener window in which

the program is executed.

0.0.214. Display Debugger

The standard Debugger invokes the Display Debugger. The Display Debugger has

the same functionality as the standard Debugger, but provides a structured frame-

work for you to work in in the form of a multipaned window. See the section "Us-

ing the Display Debugger". To invoke the Display Debugger, press ����� at the

FORTRAN Debugger prompt. Figure 16 is an example of a FORTRAN program in

the Display Debugger.

Figure 66. A FORTRAN program in the Display Debugger

Page 463

0.0.215. Types of I/O Errors

Four classes of error conditions can occur:

End-of-File

You can handle this error by placing an end= statement in your code.

(See the ANSI Standard, section 12.7.2). If you choose not to handle

these errors, the Debugger starts automatically.

Recoverable I/O error

You can handle this error by placing an err= statement in your code.

(See the ANSI Standard, section 12.7.1.) If you choose not to handle

these errors, the Debugger starts automatically.

An example of a recoverable I/O error is opening a nonexistent file.

Irrecoverable, or fatal, error

Starts the Debugger.

An example of an irrecoverable, or fatal error is using an illegal charac-

ter constant.

System error

External to FORTRAN. See your system maintainer.

An example of a system error is network failure.�

0.0.216. Error-Handling Mechanism

This section outlines the basic theory underlying error handling by the I/O system;

this information has no functional application.

An error is detected by means appropriate to the type of error. For example, end-

of-file errors are trapped by establishing a �������������� for that specific condi-

tion. See the section "Conditions". Special-case code in the I/O subsystem handles

data translation errors. The code that detected the error determines the internal

error code; again, most of these errors are special cases.

The I/O subsystem then passes the error code to a sort of general-purpose I/O er-

ror handler, which determines whether or not the error is recoverable.

• If the error is recoverable and the calling program specifies that it wants con-

trol of the error (that is, you specified err= or end= so that control returns to

the program without user intervention), the I/O system (1) returns the error

code to the calling program’s I/O status specifier (iostat) location, if any, and

then (2) takes the appropriate return path, as specified in the calling program.

• If the error is not recoverable or if the calling program does not specify that it

wants control, the I/O system notifies you of the error by displaying the error

code and a message appropriate to the condition. At this point, the system is in

a debugger break, and you can elect to abort, resume, or enter the Display De-

bugger.

Page 464

���������������

0.0.217. FORTRAN I/O Status Specifiers

The Lisp function �������������������������� displays on the screen all current

FORTRAN I/O Status Specifiers, error code numbers, and messages. (See the ANSI

Standard, section 12.9.7.) For this reason, the I/O Status Specifiers are not listed

here.

������������������������ &optional iostat Function

Displays the message corresponding to iostat, the I/O Status Specifier error code, a

digit from 1 onward. The top number depends on the software; as error messages

are added with each new software revision, the range of error codes grow. When

you omit the argument, the function displays all the I/O error codes and error

messages.

(f77:print-fortran-errors 4) displays:

FTN-ILLEGAL-FORMAT is Not Recoverable; error return is 4

 Message is "Format statement contains too few data items"

 Documentation is CL:NIL�

0.0.218. Example 1: A FORTRAN Error

Figure 17, page 198, shows the faulty execution of program readwrite in a Zmacs

breakpoint window; the source code for this simple program is in the lower

window. Note that readwrite is executed with the wrong type of arguments, a

character string (’abc’) instead of integers.

As a result, the FORTRAN I/O system generates an irrecoverable FORTRAN error

6:

Error in list-directed input ...�

Then it isolates the error, marking the offending argument with a pointer that

looks like an up-arrow (^).

The Lisp error message is internal to the Lisp run-time system.

Following the Lisp error message are the proceed types, a list of the possible

actions you can take. For example, pressing ��� or ����� returns you to the origi-

nal Zmacs breakpoint window, where you can rerun readwrite with the correct

argument type.

0.0.219. Example 2: A Lisp-Detected Error

The Lisp I/O system detects hundreds of its own errors and generates error

messages. For example, figure 18, page 198, shows program readwrite executed

without any arguments. This causes the program to enter a debugger break,

indicated by "Error".

Page 465

Figure 67. Example of an error produced by the FORTRAN I/O system.

In this example, where the cause of the error is obvious, you can press ����� to

return to an editor breakpoint and rerun the program.

Figure 68. Example of an error detected by the Lisp I/O system.

0.0.220. Example 3: A Backtrace

In cases where the error message is more puzzling, you can print a backtrace (a

backward trace) of the program stack via ���. Figure 19, page 199, shows a mouse-

sensitive backtrace of all active functions for the execution of readwrite. Note that

the arrows indicate the direction of calling, and that all hyphenated expressions

are Lisp functions. readwrite is a very simple program, but, if the routines in

which the error occurred are deeply nested, the backtrace marks the entire path

from the onset of program execution to the error.

Page 466

A similar command, ���, prints the names of the arguments to each function and

their current values, in addition to the backtrace.

For more information:

• See the section "Debugger".

• See the section "Conditions".

Figure 69. A backtrace of the control stack.

���

You can debug FORTRAN programs from the FORTRAN source level. The Debug-

ger lets you examine the following language objects: variables, values, and types.

In addition, you can evaluate expressions and statements from the Debugger.

This discussion assumes you have some knowledge of Debugger concepts and capa-

bilities. In particular, it refers to:

stack frame

A frame from the control stack that holds the local variables for the

routine.

Page 467

current stack frame

The context within which debugger commands operate. The debugger us-

es the current frame environment for performing operations according to

the suspended state of your program. It evaluates forms in the lexical

context of the function suspended in the current frame.

Initially, the current stack frame is the one that signalled the error.

���������������������

You use the Debugger when you encounter a run-time error and are automatically

thrown into the Debugger, when you use m-SUSPEND or c-m-SUSPEND to deliberately

use the Debugger context, or by setting a breakpoint from the editor.

0.0.222. Exiting the Debugger

To exit the Debugger, use the ABORT key, the :Abort command, or invoke a restart

option.

If you are in the middle of a series of recursive Debugger invocations, pressing

ABORT returns you to the previous invocation. Keep pressing ABORT until you leave

the Debugger and return to top level. Pressing m-ABORT from a recursive Debugger

invocation brings you back to top level immediately.

0.0.223. Using Help

The Debugger offers you online help. Pressing the ���� key inside the Debugger

displays several help options for you to choose:

• ������ displays documentation about all Debugger commands. This documenta-

tion consists of brief command descriptions and available key-binding accelera-

tors.

• The ����� key takes you out of the Debugger. (You can enter the :Abort com-

mand or press ��� instead of pressing �����.)

• ����� brings you into the Window Debugger. (You can enter the :Window De-

bugger command instead of pressing �����.)

The ������� key, the :Show Frame command, or the :Show Frame command accel-

erator ��� clears the screen, then redisplays the error message for the current

stack frame.

You can also ask for help with keywords. If you do not remember what keywords

are available for the command you are entering, press the ���� key after you re-

ceive the keywords prompt. The Debugger displays a list of keywords for that

command. For example:

Page 468

→ :Previous Frame (keywords) HELP

You are being asked to enter a keyword argument

These are the possible keyword arguments:

:Detailed Show locals and disassembled code

:Internal Show internal interpreter frames

:Nframes Move this many frames

:To Interesting Move out to an interesting frame

0.0.221. FORTRAN Frames

When you use the Debugger on a frame compiled in FORTRAN, you can get infor-

mation about local and global variables and about the type and value of variables

at various points in the source. You can also evaluate expressions and statements.

The Debugger prompt identifies the language used in compiling the current frame.

For example, if you are debugging from a stack frame compiled in FORTRAN, you

see the prompt:

Frames compiled in Lisp display the arrow prompt.

The next example shows the Debugger operating in the context of a FORTRAN

frame. The program is EXAMPLE_3 from "Porting FORTRAN 77 Programs" which

increments INUM, an uninitialized integer, thereby producing an error. The example

shows the initial debugging information and the result of using the m-L Debugger

command to show local variables.

Page 469

You can see that a list of local variables and their values follow the m-L command

as well as source information. The items under local are all mouse-sensitive. For

further information, see the section "Looking At Variables, Values, and Types in

FORTRAN".

��

Local variables and their values are mouse�sensitive. The mouse documentation

line displays what action occurs with each mouse click. The following table sum-

marizes this information for variables, values, and types.

�������� �����������

������

���� ������ �����

�������� :Show value :Show type menu

����� Returns the value Describes the value menu

���� :Show type :Show type :detailed menu

Using the mouse offers a quick and efficient way for you to inspect a variable,

value, or type. In particular, you can use the mouse in getting a complete descrip-

tion of a complex type.

���

��������������������

An uninitialized value prints out as the symbol

���������

���

When you try to access a value beyond the range of the ���������� allo-

cated Lisp object, the value prints out as the symbol

�����������_������

Unfortunately, there is no one-to-one correspondence between a Lisp ob-

ject and a language object, since many language objects are allocated

within a Lisp object. Thus, violating the bounds of a language object

does not always yield the symbol �����������_�������

�����������������

Summarized values (objects that are too large to print out by default,

such as: arrays, structures unless requested) are printed out in summary

form between the characters ≤≥. The summary form contains an abbrevi-

ated type indication followed by a unique number that helps distinguish

two different values.

For example,

Page 470

≤�������{���}���������≥

�������������������������������

Values are printed between horseshoes when the value as indicated by

the tags in the hardware does not correspond to the declared type for

the value. An example of this is attempting to obtain the value of a vari-

able declared as an integer but actually containing a real.

For example,

⊂1.3⊃

����������������������������������

0.0.224. Variables, Values, and Types

The following table summarizes the Debugger commands that work in FORTRAN

frames and give specific information for FORTRAN variables, values, and types.

The left column represents command processor commands and accelerators, and

the right column shows corresponding menu choices.

�����������������������

:Show Local (���)

��������������������

:Show Variable’s Value

Examine the value associated with this variable

:Show Detailed Value

Examine this value in greater detail�

�������������������

:Show Variable’s Type

Examine the type associated with this variable

:Show Value’s Type

:Describe Type Detailed

Describe the type in greater detail

:Show Type Name Show the type name

������

Edit Viewspecs (menu only)

��������������������������

You can evaluate expressions and statements from the Debugger. Type the expres-

sion or statement and press END to evaluate it.

Page 471

��������

����������

���������������������

:Statement Step For Function

Program execution stops in the debugger

before the execution of each statement

:Clear Statement Step For Function

Clears the :Statement Step For Function

enabling the program to execute normally �

The following debugging commands are useful when using the stepping

feature. In order to see a complete list of all debugging commands,

specify :language help from the debugger. �

�����������������

 ������� Show the source code for the function in the current frame.

�����������

 ���, � Move down a frame (takes numeric argument), skipping invisible frames.

 ������ Move down a frame, not skipping invisible frames.

 ��� Move down a frame, displaying detailed information about it.

 ����� Move down a frame, not hiding internal interpreter frames.

 ���������������

 ��� Move up a frame (takes numeric argument), skipping invisible frames.

 ������ Move up a frame, not skipping invisible frames.

 ��� Move up a frame, displaying detailed information about it.

 ����� Move up a frame, not hiding internal interpreter frames.

 ����� Move to the next frame that is not an internal interpreter frame.

�

���������������

 ��� Displays a brief backtrace, hiding invisible frames,

 but not censoring continuation frames.

 ������ Displays a brief backtrace of the stack, censoring invisible

internal (continuation) frames. Use a numeric

argument to indicate how many frames to display.

 ��� Displays a detailed backtrace of the stack.

 ������ Displays a brief backtrace, without censoring invisible

 or continuation frames.

 ����� Displays a detailed backtrace of the stack, including internal frames.�

Page 472

������������������������

This section summarizes the Genera Debugger commands you can use in debug-

ging FORTRAN programs. They are listed according to the following areas of

functionality:

• Commands for viewing a stack frame

• Commands for stack motion

• Command for general information display

• Commands to continue execution

• Trap commands

• Commands for breakpoints and single stepping

• Commands for system transfer

Most of these commands are described fully in "Debugger Command Descriptions".

����������������������������������

:Show Arglist (�������)

:Show Argument (�����)

:Show Compiled Code (�����)

:Show Frame (�����������������)

:Show Function (�����)

:Show Local (�����)

:Show Source Code (�������)

:Show Stack

:Show Value (�����)

�������������������������

:Bottom Of Stack (���)

:Find Frame (���)

:Next Frame (���������������������)

:Previous Frame (������������������������������)

:Set Current Frame

:Top Of Stack (���)

��

Page 473

:Describe Last (�����)

:Show Backtrace (���������������)

:Show Instruction (�����)

������������������������������

:Abort (����������)

:Disable Aborts

:Enable Aborts

:Proceed (������)

:Reinvoke (�����)

:Return (���)

�������������

:Clear Trap On Call (�������)

:Clear Trap On Exit (�������)

:Disable Condition Tracing (�����)

:Enable Condition Tracing (�����)

:Show Monitored Locations

��

:Clear All Breakpoints

:Clear Breakpoint

:Set Breakpoint

:Show Breakpoints

:Single Step (������)

����������������������������

:Edit Function (���)

:Mail Bug Report (���)

���������������������

If at any point in a debugging session you want to return to to Lisp mode debug-

ging, use the :Use Lisp Mode command to toggle to that mode.

������������������������

Page 474

������������������������������������

0.0.225. Contents

This chapter discusses the interface between Lisp and FORTRAN, including the

following issues:

• lispobject, an additional data type for representing Lisp objects in FORTRAN

programs.

• lispfunction, an additional FORTRAN declaration statement that allows the

declaration of an existing Lisp function, which you can subsequently call from a

FORTRAN routine.

• How to call FORTRAN from a Lisp function.

• How to call a Lisp function from FORTRAN.

• Macros for the dynamic allocation of FORTRAN data.

• FORTRAN coercion of Lisp data types.�

lispobject�������������������������������������

In addition to the data types defined in the Standard, Symbolics FORTRAN sup-

ports a scalar data type called lispobject, facilitating interaction with Lisp. By

declaring a variable a lispobject, you can represent any lisp data object. You can

form arrays of lispobjects and declare lispobject functions.

However, the only valid operations on objects of the lispobject type are assign-

ment and parameter passing; they cannot be read, written, or even compared

against each other. You cannot coerce any other type into a lispobject, and vice

versa.

lispfunction����������������������������

Symbolics FORTRAN supports a FORTRAN declaration statement, known as lisp-

function, allowing you to declare a Lisp function you can call during a FORTRAN

routine.

0.0.226. Format

The format is:

lispfunction ������������������������������ ’������������������’

(������������������������������n) ������������

where the following conventions are used:

• Single quotes enclose the Lisp function name.

• Commas separate multiple input types.

• Parentheses enclose the required argument list.�

Page 475

0.0.227. Example

Declaration fortran-name-for-lisp-function input-type-�

name | input-type-1 |

| | lisp-function-name | | output-type

| | | | | |

↓ ↓ ↓ ↓ ↓ ↓
lispfunction get_time ’cl-user::get-time’ (character(10), integer) integer�

0.0.228. Description

lispfunction specifies the name of the declaration statement for calling a Lisp

function. It takes the following arguments.

������������������������������

Specifies a valid FORTRAN name that FORTRAN uses to call the Lisp

function. ������������������������������ can be the name of an existing,

valid Lisp function (predefined or user-defined) as long as that name is

valid in FORTRAN; for example, length is a valid FORTRAN identifier

that is also the name of an actual Lisp function, ������. When the

FORTRAN name for the Lisp function is identical to the Lisp function

name, it is not necessary to specify the ������������������ argument.

������������������������������ is also a valid FORTRAN name that you

can select to represent a Lisp function. For example, FORTRAN recog-

nizes get_time as the FORTRAN name of the user-defined Lisp func-

tion ����������������. In this case you must specify ������������������.

������������������

Optional if ������������������������������ is identical to ��������������

���� and both are in the same package. Required if the Lisp function

is in a different package than the FORTRAN program, or if the Lisp

function name contains characters that are invalid in a FORTRAN

identifier, such as "-" and "*". If present, ������������������ is specified

as a FORTRAN string literal, whose contents are the print name of a

Lisp function.

In this example, ���������������� contains a hyphen and a colon, which

are invalid characters in FORTRAN.

lispfunction get_time ’cl-user:get-time’�

������������������������������

Specifies the input data type of the argument to ������������������.

Supply any of the standard FORTRAN scalar data types (integer, real,

logical, double-precision, complex, and character) or lispobject, the ex-

tension to the Standard.

To specify an array of the indicated data type, follow the type by a

single constant dimension in parentheses. If specified, the dimension

must be an integer constant expression indicating the size of an array.

The lower bound is 1.

Page 476

When you pass arrayed parameters, the FORTRAN compiler creates

Lisp indirect arrays, pointing into the FORTRAN data array, for each

arrayed parameter. Thus, when the Lisp routine sets elements of the

arrays passed into it, the values are modified in the FORTRAN data

space as well. Nonarrayed parameters (scalar data) are passed by value,

not reference, so changing the value in the Lisp routine has no effect

on the FORTRAN data address space.

Enclose all the input data types that make up the parameter list in

parentheses. Separate multiple data types with commas.

Example: Two input data types are given: a 10-slot, single-dimension

character array and a scalar of type integer.

lispfunction time ’cl-user:get-time’

(character(10),integer) ...�

����������� Optional. Specifies the data type of the output, or value, returned from

lisp-function-name.

If present, ����������� must be one of the standard FORTRAN scalar

data types (integer, real, logical, double-precision, complex, and charac-

ter) or lispobject, the extension to the Standard. You can invoke the

routine as a FORTRAN function. The Lisp routine is then expected to

return an item of the indicated data type.

If ����������� is absent, the routine returns no value and is invoked as

a subroutine rather than as a function.

Symbolics FORTRAN does not handle character arrays as an �������

����. See the section "Output-Type Restriction of lispfunction".

0.0.229. Example 1

Declare the Lisp function ������ in a FORTRAN routine; it returns an integer

corresponding to the length of a list.

.

.

lispfunction length (lispobject) integer

lispobject a

.�

Use the variable ������ in the routine.

w=2*length(a)�

0.0.230. Example 2

The Lisp function ������������ refreshes the screen and ���� draws a filled-in

circle.

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 8 -*-

Page 477

(defun screen-clear ()

 "Clears the screen"

 (send *standard-output* :clear-history))

(defun ball (center-x center-y radius)

 "Draws a ball whose center is (center-x, center-y)"

 (send *terminal-io* :draw-filled-in-circle

center-x center-y radius tv:alu-xor))�

The FORTRAN program throwball declares the Lisp function ���� as a lispfunc-

tion that has three integer arguments.

C -*- Mode: FORTRAN; Package: FTN-USER -*-

program throwball

implicit none

integer i

lispfunction ball ’cl-user::ball’ (integer, integer,

 integer) integer

lispfunction beep ’tv:beep’ () lispobject

 lispfunction screenclear ’cl-user::screen-clear’ ()

lispobject

call screenclear

do i = 50, 300, 20

 call ball(i, i, 10)

enddo

c get the user’s attention

call beep

end�

���������������doubleprecision�������

doubleprecision numbers are represented as ����� numbers in the Lisp world, and

as �������, or unpacked, numbers in FORTRAN. This difference stems from the

fact that each manipulation of a boxed number creates storage to return a result.

This is unnecessary overhead for FORTRAN.

This difference requires that you use caution in lispfunction declarations when

passing arrays of type doubleprecision between Lisp and FORTRAN. This caution

does not apply to scalars specified in lispfunction declarations; you can pass a

double-precision scalar that Lisp can manipulate directly.

To pass an array of doubleprecision numbers to FORTRAN, unbox the Lisp num-

ber by calling �������������������� ������������������ on the Lisp double.

�������������������� ������������������ returns two "integers", � and �, repre-

senting the high and low portions of the number. These can be placed separately

in a Lisp array for manipulation by FORTRAN. Conversely, you can call

Page 478

��������������� on � and � to produce a boxed double for Lisp to manipulate.

Example 1:

add_one_to_double calls the lispfunction addem, passing in a, a double-precision

scalar. The Lisp interface boxes a before passing it to Lisp. The macro ���������

������������������� creates the array �����������������. The body code adds 1 to

the boxed number and then unboxes it so FORTRAN can handle it, placing the

high and low portions (� and �) in �����������������. The FORTRAN subroutine

print_double is called with the FORTRAN address of the unboxed double-precision

number as its argument.

c -*- Mode: FORTRAN; Package: FTN-USER -*-

 program add_one_to_double

implicit none

doubleprecision external print_double

 doubleprecision a

 lispfunction addem

 x ’cl-user::add-one-in-lisp’ (doubleprecision) lispobject

 external print_double

 a = 23.d0

 call addem(a)

 end

doubleprecision function print_double(a)

implicit none

doubleprecision a

print *,a

print_double = a

end

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 8 -*-

(defun add-one-in-lisp (double)

 (f77:with-fortran-number-data (lisp-double-array

 fortran-double-address 2)

 (multiple-value-bind (x y)

 (si:double-components (+ double 1.0d0))

 (setf (aref lisp-double-array 0) x)

 (setf (aref lisp-double-array 1) y)

 (ftn-user:print_double fortran-double-address))))�

Page 479

Example 2:

add_one_to_double_array_element calls the lispfunction addem_to_array, passing in

a, a 3-element double-precision array. Each element is unboxed. The Lisp function

������������������������ pulls out the high and low portions of the first element

and calls ��������������� to box the number. Lisp adds 1 to the number, unboxes

it, and places the high and low portion back into double-array.

c -*- Mode: FORTRAN; Package: FTN-USER -*-

 program add_one_to_double_array_element

implicit none

 lispfunction addem_to_array

 x ’cl-user::add-one-to-array-in-lisp’ (doubleprecision(3))

 x lispobject

 doubleprecision a(3)

 a(1) = 23.0

c perform in Lisp the effect of a(1) = a(1) + 1.0

 call addem_to_array (a)

 print *,a(1)

 end

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 8 -*-

(defun add-one-to-array-in-lisp (double-array)

 (let* ((x (aref double-array 0)) ;get x of double-array(1)

 (y (aref double-array 1)) ;get y of double-array(1)

 (double (si:%make-double x y)))

 (multiple-value-bind (new-x new-y)

(si:dfloat-components (+ double 1.0d0))

 (setf (aref double-array 0) new-x)

 (setf (aref double-array 1) new-y))))�

���������������������������lispfunction

Symbolics FORTRAN cannot handle a character array as an �����������. The

workaround is to pass an additional parameter to the Lisp routine declared as a

character array.

A FORTRAN routine calls a Lisp routine to get the time into a 20-character array,

passing a time-zone indication:

C -*- Mode: FORTRAN; Package: FTN-USER -*-

Page 480

program print_time

implicit none

character*20 time

integer zone

lispfunction xtime ’cl-user::get-the-time’ (character(20),

integer)

 + integer

c Let time-zone be something ridiculous, like -100

zone = -100

time = ’0123456789’

call xtime(time, zone)

c Note that the arrayed parameter time is changed, but zone, an

c integer passed by value, is not changed

print *,time, zone

end

And the Lisp code:

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 8 -*-

;;; string is an indirect array, whereas timezone is a Lisp integer

(defun get-the-time (string timezone)

 ;; setq time-zone, to show that it has NO effect on the value

 ;; in the Ftn data space

 (setq timezone time:*timezone*) ;get the timezone

 (let* ((time-string (string-time timezone)) ;call string-time

 (copy-length (min 20 (string-length time-string))))

 ;; copy as much of the time string as will fit in the Ftn string

 (loop for i below copy-length

 do (setf (aref string i) (aref time-string i)))

 ;; pad the rest of the Ftn string (if any) with spaces

 (loop for i from copy-length below 20

 do (setf (aref string i) #\SPACE))))

;;; given a time-zone, returns a string of date and univeral time

(defun string-time (timezone)

 (with-output-to-string (stream)

 (time:print-universal-time (time:get-universal-time)

 stream timezone)))�

���������������lispfunction

Page 481

0.0.231. Introduction

Symbolics FORTRAN provides a means for calling Lisp without having to declare

the Lisp routine from FORTRAN. In this case the following conditions obtain:

1. All parameters are represented by integers from Lisp’s point of view. These

integers are indices into the FORTRAN data space, and hence are a kind of

"address" of the data.

All FORTRAN data lives in two address spaces, one for character data and

one for numeric data. These address spaces are represented by two Lisp ar-

rays, one that stores general objects, and one that holds just characters. At

run time, addresses in each of the arrays are represented by integer indices

into the arrays.

2. A return value from a function is the same as the return value from Lisp,

with the exception that return values of type doubleprecision consist of two

integers, representing the high and low portions of the number. See the

section "Restriction on doubleprecision Arrays".

0.0.232. Referencing Values in Lisp

Within the Lisp code, you can reference any character argument value by invoking

(f77:global-char ���������), and any non-character argument value by invoking

(f77:global-word ���������). These forms expand into array references (����s) of

the FORTRAN data area arrays, indexed by the integer passed in as an address

parameter.

If FORTRAN passed a(1), then (f77:global-word ���������) directly accesses a(1).

To set the �th element, invoke ��������������� with an argument of (���).

Example:

subroutine test

implicit none

 integer a(20)

 call bar (a(1))

 end

lispobject function print_lispobject (what)

implicit none

lispobject what

print *,what

end

program test_it

implicit none

lipsobject external print_lispobject

call test end

Page 482

(defun ftn-user:bar (a-addr)

 ;; set a(1) to 1

 (setf (f77:global-word a-addr) 1)

 ;; to set a(9) to 9, setf a-addr(n-1) to 9

 (setf (f77:global-word (+ a-addr 8)) 9)

 ;; set a(3) to ’FOO

 (setf (f77:global-word (+ a-addr 2)) ’FOO)

 ;; pass a(3) to FORTRAN routine print_lispobject

 (ftn-user:print_lispobject (+ a-addr 2))

 ;; pass a(9) to FORTRAN routine print_lispobject

 (ftn-user:print_lispobject (+ a-addr 8)))�

Note that you can pass parameters passed from FORTRAN to undeclared Lisp

functions, for example, ������������, directly back to FORTRAN code as parame-

ters of the same type, as in the hypothetical ��������������_����������. This tech-

nique is, in fact, the only available means for calling FORTRAN subroutines and

functions from Lisp.�

0.0.233. Example

printtime is a variant of the print_time example shown in another section. See the

section "Output-Type Restriction of lispfunction". Compare the two examples.

Both programs call a Lisp routine to return the time in a 20-character array, but

unlike print_time, printtime does not declare a lispfunction to call Lisp. print-

time thinks that it is calling another FORTRAN program called xtime.

C -*- Mode: FORTRAN; Package: FTN-USER -*-

program printtime

implicit none

character*20 time

integer zone

c Let time-zone be something ridiculous, like -100

zone = -100

time = ’0123456789’

call xtime(time, zone)

c Note that both time (an arrayed parameter) and zone

c (an integer passed by value) are changed

print *,time, zone

end�

Here is the Lisp routine �����. Note that ��������������� and ���������������

replace the ����s used in ������������, the Lisp routine called by print_time.

;;; -*- Mode: LISP; Syntax: Common-Lisp; Base: 8 -*-

;;; Note that the Lisp routine name must be in the same Lisp

;;; package as the FORTRAN routine calling it.

Page 483

;;; string is an indirect array, whereas time-zone is a Lisp integer.

;;; xtime was called from printtime with 2 args, but Ftn passes

;;; in an additional arg -- the maximum length of string-index.

(defun ftn-user:xtime (string-index string-max-length timezone-index)

 ;; setq time-zone, to show that it DOES affect the value

 ;; in the Ftn data space

 (setf (f77:global-word timezone-index) time:*timezone*)

 (let* ((time-string (string-time (f77:global-word timezone-index)))

 (copy-length (min string-max-length

 (string-length time-string))))

 ;; copy as much of the time string as will fit in the Ftn string

 (loop for i below copy-length

 do (setf (f77:global-char (+ string-index i))

 (aref time-string i)))

 ;; pad the rest of the Ftn string (if any) with spaces

 (loop for i from copy-length below string-max-length

 do (setf (f77:global-char (+ string-index i))

 #\SPACE))))

�������������������������

������������

You can read the following sections for background information:

• See the section "Executing FORTRAN Programs".

• See the section "Lisp Syntax for FORTRAN Users".

0.0.234. Description

A Lisp function can call a FORTRAN main program directly.

In figure 20, page 217, the Lisp function �����������, shown in the top pane, calls

the FORTRAN program iftest, associating logical unit 7 with the output file

"s:>tc>examples-output" at run time. The bottom pane displays the FORTRAN

source code.

To invoke a FORTRAN program from Lisp while allowing the substitution of a

run-time unit in the units list, you must use the Lisp function ����. Note in the

following example that the ����������� function requires a backquote and that the

file source requires a comma.

To call the FORTRAN main program iftest from the Lisp function �����������

and specify the logical unit at run time, type:

Page 484

(defun callfortran (file)

 (eval ‘(f77:execute ftn-user:iftest :units ((7 ,file)))))�

To run ����������� designating unit 7 as "s:>tc>examples-output", type:

(callfortran "s:>tc>examples-output")�

Figure 70. A Lisp function calls a FORTRAN main program.

�������������������������

A FORTRAN main program can call a Lisp function, which in turn calls a FOR-

TRAN routine or subroutine.

Page 485

The crucial point is that you have to place a FORTRAN routine or subroutine on

the call tree of a main program if the routine has local variables or data state-

ments needing initialization. Data initialization occurs when you execute the main

program. See the section "Executing FORTRAN Programs".

In order to call a FORTRAN routine from a Lisp function, one of the following

conditions must be true:

• The FORTRAN routine appears as a function in the main program or in some

routine called by the main program.

• The FORTRAN routine is declared external in the main program. (See the ANSI

Standard, section 8.7.)�

0.0.235. Example

Figure 21, page 219, illustrates how program runinter (shown in the middle pane)

declares and calls a Lisp function �����������. In turn, ����������� (shown in the

top pane) calls a FORTRAN subroutine interact, which has a data statement to

be initialized at run time. The external statement in the main program makes it

valid for ����������� to call interact. The bottom pane shows execution of the

program and output to the terminal.�

���

All FORTRAN data lives in two address spaces, one for character data and one for

numeric data. These address spaces are represented by two Lisp arrays, one that

stores general objects, and one that holds just characters. At run time, addresses

in each of the arrays are represented by integer indices into the arrays.

The process of invoking a FORTRAN main program performs a dynamic linking

operation by exploring the call tree, starting from the main program. In the pro-

cess, the offsets of the numeric and character data are accumulated. Afterwards,

the two arrays one for each kind of data are allocated.

This process works well for data allocated by FORTRAN, but it does not provide

an easy mechanism for creating possibly size-unresolved data in Lisp code and

then passing it into FORTRAN. The macros ���������������������������� and

������������������������������� provide a mechanism for this purpose.

0.0.236. Numeric Data

���������������������������� ������������ �������������������� ����������� ������

����������������&body������ �����

Provides a mechanism for creating dynamic data in Lisp and allowing FORTRAN

(and Lisp) to manipulate that data. No previous declaration of the data by FOR-

TRAN is necessary. The following situation illustrates a typical use of the macro:

Page 486

Command: (f77:execute ftn-user:runinter)
This is the Lisp function called by the FORTRAN program runinter.
This function, in turn, calls the FORTRAN subroutine interact.
5
NIL
Command:

Figure 71. A FORTRAN main program calls a Lisp function, which calls a FOR-

TRAN routine.

Page 487

Suppose you want to call a Lisp user interface from a FORTRAN main program,

whose purpose is gathering data to pass back to FORTRAN subroutines. The Lisp

code allocates data using the ���������������������������� macro, fills in the val-

ues in the Lisp version of the array, and then passes the values back to FOR-

TRAN by providing the FORTRAN data address.

The first subform is a list of lists; each list consisting of these elements: ������

���. ���������� and �������������

������� must be symbols, and are bound to the indirected Lisp array created and

the FORTRAN data address, respectively. If the array has more than one dimen-

sion, a multidimensional Lisp array returns. To allocate a scalar to pass back to

FORTRAN, allocate an array whose single dimension has the value 1.

The body of the macro contains Lisp code to manipulate ����������. The lifetime of

the Lisp array so produced is the scope of the body of the macro invocation. You

can nest invocations either in a single routine, or dynamically at run time, in sev-

eral routines.

The macro is used only by a Lisp routine called directly or indirectly from a

FORTRAN main program. Note that Symbolics Common Lisp stores arrays in row-

major order and that Lisp arrays are addressed relative to 0. Thus, any references

to multidimensional Lisp arrays created by ���������������������������� must

conform to this scheme.

The array created by

(with-fortran-number-data ((lisp-array ftn-address i j)) ...�

is referenced as

(aref lisp-array (- j 1) (- i 1))�

For information on doubleprecision arrays, see the section "Restriction on double-

precision Arrays". If the global number array is not large enough, the array

automatically grows; however, since this operation is expensive, Symbolics FOR-

TRAN provides the run-time option �������������������. The option enables you

to specify the amount of extra space needing allocation when the main program

initializes.

The FORTRAN program spline_draw draws two splines. It calls get_and_plot,

prompting you for the number of points in each spline. get_and_plot calls the

declared lispfunction get_splines_and_plot, passing in the number of points. The

actual Lisp function �������������������� creates five arrays and fills four of them

with the coordinates of each point (entered via mouse clicks). The splines are

drawn. The Lisp function calls the FORTRAN subroutine draw_lines, which calls

two Lisp functions to draw dashed lines between the corresponding points of each

spline, and a solid line through the midpoints of each dashed line.

�����������������������������

C -*- Mode: FORTRAN; Package: FTN-USER -*-

program spline_draw

external draw_lines

Page 488

call get_and_plot

end

subroutine get_and_plot

integer points

external draw_lines

lispfunction get_splines_and_plot

 x ’cl-user::get-splines-and-plot’ (integer)

lispfunction clrscreen ’cl-user::clrscreen’

call clrscreen

points = 1

do while (points .ne. 0)

 print *

 print *,

 x ’Enter a number > 2 of points in each line. Enter 0 to exit’

 read *,points

 call clrscreen

 if (points .eq. 0) then

 stop

 elseif (points .le. 2) then

 print *, ’Need three or more points’

 else

 call get_splines_and_plot(points)

 endif

enddo

end

subroutine draw_lines(points,fx1,fy1,fx2,fy2)

lispfunction drawdashedline ’cl-user::drawdashedline’

c from-x from-y to-x to-y

 x (integer,integer,integer,integer)

lispfunction drawline ’cl-user::drawline’

c from-x from-y to-x to-y

 x (integer,integer,integer,integer)

integer points

integer fx1(points),fy1(points),fx2(points),fy2(points)

integer midx, midy, newmidx, newmidy

c initialize midx and midy to the first line segment midpoint

midx=(fx1 (1) + fx2(1))/2

midy=(fy1 (1) + fy2(1))/2

do i=1,points

c call a Lisp function to draw a dashed line between the

c corresponding points of each spline.

 call drawdashedline(fx1(i),fy1(i),fx2(i),fy2(i))

 newmidx = (fx1(i) + fx2(i))/2

 newmidy = (fy1(i) + fy2(i))/2

 If (i .gt. 1) then

c call a Lisp function to draw a solid line through the

Page 489

c midpoints of each dashed line.

 call drawline(midx,midy,newmidx,newmidy)

 endif

 midx = newmidx

 midy = newmidy

enddo

end�

��������������������������

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 8 -*-

(defun get-splines-and-plot (size)

 ;; create five arrays: x1, y1, x2, y2, and points (scalar)

 (f77:with-fortran-number-data ((x1 fx1 size)

 (y1 fy1 size)

 (x2 fx2 size)

 (y2 fy2 size)

 (points fpoints 1))

;fill points w/ # of pts requested

 (setf (aref points 0) size)

;fill x1 & y1 w/ coords for spline 1

 (get-spline-values x1 y1 1 size)

;fill x2 & y2 w/ coords for spline 2

 (get-spline-values x2 y2 2 size)

;call Ftn subroutine w/ Ftn addrs

 (ftn-user:draw_lines fpoints fx1 fy1 fx2 fy2)))

(defun get-spline-values (x y curve-num size

 &optional (window *terminal-io*) (width 4)

 (alu tv:alu-ior) (precision 20.))

 (format window "~&Drawing curve number ~D, containing ~D points"

 curve-num size)

 (tv:with-mouse-and-buttons-grabbed

 (mouse-draw-spline

 size

 window

 x

 y

 (format nil "Draw curve ~D containing ~D points. Left: Set Point."

 curve-num size))

 (dotimes (n size)

 (funcall window :draw-rectangle 3 3 (1- (aref x n))

 (1- (aref y n)) tv:alu-xor))))

(defun mouse-draw-spline (size window px py

 documentation-string &aux dx dy)

 (multiple-value-setq (dx dy)

Page 490

 (tv:sheet-calculate-offsets window tv:mouse-sheet))

 (setq dx (+ dx (tv:sheet-inside-left window))

dy (+ dy (tv:sheet-inside-top window)))

 (setq tv:who-line-mouse-grabbed-documentation

documentation-string)

 (loop with i = 0

with old-x = nil with old-y = nil doing

 (multiple-value-bind (buttons x y)

(tv:wait-for-mouse-button-down)

 (if (≠ buttons 1)
 (tv:beep) ;Didn’t click left

 (decf x dx) ;Convert to window inside coords

 (decf y dy)

 ;;If same point is put in twice, err with 0-divide later

 (unless (and (eql x old-x) (eql y old-y))

 (send window :draw-rectangle 3 3 (1- x) (1- y) tv:alu-xor)

 (setf (aref px i) x) ;fill arrays with coords

 (setf (aref py i) y)

 (incf i))

 (setq old-x x old-y y)))

until (eq i size)))

(defun drawline (x1 y1 x2 y2)

 (send *terminal-io* :draw-line x1 y1 x2 y2))

(defun drawdashedline (x1 y1 x2 y2)

 (send *terminal-io* :draw-dashed-line x1 y1 x2 y2))

(defun clrscreen ()

 (send *standard-output* :clear-history))�

0.0.237. Character Data

������������������������������� ������������ �������������������� ����������� ������

����������������&body������ �����

Provides a mechanism for creating dynamic data in Lisp and allowing FORTRAN

(and Lisp) to manipulate that data. No previous declaration of the data by FOR-

TRAN is necessary. The following situation illustrates a typical use of the macro:

Suppose you wanted a FORTRAN main program to call a Lisp user interface,

whose purpose was to gather data to pass to FORTRAN subroutines. The Lisp

code allocates data using the ������������������������������� macro, fills in the

character values in the Lisp version of the array, and passes the character values

back to FORTRAN by providing the FORTRAN data address.

Page 491

The first subform is a list of lists; each list consisting of these elements: ������

���. ���������� and �������������

������� must be symbols and are bound to the indirected Lisp array created and

the FORTRAN data address, respectively. You must pass back to FORTRAN both

the data address and, for any character parameter, the total size, which is the

product of the dimensions, as in:

���

If the array has more than one dimension, a multidimensional Lisp array is

returned. To allocate a scalar to pass back to FORTRAN, allocate an array whose

single dimension has the value 1.

The body of the macro contains Lisp code to manipulate ����������. The lifetime of

the Lisp array so produced is the scope of the body of the macro invocation.

Invocations can be nested either in a single routine, or dynamically at run time, in

several routines.

The macro can be used only by a Lisp routine called directly or indirectly from a

FORTRAN main program. Note that Symbolics Common Lisp stores arrays in row-

major order and that Lisp arrays are addressed relative to 0. Thus, any references

to multidimensional Lisp arrays created by ������������������������������� must

conform to this scheme.

The array created by

(with-fortran-character-data ((lisp-array ftn-address i j)) ...)�

is referenced as

(aref lisp-array (- j 1) (- i 1)).�

����� If the global number array is not large enough, the array automatically

grows; however, since this operation is expensive, Symbolics FORTRAN provides

the run-time option ����������������������. This option enables you to specify the

amount of extra space allocated when the main program initializes.

Example: make_and_print_arrays calls ����������� to fill a single-dimension array

with character values. It passes back the FORTRAN data address, as well as the

product of the array dimensions (10 x 1). charprintstuff prints the characters.

The FORTRAN source code file:

c -*- Mode: FORTRAN; Package: FTN-USER -*-

program make_and_print_arrays

implicit none

lispfunction chardostuff ’cl-user::chardostuff’ ()

lispobject

external charprintstuff

call chardostuff

end

Page 492

subroutine charprintstuff(ca)

implicit none

character*(*) ca

print *,ca

end�

The Lisp source code file:

;;; -*- Mode: LISP; Syntax: Common-Lisp;

;;; Package: USER; Base: 8 -*-

(defun chardostuff ()

 (f77:with-fortran-character-data

 ((lisp-data fortran-address 10))

 ;; fill the array

 (loop for i below 10 do

 (setf (aref lisp-data i)

 (code-char (+ (char-code #\a) i))))

 (ftn-user:charprintstuff fortran-address 10)

 ;; fill the array another way

 (zl:fillarray

 lisp-data

 ’(#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j))

 (ftn-user:charprintstuff fortran-address 10)))�

�����������������������������������

This table describes the FORTRAN to Lisp coercions done by the FORTRAN com-

piler:

Page 493

������� ����

real real

integer integer

double precision double

complex complex

array *

character*1 character

character*n string**

where n >1

+Arrays are displaced into character arrays or numeric arrays

++character*n return values are not supported.�

���������������������������

��

This section discusses considerations in porting programs developed on other com-

pilers to Symbolics machines for use in the Genera environment. In particular, it

describes some effects of run-time data type-checking and the treatment of unini-

tialized variables in the Genera environment. It also presents a table showing the

size of FORTRAN 77 data types in this implementation.

������������������������������

Run-time data type-checking is perhaps the most noticeable difference for program-

mers used to conventional untagged architectures. Programming errors, where

such errors cause meaningless operations go undetected in conventional hardware,

but are trapped by Symbolics machines.

For example, the following FORTRAN program attempts to use an integer value

as a real value, thus producing a run-time error at the PRINT statement:

Page 494

PROGRAM EXAMPLE_1

INTEGER INUM

REAL RNUM

EQUIVALENCE (RNUM,INUM)

INUM = 5

PRINT *,RNUM,INUM

END

The following error is produced:

��������/�������������������#<��������������>�
��

����������������������������������

All variables start out with the distinguished value "undefined" unless they are ex-

plicitly initialized or assigned. You cannot coerce or write an undefined value. Data

is also initialized to values that are undefined. The execution of the next FOR-

TRAN example, which attempts to write a value for the uninitialized variable INUM,

produces an error.

PROGRAM EXAMPLE_2

INTEGER INUM

PRINT *,INUM

END

��������/�������������������#<��������������>�
 ��

 ����������������

This is the same error message as in the previous example, but notice the telltale

value of Undefined for Arg 3.

Using an undefined value in the non-I/O case yields a different result that stems

from the same basic problem. The following example attempts to increment the

uninitialized variable INUM.

PROGRAM EXAMPLE_3

INTEGER INUM

 INUM = INUM + 3

END

��+����������
���

Although this is unexpected behavior to those new to a Symbolics machine, sig-

nalling an error, in such a case, is preferable to picking up a random machine-

dependent value, and actually eases the porting process.

�����������������������

Page 495

��������� ����

character 8 bits

integer 1 word

real 1 word

double precision 2 words

complex 2 words

logical 1 word

��������������������������

This chapter describes implementation-specific information, machine-dependent be-

havior, and common user errors resulting from unexpected aspects of FORTRAN.

It presents information concerning

• Data type-checking

• List-directed I/O

• The SAVE statement

������������������������������

0.0.238. Floating-Point Numbers

The following are the IEEE standard single and double-precision formats:

������������

Single-precision floating-point numbers have a precision of 24 bits, or about 7 deci-

mal digits. They use 8 bits to represent the exponent. Their range is from 1.0e-45,

the smallest positive denormalized single-precision number, to 3.4028235e38, the

largest positive normalized single-precision number.

������������

Double-precision floating-point numbers have a precision of 53 bits, or about 16

decimal digits. They use 11 bits to represent the exponent. Their range is from

5.0d-324, the smallest positive denormalized double-precision floating-point number,

to 1.7976931348623157d308, the largest positive normalized double-precision float-

ing-point number.

For more information, see IEEE Floating-Point Representation for Fortran.

Page 496

0.0.239. IEEE Floating-Point Representation for FORTRAN

The Symbolics computer uses IEEE-standard formats for single-precision and dou-

ble-precision floating-point numbers. Number objects exist that are outside the up-

per and lower limits of the ranges for single and double precision. Larger than the

largest number is +1e∞ (or +1d∞ for doubles). Smaller than the smallest number is

-1e∞ (or -1d∞ for doubles). Smaller than the smallest normalized positive number

but larger than zero are the "denormalized" numbers. Some floating-point objects

are Not-a-Number (NaN); they are the result of (/ 0.0 0.0) (with trapping disabled)

and like operations.

IEEE numbers are symmetric about zero, so the negative of every representable

number is also a representable number. Zeros are signed in IEEE format, but +0.0
and -0.0 act the same arithmetically as 0.0. However, they are distinguishable to

non-numeric functions. For example:

+0.0 .eq. -0.0�

See "IEEE Standard for Binary Floating-Point Arithmetic," ANSI/IEEE Standard

754-1985, �����������������������������, August 12, 1985.

0.0.240. Constants Indicating the Range of Floating-Point Numbers

��������

����������������������������1.4e-45

���������������������������������������1.4e-45

�������������������������� 3.4028235e38

����������������������������-1.4e-45

���������������������������������������-1.4e-45

���������������������������-3.4028235e38

����������������������������2.2250738585072014d-308

���������������������������������������2.2250738585072014d-308

���������������������������1.7976931348623157d308

����������������������������-2.2250738585072014d-308

���������������������������������������-2.2250738585072014d-308

���������������������������-1.7976931348623157d308�

Since the exponent in floating-point representation has a fixed length, some num-

bers cannot be represented. Thus floating-point computations can get exponent

overflow or underflow, if the result is too large or small to be represented. Expo-

nent overflow always signals an error. Exponent underflow normally signals an er-

ror, unless the computation is inside the body of a ���������������������������

�����. Any time a floating-point error occurs, you are offered a way to proceed

from it, by substituting the IEEE floating-point standard result for the mathemati-

cal result.

Page 497

Example:

(* 4e-20 4e-20) ;evalutating this signals an error

(without-floating-underflow-traps (* 4e-20 4e-20)) => 1.6e-39 �

0.0.241. Non-mathematical Behavior of Floating-point Numbers

The restricted representation of floating-point numbers leads to much behavior

which can be confusing to users unfamiliar with the concept. This behavior is

characteristic of floating-point numbers in general, and not of any particular lan-

guage, machine, or implementation.

Floating-point operations don’t always follow normal mathematical laws. For exam-

ple, floating-point addition is not associative:

(+ (+ 1.0e10 -1.0e10) 1.0) => 1.0

(+ 1.0e10 (+ -1.0e10 1.0)) => 0.0

This follows from the restricted representation of floating-point, since 1.0 is in-

significant relative to 1.0e10.

Much of the confusion surrounding floating-point comes from the problem of con-

verting from decimal to binary and �����������

Consider that the binary representation of 1/10 repeats infinitely:

.0001100110011001100110011001100110011001100110011001100 ...

Since we can’t represent this exact value of 1/10, we would like to find the mathe-

matically closest number which is representable. We do that by rounding to the

appropriate number of binary places:

Single precision: (24 significant bits)

.000110011001100110011001101

(describe (float 1/10 0.0)) =>

0.1 is a single-precision floating-point number.

 Sign 0, exponent 173, 23-bit fraction 23146315

(not including hidden bit)

 Its exact decimal value is 0.100000001490116119384765625

0.1

Double precision: (53 significant bits)

.00011001100110011001100110011001100110011001100110011010

(describe (float 1/10 0.0d0)) =>

0.1d0 is a double-precision floating-point number.

 Sign 0, exponent 1773, 52-bit fraction 114631463146314632

(not including hidden bit)

 Its exact decimal value is 0.10000000000000000555111512312578270211

81583404541015625d00.1d0

Already we see some anomalies. The single-precision number closest to 1/10 has a

different mathematical value from the double-precision one. So a decimal number,

Page 498

when represented in different floating-point precisions, can have different values.

Yet the printer prints both as "0.1".

Why do the printed representations hide the difference in values? Every binary

number has an exact, finite, decimal representation, which can be printed. The

�������� function does that, as shown in the example above. From that example,

you can see that printing exact values would be cumbersome without giving useful

information. So the printer prints the shortest decimal number that is properly

rounded (from the actual decimal value), and whose rounded binary value (in that

precision) is identical to the original. Note that Fortran list directed I/O is thje

same as the LISP floating�point printing rule.

Here is an example of the rule used to derive the shortest decimal number:

(describe 1.17) =>

1.17 is a single-precision floating-point number.

Sign 0, exponent 177, 23-bit fraction 05341217

(not including hidden bit)

Its exact decimal value is 1.16999995708465576171875

1.17

The correctly rounded decimal values for this single-precision number are:

1, 1.2, 1.17, 1.16999996, 1.169999957, 1.1699999571, 1.16999995708, etc.

Rounded to single-precision (binary), the first three printed representations are all

different, but after 1.17, they are all the same. Thus, 1.17 is the "best" representa-

tion to print.

Since the printing rule is sensitive to floating-point precision, it hides the differ-

ence between the exact mathematical values of 1.17 and 1.17d0.

Consider the following example:

program floating

real r1

doubleprecision d1, d2

logical r1EQd1, r1EQd2

d1 = 1.17d0

d2 = 1.17e0

r1 = 1.17e0

r1EQd1 = (r1.eq.d1)

r1EQd2 = (r1.eq.d2)

print *,’d1 = ’,d1,’, d2 = ’,d2,’, r1 = ’, r1,

$ ’, r1.eq.d1 = ’,r1EQd1,’, r1.eq.d2 =’,r1EQd2

end�

Executing this program generates the following:

• d1 = 1.17D0

• d2 = 1.1699999570846558D0

• r1 = 1.17

Page 499

• r1.eq.d1 = F

• r1.eq.d2 = T�

An anomaly exists in that d1 and r1 print the same, but are not actually the same.

Additionally, d2 and r1 print differently, but are actually the same.

��������������������������������

You can specify (via the format statement) how many digits of a floating-point

number are printed. Floating-point numbers have limited precision. If you ask for

too many digits, some of the digits are meaningless. Therefore, the system (by de-

fault) prints trailing zeros rather than these insignificant digits. Setting the vari-

able to non-��� makes the system print all of the digits that format specifies.

In order to control FORTRAN formatted output of floating-point numbers, set the

Lisp variable �������������������������������� to �.

�������������������������������� ��������

Controls whether insignificant digits in floating-point numbers are printed. The de-

fault for this variable is ���.

For example, consider these statements:

print 10, 0.1

10 format (d30.20)�

They yield the following results, depending on whether you set �����������

��������������������� to � or accept the default value of ���.

����� ������

��� (default) 0.10000000000000000000E+00

� 0.10000000149011611938E+00�

Note that both printed representations correspond to the same internal (binary)

number. If the number of digits specified in the format is large enough so that

���������������������������� affects the printed representation, reading either print-

ed number back gives the original number.

�����������������������������

This section contains a brief summary of the commands available for editing FOR-

TRAN programs in the Zmacs editor, as well as for finding out about and interact-

ing with your FORTRAN program.

Page 500

����� These commands are available only after you have set the buffer mode to

FORTRAN.

It also describes variables that control FORTRAN editing mode features.

These commands represent modifications of the standard language-sensitive editing

commands. They perform roughly the equivalent function of the editing commands

for Lisp.

Most of these commands allow a preceding argument in the form c-�.

With the cursor is positioned in the middle of a routine, move forward from the

current routine to the end of the next routine by typing:

c-2 c-m-E�

For more general editing commands: See the section "Summary of Standard Edit-

ing Features".

����������������������������

��� (Insert FORTRAN Tab)

In FORTRAN mode, if the cursor is in column 0 through 6, pressing ��� in-

serts the number of spaces to reach column 7. Otherwise, it inserts the number

of spaces needed to reach every eighth column.

����

In FORTRAN mode, pressing ���� moves the line of text beginning with the

cursor to column 7 of the next line. In effect, it combines using the ������ and

��� keys in sequence.

������ (Insert FORTRAN Continuation Line)

Moves the line of text beginning with the cursor to column 7 of the next line

and inserts a continuation character at column 6.

�����

Moves the cursor backward to the beginning of a FORTRAN routine.

�����

Moves the cursor forward to the end of a FORTRAN routine.

�����

Moves the cursor forward to the end of a FORTRAN statement.

�����

Moves the cursor backward to the beginning of a FORTRAN statement.

������(Mark FORTRAN Definition)

Marks the language definition surrounding the cursor and moves the cursor to

the beginning of the definition. (A definition is a subprogram.)

������

Displays the name of the current FORTRAN routine, as well as a brief list of

the argument types. Position the cursor after the chosen routine. ������ ap-

plies only to functions that have already been compiled and loaded.

Page 501

������

Compiles the currently defined ������, a contiguous delimited section of text in

the editor buffer. See the section "Summary of Standard Editing Features". If

no region is defined, it compiles the routine nearest the cursor. This command

does not take a numeric argument.

An unsuccessful compilation results in the display of compiler warnings and

suggested actions in a typeout window at the top of the screen. Pressing any

character causes the window to disappear.

c-^ (Merge FORTRAN Lines)

Deletes characters in columns 1 through 6 in the current line and and then

merges the current line with the previous line.

��� Clear All Breakpoints

Clears all breakpoints.

��� Compile And Execute Fortran Program

Checks to see that the cursor is positioned near a valid FORTRAN program and

then compiles and executes the program, without run-time options and with pre-

defined file input and output bound to the editor typeout window.

����Compile Buffer

Compiles the entire buffer. With a numeric argument, it compiles from the cur-

sor position to the end of the buffer. You can use Compile Buffer for resuming

compilation after a prior compilation (initiated via this command) fails.

����Compile Changed Definitions of Buffer

Compiles any changed definitions of subroutines, programs, and functions in the

buffer. With a numeric argument, it prompts individually about whether to com-

pile each changed definition.

����Compile File

Compiles a file. It prompts for a file name, but defaults to the file associated

with the current buffer. It offers to save the buffer if it is modified.

����Compile Region

See ������.

����Compiler Warnings

Puts all pending compiler warnings in a buffer called *Compiler-Warnings-�*

(creating the buffer if it does not exist) and selects that buffer.

����Edit Changed Definitions of Buffer

Determines which definitions in the current buffer have changed and positions

the cursor at the first one. Use ��� to move to the next changed definition. A

numeric argument controls the starting point for determining what has

changed.

1 = since the file was last read (default)

2 = since the buffer was last saved

3 = since the definition was last compiled

Page 502

����Edit Compiler Warnings

Edits some or all routines whose compilation caused a warning message. It

queries you, for each file mentioned in the compiler warnings database, whether

you want to edit the warnings for the routines in that file. It splits the screen,

placing the warning message in the top window and the source code whose

compilation caused the error in the bottom window. Use ��� to move to the

next pair of warning and source code.

����Edit Definition������

Edits definition of compiled FORTRAN routine. When it prompts for the name

of the routine, subroutine, and so on, you can either (1) type the name in the

minibuffer at the bottom of the screen or (2) click on a name appearing in the

current buffer. The command finds the routine, places it in an editor buffer,

and positions the cursor there.

The echo area displays a message indicating multiple occurrences of the defini-

tion, if any. Use ��� to move to the next occurrence.

This command is especially useful because it can find any definition in a loaded

FORTRAN system, whether or not the file that contains it is currently in a

buffer.

����Electric FORTRAN Mode

Places a FORTRAN buffer into electric mode. Electric FORTRAN mode is a fa-

cility that automatically wraps text when you type characters beyond column 72.

The facility takes delimiters and whitespace into account when determining

where to break a line, and adds continuation characters as needed.

Note that you must put the buffer in FORTRAN mode before using this com-

mand. To switch off electric FORTRAN mode, reissue the ��� Electric FOR-

TRAN Mode command.

����Execute Fortran Program

Checks to see that the cursor is positioned near a valid, compiled FORTRAN

program and then executes the program, without run-time options and with pre-

defined file input and output bound to the editor typeout window.

����Find Next FORTRAN Sequence Number

Moves the cursor to the beginning of the next sequence number. This command

takes numeric arguments, using negative numbers to search for previous se-

quence numbers and positive numbers to search for following sequence num-

bers.

��� Fortran Mode

Sets the mode in an editor buffer to FORTRAN, enabling you to use the special

FORTRAN-mode commands described in this appendix. The mode line at the

bottom of the screen changes to Zmacs (FORTRAN) The command also offers to

set the mode in the attribute list. If you respond y, it creates the following:

{-*- Mode: FORTRAN-*-. Once the attribute list mode is set to FORTRAN, you

need not set the mode again upon reinvoking the file; the mode is set to FOR-

TRAN automatically.

Page 503

����List Breakpoints

Lists all currently active breakpoints.

����List Changed Definitions of Buffer

Displays a list of any definitions that changed in the current buffer. Use a nu-

meric argument to choose the condition that determines the search:

1 = since the file was last read (default)

2 = since the file was last saved (written)

3 = since each definition was last compiled

����List Definitions

Displays the definitions from a specified buffer. Type the buffer name of choice

in the minibuffer at the bottom of the screen, or press ������ to select the de-

fault (the current buffer).

It displays the list of names of subroutines, programs, and functions in a type-

out window. You can (1) press ����� to make the typeout window disappear or

(2) use the mouse to select individual names; upon selection, the cursor is posi-

tioned at the name in the editor buffer.

��� Load Compiler Warnings

Loads a file containing compiler warning messages into the warnings database.

You are prompted for the name of a file containing the printed representation

of the compiler warnings.

����Remove Sequence Numbers

Deletes all characters from column 73 onward. Operates on a buffer by default

or on a marked region.

��� Reparse Attribute List

Causes all changes made to the attribute list to take effect.

����Replace Tabs

Removes ��� characters and replaces them with the equivalent number of

spaces.

(����� This command is not specific to FORTRAN mode. It is described here

because it is particularly useful with FORTRAN, for which ����� is not defined

as a legal character. Its treatment varies widely from one FORTRAN implemen-

tation to another.)

����Set Package

Sets the package for the buffer. When it prompts for a name, enter the name of

an existing package. It offers to set the package for the attribute list as well as

for the buffer.

��� Update Attribute List

Creates or updates the attribute list for the file. Executing the command after

entering FORTRAN mode causes the attribute list to set the mode to FOR-

TRAN.

Page 504

�����������������������������

The following variables have been added for use with FORTRAN editing mode:

�����������������������������

Sets the value for the minimum line length resulting from automatic wrapping in

Electric FORTRAN mode. The default value is 40.

���������������������������� �����

Defines the FORTRAN continuation character. The character is placed in the sixth

column with ������ and in Electric FORTRAN mode. The default value is the dol-

lar sign character ($).

������������������������������������

Use ������ � to select Zmacs. The standard Zmacs commands are very similar to

those of the EMACS editor. This section summarizes some categories of Zmacs

commands. All editor commands can take a preceding numeric argument in the

form �� or �� to modify their behavior in some way.

See the section "Zmacs".

���������������������

������� Aborts the function currently executing.

��� Aborts a command when entered, unselects the region, or un-

merges a kill.

������������� Shows every command containing ������ (try ���� � ������ or

�������������).

������ � Explains the action of any command (try ���� � ��� as an ex-

ample).

������������� Describes a command (try ����������������).

������ Displays the last 60 keys pressed.

������ Offers to undo the last change to the buffer.

������������� Shows all Zmacs variables containing �������

������ Prompts for an extended command and shows its keybinding.

��������� Displays these ���� key functions.

���������� Repeats the last ���� command.

������� Starts a Lisp Listener (return from it with ������).

�������������������������

��� Undo Undoes the last command.

������ Undo.

��� Redo Undoes the last undo.

������ Redo.

��� Yanks back the last thing killed.

��� After a ���, successively yanks back older things killed.

������ Prompts for a string to yank.

Page 505

������ After ������, successively yanks back older things containing

string.�

�����������������

Extended commands (the ��� commands) put you in a small area of the screen

with full editing capabilities (a ����������) for entering names and arguments. Sev-

eral kinds of help are available in a minibuffer.

�������� Completes as much of the current command as possible.

���� Gives information about special characters and possible comple-

tions.

��� Shows possible completions for the command currently being en-

tered.

��� or ������ Completes the command, and then executes it.

��� Does an apropos on what has been typed so far.

�������������

������� Writes the current buffer into a new version of the current file

name.

������� Writes the current buffer into a file with a different name.

��� Save File Buffers

Offers to save each file whose buffer has been modified.�

�����������������

������� Gets a file into a buffer for editing.

����� Selects a different buffer (prompts; default is the last one).

������� Displays a menu of available buffers; lines are mouse-sensitive.

����� Kills a buffer (prompts; default is current buffer).

��� Moves to the beginning of the current buffer.

��� Moves to the end of the current buffer.

����� Selects the most recently selected buffer in this window.

��������������������

��� Moves left (back) a character.

��� Moves right (forward) a character.

������ Deletes a character left.

��� Deletes a character right.

��� Transposes the two characters around point; if at the end of a

line, transposes the two characters before point, ht -> th.

���������������

��� Moves left (back) a word.

��� Moves right (forward) a word.

Page 506

�������� Kills a word left (��� yanks it back at point).

��� Kills a word right (��� yanks it back at point).

��� Transposes the two words around point (if only ->
only if).

��� Capitalizes the word following point.

��� Lowercases the word following point.

��� Uppercases the word following point.

���������������

��� Moves to the beginning of the line.

��� Moves to the end of the line.

��� Moves down (next) a line.

��� Opens up a line for typing.

��� Moves up (previous) a line.

������� Closes up any blank lines around point.

����� ����� Kills from the beginning of the line to point (��� yanks it back at

point).

��� Kills from point to the end of the line (��� yanks it back at

point).

�������������������

��� Moves to the beginning of the sentence.

��� Moves to the end of the sentence.

���������� Kills from the beginning of the sentence to point (��� yanks it

back at point).

��� Kills from point to the end of the sentence (��� yanks it back at

point).

��������������������

��� Moves to the beginning of the paragraph.

��� Moves to the end of the paragraph.

��� Fills the current paragraph (see ����������������).

������� Sets the fill column to � (example: �������������).

�����������������

������ or ��� Shows next screen.

�������� or ���Shows previous screen.

������� Moves the line where point is to the top of the screen.

����� Repositions the window to display all of the current definition, if

possible.

������������������

���������� "Incremental" search; searches while you are entering the string;

terminate search with ���.

Page 507

���������� "Incremental" backward search; terminate search with ���.

������� Enter String Search. See the section "String Search".
���������������������������������

Replaces ������� with ������� throughout.

���������������������������������

Replaces ������� with ������� throughout, querying for each occur-

rence of �������; press ����� meaning "do it", ������ meaning

"skip", or ���� to see all options; (see ����������).

�����������������

������� Sets the mark, a delimiter of a region. Move the cursor from

mark to create a region. The region is highlighted. Use with ���,

���, ��� and region commands, for example, ��� Hardcopy Re-

gion.

��� Kills region (��� yanks it back at point).

��� Copies region onto kill ring without deleting it from buffer (���

yanks it back at point).

��� Yanks back the last thing killed.

�����������������

����� Splits the screen into two windows, using the current buffer and

the previously selected buffer (the one that ����� would select).

����� Resumes single window, using the current buffer.

����� Moves cursor to other window.

����� Shows next screen of the buffer in the other window; with a nu-

meric argument, scrolls that number of lines positive for the

forward direction, negative for the reverse direction.

����� Splits the screen into two windows and asks what to show in the

other window.

��

0.0.242. Introduction

Throughout the manual we present Lisp expressions relevant to using Symbolics

FORTRA. If you are completely unfamiliar with Lisp, this section explains the Lisp

syntax you need to enable you to use this manual. We define the data type ������

and the following special characters:

• Parentheses ()

• Double quote "

• Single quote ’

• Backquote ‘ used with a comma ,

• Colon :�

Page 508

0.0.243. Symbol

In addition to the traditional data, numbers, and character strings of other pro-

gramming languages, Lisp also manipulates symbols. A symbol is a data object

with a name and possibly a value. The name of a symbol is either a sequence of

letters, numbers, and some special characters, like hyphens. For a discussion of

the characteristics of symbols, see the section "Data Types".

Example: ����, �����������, and ����������� are all symbols.�

0.0.244. Single quote

A single quote prevents Lisp from evaluating (finding the value of) what follows

the quote.

Example: ������ ������ causes the Lisp function ����� to print and return the

symbol ����, whereas ������ ����� causes ����� to print and return the ����� of

����.�

0.0.245. Parentheses

Parentheses enclose the elements of a ����, as in the following list of three ele-

ments.

������������������

Lists can contain lists, and so the parentheses multiply:

�����������������������

This example shows one list that consists of two lists:

�������������������������

An empty list, one with no elements, is denoted by ().

Parentheses must balance one right parenthesis for every left one. Thus, the

following example is balanced.

Example:

�������������������������

���

The Zmacs editor understands Lisp syntax and helps you to balance parentheses.

In Lisp, an expression is complete as soon as you type the last balancing paren-

thesis.

0.0.246. Double quote

Double quotes delimit character strings, like file names.

Example: ������� ����������� ����������� ������������ lists three file name

strings.

Page 509

0.0.247. Backquote Used with a Comma

Similar to the single quote, the backquote-comma combination tells Lisp that it

should not evaluate what follows the backquote until it reaches the comma; then it

should evaluate the expression following the comma. The comma is not used as

punctuation but instead inhibits the effect of quoting.

Example:

������������������

��

Except for ����, all the code following the backquote (‘) is not evaluated; however,

���� is "unquoted" (evaluated) rather than treated as a literal symbol ����.

0.0.248. Colon

A colon after a word indicates that the word is a package name.

Example: In �������, �� is the name of a package containing a Lisp symbol ����.

If no package name precedes the colon, whatever follows the colon belongs to the

keyword package. All keyword options to functions belong to the keyword package.

Example:

��

In this expression ������ is the keyword option to a function called �������.

���

Your purchase of Symbolics FORTRAN77 under the ����� ��� ���������� �� �����

�������� ��� ������� (3/89), allows you to use Firewall on a designated processor.

Customers who distribute an application that includes Firewall ���� sign a ������

����� �������� �� ��� ����� �������������� �� ����� ������� ��� ������� (3/89).

This agreement spells out the terms and conditions under which you can subli-

cense any application that contains FORTRAN77 code. The Sublicense Addendum

appears on the next page. If you have not done so already, read the Sublicense Ad-

dendum carefully, sign it, detach it, and return it to your Symbolics sales repre-

sentative.

����� ��� ��� �������� �� ���� ��� ���������� ��������� ���� ������ ���� ����������

���

Page 510

Sublicense Addendum to Symbolics Inc. Terms and Conditionsof Sale, License and Service (dated 3/89
)

Addendum made this _____ day of __________, 199__, ("this Addendum") to

Symbolics, Inc. Standard Terms and Conditions of Sale, License and Service (dated

3/89) dated, 199__, (the "Agreement"), both of which are by and between Symbolics

Inc. and Customer. All capitalized terms used in this Addendum, if not defined in

this Addendum shall have the meanings assigned to them in the Agreement.

1. ��� ��������. The Software to which this Addendum applies is defined as

follows:

��������

����� ����������� ����� ��������

SLAN-FORT Symbolics Fortran 6.1

2. �������������������.

2.1 Section 7 �������� ������� ����� ��� ���������� of the Agreement is

hereby incorporated by reference.

2.2 Customer may sublicense all or any portion of the binary code of the

Software to Customer’s end users provided that:

(i) such Software is part of Customer’s application software program

sublicensed to such end users;

(ii) the Software and Customer’s application software program are li-

censed by Customer to Customer’s end users to run on a Symbolics computer sys-

tem; and

(iii) Symbolics’ copyright and trademark notices required by Symbolics

shall not be removed from the Software.

3. ��������.

3.1 The term "end user" for the purposes of this Addendum shall mean

Customer’s commercial customers and includes Customer’s own internal end users

of its application software programs.

CUSTOMER SYMBOLICS, INC.

______________________________ ______________________________
Name Name

______________________________ ______________________________
Title Title

______________________________ ______________________________
(Address) (Address)

