
Page iii

Table of Contents

Page

��� ��

1.1 1Scope and Purpose of the Pascal User’s Guide

1.1.1 1Standard Pascal

1.2 3Lisp Syntax

��� ������������������������������������

2.1 5Summary of the Pascal Tool Kit

2.2 5Comparison of the Pascal Tool Kit with Other Implementations

��� ���

3.1 7Introduction

3.2 7Installing Pascal

3.3 8Loading Pascal

3.4 8Using the Editor for the First Time

3.5 10Compilation, Execution, and Error Recovery in the Example

��� �����������������

4.1 13Introduction

4.2 13Selecting a Pascal Dialect

4.3 14Differences and Similarities: ISO Pascal and Pascal/VS

4.4 15Pascal Dialect Restrictions

4.4.1 15Pascal/VS Restrictions

4.4.2 16ISO Pascal Restrictions

4.4.3 16Dialect Constraints

��� ����������������������

5.1 17Summary

5.2 17Discussion of Extensions

5.2.1 17Arbitrary-Precision Integers

5.2.2 18Detection of Uninitialized Variables

5.2.3 19Strong Data-Type Checking

5.2.4 19��������� Data Type

5.2.5 19��������� Clause

5.2.6 19�������� Directive

5.2.7 20Conversion Functions

5.2.8 20Length of Symbolic Names

5.2.9 20Interaction with Lisp

5.2.10 20Second Parameter to File-Opening Procedures

5.2.11 21Pascal Package System

Page iv

��� ���

6.1 23Editing Basics

6.2 25Setting Editor Defaults

6.3 26Pascal Editor Mode

6.4 27Moving the Cursor

6.5 29Deleting Language Units

6.6 31Finding Syntax Errors

6.7 32Introduction to Pascal Mode Completion and Templates

6.8 33Pascal Mode Templates

6.9 34The ������ Command

6.10 35The �������� Command

6.11 37Template and Completion Commands

6.12 38Electric Pascal Mode

6.13 39Customizing Electric Pascal Mode

��� ��

7.1 43Introduction

7.2 43Pascal Data Representation

7.3 44Pascal File Types

7.4 44Set Constructors for Unconstrained Integers

7.5 45Standard Pascal Functions

��� ���������������������������

8.1 47Features of the Pascal Compiler

8.2 49Compiling Small and Large Pascal Programs

8.3 50Compiler Option: Initializing Pascal Program Data

8.4 51Compiler Option: Setting the Default Pascal Dialect

��� ��

9.1 53Overview of Building Pascal Applications

9.2 53Introduction to Creating Pascal Run-time Systems

9.3 54Compiling Pascal Files to Execute in Run-time Systems

9.4 54Incorporating the Run-time System as Part of a Pascal Application

9.5 55Program Configurations: Development System and Run-time System

Options for Pascal Systems

���� �����������������������

10.1 57Introduction to Large Pascal Programs

10.2 57Units Facility

10.2.1 58Unit Specification

10.2.2 59Unit Implementation

10.2.3 60Calling a Unit

10.3 62What Is a Pascal System?

10.4 63Declaring a Pascal Package

10.4.1 64How to Make a Pascal Package Declaration

10.4.2 65Predeclared Pascal Packages

Page v

10.4.3 65How to Assign a Pascal Package

10.5 66Declaring a Pascal System

10.6 69Compiling and Loading a Pascal System

���� ���������������������������

11.1 71No Link-and-Load Step

11.2 71How to Run a Pascal Main Program

11.3 73Pascal Main Program Options

11.3.1 73:init-to-zero

11.3.2 74:input and :output

11.3.3 74:pathname-defaults

11.3.4 75:reload

11.3.5 75:save-environment

11.3.6 76:stack-size

11.3.7 76:streams

11.3.8 76:trap-underflow

11.3.9 77:use-abort-mode

���� ���������������������������

12.1 79Overview of Debugging Pascal Programs

12.2 81Invoking the Debugger for Pascal

12.3 82Pascal Frames in the Debugger

12.4 83Looking At Variables, Types, and Values in Pascal

12.5 84How Pascal Values Are Displayed in the Debugger

12.6 85Pascal Language Debugger Commands

12.7 87Genera Debugger Commands for Use with Pascal

���� �������������������������

13.1 89Overview

13.1.1 89Contents

13.2 89lispobject: Pascal Data Type for Handling Lisp

13.2.1 89Description

13.3 89lisp: Pascal Routine Directive

13.4 93Passing Real Numbers in Pascal

13.5 94Calling Pascal from Lisp

13.5.1 94Calling a Main Program From Lisp

13.5.2 94Calling a First-level Internal Routine From Lisp

��� ������������������������������

��� ���������������������������������������

2.1 100Zmacs Help Facilities

2.2 100Zmacs Recovery Facilities

2.3 101Extended Commands

2.4 101Writing Files

2.5 101Buffer Operations

Page vi

2.6 101Character Operations

2.7 102Word Operations

2.8 102Line Operations

2.9 102Sentence Operations

2.10 102Paragraph Operations

2.11 103Screen Operations

2.12 103Search and Replace

2.13 103Region Operations

2.14 103Window Operations

��� ���������������������������������������

��� ���

Page vii

�

List of Figures

Page

1 12Producing a run-time error in the example program.

2 33After pressing END and selecting a template.

3 35After pressing c-HELP at BEGIN.

4 37After pressing complete at ⊂initial value⊃.

5 38Example of a program typed in Electric Pascal mode.

6 42The menu displayed by the Adjust Face and Case command.

7 80A Pascal program in the Display Debugger

8 95A Lisp function calls a Pascal main program.

1. Introduction to the Pascal User’s Guide

1.1. Scope and Purpose of the Pascal User’s Guide

�������

This document describes the Pascal Tool Kit developed for the Symbolics Genera

environment. In conjunction with the Symbolics Common Lisp and Symbolics Gen-

era references listed in this section, it provides the information necessary to code,

edit, compile, debug, and run Pascal programs under Symbolics Genera.�

�����

This document provides a conceptual overview of the Tool Kit, with just enough

detail to clarify the concepts presented and to allow you to get started using

Pascal in the Genera environment. It is not a step-by-step instruction guide or a

traditional reference manual. We discuss the following topics:

• The concepts that distinguish Symbolics’ implementation of Pascal from those

on conventional systems.

• The benefits derived from using Pascal under Symbolics Genera.

• The extensions that Symbolics has integrated into Pascal.

• The tools available for running Pascal.

• The interface for calling Lisp functions.�

�����������������������

Reference information for the Pascal language is available from an on-line version

of the ������ ���� ������ ��� ������, third edition. This book was written by

Kathleen Jensen and Niklaus Wirth and revised by Andrew B. Mickel and James

F. Miner. It is reproduced with permission of Springer-Verlag and the authors.

It is listed in the Current Candidates pane of Document Examiner as "Jensen and

Wirth -- Pascal User Manual and Report." Section titles of this work are identified

by the introductory prefixes ������: for the user manual portion of the work and

����������: for the Pascal Report portion.

1.1.1. Standard Pascal

Symbolics supports two dialects of the Pascal language: ISO Pascal and Pascal/VS.

As the Tool Kit is based on the language standard, this document does not discuss

Pascal itself, except to describe the extensions developed for this implementation.

ISO Pascal is documented in the ������� ��������� ������������������������� ��� ���

�������� ����������� �������� ������� �� ����������, which defines the Inter-

national Standards Organization (ISO) version of Pascal, hereafter called the ISO

Standard.

Page 2

Pascal/VS is documented in the ��������� �������� ��������� ��������������������

�� �������� �������� ������������ ������� ������ ��������, hereafter referred

to as the Pascal/VS Standard.

Those users who have little experience with the standard language should refer to

one of these two documents. For a discussion of some of the differences between

the dialects, and the mechanism which controls the choice of dialect: see the

section "Pascal Dialects", page 13.�

�����������������

The Tool Kit depends heavily on the Genera software environment. Thus, while

you can use the Tool Kit knowing relatively little about the Lisp language and

Symbolics Genera, it is not possible to enjoy the full benefits of running Pascal

under Symbolics Genera without eventually becoming familiar with the Lisp lan-

guage. This document, however, does ��� provide detailed instructions for using

Symbolics Genera effectively; information about Symbolics Common Lisp and Sym-

bolics Genera facilities is included only to the extent that it affects the Pascal

Tool Kit.�

���������������������������

Users who know little about Symbolics Genera should consult the Genera Docu-

mentation Set. Pay particular attention to the following documents:

• For a listing of documentation notation conventions used in this document: See

the section "Notation Conventions".

• For a quick reference guide, in particular a summary of techniques for finding

out about the software environment: See the section "Getting Help" in ������

������������.

• For a tutorial guide to programming in the Symbolics Genera environment: See

the section "Program Development Tools and Techniques".

• For a guide to the Symbolics text editor: See the section "Zmacs Manual".

• For information on error handling: See the section "Conditions" in ���������

����������������������������������.�

���������

For a brief explanation of the Lisp syntax encountered in this manual: See the

section "Lisp Syntax for Pascal Users", page 3.

For those who want classroom instruction, Symbolics offers courses on Lisp pro-

gramming.

�����������

This ������ ����� uses the standard conventions as well as the following additional

conventions. see the section "Notation Conventions".

���������������������� ������������

lispobject, reset Pascal reserved words in running text.

Pascal program, procedure, function, and package identi-

fiers in running text.

Pascal directives and source code in running text.

Page 3

������� quadratic; Pascal reserved words in examples.�

1.2. Lisp Syntax

������������

This document frequently presents Lisp expressions pertinent to using the Pascal

Tool Kit. For those readers completely unfamiliar with Lisp, this section provides

just enough explanation of Lisp syntax to enable you to use this manual. This

section defines the data type ������ and the following special characters:

• Single quote ’

• Parentheses ()

• Double quote "

• Colon :

• Backquote ‘ used with a comma ,�

������

In addition to the traditional data, numbers, and character strings of other pro-

gramming languages, Lisp also manipulates symbols. A ������ is a data object

with a name and possibly a value. The name of a symbol can be a sequence of

letters, numbers, and some special characters, like hyphens. For a discussion of

the characteristics of symbols: see the section "The Symbol Data Type".

Example: ����, �����������, and ����������� are all symbols.

������������

A single quote prevents Lisp from evaluating (finding the value of) what follows

the quote.

Example : ������ ������ causes the Lisp function ����� to print and return the

symbol ����, whereas ������ ����� causes ����� to print and return the ����� of

����.

�����������

Parentheses enclose the elements of a ����, as in the following list of three ele-

ments.

(red yellow blue)

Lists can contain lists, and so the parentheses multiply:

((8 sourcef) (9 destf))

An empty list, one with no elements, is denoted by ().

Parentheses must balance  one right parenthesis for every left one. Thus, the

following example is balanced.

Example:

(defun callpascal (file)

 (pascal:execute ’pascal-user:iftest :input file))�

Page 4

Zmacs, the Symbolics text editor, understands Lisp syntax and helps you to balance

parentheses.

In Lisp, an expression is complete as soon as you type the last balancing paren-

thesis.

������������

Double quotes delimit character strings, such as file names.

Example: ("schedulex" "scheduley" "schedulez") lists three file name strings.�

�����

A colon after a word indicates that the word is a package name.

Example: In �������, �� is the name of a package containing a Lisp symbol ����.

If no package name precedes the colon, then whatever follows the colon is said to

belong to the keyword package. All keyword options to functions belong to the

keyword package.

Example:

(pascalcopy :input ’foo)

In this expression ������ is the keyword option to a function called ����������.

���������������������������

Similar to the single quote, the backquote-comma combination tells Lisp that it

should not evaluate what follows the backquote until it reaches the comma; then it

should evaluate the expression that follows the comma. The comma is not used as

punctuation but instead inhibits the effect of quoting.

Example:

(defun test (file)

 (apply ’f77:execute ‘(iftest :units ((3 ,file)))))�

Except for ����, all the code following the backquote (‘) is not evaluated; however,

���� is "unquoted" (evaluated) rather than treated as a literal symbol.�

Page 5

2. Introduction to the Pascal Tool Kit

2.1. Summary of the Pascal Tool Kit

����������

The Pascal Tool Kit contains the following components.

• A compiler for the two dialects of the Pascal language, as described in the ISO

Standard and the Pascal/VS Standard. The Tool Kit implements both the full

ISO Pascal Standard and the full Pascal/VS specification, with a few exceptions:

See the section "Pascal Dialect Restrictions", page 15.

• Several language extensions to Pascal, which are of particular use to Symbolics

Genera programmers.

• Support of the Metering Interface.

• A Lisp-compatible run-time library, permitting full access to Genera’s in-

put/output facilities, including access to files over network connections.

• An online documentation set consisting of Symbolics ������ ����� �� ����������

���� ��� and the ������ ���� ������ ��� ������� ����� �������, a Pascal refer-

ence manual.

• Extensions to Zmacs, the Symbolics Genera text editor, to support Pascal lan-

guage editing, using the language-specific capability of Zmacs.

• A window-oriented symbolic Debugger, permitting debugging of Pascal code at

the source level. �

2.2. Comparison of the Pascal Tool Kit with Other Implementations

��������������������������������� �������������������������

A file holds only one main A file can hold as many main programs

program. as you wish.

You must compile entire files Compilation is incremental; you can

even if only a small change compile only the function that has

is made to the code. changed.

You leave the editor and then You can compile a routine or file

compile the file. from the editor.

The compiler produces warnings; The editor processes the compiler

you must resolve problems warnings and provides commands that

manually. help you resolve problems.

Page 6

A link-and-load step is required Programs are immediately executable

for all programs. after compiling; no separate linking

step is needed.

After loading and execution, Once loaded, you can rerun programs

a program disappears from without reloading.

memory; you must reload the

program to rerun it.�

Uninitialized variables are not Uninitialized variables are detected,

detected. unless you specifically request at

compile time or at run time that

all variables be initialized to zero.

To use the debugging facility The Debugger is automatically invoked

you must explicitly call the on run-time errors and can be entered

debugger ������ running a at any time during execution.

main program.�

Page 7

3. Using the Pascal Tool Kit for the First Time

3.1. Introduction

�������

This chapter enables you to run a simple Pascal program immediately  without

having to read through the entire manual first or understand much of the Symbol-

ics Genera environment.�

��������

This chapter provides instructions for installing and loading the Pascal Tool Kit. It

then explains how to enter, compile, and run a sample Pascal program called

quadratic, which solves the quadratic equation ax2 + bx + c = 0 for unknown x.�

�����

This chapter runs through the essential edit-compile-error-recovery cycle, with

little explanation of the conceptual underpinnings. Cross-references point you to

the correct chapters for additional information. �

3.2. Installing Pascal

���������

1. After you have succesfully installed the Genera 8.0 system software, boot a

Genera 8.0 world.

2. You need to indicate where the Pascal system definition is to reside; to do

this, create the file SYS.SITE;PASCAL.SYSTEM and type the following attribute list

and form in the file.

;;; -*- Mode: LISP; Syntax: COMMON-LISP; Package: USER -*-

(si:set-system-source-file "pascal" "sys: pascal; pascal")�

3. Load the contents of the Release 5.1 Pascal tape into your file system by

typing the following form to a Lisp Listener:

(dis:load-distribution-tape)�

4. Once the contents of the tape have been loaded onto your sys host, type:

Load System Pascal :query no�

The Pascal Tool Kit is now ready for use.�

�����

1. To avoid making the Pascal system every time you want to use it, save a

world on disk with Pascal already loaded into it. See the Save World com-

Page 8

mand. You can view the online documentation available via Document Exam-

iner by pressing ������ �. Online documentation consists of the ������ �����

�� ��� ������ ���� ��� and the ������ ���� ������ ��� ��������You might

want to become familiar with the overall structure of the documentation be-

fore viewing individual chapters. For example, to read in the �����’s table of

contents; click Right on [Show] in the Command Menu, and when prompted

type the following and press ������.

user’s guide to the pascal tool kit�

The Current Candidates window should display the complete list of chapter

titles, section titles, and so on. The indentation of the entries suggests the

hierarchy of topics. For example, all section titles are aligned and are indent-

ed slightly more than chapter titles. Each entry displayed in the Current Can-

didates window is mouse-sensitive; clicking on any entry brings its associated

documentation into the Viewer.�

3.3. Loading Pascal

���������

1. Boot your machine, if necessary.

2. Log in.

3. Look at the ������, the multiline message that appears on the screen after

booting. If the herald lists the Pascal software: See the section "Using the

Editor to Enter a Pascal Example", page 8.

If the herald does ��� list the Pascal software, use the Load System command

to load the Pascal Tool Kit, which is called Pascal.

To use Load System, type the following to the Command Processor and press

������:

Load System Pascal :Automatic Answer Yes�

3.4. Using the Editor for the First Time

���������

1. Invoke Zmacs by pressing ��������.

2. Use the Find File command, ��� ��� ���, to create a new buffer for the

Pascal program quadratic that you are creating. To invoke the Find File

command, hold down the ���� key as you press the �, �, and then the � keys.

Page 9

Choose a name for the file. When prompted, type the name into the

minibuffer at the bottom of the screen and press ������. Use the pathname

conventions appropriate for the host operating system.

Example: Suppose Fred wants to create a new Pascal source file,

quadratic.pascal, that he wants to store in his home directory on a Symbolics

host called quabbin (q for short). Fred would type the following:

����������� q:>fred>quadratic.pascal�

Make sure that the name includes the proper Pascal ���� ���� (extension) for

your host; for example, quadratic.pascal is the correct name for a file resid-

ing on LMFS, the Genera file system. (see the section "Pascal File Types",
page 44.) The mode line, located below the editor window, displays (PASCAL).

3. If the file type was not appropriate, then use ��� Pascal Mode to set the

buffer mode manually. Press the META and � keys together. Then type pascal

mode and press ������. The mode line displays (PASCAL).

The Pascal Mode command prompts you about whether you wish to set the

mode in the attribute list, which specifies the properties of the buffer. Type y

to create an attribute list, like so:

{-*- Mode: PASCAL -*- }�

4. Turn on Electric Pascal mode using ��� Electric Pascal Mode. The mode line,

located below the editor window, displays (PASCAL Electric Mode). �������� ����

��� ���� is a special facility that places input in the appropriate character

style and case, depending on the syntactic context into which the input is in-

serted.

5. Use ��� Update Attribute List to specify the properties of the buffer, among

them mode, the dialect of Pascal you are using, and the package into which

your Pascal program will be compiled. The attribute list is the first line of a

file and should look something like:

{-*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*- }�

Note that the dialect attribute is ISO Pascal, which is the default dialect of

the Tool Kit.

6. Enter the sample program quadratic. Note that as you type the reserved

words, they are rendered in an uppercase, boldface character style controlled

by Electric Pascal mode. By default, body text is rendered in a lowercase,

Roman style.

Page 10

������� quadratic;

��� a,b,c,discriminant,x1,x2 : real;

�����

 writeln;

 write(’Solves the equation: ’);

 writeln(’A*X**2 + B*X + C = 0 for X’);

 write(’Enter values for A, B, and C: ’);

 readln(a,b,c);

 discriminant := b*b - 4*a*c;

 x1 := (-b + sqrt(discriminant)) / (2*a);

 x2 := (-b - sqrt(discriminant)) / (2*a);

 writeln(’The roots are:’);

 writeln(x1,’ and ’,x2)

���.�

For the editor commands that control cursor movement and text manipula-

tion: See the section "Editor Extensions for Pascal", page 97. See the section

"Summary of Standard Editing Features", page 100.

Check the code in your buffer against the example.

7. If you want to save the source code in a disk file, use ��� ���, that is, hold

down the ���� key as you press the � and then the � keys.�

3.5. Compilation, Execution, and Error Recovery in the Example

���������

1. With the cursor positioned within the program text, use ������ to compile

the program. Ignore any compiler warnings about base and syntax attributes.

If the compilation completes successfully, the minibuffer displays "program
quadratic compiled". Go to step 3. If the compilation halts before completion,

the typeout window at the top of the screen displays compiler warnings, er-

rors, or both. Go to step 2.

2. If the typeout window displays error messages, press ����� to erase the

typeout window and return to the editor window; correct the code.

If the typeout window displays compiler warnings, press �����, if necessary,

to erase the typeout window and use ��� Edit Compiler Warnings to resolve

the warnings.

3. Press ������� to enter a Zmacs breakpoint. A small window appears at the

top of the screen, overlaying a portion of the editor window.

4. Type:

(pascal:execute ’quadratic)�

Page 11

Remember to type the parentheses.

5. The program prompts:

Solves the equation: A*X**2 + B*X + C = 0 for X

Enter values for A, B, and C: �

Type:

1 0 -9 �������

The window should display the following:

The roots are:

 3.000000000000E+000 and -3.000000000000E+000

����

6. Rerun the program, this time causing a run-time error. When the program

prompts for input, type:

1 2 3 �������

Genera automatically invokes the Debugger (identifiable by Error:), which

displays a descriptive error message ("Attempt to take the square root of -

8.0d0, which is negative"), an error message, and then a list of suggested ac-

tions and their outcomes. When executing a Pascal program, the first such

action is always "Enter the display debugger". See figure 1 .

For example, pressing ����� or ��� from the Debugger causes you to return

to the editor breakpoint, from which you can rerun quadratic.

7. Press ����� twice  once to leave the Debugger and a second time to leave

the breakpoint and return to the editor window.

8. This step completes the edit-compile-error-recovery cycle for the sample pro-

gram. It is recommended that you spend some time editing the code, recom-

piling, and rerunning the program until you feel comfortable with the process.

Then read about the Tool Kit’s extensions: See the section "Extensions to

Pascal", page 17.�

Page 12

Figure 1. Producing a run-time error in the example program.

Page 13

4. Pascal Dialects

4.1. Introduction

�������

The Tool Kit implements the full ISO Pascal Standard, with extensions specially

designed for the Symbolics Genera environment. The full Pascal/VS specification

has been implemented with a few exceptions. Several differences distinguish the

dialects, and this chapter serves to:

• define the mechanism for selecting a dialect.

• describe some of the differences and similarities between the dialects.

• describe the restrictions on each dialect.

• define the constraints on interaction between routines compiled as ISO Pascal

versus those compiled as Pascal/VS.�

4.2. Selecting a Pascal Dialect

�������������������������������

Each Pascal file or buffer to be compiled is associated with one of the two Pascal

dialects, either ISO Pascal or Pascal/VS. The choice of dialect is shown in the

������������� of the file attribute list.

The format of the Dialect entry is Dialect: ������������, as in the attribute list:

{-*- Mode: PASCAL; Dialect: ISO; ... -*- }�

Thereafter, whenever you read in this file, the buffer will be compiled in ISO

Pascal.

Note that the dialect entry (indeed the entire attribute list) is not required; how-

ever, whether or not it is present, your buffer or file is still associated with one

dialect of Pascal. �

�������������������

The default dialect is specified by the ������������������������������� compiler

option. The default value of the option is ISO Pascal.

For example, if you create a new Pascal buffer the attribute list might look like

the following:

{-*- Mode: PASCAL; Dialect: ISO; ... -*- }�

Unless you explicitly change the dialect entry in the attribute list, the dialect

associated with the buffer is the default dialect. If you change the default, then a

file without an attribute list might be compiled in the new default dialect when

read into a buffer in a subsequent work session. Files with attribute lists are

Page 14

always compiled in the dialect specified in the dialect entry, regardless of the cur-

rent default. Changing the default dialect affects only future buffers and existing

files that do not contain dialect entries in their attribute lists. For more informa-

tion:

See the section "Compiler Option: Setting the Default Pascal Dialect", page 51.�

��������������������������

To change the dialect entry in the attribute list, use ��� Set Dialect, or manually

change the dialect yourself. If you manually change the dialect entry, remember to

reparse the attribute list using the Reparse Attribute List command, ��� Reparse

Attribute List. Reparsing causes the changes to take effect.

4.3. Differences and Similarities: ISO Pascal and Pascal/VS

�����������

In general, every facility in ISO Pascal exists in Pascal/VS, with the sole exception

of conformant array parameters. Pascal/VS, on the other hand, contains many

features not present in ISO Pascal.

• Only Pascal/VS contains true strings; their maximum length is determined at

compile-time, their current length at run-time. A complete library of useful

string-manipulation facilities are provided as intrinsic functions.

• Only Pascal/VS contains several loop exit facilities called leave and continue.

• Only Pascal/VS supports random access input/output, via the seek predeclared

procedure, and reading and writing of the same file, via the update file opening

procedure.�

������������

The Tool Kit has extended ISO Pascal in several ways that make it more similar

to Pascal/VS.

• Both Pascal/VS and ISO Pascal support both single-precision shortreal and

double-precision real data types. Whereas ISO Pascal has always included the

real double-precision data type, the Tool Kit has extended the dialect to include

shortreal as well.

• Because Pascal/VS and ISO Pascal support real and shortreal data types, both

dialects have also been extended to include two conversion functions, single and

double, to convert from one data type to the other.

• The Tool Kit has extended ISO Pascal to include the otherwise clause for case

statements and variant record type definitions. Now both dialects support the

otherwise alternative.

• Pascal/VS allows file open options to be passed with any file-opening predeclared

procedure. The Tool Kit extends ISO Pascal to support the same file open op-

Page 15

tions as Pascal/VS. see the section "Second Parameter to File-Opening Proce-

dures", page 20.

4.4. Pascal Dialect Restrictions

4.4.1. Pascal/VS Restrictions

In general, the Pascal/VS dialect is implemented as described in the Pascal/VS

Standard, and compatibly extended in the Tool Kit. However, a few standard fea-

tures have not been implemented.

The following Pascal/VS predefined routines have not been implemented.

parms

pdsin

pdsout

retcode

token �

With the exception of %include, the % feature of Pascal/VS has not been imple-

mented. %include provides for compiler directives.

Pascal/VS defines a separate compilation facility, which the Tool Kit has not im-

plemented. It is therefore expected that you will use the Tool Kit’s units facility

for Pascal. Accordingly, the following Pascal/VS declarators have not been imple-

mented.

def

ref

segment

space

static �

The following Pascal/VS routine directives have not been implemented.

external

fortran

main

reentrant �

Additionally, you cannot use a range as a Case selector.

Symbolics Genera supports a family of namespaces for routine and variables

names; this is called the ������� ������. Normally, you specify a namespace

(package) that does not inherit symbols from the Lisp environment, so no conflict

is possible between Pascal names and Lisp names. However, if you use the default

Genera package, it is possible that you will assign a variable the name of a prede-

clared Lisp symbol like �, or a routine the name of a Lisp function like �����. In

this case your Pascal programs cannot use the names of predefined Lisp symbols.

Page 16

4.4.2. ISO Pascal Restrictions

In general, the ISO Pascal dialect is implemented as described in the ISO Stan-

dard, and compatibly extended in the Tool Kit. However, a very few restrictions or

incompatibilities exist in the implementation.

• The Tool Kit extends ISO Pascal to include the otherwise alternative for case

statements and variant record type definitions. Note that this makes the ISO

Pascal identifier otherwise into a reserved word, which might have visible ef-

fects on strict ISO Pascal programs.

• Symbolics Genera supports a family of namespaces for routine and variables

names, which is called the ������� ������. Normally, the Pascal programmer

specifies a namespace (package) that does not inherit symbols from the Lisp

environment, so no conflict is possible between Pascal names and Lisp names.

However, if you use the default Genera package, �������������, it is possible that

you will assign a variable the name of a predeclared Lisp symbol like �, or a

routine the name of a Lisp function like �����. In this case your Pascal pro-

grams cannot use the names of predefined Lisp symbols.

4.4.3. Dialect Constraints

In general, programs compiled under Pascal/VS and ISO Pascal can freely call

each other and share data. The only restriction is that you cannot pass a string to

ISO Pascal routines, since ISO Pascal does not support the Pascal/VS string data

type. In addition, since Pascal/VS does not support ISO Pascal conformant array

parameters, it is not valid to pass a conformant parameter to a Pascal/VS routine.

Page 17

5. Extensions to Pascal

5.1. Summary

�����������������

The Tool Kit defines several extensions to standard Pascal. Most of these result

from the strong hardware data-type checking provided by Symbolics Genera. This

feature offers a greatly increased ability to detect errors that on conventional sys-

tems would be discovered only by more laborious means, if at all.

The Tool Kit supports the following language extensions:

• Arbitrary-precision integers

• Detection of uninitialized variables

• Strong data-type checking

• Floating-point data type called shortreal (extension to ISO Pascal)

• otherwise clause (extension to ISO Pascal)

• %include compiler directive (extension to ISO Pascal)

• Floating-point conversion functions called single and double

• Syntactic extensions

• Extensions for interacting with Lisp functions

• File-opening parameters

• Pascal package system

• Separate compilation units�

5.2. Discussion of Extensions

5.2.1. Arbitrary-Precision Integers

The Tool Kit supports arbitrary-precision integers, called �������; as a result, all

integers are immune from overflow. Suppose you have a typical iterative factorial

routine:

Page 18

������� factor;

��� x : integer;

 function factorial (n : integer) : integer;

 ��� i : integer;

 �����

 factorial := 1;

 ��� i := n ������ 1 ��

 factorial := factorial * i

 ���; { ������������������ }

�����

 writeln;

 write (’Program calculates the factorial of a number. ’);

 writeln (’Enter 0 to halt program.’);

 ������

 write (’Find the factorial of what number? ’);

 readln(x);

 writeln(’Factorial ’,x:1,’ is ’,factorial(x):1)

 ����� x = 0;

 writeln (’Leaving factorial program.’)

���.�

In Pascal on conventional machines, this routine would work properly until the

product computed in the variable factorial overflowed. Then either (1) a hardware

overflow would be signalled or (2) the computation would deliver the incorrect an-

swer with no warning whatsoever. In Symbolics Genera, however, the computation

completes and returns the correct answer independent of the value of �.

Since the ISO Standard does not restrict the range of precision of integers (see

the ISO Standard, section 1.3.2), the accommodation of bignums should provide

great flexibility to the programmer who needs to develop code for machines with

differing word sizes. It is also helpful to the programmer who is solving mathe-

matical problems, since integers do not exhibit the anomalous overflow behavior of

conventional machines.

In conjunction with arbitrary-precision integers, the Tool Kit supports formatted

input/output of large integers. Hence, integer format widths such as 200 are

meaningful.

The only operation for which arbitrary-precision integers are ��� valid is unformat-

ted input/output. In this case, integers must be between -231 and 231-1.�

5.2.2. Detection of Uninitialized Variables

The Tool Kit detects uninitialized data, so that an error condition results if a

variable is used before it is assigned a value.

Pascal implementations on conventional machines, which cannot easily check for

uninitialized data, generally initialize all data to zero before beginning program

execution.

Page 19

For those who do not wish to use this feature, a compiler option exists that

initializes all variables to zero. See the section "Compiler Option: Initializing Pas-

cal Program Data", page 50.�

5.2.3. Strong Data-Type Checking

Symbolics computers provide strong hardware data-type checking among integer,

shortreal, and pointer. Thus, the hardware prevents a program error due to Pas-

cal incorrect variant record selection, for example, in the case where the exponent

and mantissa of a real number might be interpreted as an integer. You can

subvert this data-type checking by calling Lisp functions to take the word apart.

This strong data-type checking does not extend to the real data type, which is

internally represented by a Lisp double-precision floating-point number. The hard-

ware representation for real data is in fact a pair of integers.�

5.2.4. shortreal Data Type

ISO Pascal has been extended to include the single-precision floating-point type

shortreal. As a result, both Pascal/VS and ISO Pascal support two floating-point

data types: real, corresponding to double-precision (range ~2.2 x 10-308 to 1.8 x

10308, with accuracy to 53 bits), and shortreal, corresponding to single-precision

(range ~1.175 x 10-38 to 3.4 x 1038, with accuracy to 24 bits).

Users who wish to have the default real data type be single-precision floating

point can include the following type declarations in their programs:

���� double = real;

���� real = shortreal;�

5.2.5. otherwise Clause

The Tool Kit has extended ISO Pascal to include the otherwise clause for case

statements and variant record type definitions. Now both dialects support the oth-

erwise alternative. Note that this makes the ISO Pascal identifier otherwise into a

reserved word, which might have visible effects on strict ISO Pascal programs. �

5.2.6. %include Directive

The Tool Kit has extended ISO Pascal to include the %include facility, standard in

Pascal/VS. For both ISO Pascal and Pascal/VS the allowed formats are:

%include �����������

and

%include �����������������

Anthing that follows ���������� or ���������������� on the same line is ignored.

The included file is found by defaulting the string or identifier name against the

name of the file containing the %include. Lines of compiler input are taken from

the included file until EOF is reached, at which time compilation continues with

the line following the %include directive.�

Page 20

5.2.7. Conversion Functions

Pascal/VS and ISO Pascal have been extended to include two floating-point types,

real, corresponding to double-precision, and shortreal, corresponding to single-

precision. To convert between these floating-point formats, the conversions single

and double are provided. The function single takes a double-precision (real) value

as its argument and returns the single-precision number closest to the double-

precision input. Conversely, the function double takes a single-precision (shortreal)

value as its argument and returns the double-precision number closest to the

single-precision input.�

5.2.8. Length of Symbolic Names

Pascal identifiers can have any length, but must fit on a single line, like all Pascal

tokens. For example, the following is a valid statement:

program quadratic_solution_to_equations;�

5.2.9. Interaction with Lisp

The Tool Kit defines two extensions for interacting with Lisp. A new scalar data

type called lispobject allows you to call Lisp routines from Pascal. By declaring a

variable to be of type lispobject, you can represent any Lisp data object. See the

section "lispobject: Pascal Data Type for Handling Lisp", page 89.

Analogous to forward, the new Pascal routine directive lisp allows the declaration

of an existing Lisp function that you can call from a Pascal routine. See the

section "lisp: Pascal Routine Directive", page 89.�

5.2.10. Second Parameter to File-Opening Procedures

The Pascal Tool Kit permits a second parameter for each of the predefined proce-

dures that open files, including reset and rewrite for ISO Pascal, and reset,

rewrite, update, termin, termout, pdsin, and pdsout for Pascal/VS. The second

parameter must be a string literal, a packed array of char, or a Pascal/VS string.

The parameter consists of two options, one specifying the pathname of the file to

be opened; the other, the type of file access. The format of the second parameter

is a comma-separated sequence of options and values, like so:

����������� = ������������, ...�

Spaces are ignored except within file names.

������ �����

���� or ������ Specifies a string that corresponds to the pathname of the file to

be opened. This pathname is merged with the current pathname

default, possibly modified by the ������������������ main pro-

gram option, at file open time.

������ Specifies the type of file access. The option has two possible

values: sequential and direct. The default is sequential, except

Page 21

when the Pascal/VS update procedure is used; in this case, the

default is direct. Also note that the Pascal/VS predeclared proce-

dure seek requires that you specify file access as direct.�

Example 1: To open a file f, whose name is "s:>scald-ii>foo.data", for sequential

access reading, type:

reset(f, ’name = s:>scald-ii>foo.data’);�

Example 2: To open a file f, whose name is "vixen:/ufs/comp/bar.direct", for direct

access writing, type:

rewrite(f, ’name=vixen:/ufs/comp/bar.direct, access=direct’);�

5.2.11. Pascal Package System

����������. Symbolics computers are a large-scale virtual-memory, single-user

computer; many programs  the editor, the compiler, and so on  coexist in the

same environment (address space). Once Pascal routines (and Lisp functions, too)

are loaded into the Genera environment, they remain there until replaced by re-

compilation or until the machine is ���� ������, that is, until a fresh version of

Genera is loaded.

Since you might have two large Pascal programs that are both named load, how

can the Symbolics Genera distinguish between them? A similar competitive situa-

tion might well arise between Pascal programs and variables and Lisp functions

and variables. Symbolics Genera provides a mechanism for separating the like-

named functions in different programs by assigning each its own distinct context.

The namespace is called the package.

The package name prefixes two identically named functions.

Example: ���������������� and ���������� define two different functions named

����, one in package �����������, the other in package �����.

�������� �� ������. The Pascal package facility differs from Lisp packages in one

important way: Pascal packages do not conflict with symbols in any Lisp packages

or in any other Pascal packages.

�� is the special form used for declaring

your own Pascal packages. Once you declare a Pascal package, you can use names

for variables and functions without fear of conflict with the same names in other

Pascal or Lisp packages. The Tool Kit also provides a built-in Pascal package

called �����������. ����������� is the default package of the Tool Kit.

For instructions on defining your own Pascal packages: See the section "Declaring

a Pascal Package", page 63. For information on assigning package names to

buffers: See the section "Editing Basics for Pascal Programs", page 23. For a

general discussion of the Lisp package facility: See the section "Packages" in

��.�

��������������������������

The Pascal Tool Kit implements its own units facility in lieu of the separate

compilation facility defined by Pascal/VS. The units facility provides a mechanism

Page 22

for any routine to call separately compilable units that reside in the same or dif-

ferent files. Hence, code needed by many programs is available for general use.

The declaration scope of the calling routine "expands" to include the declarations

made in the called unit.

See the section "Units Facility", page 57.

Page 23

6. Using the Editor to Write Pascal Programs

6.1. Editing Basics

����������������

The Zmacs text editor provides a full range of general-purpose commands for

writing and editing programs. These commands include reading and writing files,

basic cursor-movement commands, and text-manipulation commands.

In addition, Pascal editor mode incorporates many helpful editor extensions that

understand Pascal syntax. For example, there are commands for moving from one

Pascal language unit to another, and commands that locate syntax errors. An

editor minor mode, called Electric Pascal mode, places typed input in the appropri-

ate character style and case. Electric Pascal mode is accessible from Pascal editor

mode.�

For more information:

• See the section "Editor Extensions for Pascal", page 97.

• See the section "Summary of Standard Editing Features", page 100.

• For a discussion of the ���� key and command ����������: See the section

"Getting Help" in �������������������.�

���������

This procedure summarizes the steps for preparing an editor buffer for writing or

editing Pascal source code.

1. Invoke Zmacs in one of the following ways:

• Press ��������.

• Click left on [Edit] in the System menu.

• Issue the Select Activity command at the Command Processor, supplying

Zmacs or Editor as the activity name.�

2. Use ��� ��� to read an existing file into the buffer or ��� ������� to create

a buffer for a new file. When prompted, type the full pathname of the file in

the minibuffer (the small editing window at the bottom of the screen) and

press ������. Use the pathname conventions appropriate for the host operat-

ing system.

Make sure that the name includes the proper Pascal ���� ���� (extension) for

your host; for example, quadratic.pascal is the correct name for a file resid-

ing on LMFS, the Genera file system. See the section "Pascal File Types",
page 44. Example: Suppose Fred wants to create a new Pascal source file,

cube.pascal, that he wants to store in his home directory on a Symbolics Lisp

Machine host called quabbin (q for short). Fred would type the following:

����������� q:>fred>cube.pascal�

Page 24

The mode line, situated below the editor window and near the bottom of the

screen, displays (PASCAL).

3. Whenever you specify a file name with the correct Pascal file type (file

extension), the editor automatically sets the mode of the buffer to Pascal and

sets the buffer dialect to either ISO Pascal or Pascal/VS, whichever is your

preferred default.

If the editor did ��� set the mode of the buffer to Pascal, use ��� Pascal

Mode to set the mode manually. This situation might occur if the buffer was

created in such a way that the editing mode is not implicit, for example, if

you entered a pathname with a non-Pascal file type or you created a buffer

not associated with a file.

The Pascal Mode command prompts you about whether you wish to set the

mode in the attribute list as well as the mode line. The attribute list specifies

the properties of the buffer; the Pascal Mode command specifies the mode

property in particular. For example, if you type y, it creates an attribute list,

like so:

{-*- Mode: PASCAL -*- }�

When the editor sets the mode to Pascal automatically, most users create the

attribute list with ��� Update Attribute List, rather than the Pascal Mode

command. The Update Attribute List command sets many of the properties of

the buffer at once, among them:

• The editor mode

• The dialect of Pascal you are using

• The package into which your Pascal program will be compiled

The attribute list is optional but if present must be the first line of a file. A

sample attribute list might look like the following:

{-*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*- }�

Alternatively, you can type the entire attribute list or any part of it yourself.

For more information on the attribute list: See the section "File Attribute

Lists" in �����������������������������.

4. If the dialect listed in the attribute list is not the one you want, then use ���

Set Dialect to change it. Currently, the valid values of the Dialect attribute

are iso and vs. Alternatively, you can manually enter the dialect name in the

attribute list by typing ; Dialect: and either iso or vs.

(The Tool Kit default is ISO Pascal. For information on changing the default:

See the section "Compiler Option: Setting the Default Pascal Dialect", page

51.)

5. When no package is specified in the attribute list, the default package is

�����������, the standard Tool Kit package. To change the package name in

the attribute list, use ��� Set Package and type the package name. The

command offers to create the package if it does not yet exist. Alternatively,

you can manually enter the package name in the attribute list by typing

Page 25

; Package: and the name of an existing package or a package you have

previously defined with the special form �������������������������������

���������.

Once the package is set in the attribute list, Pascal routines in the file are

defined as belonging to an existing package whenever the file is read into an

editor buffer. The status line, the last line of the screen, reflects the updated

package name.

6. Use ��� Reparse Attribute List whenever you make changes to the attribute

list. Reparsing causes the changes to take effect.

����: Changing packages does not affect previously compiled code.

7. Invoke ��� Electric Pascal Mode to turn on Electric Pascal mode, which is a

special editor facility that places input in the appropriate character style and

case, depending on the syntactic context into which the input is inserted.

By default the Tool Kit renders Pascal reserved words in an uppercase bold-

face character style, body text in a lowercase Roman style, and comments in

mixed-case italics. To change the defaults, invoke ��� Adjust Face and Case.

To turn off the mode if it is on, reissue the command.

8. Use editor commands to create or alter file contents, compile the code

(������), save the source file (��� ���) or (��� ���), and so on. Remember

that you can have as many main programs in a file as you wish.�

6.2. Setting Editor Defaults�

������������

If you intend to write Pascal code most of the time, you might want to set editor

defaults in your init file for

• Major mode

• Package

• Dialect�

Major Mode

By setting the major mode to Pascal, you will not need to specify the file type

when creating a new file buffer. Example: The following is sufficient for creating

a Pascal source file:

����������� q:>fred>cube�

To set the default major mode to Pascal, type the following form in your init file:

(setf zwei:*default-major-mode* :pascal)�

Page 26

Package

If you plan to compile the majority of your Pascal mode in a particular package

(other than the default �����������), you might want to set the default package in

your init file.

To set the default package when the Pascal system is loaded and the package does

��� exist, type:

(setf zwei:*default-package*

 (pascal:package-declare-with-no-superiors

"������������"))�

and supply a value for ������������.

To set the default package when the Pascal system is loaded and the package does

��� exist, type:

(setf zwei:*default-package*

 (find-package "������������"))�

and supply a value for the string ������������.

Dialect

The default dialect of the Tool Kit is ISO Pascal. If you write code in Pascal/VS,

then you might want to set the default in your init file, as follows:

(login-forms

 (setq pascal:*pascal-default-dialect* :vs))�

Add this form to your init file only when (1) your Pascal system is stored on disk

and is therefore accessible at login or (2) your init file loads Pascal.�

6.3. Pascal Editor Mode

������������������������

The Pascal editor mode extension to Zmacs is based on a syntax-directed editor.

The syntax-directed editor understands the syntax of Pascal and makes use of this

knowledge to provide language-specific commands and information while editing,

for example, indicating the location of the next syntax error in the buffer.

The Pascal editing commands operate on Pascal language units (procedure or

function definitions and statements) and on language tokens (for example, com-

ments and identifiers) and expressions. This means, in effect, that the syntax-

directed editor understands how to distinguish one unit from another.

In addition to Zmacs textual model of editing, the syntax-directed editor provides

the features of a structure or template editor as well. Unlike many structure

editors, the syntax-directed editor does not restrict the size or the legality of the

contents of the buffer. However, the more syntactically correct a program, the

more helpful the editor.�

�����������������

The syntax-directed editor provides the standard commands and capabilities of

Page 27

Zmacs that are applicable to Pascal. For example, ��� moves the cursor to the

next line in both Lisp mode and Pascal mode as well as in text mode buffers.

One fine but crucial difference is that Zmacs commands that operate on Lisp

forms in a Lisp mode buffer operate on statements and larger language-specific

constructs (like procedures) in Pascal modes. Separate commands operate on lan-

guage expressions; others exhibit even more refined behavior, such as deleting a

Pascal language token or finding Pascal syntax errors.

Where possible, the Pascal editor mode commands are modelled on their analogous

Lisp mode commands. For example, in Lisp mode ���������� deletes the previous

Lisp form; in Pascal mode the same command deletes the previous Pascal language

statement or definition.�

6.4. Moving the Cursor

������������

The cursor movement commands operate on Pascal statements, definitions, and

expressions. How the cursor moves is determined by its current position and the

specific command you execute.

The examples in this section refer to the following program.

1 ������� factor;

2 { program calculates the factorial of any number. }

3 { Halts when the user types 0. }

4 ��� x : integer;

5 �������� factorial (n : integer) : integer;

6 ��� i : integer;

7 �����

8 factorial := 1;

9 ��� i := n ������ 1 ��

10 factorial := factorial * 1

11 ���; { function factorial }

12

13 ����� { main program factor }

14 writeln;

15 writeln(’Program finds factorial. Type 0 to halt program.’);

16 ������

17 write(’Find the factorial of what number? ’);

18 readln(x);

19 writeln(’Factorial ’,x:1,’ is ’, factorial(x):1)

20 ����� x = 0;

21 writeln(’Leaving factorial program’)

22 ���. { main program factor }�

�������������������

• �����

Page 28

Moves the cursor forward to the end of the current or next unit.

Example: Placing the cursor on line 19 and pressing ����� moves the cursor to

line 20, at the semicolon.

• �����

Moves the cursor backward to the beginning of the current or previous unit.

Example: Placing the cursor on line 20, at the semicolon, and pressing �����

moves the cursor to line 19, to the beginning of the statement

writeln(’Factorial ’,x:1,’ is ’, factorial(x):1).

Example: Placing the cursor on line 20, ����� the semicolon, and pressing �����

moves the cursor to line 16, to repeat.�

��������������������

• �����

Moves the cursor backward to the beginning of the current or previous procedu-

ral or functional definition.

• �����

Moves the cursor forward to the end of the current or next procedural or

functional definition.

Example: Placing the cursor on line 4 and pressing ����� moves the cursor to

the end of line 22.

Example: Placing the cursor on line 5 and pressing ����� moves the cursor to

line 11, after end;.

• �����

Marks the current language definition as a region and moves the cursor to the

beginning of the definition. Used in conjunction with a command to compile,

delete, or yank the region.�

��������������������

• ������

Moves the cursor forward to the end of the current or next expression.

Example: Placing the cursor at the token for on line 9 and pressing ������

moves the cursor to the token downto on the same line.

• ������

Moves the cursor backward to the beginning of the current or previous expres-

sion.

�����������������������

��� Blink Matching Construct enables you to check that block constructs are

Page 29

balanced. When the feature is turned on and the cursor is positioned at a reserved

word that closes a block statement, the editor flashes the reserved word that opens

the block statement. For example, positioning the cursor anywhere after the first

letter in end if makes the matching if construct blink. Invoke the command again

to turn this feature off (the default condition). Note: This command works only

when the buffer is syntactically correct.�

6.5. Deleting Language Units

������������

The deletion commands operate on Pascal contructs (statements and definitions),

tokens, and expressions. What text is deleted is determined by the current position

of the cursor and the specific command you execute. To retrieve just-deleted text,

use the standard yanking commands, such as ���. �

�����������������������������������

The following three deletion commands operate only on language units and expres-

sions. They understand the notion of nested statements.

Example: Consider lines 5-11 of the example.

3 .

4 .

5 �������� factorial (n : integer) : integer;

6 ��� i : integer;

7 �����

8 factorial := 1;

9 ��� i := n ������ 1 ��

10 factorial := factorial * 1

11 ���; { function factorial }�

• �����

Deletes forward to the end of the current or next statement. When you attempt

to delete a statement or definition that contains a syntax error, the editor marks

the region in inverse video and queries you about whether or not to go ahead

with the deletion.

������������� ������

Anywhere on line 8 Deletes factorial := 1, up to semicolon

On line 9, from left Deletes entire for statement,

margin to end of for lines 9-10

On line 7, from left Deletes lines 7-11, up to semicolon

margin to end of begin

Page 30

On line 9, anywhere Signals warning: No balanced language

after for construct to delete�

• ����������

Deletes backward to the beginning of the current or previous statement.

• ������

Deletes the statement or definition around the cursor.

������������� ������

Anywhere on line 8 Deletes factorial := 1, up to semicolon

Anywhere on line 9 Deletes entire for statement, lines 9-10

On line 7, from left Deletes lines 7-11, up to semicolon

margin to end of begin�

��������������������

As a precaution, deletion commands do not operate on unbalanced expressions.

• ������

Deletes forward to the end of the current or next expression.

Example: Consider the expression while (A + B +(B+ B)) do. Invoking ������

on this expression has different effects depending on the position of the cursor.

���������������� ������

First open parenthesis Deletes expression: (A + B +(B+ B))

Identifier A Deletes everything but the outer

balancing parentheses

Any plus sign Signals warning: No balanced language

construct to delete

Second open Deletes (B+ B)

parenthesis�

• ������

Deletes backward to the beginning of the current or previous expression.�

Page 31

���������������

• ������

Deletes forward to the end of the current or next token.

• ������

Deletes backward to the beginning of the current or previous token.�

6.6. Finding Syntax Errors

������������

Usually you become aware of syntax errors only when you try to compile a unit of

source code. The syntax-directed editor, however, parses source as you type it and

keeps track of all syntax errors. However, the editor notifies you of such errors

only in certain circumstances:

• You explicitly query about syntax errors using either ������ or ������.

• Some compilation commands, for example, ������, notify you when syntax errors

are encountered.

• Deletion commands like ����� and ���������� mark the region containing a

syntax error in inverse video and query you about whether or not to proceed

with the deletion.

• You press ���� after entering a line of source code.�

������ and ������

• ������

Finds the nearest syntax error to the right of the cursor, if any, and moves the

cursor there. With a numeric argument, it finds the last syntax error in the

buffer.

• ������

Finds the nearest syntax error to the left of the cursor and moves the cursor

there. With a numeric argument, it finds the first syntax error in the buffer.�

Sometimes a single error can result in a cascade of error messages from ������ or

������. In such cases, correct the errors starting with the first error.�

����

In addition to indenting the current line correctly with respect to the line above it,

���� also detects syntax errors within that line, indicating in the minibuffer the

point of error, as in:

j := k + ;

 ^�

Page 32

6.7. Introduction to Pascal Mode Completion and Templates

������������

Pascal editor mode provides a general completion facility over the set of Pascal

language constructs as well as over the set of predeclared identifiers and reserved

words. For example, as soon as you type enough characters in a Pascal reserved

word or predeclared identifier so the word is recognized as unique, you can ask for

completion. The remaining characters of the identifier are inserted in the buffer.

If the word is not recognized as unique, you can ask to see all possible completions

to what you have typed.

The completion facility can also insert ���������, which show patterns of the syn-

tactic constructs of Pascal. For example, below is the template for the for con-

struct.

FOR ⊂control variable⊃ := ⊂initial value⊃ ⊂to or downto⊃ ⊂final value⊃ DO

 ⊂statement⊃ �

�������

For the purposes of explaining completion and templates, assume that we are en-

tering the following procedure:

������� factor;

{ Program calculates the factorial of any number. }

{ Halts when the user types 0. }

��� x : integer;

 �������� factorial (n : integer) : integer;

 ��� i : integer;

 �����

 factorial := 1;

 ��� i := n ������ 1 ��

 factorial := factorial * 1

 ���; { function factorial }

����� { main program factor }

 writeln;

 writeln(’Program finds factorial. Type 0 to halt program.’);

 ������

 write(’Find the factorial of what number? ’);

 readln(x);

 writeln(’Factorial ’,x:1,’ is ’, factorial(x):1)

 ����� x = 0;

 writeln(’Leaving factorial program’)

���. { main program factor }�

Page 33

6.8. Pascal Mode Templates

�����������������������������

Assume that the current buffer looks as follows and that the cursor is positioned

after the keyword function.

{ -*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*-}

������� factor;

{ program calculates the factorial of any number. }

{ Halts when the user types 0. }

��� x : integer;

 �������� �

When you position the cursor after a reserved word, like function, pressing ���

inserts the syntactic pattern (template) of the appropriate language structure into

the buffer. The template consists of some combination of descriptive items and

Pascal keywords.

Where a single valid construct is possible, the ��� key inserts the template that

matches the keyword. Where multiple possibilities exist, ��� pops up a menu of

template items for all the constructs that are valid in the current context.

Example: Pressing ��� after �������� inserts a template, as shown in the

lower portion of figure 2.

Figure 2. After pressing END and selecting a template.

��������������

In addition to Pascal reserved words, the template contains �������� �����, which

are syntactic constructs surrounded by horseshoes.

These template items contain constructs that are either required, optional and

repeating, or repeating. The delimiters of the template item indicate the type of

construct it describes, in accordance with extended Backus-Naur form.

��������������������� ���������

⊂{ optional repeating }⊃ curly brackets, or braces

⊂[optional]⊃ square brackets

⊂ required ⊃ horseshoes only

Page 34

Example: ⊂{, identifier}⊃ represents an optional, repeating identifier. You can omit

or expand it into the following: , identifier {, identifier }.�

���������������������������

You can move from one template item to another by using the commands �����,

which moves to the beginning of the next item, and �����, which moves to the

beginning of the previous item.�

��������������������������

A template item is just text, in the sense that you can write out or read in a file

containing template items. The editor treats (parses) a template item as what it

represents; for example, ⊂identifier⊃ would act as though an identifier were

present. However, unlike regular text, the template item disappears when you posi-

tion the cursor at the item and type a character into the buffer.

Example: Type the name of the procedure, such as factorial. Note that typing the

first character causes the template item ⊂identifier⊃ to disappear. Now type �����

to position the cursor in front of the next template item, ⊂[formal part]⊃. When

you press ����� at any template item, that item disappears, and the blank is ���

inserted. ������ and ������ also provide the same capability. These commands

provide a convenient way of handling optional syntax.

6.9. The c-HELP Command

������������������������

The ������ command displays a mouse-sensitive menu of all language constructs

valid at the cursor position. The ������ mechanism understands the syntax of Pas-

cal and works by comparing its understanding with the relative position of the cur-

sor in the buffer. If the cursor is positioned between the begin and end reserved

words, the ������ command displays a menu of all valid executable statements

rather than declarative statements.

Because the ������ command relies heavily on language context, its behavior

might is altered by incompleteness or syntax errors in your program. In general,

the more accurate and complete your program, the more accurate and useful the

help information.

In some contexts help information is not available. In such cases, pressing ������

yields only the message No help available here.

In general the ������ command is useful for finding out about which language

constructs are legal at the cursor position, whether at a template item or a re-

served word.

Example: Pressing ������ at BEGIN, displays a menu of all executable statements.

See figure 3.

Select a menu item by clicking the Left, Middle, or Right button on the mouse.

Click Left, Middle, or Right on Exit to return to editing.

����������� �������

Page 35

Figure 3. After pressing c-HELP at BEGIN.

Left Inserts the selected template into the buffer at the cursor

position.

Middle Displays the selected template in a temporary window.

Move off the window to make the template disappear.

Right Displays documentation from the ������ ���� ����������

������ for the selected topic. The documentation is dis-

played in a Document Examiner window. Press ������ �

to return to the editor.�

Example: Clicking left on For Statement inserts a general template for a for

statement.

FOR ⊂control variable⊃ := ⊂initial value⊃ ⊂to or downto⊃ ⊂final value⊃ DO

 ⊂statement⊃ �

6.10. The COMPLETE Command

�������������������������

When the cursor is at the end of your typein (as long as it is not inside a com-

ment or string), pressing the �������� key compares what you have typed with

the set of all reserved words. If your typein completes to a unique string, it

inserts the remaining characters and adjusts the font and case as appropriate.

Example: Typing proc and pressing �������� inserts the remaining characters in

"procedure" and places the word in a lowercase boldface font.

�������� prints a message if more than one completion is possible. If no unique

completion is available, press ���� to display all possible completions in the editor

typeout window.

Page 36

Example: Type pro and press ����. The typeout window displays the reserved

words program and procedure as the possible completions to your input. You can

either press ����� to make the typeout window disappear or click Left on one of

the choices to have it inserted in your buffer.�

������������������������������

In addition to completing reserved words, Pascal mode also completes language

constructs. Once a template is inserted into a buffer, pressing the �������� key at

a template item further expands the item, overlaying its present contents with a

more specific template. The �������� command on a template works specific to

the particular template; used after keywords, �������� is specific to the keyword.

The operation of ������, on the other hand, is dependent on the syntactic context

of the cursor.

When a unique completion exists, the editor inserts the new template directly into

the buffer. (This behavior differs from ������ in that the latter always displays a

menu rather than directly inserting a template.) When more than one completion

exists, the editor displays a menu of completion choices.

Select a menu item by clicking the Left, Middle, or Right button on the mouse.

Click Left, Middle, or Right on Exit to return to editing.

����������� �������

Left Inserts the selected template into the buffer at the cursor

position.

Middle Displays the selected template in a temporary window.

Move off the window to make the template disappear.

Right Not presently implemented. �

Example: Assume that the following lines of source have been entered:

������� factor;

{ Program calculates the factorial of any number. }

{ Halts when the user types 0. }

��� x : integer;

 �������� factorial (n : integer) : integer;

 ��� i : integer;

 �����

 factorial := 1;

 FOR ⊂control variable⊃ := ⊂initial value⊃ ⊂to or downto⊃

 ⊂statement⊃ �

You are ready to enter a for loop. Pressing �������� at ⊂initial value⊃ replaces

the template with ⊂expression⊃. See figure 4.

Note that pressing �������� at ⊂control variable⊃ does not further refine the

template; no completion is possible.�

Page 37

Figure 4. After pressing complete at ⊂initial value⊃.

6.11. Template and Completion Commands

�������

�������� Completes a keyword to the left of the cursor or further fills

in the current template.

������ Provides a menu of templates of valid language constructs in-

serted at the cursor position. Note: use ���� to get the stan-

dard Help capability.

��� Inserts a template that matches the keyword to the right of

point.

����� Inserts whatever uniquely closes a language construct to the

left of the cursor. For example, ����� inserts a close bracket

("]") to match a ("["), or and then to match an if.

��� Lists in an editor typeout window the possible completions of

predeclared identifiers for the name immediately to the left of

the cursor. This usage is specific to Pascal editor mode.

����� Deletes the template item to the right of the cursor. The

cursor must be positioned at the opening horseshoe.

��� Remove Template Item

Deletes the next template to the right of the cursor. Same as

������ and m ������.

����� Moves the cursor to the next template in the buffer.

����� Moves the cursor to the previous template in the buffer.

������, ������ Deletes the next template to the right of the cursor. Same as

Remove Template Item.�

Page 38

6.12. Electric Pascal Mode

�������� ������ ���� is an editor facility available in Pascal-mode buffers. As you

type, input is placed in the appropriate font and case, depending on the syntactic

context into which you insert the input. For example, by default, the word "proce-
dure" typed within a comment is rendered in an italic face. On the other hand,

"procedure" typed as a reserved word is placed in a lowercase and boldface face.

By default the Tool Kit renders Pascal reserved words in an uppercase boldface

character style, body text in a lower-case Roman style, and comments in mixed-

case italics. To change the defaults, use ��� Adjust Face and Case. �

�������

Figure 5 shows the effect of Electric Pascal mode on a complete program.

Figure 5. Example of a program typed in Electric Pascal mode.

���������������������������

Electric mode is available only in Pascal-mode buffers. If you created the buffer in

such a way that the editing mode is not implicit (for example, via ��� ��� �), set

the buffer mode to Pascal via ��� Pascal Mode. Then turn on electric mode using

��� Electric Pascal Mode. The mode line displays (PASCAL Electric Mode).

To turn off the mode if it is on, reissue the command.�

��

The Pascal editor mode provides a facility for applying the character style and

capitalization rules of Electric Pascal mode to code that was not originally written

using Electric Pascal mode, for example, code not developed under Symbolics Gen-

era. This facility changes the face and case of reserved words to uppercase bold,

and the face of comments to italics. It does not affect indenting.

Page 39

This facility is invoked by ��� Format Language Region. You can apply the

command to an editor region or to the current Pascal routine (default). Supplying

a numeric argument reverses the effect: all formatting is removed from the speci-

fied editor region or routine.

6.13. Customizing Electric Pascal Mode

������������

When Electric Pascal mode is switched on, typed input is displayed in the appro-

priate face and case, depending on the ��������� ������� into which the input is

inserted. Syntactic context refers to the following types of text:

• Body (plain) text

• Reserved words

• Comments

• Template items�

Electric Pascal mode supplies a default case and face setting for each of these

contexts. This section describes the default settings provided by Electric Pascal

mode and explains how to change them, where possible.

Note: Face is only one element of character style. The other two elements are

family and size. To change the screen defaults for family or size: see the section

"Using Character Styles" in ���������������������������������������.�

���������������������

The table below shows the default case and face for each syntactic context.

������� ���� ����

Body text Lower Roman

Reserved words Upper Bold

Comments Leave alone Italic

Template items Leave alone Roman�

����������� means that input is displayed exactly as typed.�

����������������������������

The Tool Kit provides the special form ���������������������������������� to

change Pascal editor mode’s defaults for case, face, and indentation.

����������������������������������� ���������������������&key���������������

�����������������

Changes the syntax editor’s defaults for a language major mode, whose

name is the keyword ��������. The defaults you can change are case, face,

and indentation. It is recommended that you place �������������������

��������������� within a login form in your init file; however, in this case

you must have previously loaded both the ��������������������� system and

the particular language system whose defaults you are changing. Alterna-

Page 40

tively, you can evaluate the login form at a Lisp Listener after loading the

system.

Valid keywords are ��������, ������������, �����, and ������. �������� and

������������ are not documented here, because the preferred and simpler

methods for changing dialect (Pascal only) and indentation are ��� Set Di-

alect and ��� Save Indentation, respectively; use these commands instead of

the �������� and ������������ keywords.

������� �������

����� Specifies the default case of predeclared words,

comments, and body text. The format is a list of

lists; each list consists of a syntactic context and a

case; both are keyword symbols. The format is

thus: ((������������������������) ...).

The keywords naming a syntactic context are:

������� �������

������������ Reserved words or prede-

clared identifiers. The de-

fault is ������.

��������� Template items. The de-

fault is ������������,

which means "exactly as

entered".

����� Plain text. The default is

������.�

Note that strings and comments do not support al-

ternate cases.

The keywords naming a case are:

������� �������

������ All caps, as in ALL_CAPS.

������ All lowercase, as in

all_lowercase.

����������� Initial cap on first word,

as in Initial_cap.

����������������� Initial cap on each word,

as in Initial_Caps.�

������ Specifies a list of four character styles, regulating

the appearance of body text, reserved words, com-

ments, and template items, in that order. If you

specify a character style that is not currently in

the environment, ��������������������������

Page 41

�������� loads that style. For more information,

see the section "Using Character Styles" in ����

������������������������������������.�

Example: Changing the editor defaults for Pascal mode.

(login-forms (zwei:change-syntax-editor-defaults

 :Pascal

 :style ’((nil :roman nil) (nil :bold nil)

(nil :italic nil) (nil :roman :smaller)

 :case ((:predeclared :upper)

 (:template :upper))))�

�����������������������������

An easy procedure allows you to change the global indentation of Pascal source

code. Select a Pascal mode buffer and position the cursor at the beginning of the

construct whose indentation you wish to change. Press ����� or ������ for as

many characters as you wish to indent or outdent the construct, respectively. Then

press ���. When the change is successful the editor displays a message, for exam-

ple:

Indentation for the construct changed to 2

However, when the change is not successful, for example, when the indentation for

a construct cannot be changed, the editor will display a message to that effect.

Once you are satisfied with the indentation, use ��� Save Indentation. The com-

mand produces a Lisp form in another buffer which reflects your changes; evaluate

this form after the Pascal editor is loaded.

��

Use ��� Adjust Face and Case to change the face and case of the syntactic

contexts (templates, comments, reserved words, text) in the current Pascal mode

buffer. The command displays a menu, similar to the one shown in figure 6.

Boldfaced words indicate the current defaults.

Once you select new defaults for the buffer, click on Done. Invoke ��� Format

Language Region to have the changes take effect in the current buffer.

Note that you cannot alter the case of comments. The case for template items,

reserved words, and plain text can be one of the following:

���� ������� �������

Upper all caps PROCEDURE

Lower all lowercase procedure

Capitalize initial cap Initial_cap_on_first_word

Capitalize words all initial caps Initial_Cap_On_Each_Word

Leave alone exactly as typed EXACTLY_as_tYpEd�

Page 42

Figure 6. The menu displayed by the Adjust Face and Case command.

Page 43

7. Pascal Implementation-dependent Values

7.1. Introduction

��������

This section presents information specified by the Pascal Standards as implementa-

tion dependent. The topics covered are:

• Data representation

• Pascal file types

• Set constructors for unconstrained integers

• Standard functions�

Note: This section does not present information on pathnames.

7.2. Pascal Data Representation

������������

The Pascal Tool Kit adheres to the proposed IEEE format for floating-point

numbers (Jerome Coonen, et al., "A Proposed Standard for Binary Floating Point

Arithmetic Draft 8.0 of IEEE Task P754", Microprocessor Standards Committee,

IEEE Computer Society, ��������, March 1981, pages 51 - 62).

The Tool Kit supports the ASCII character set, as extended for Symbolics Genera.�

�����

The table below gives the range for each data type and the accuracy of the

floating-point types.

��������� �����

Single-precision ~1.175 x 10-38 to 3.4 x 1038, accurate to 24 bits (~7 decimal

digits)

Double-precision ~2.2 x 10-308 to 1.8 x 10308, accurate to 53 bits (~16 decimal

digits)

Integer Arbitrary-precision ���������

Character 8 bits

Page 44

7.3. Pascal File Types

������������

Symbolics Genera determines whether a file contains Pascal source code by looking

at its file type. The correct type for a Pascal source file varies with the operating

system. The table below shows the file types for various systems.

Pascal source files are compiled to Lisp compiled-code (object) files. The correct

file type of a compiled-code file is also system dependent. For a list of the file

types by host: see the section "File Types of Lisp Source and Compiled Code Files"
in �����������������������������.�

�����

The following table shows the file types of Pascal source files on different systems.

������ ���������

Genera .pascal, .pas

UNIX .p, .pas

All others .pas�

7.4. Set Constructors for Unconstrained Integers

����������

The base type of a set constructor is determined by the types of its member-

designators; the base type is the type which can contain all member-designators. In

the Tool Kit, set constructors of base type integer create sets with a default size

of 256.

The following two examples illustrates how this fact affects the use of set con-

structors.�

���������

������� Sets_example_1;

����� largeNumber = 1000;

��� s3 : ��� �� 0 .. largeNumber;

 big : integer;

�����

 big := largeNumber - 1;

 s3 := [1, 3, big]

���� {�����_�������_��}�

���������

Page 45

������� Sets_example_2;

����� largeNumber = 1000;

���� largeNumberType = 0 .. largeNumber;

��� s3 : ��� �� 0 .. largeNumber;

 big : largeNumberType;

�����

 big := largeNumber - 1;

 s3 := [1, 3, big]

���� {�����_�������_��}�

�����������

Both examples appear the same but have one major difference  in the first

example big is of type integer; in the second, of type largeNumberType, a subrange

of type integer. In both examples the set constructor is [1,3,big], but in

Set_example_1, the set constructed can contain 256 members (the default size of

sets of type integer), whereas in Set_example_2, the set constructed can contain

1000 members of type largeNumberType.

In effect the compiler determines the base type and hence the size of the set from

the set constructor. The rule is that the size of a set is determined by the upper

bound of its largest member. For example, consider a hypothetical set that consists

of a constant of 5, an unconstrained integer variable, and a variable whose type is

declared to be some subrange of integer, for example 1 to 1000. The first member,

the constant, contributes an upper bound of 5; the second member, the uncon-

strained integer, contributes an upper bound of 256; the third member contributes

an upper bound of 1000. The maximum of all these is 1000; hence 1000 is the

maximum element in the set.

The set constructor in Example 1, [1, 3, big], contains the unconstrained integer

variable big and some small constants. Therefore the upper bound of the set is

256.

The set constructor in Example 2, [1, 3, big], contains the constrained integer

variable big of range 0 to 1000 and some small constants. Therefore the upper

bound of the set is 1000.

Set_example_1 causes a run-time error because the variable big is larger than 256.

Set_example_2 runs properly.�

7.5. Standard Pascal Functions

����������

The following are the characters to type for formatted input from an interactive

stream:

�������� ��������������

EOF �������� ���

Page 46

EOLN ������, ����, or ����

Page 47

8. Compiling Pascal Programs

8.1. Features of the Pascal Compiler

���������������������

The Pascal compiler produces Lisp code, which is compiled into Genera "machine

code" by the standard Lisp compiler. Since Lisp is essentially a machine language,

no loss of performance occurs.

The Lisp produced by the compiler is not intended to be examined or maintained

as such; rather, it is just the compiler’s intermediate object language, incidental to

producing machine code. You are never required to think in terms of either Lisp

or the machine code, since the source-level Debugger, the Display Debugger, works

on the Pascal source code.�

���������������������

You derive several important advantages from compiling into Lisp. One is that

Lisp numeric functions are called from Pascal; indeed, many of the Pascal library

subroutines, such as sin and cos, are those built into the Lisp system. Another

benefit is that you can choose to implement a particular routine in either Lisp or

Pascal, whichever language is more suitable.�

��������������������������

The Symbolics Genera environment allows ������������ ����������� in the editor

buffer; that is, you can compile selected routines rather than whole programs. The

compiler maintains a description of the declaration scope of every routine com-

piled. This permits you to compile any routine whose containing routine is com-

piled, without recompiling the containing routine.

For example, if you have compiled a Pascal program with internal procedures or

functions, positioning the editor cursor inside an internal routine and typing

������ compiles that routine. Such a feature encourages frequent and thorough

debugging and greatly speeds up the program-development process. This feature

also extends to unit specifications and unit implementations: See the section "Units

Facility", page 57.

Incremental compilation of a particular routine might fail if the pattern of enclos-

ing references to variables, constants, or labels defined in containing routines has

changed sufficiently. If this happens, the compiler issues an error message, and

you must recompile the containing routine. If the containing routine is a Pascal

program rather than a function or procedure, this error cannot occur, and incre-

mental compilation of any routine whose immediate superior is a program will al-

ways succeed. The one exception to this is when an enclosing reference to a previ-

ously unreferenced label is introduced. In that event you may have to recompile

the program as well. You will see a suitable error message in such cases. �

����������������

The Pascal Tool Kit supports two compiler options. One initializes program data;

the other allows you to choose a default dialect of Pascal.

Page 48

Exercise these options by setting the initialization variables that control their

behavior. Set these variables either in your init file or at a Lisp Listener.

See the section "Compiler Option: Initializing Pascal Program Data", page 50. See

the section "Compiler Option: Setting the Default Pascal Dialect", page 51.�

�����������������

The Pascal compiler produces diagnostics whenever a program violates the rules

for a legal program, as specified by one of the Standards. In this case, the screen

displays compiler warnings, which generally provide useful information regarding

the cause and location of an error.

Sometimes compilation produces a great many compiler warnings, too many for you

to remember. Fortunately, the warnings are stored in an internal database, whose

contents you can inspect and manipulate through several editor commands.

For example, ��� Compiler Warnings places the database in a buffer called *Com-

piler-Warnings-�* and selects that buffer. ��� Edit Compiler Warnings splits the

editor window into two frames. The upper frame displays a warning message; in

the lower frame the cursor is positioned at the instance of source code that pro-

duced the message displayed in the upper frame.

Recompiling the corrected code deletes the old warnings and inserts any new

warnings. Correcting all errors and recompiling the code empties the database.�

�����������������������

Several Zmacs commands are available for compiling Pascal routines and resolving

compiler warnings.

������

Compiles to memory the currently defined ������, a contiguous delimited

section of text in the editor buffer. If none is defined, it compiles the routine

nearest the cursor. This command does not take a numeric argument.

��� Compile And Execute Pascal Program

Checks to see that the cursor is positioned near a valid Pascal program and

then compiles and executes the program, without run-time options, with pre-

defined file input and output bound to the editor typeout window.

��� Compile Buffer

Compiles the entire buffer to memory. With a numeric argument, it compiles

from ����� (the cursor position) to the end of the buffer. This feature is

useful for resuming compilation when a previous attempt has failed.

��� Compile File

Compiles a file, offering to save it first if the buffer has been modified. It

prompts for a file name in the minibuffer, using the file associated with the

current buffer as the default. The command writes a compiled-code file to

disk but does not create object code in memory.

��� Compile Region

Compiles to memory the currently defined ������, a contiguous delimited sec-

tion of text in the editor buffer. If none is defined, it compiles the routine

nearest the cursor. Same as ������.

Page 49

��� Compiler Warnings

Places all pending compiler warnings in a buffer and selects that buffer. It

loads the compiler warnings database into a buffer called *Compiler-

Warnings-1*, creating that buffer if it does not exist.

��� Edit Compiler Warnings

Edits some or all routines whose compilation caused a warning message. It

queries you, for each file mentioned in the compiler warnings database,

whether you want to edit the warnings for the routines in that file. It splits

the screen, placing the warning message in the top window and the source

code whose compilation caused the error in the bottom window. Use ��� to

move to the next pair of warning and source code.

�����������������

The Compile File Command Processor command compiles files of Pascal routines.�

8.2. Compiling Small and Large Pascal Programs

��������������

One method appropriate for small programs is to read the source into an editor

buffer and use ������ to compile the routines to memory.

������ compiles the current ������ (a contiguous region of text defined by the

user) or the routine nearest the cursor, if no region is defined. For each Pascal

routine, this creates a function in the machine’s virtual memory but does ���

create a file version of the object code. Note that you can have a region as large

as the entire buffer. After reading in the source file, press ��� � to mark the

entire buffer as a region. Then use ������ as usual.

After successful compilation, the routines are available for execution; no separate

linking and loading are necessary. Typically, programmers use the editor compila-

tion facility during the debugging cycle to compile code changes quickly, rerun the

program, and do subsequent testing.

Another method appropriate for a program (or programs) contained in one or more

files is to compile the files to disk. The Zmacs command ��� Compile File compiles

a file and places the output in a Lisp compiled-code (binary) file.

The most essential difference between compiling a source file and compiling the

same code in an editor buffer is this: When you compile a file, none of the Pascal

routines is defined at compile time. Instead the compiler puts instructions into the

compiled-code file that causes definition to occur at load time. Load the compiled-

code file into virtual memory with ��� Load File.�

The other method of compilation is appropriate for a large Pascal program, espe-

cially one containing several files.

1. Declare a group of Pascal files (or even Pascal and Lisp files) as system. A

������ is a set of files and a set of rules that defines the relations among

these files; together these files and rules constitute a complete program.

Page 50

2. Use the Compile System command to compile all the program’s routines and

load the object code into virtual memory. �

This method results in the creation of Lisp compiled-code files in the file system.�

For a description of the facilities for declaring a Pascal system: See the section

"Large Pascal Programs", page 57.�

8.3. Compiler Option: Initializing Pascal Program Data

�������

Normally, the Tool Kit sets variables not explicitly initialized by Pascal data state-

ments to the Lisp string "Undefined". The hardware flags an error if any program

attempts to manipulate this value as a number. However, a problem arises if some

of your programs actually depend on the absence of checking for uninitialized val-

ues.�

���������������������

To avoid this potential problem, set the initialization variable that controls this

behavior  ����������������������������.

����������������������������� ��������

Controls whether local Pascal variables have an initial value when they are

compiled.

����� �������

� Sets the initial value of all local variables to zero.

��� Sets local variables not explicitly initialized by Pascal data state-

ments to the Lisp string "Undefined". ��� is the default.�

Example: To set the form in your init file, type:

(login-forms

 (setq pascal:*pascal-init-to-zero* t))�

However, unless (1) the Pascal system is stored on the disk and therefore

accessible when you log in or (2) your init file loads Pascal, do ��� add the

above Lisp expression to your init file.

Alternatively, you can set the variable at a Lisp Listener at any time after

loading the Pascal system to memory but before compiling the program.

Type:

(setq pascal:*pascal-init-to-zero* t)�

To turn off this option, reset the variable. Type to a Lisp Listener:

(setq pascal:*pascal-init-to-zero* nil) �

�����������������������������������

The ���������������������������� option controls initialization of ����� variables by

the compiler. To control initialization of arrays and other "large" variables, use the

������������� option to �������������� at run-time.�

Page 51

8.4. Compiler Option: Setting the Default Pascal Dialect

������������

The Tool Kit compiles two dialects of Pascal, Pascal/VS and ISO Pascal. Normally,

the default Pascal dialect for an editor buffer or file, if none is specified in the

attribute list, is ISO Pascal. A buffer or file is always associated with one of these

dialects of Pascal.�

���������������������

The ������������������������������� compiler option controls the default dialect.

�������������������������������� ��������

Changes the current default Pascal dialect from ISO Pascal to Pascal/VS,

or vice versa. The valid values of ������������������������������� are ����

and ���, two Lisp keyword symbols representing the dialect names. The de-

fault, if none is specified in the attribute list, is ISO Pascal.

To set the default to Pascal/VS, add the following form to your init file:

(login-forms

 (setq pascal:*pascal-default-dialect* :vs))�

However, unless (1) the Pascal system is stored on the disk and therefore

accessible when you log in or (2) your init file loads Pascal, do ��� add the

above Lisp expression to your init file.

Alternatively, you can set the variable at a Lisp Listener at any time after

loading the Pascal system to memory but before compiling the program.

Type:

(setq pascal:*pascal-default-dialect* :vs)�

To change the value of the default dialect back to ISO Pascal, type:

(setq pascal:*pascal-default-dialect* :iso)�

Page 52

Page 53

9. Building Pascal Applications with Run-time Systems

9.1. Overview of Building Pascal Applications

Pascal incorporates functionality providing you with the option of incorporating the

Pascal run-time system as a part of the Pascal application you build. Users of such

an application can run it regardless of whether they are running the Pascal devel-

opment system.

Customers who distribute an application with the Pascal run-time system ����

sign a ���������� �������� �� ��� ��������� ���������� �� ����� ������� ��� ����

����. See the section "Sublicense Addendum for Symbolics Pascal", page 108.

9.2. Introduction to Creating Pascal Run-time Systems

Components of a Run-time System

A run-time system (as opposed to the development system) for a language is made

up of the minimum subset of the development system software required to load

and execute a program. From a user’s perspective, it contains the library routines

defined for the language, the loader, and the function that initiates execution. The

following functionality, normally present in the development system, is absent in

the run-time system:

• Language-specific Zmacs Editor Mode

• Compiler

• Language-specific Source Level debugger�

The Pascal run-time system is called ��������������.

Creating Applications

Normally, you develop an application in a development environment, and deliver it

with the Pascal run-time system. You can minimize the size of your Pascal system

by filtering out information needed for debugging support or support for the Pas-

cal editor mode at compile time.

There are two steps for creating an application that includes a run-time system:

1. During program compilation, you set a global variable to filter out debugging

information from binary files. This step helps reduce the size of the finished

application.

Page 54

2. When writing a ������ �����������, you include a run-time component system

as part of the ������������������.

9.3. Compiling Pascal Files to Execute in Run-time Systems

During a normal compilation, the compiler produces information that supports de-

bugging and incremental compilation. This information is normally written out to

the bin file, a binary file identified by the file extension ���. It is possible to ex-

clude this information from the bin file by setting the special variable

������������������������������� to the Lisp boolean "�". Doing so minimizes the

size of the binary files produced for an application.

By convention, binary files produced in this manner are referred to as ��� bins

(but assigned the file extension .bin). Using ��� binary files limits your ability to

debug and compile source code. Use of this facility does not change the generated

code. The section "Program Configurations: Development System and Run-time

System Options for Pascal Systems" specifies the capabilities of ��� binary files.

9.4. Incorporating the Run-time System as Part of a Pascal
Application

You can package the run-time system should as a dependent component system of

the application. There are two requirements you must meet when defining such a

packaged system:

• The packaged system definition must load the run-time system before loading

the application program. Specify the appropriate :serial dependency in order to

load the run time system.

• The definition must read the system declaration file for the run-time system to

be read before any Pascal file is encountered in an application system.

The following example illustrates how an application named �� is packaged. Note

that �� is a component system (with accompanying separate ������ file) and is not

a separate subsystem when the sysdcl contains any references to objects defined in

the system and/or user package defined by the run-time system in question.

(defsystem a1

 (:default-pathname "foo:bar;"

 :distribute-binaries t

 :default-module-type :pascal)

 (:serial "f1.pascal" "f2.pascal"))

Page 55

(defsystem packaged-a1

 (:default-pathname "foo:pkg-bar;"

 :distribute-binaries t)

 (:module pascal-runtime "pascal-runtime" (:type :system))

 (:module a1 "a1" (:type :system))

 (:serial pascal-runtime a1))

The "write distribution tape" and "read distribution tape" software is used to dis-

tribute the packaged software.

9.5. Program Configurations: Development System and Run-time
System Options for Pascal Systems

Given the ability to produce rto bin files and to make the Pascal run-time system

part of a Pascal application, you can incorporate a program in a configuration ob-

tained by the following �������������:

(normal bin, rto bin) X (development system, run-time system)�

The (normal bin, development system) configuration is the usual configuration and

the one that makes the full functionality of the development system available. Oth-

er configurations limit the functionality in various ways.

The following table describes the properties of each possible configuration.

Program Configurations: Development System and Run-time System Options

������������������ ���������������

���������� Incremental Incremental

 Compilation: Yes Compilation: No

Batch compilation: Yes Batch compilation: No

Language-specific Language-specific

 debugging: Yes debugging: No

������� Incremental Incremental

 Compilation: * Compilation: No

Batch compilation: * Batch compilation: No

Language-specific Language-specific

 debugging: No debugging: No

*Incremental compilation is possible, after all references external to the unit being

incrementally compiled are compiled.

Page 56

Purpose of Configurations

1. ������ ���� ����������� ������ This is the normal configuration for software

development.

2. ������ ���� �������� ������ This configuration is advantageous when soft-

ware is actively developed, but also simultaneously used in a run-time system.

3. ��� ���� �������� ������ This is the desired configuration for software that is

released, and of minimal size.

4. ��� ���� ����������� ������ This is not a recommended configuration. You

should re-create normal ��� files if you plan to do any debugging or develop-

ment work with these files.

Page 57

10. Large Pascal Programs

10.1. Introduction to Large Pascal Programs

������������

Many programmers like to split large programs into several files for the sake of

modularity, organization, and ease of editing, searching, and compiling/recompiling

small pieces of code. The main disadvantage of this approach is the extra time

spent in loading individual files and keeping track of which files are edited but not

recompiled.

To overcome the drawbacks inherent in manipulating small chunks of a large

program, the Tool Kit provides a way to define a collection of Pascal routines,

possibly spanning several files, as a Pascal ������. The separate compilation units

facility provides a way to allow the routine definitions in the various files of the

Pascal system to be compiled in the appropriate declaration scope.�

��������

This chapter introduces the Pascal Tool Kit facilities that aid in the definition and

maintenance of Pascal programs that span several files. Two topics are discussed:

1. The ��������������, which permits compilation of routines in separate files.

2. The ������ ���������� ��������, which allows you to specify the order of compi-

lation and loading of a group of Pascal source files.�

Read the following documents describing analogous facilities for large Lisp pro-

grams before using the system definition facility.

• See the section "Packages" in ��.

• See the section "System Construction Tool" in �����������������������������.�

10.2. Units Facility

���������

The ISO Pascal specification requires that all internal routines of a Pascal pro-

gram be in the same compilation unit as the program, which typically means in

the same file as the main program. Software considerations, however, dictate that

large programs are separated into manageable units rather than placed in one

large file. The purpose of the Tool Kit units facility is to overcome this shortcom-

ing of ISO Pascal.

Note: The Pascal Tool Kit has not implemented the Pascal/VS separate compilation

facility.�

Page 58

�������������������

The units facility provides a simple means for programs to call stand-alone units

of code residing in the same or other files. The term ����������� means that each

unit is compiled separately but executable only within the scope of a main pro-

gram. Typically, you can enable many programs to call primitive functions and

procedures defined in another file and available to many other users.

Any number of main programs can call a particular unit. A unit in turn can also

call other units. A program or unit that calls a unit is said to ��� the unit and is

known as the ����� routine. The called unit is referred to as ���� and is known as

the ���� routine.

Note that the using program or unit and the used unit are at the same lexical

level; no hierarchical relationship exists between them. The scope of the using

routine ������� to include the declarations in the used units.

A unit consists of two major parts  the unit specification and the unit imple-

mentation. The facility introduces three new reserved words: unit_specification,

unit_implementation, and using_units.�

10.2.1. Unit Specification

The unit specification is the public interface listing all the routines available to

other units and programs as well as to other routines in the same unit. The unit

specification does not itself contain executable code but rather specifies the proce-

dures and functions usable by other routines. Each specification must have a

corresponding unit implementation, which actually contains code. The implementa-

tion can be in the same file as the specification.

All types and variables declared in the used unit specification are global to the

using program or unit. The using routine and the used unit are at the same lexi-

cal level.

You have to compile the unit specification by itself before compiling the using

routine and corresponding unit implementation.

The unit specification begins with the reserved word unit_specification followed

by a unit identifier and a semicolon.

If the unit specification uses one or more unit specifications, the second statement

in the specification must begin with the reserved word using_units followed by a

valid unit specification identifier. Use a comma to separate multiple identifiers.

The statement ends with a semicolon.

Specify the constant, type, or variable declarations, as usual.

Specify each routine header you wish to declare available for public use. Begin

with the reserved word procedure or function, as appropriate. Then specify the

procedure or function identifier. Include the parameter list in parentheses in the

usual fashion. If the routine is a function, type a colon and the return value type.

End the statement with a semicolon. The routine heading for a function looks like

this:

�������� ������������������� (��������������) : �����������������;�

Page 59

The routine heading for a procedure looks like this:

��������� �������������������� (��������������);�

Close the unit specification with the reserved word end and a period. Note the

absence of a corresponding begin.

The format of the entire unit specification is as follows:

unit_specification ���������������;

 using_units ����������������, ... ; {�������������������}
 ���������������������; {��������������������}
 �����������������;

 ���������������������;

 ����������������;

 .

 .

 ����������������

�����

10.2.2. Unit Implementation

The unit implementation is the non-user-visible part of the unit defining every

routine listed in its corresponding unit specification. While it must contain the

code for at least as many routines listed in its corresponding unit specification, it

might in fact contain more, for example, in the case where a publicly available

routine calls a routine not available for general use.

You can compile the entire unit implementation or any contained routine by itself.

You have to compile the implementation ����� its corresponding unit specification

but ������ the using routine is executed.

The type and variable declarations in the unit implementation are available ���� to

that implementation. These declarations are local to the unit implementation.

Note this important restriction on variable identifiers: all unit implementations

must have unique variable names. For example, unit1 can declare variable i as an

integer, but unit2 cannot legally redefine i as a boolean value.

The unit implementation begins with the reserved word unit_implementation fol-

lowed by a unit identifier and a semicolon. Note that the unit identifier must be

the same as that used in the corresponding unit specification.

Specify the constant, type, or variable declarations, as usual.

Define all procedures and functions listed in the unit specification as well as any

private routines that they call. Note that the public routines must include the

reserved word ��������� or ��������, the routine identifier, and a semicolon, but

��� the parameter list and (in the case of a function) a return value type. This in-

formation is provided in the corresponding unit specification.

Close the unit implementation with the reserved word end and a period. Note the

absence of a corresponding begin.

The format of the entire unit implementation looks like this:

Page 60

unit_implementation ���������������;

 ���������������������;

 �����������������;

 ���������������������;

 ����������������������������; {��������������������������������}
 .

.

 ����������������������������

�����

10.2.3. Calling a Unit

After the unit specification and unit implementation is written, using a unit rou-

tine in a main program or unit is quite simple. Place a using_units statement in

the calling program or unit. Make sure you compiled the unit specification and im-

plementation of the used routine. Then call the routine within the body of the

main program or unit specification.

Remember that the using program or unit and the used unit are at the same

lexical level; no hierarchical relationship exists between them.

If included, make the using_units statement the second statement in the main

program or unit specification. Begin the statement with the reserved word

using_units followed by a valid unit specification identifier. Use a comma to sepa-

rate multiple identifiers. The statement ends with a semicolon.

The format of a using_units statement within a main program looks like this:

������� ������������������;

 using_units ����������������, ... ;

 ���������������������;

 �����������������;

 ���������������������;

�����

.

.

 ��������������������������������;

 ��������������������������������������;

.

�����

�����������

The incremental compilation capability of Symbolics Genera extends to the units

facility. The compiler maintains a description of the declaration scope of every

routine compiled. You can compile any routine whose containing routine is com-

piled, usually without recompiling the containing routine.

Both the unit specification and unit implementation are separate compilation units.

In addition, you can compile any routine in the implementation incrementally.

The order of compilation is important, as expressed in the following rules.

Page 61

1. Compile the unit specification before compiling the using routine and corre-

sponding unit implementation.

2. Compile the using routine after you compile the unit specification; however,

you do not have to compile the corresponding unit implementation.

3. Compile the unit implementation ����� its corresponding unit specification is

compiled and ������ the using routine is executed. �

�������

In the commented example below the program main uses the factorial function

declared in unit specification unit1. The body of the function is defined in unit

implementation unit1.

������� main;

using_units unit1;

 {��������������������������}
 ��� value : int;

�����

 write(’Find the factorial of what number? ’);

 readln(value);

 writeln(’Factorial ’,value,’ is ’,factorial(value))

 {���������������������������������������unit1��unit2��}
 {����unit3���}
���.�

unit_specification unit1;

using_units unit2, unit3;

 {����������������unit2���unit3���������������unit1����}
 {�����������������main�}

 ���� int = integer;

 {�������������������������������������unit1������������������������}
 FUNCTION factorial (n : int) : int; {����������������������}
 .

 {��������������������������}
���. {����������������������������}�

Page 62

unit_implementation unit1;

 {���}
 FUNCTION factorial; {�������������������������}
 ��� i : integer; {�������������������������������������factorial�}
 �����

 factorial := 1;

 ��� i := n ������ 1 ��

 factorial := factorial * i

 ���; {��������������������}
 .

 {���������������������������}
 {���}
 {�����������������������������������unit2�����unit2��}
���. {����������������������������}�

��������������

The following Zmacs commands support the units facility. They are available from

Pascal mode.

• ��� Show Dependent Units prompts for the name of a Pascal unit specification

and displays a list of those units dependent on that specification.

• ��� Show Units Depended On prompts for the name of a Pascal program or unit

and displays a list of those units depended on by that program or unit.�

10.3. What Is a Pascal System?

����������

A ������ is a set of files and rules defining the relations among these files; to-

gether these files and rules constitute a complete program that you can manipu-

late as a unit. Use the Lisp function ������������������ to designate a group of

Pascal files (or Pascal and Lisp files) as a Pascal system. The declaration allows

you to specify the files composing the system as well as the desired properties of

the system, such as the package into which the object code is compiled.

������������������ is analogous to the ��������� function used to declare Lisp

systems. In fact, the facilities provided for Pascal are simply Lisp macros that

expand into ��������� invocations.�

��������

The Pascal ����������� facility offers several benefits:

• Compiled code is stored on disk until loaded.

• You can compile and load all the system files to your environment �� ��������

and in accordance with the properties you specified in the system definition.

Moreover, you can compile only those files that need compiling, that is, only

those source files that are newer than their corresponding object files.

Page 63

• It supports the Tool Kit’s units facility by providing syntax to express compila-

tion-order dependencies.�

���������

The procedure below summarizes all the steps necessary for declaring, compiling,

and loading a Pascal system.

1. Make a package declaration for the files composing the system, using

��. Alternatively, you can use the de-

fault package �����������. See the section "Declaring a Pascal Package", page

63. Also add the name of the package to the attribute list of the individual

files in the system.

2. Make a system declaration for all files, using �����������������. The system

declaration includes the name of the files in the system, the package into

which the files are compiled, and the order of compilation and loading of

files. See the section "Declaring a Pascal System", page 66.

3. Load the system declaration file manually (via ��� Load File) or create a

system site file to load the declaration. See the section "Loading the System

Definition".

4. Compile and load the Pascal system defined in step 2, using the command

processor. See the section "Compiling and Loading a Pascal System", page 69.�

Write the package and system declarations in the same file, called the ������

����������� ����. This file must have a Lisp file type and should be in the ����

package.

10.4. Declaring a Pascal Package

������������

After you load Pascal and Lisp routines into the environment, they remain there

until replaced by recompilation or until the machine is cold booted. Since you can

have two large Pascal programs that have the same name, you have to specify a

method that Symbolics Genera uses as a means of distinguishing between them.

Genera provides a mechanism for separating like-named programs by assigning

each its own distinct context, or ���������. The namespace is called the �������.

Packages avoid naming conflicts; two different Pascal programs can have the same

name only if each exists in its own package. For example, you have to place two

Pascal programs assigned the name primes by the compiler in two different pack-

ages.

You can avail yourself of the default package provided by the Tool Kit, or you can

create your own using the �� special form.

The facility for declaring Pascal systems enables you to specify only an ��������

package in the definition; that is, you have to previously define and compile the

package. All files in the system are compiled in the package you specify in the

system declaration. �

Page 64

����������

The Tool Kit provides the Lisp special form �������������������������������

��������� for creating packages appropriate for Pascal code.

��� �����������������&body���������

�����������

���� is a symbol that is the name of your package, for example, matrix.

(pascal:package-declare-with-no-superiors matrix)�

������������������ are optional keyword arguments. For most users it is not

necessary to include these keywords in the package declaration. However, if

you decide to use them, see the section "Packages" in ��������� ������

���������������������������.

�������������������������

������������������������� for ����������

���������� ������ ����...� for ������������

The package is given these nicknames, in addition to its pri-

mary name.�

�������������������

������������������� for ����������

������������ ���� for ������������

This name is used when printing a qualified name for a sym-

bol in this package. You should make the specified name one

of the nicknames of the package or its primary name. If you

do not specify ������������, it defaults to the shortest of the

package’s names (the primary name plus the nicknames).�

��������������

�������������� for ����������

����� ������ for ������������

The number of symbols expected in the package. This con-

trols the initial size of the package’s hash table. You can

make the ����� specification an underestimate; the hash table

is expanded as necessary.�

10.4.1. How to Make a Pascal Package Declaration

You can make a package declaration in either of two ways:

• You can type the ��������������������������������� form to a Lisp Listener, in

which case the declaration lasts only as long as you are logged in. You have to

create the package every time you log in.

Page 65

• You can type the ��������������������������������� form in a Zmacs buffer

whose mode is Lisp. You can enable the editor to set the mode automatically by

creating the buffer with the correct Lisp file type for your host system.

If you intend to specify the package name in a system declaration, place the

package declaration in the same file in which you enter your Pascal system dec-

laration (called the ������ ����������� ����). You have to assign the file name a

Lisp file type and compile it to the ���� package.�

Compile the package declaration.�

10.4.2. Predeclared Pascal Packages

The Pascal Tool Kit recognizes two packages not needing explicit definition.

• ������� is the default Genera package.

�������: ������� inherits all the symbols in the ������ package containing the

basic symbols of the Lisp language. As a result, the names of Pascal routines or

variables in the ������� package can conflict with those of existing Lisp func-

tions.

• ����������� is the default package of the Tool Kit. Since ����������� was

originally declared using ��, no name

conflicts can occur for routines or variables in this package.�

10.4.3. How to Assign a Pascal Package

You should always add the package name to the file’s attribute list. This permits

editor-based compilation of routines in the file, without reference to a system dec-

laration or the prevailing package.

To change the package name in the attribute list, use ��� Set Package and type

the package name. The command offers to create the package if it does not exist.

Alternatively, you can manually enter the package name in the attribute list by

typing ; Package: and the name of an existing package or a package you have pre-

viously defined with ��. Invoke ���

Reparse Attribute List to have the change take effect.

If the file is to be part of a system declaration, it is recommended that you specify

the package as value of the ���������������� option in the system declaration.

The files you list in the definition become associated with the specified package.

You should note that all Pascal files of a system declaration must be compiled into

the same package or they will not correctly reference each other.�

Page 66

10.5. Declaring a Pascal System

Before declaring your own Pascal system, see the section "System Construction

Tool" in �����������������������������.�

����������

������������������� ���������������������&rest�����

Declares a set of files as a Pascal system, where ���� is the name you

have chosen for your Pascal system, not necessarily the name of a main

program. ������� are the valid options to ���������, the analogous function

for Lisp. See the section "Defining a System" in ������� ����������� ������

����. Note that Pascal systems can consist of files of Pascal code as well as

files of Lisp code or just files of Pascal code.

���� is a file specification or a list of file specifications, or ������. Each

specification is a string representing the name of a file in the system. No

������������ can exist between the files in the list; that is, one file cannot

depend on another file compiled or loaded before it. Note: Unless you speci-

fy the ������ option, no order of compilation or loading is implied or guar-

anteed.

The ������ keyword is the mechanism for establishing dependencies be-

tween files. Use this option when the order of compilation and loading is

important to the proper operation of the system. Using, as a concept, refers

to the condition that a routine in one file can use (call) separately compil-

able unit specifications residing in another file. See the section "Units Fa-

cility", page 57.

The first argument to the ������ keyword is a string or list of strings,

specifying a file or set of files containing a unit specification used by other

routines or units. This file contains the unit specification called last.

You can make each argument following the first argument a file specifica-

tion string, a list of file specification strings, or another ������ form (nest-

ed ������ options!). Each of the file specification strings can refer to a file

which uses one of the files specified by the first argument to ������.

Example: If a main program one in file "apple" calls unit specification

spec_one in file "banana", which in turn uses unit specification spec_two in

file "cantaloupe", then the ������ option is written as follows:

(:using "cantaloupe" {Spec in this file called last, ...}

 (:using "banana" {compiled first}

 "apple")) {Program in this file called first, ...}

 {compiled last}�

The significance of the ������ keyword is that you can compile and load

files specified by the first argument before performing compilation and

loading operations on the remaining files.

In addition to ������, you can specify several of the keyword options to and

transformations of ���������, the analogous function for defining Lisp sys-

tems.

Page 67

���������

������������ consists of one main program residing in one Pascal file 
"fred".

(pascal:def-program fred-program

 (:default-pathname "f:>fred>")

 "fred") �

���������

You can use the following code for creating a system called ������������

consisting of two main programs residing in "fred" and "freds-sister" re-

spectively. No dependencies exist between the programs.

(pascal:def-program freds-family

 (:default-pathname "f:>fred>family>")

 ("fred" "freds-sister"))�

or

(pascal:def-program freds-family

 (:default-pathname "f:>fred>family>")

 "fred" "freds-sister")�

���������

You have a Pascal program plot with three files "onedplot", "twodplot", and

"axislabels" residing in directory "f:>fred>plot>". "Oneplot" contains the defi-

nition of a Pascal main program which calls two unit-specifications 
"twodplot" and "axislabels". In addition, you are compiling the object code

into a previously defined and compiled package called plot.

(pascal:def-program plot

 (:default-pathname "f:>fred>plot>"

 :default-package "plot")

 (:using "twodplot" "axislabels"

 "onedplot"))�

Note that by supplying a pathname default you avoid having to type the

full pathname of every file in the system; instead, just the file name

portion of the pathname suffices.�

���������

The ������������� includes a nested ������ form. The main program

"fred" calls a specification-unit "sally", which in turn calls specification-unit

"david". Compile and load "david" first. The main program that calls both

units is compiled/loaded last.

(pascal:def-program units-program

 (:default-pathname "f:>peter>units>"

 (:default package "units")

 (:using "david"

 (:using "sally"

 "fred")))�

Page 68

���������

System declarations can mix Pascal and Lisp code. Note carefully that the

Lisp code can in no way depend on the Pascal code, and vice versa. In the

example below, the value of the ���������������� keyword is a Pascal

package. Assume that the Lisp code is compiled into the ������� package,

specified in the attribute list of each Lisp file.

(pascal:def-program lisp-and-pascal

 (:full-name "Registration System"

 :default-pathname "f:>sr>registrar>"

 :default-package "registrar")

 (:serial (:parallel "definitions" "macros")

 "display")

 (:using "david"

 (:using "sally"

 "fred")))�

The ������� and ��������� options provide an abbreviated syntax for defining

what modules (files or sets of Lisp files) compose the system and how these

modules depend on one another. In the example above "display" depends on

the prior compilation/loading of "definitions" and "macros" but in no partic-

ular order. These options apply only to Lisp code within the �����������

������� form. (see the section "Short-form Module Specifications" in ����

��������������������������.)�

�����������������������������������

Use ��������� to create a system combining Pascal, FORTRAN, and Lisp code.

Note in the example below that the files of each language are specified separately

in their own ������� declaration.

Use ������� (considered the long-form module specifier) only when more compli-

cated dependency relationships exist among modules, or when your system contains

modules and packages that are not of the default type for the system. (See the

section "Long-form Module Specifications" in �����������������������������.)

For example, the ������� specifications are required here because the modules are

not of the default type, which is Lisp. Lisp is the default type when the options

list does not specify one for the system; the options list below specifies only a

default pathname.

When you do not specify compile or load dependencies, each module compiles and

loads in turn. FORTRAN compile and loads first, then Pascal, then Lisp.

Example:

Page 69

(defsystem fortran-pascal-lisp-demo

 (:default-pathname "C:>sr>")

 ;; needs a module declaration because of non-default type and package

 (:module fortran-part ("fpl-ftn")

 (:package ftn-user)

 (:type :fortran))

 (:module pascal-part ("fpl-pascal")

 (:package pascal-user)

 (:type :pascal))

 (:module lisp-part ("fpl-lisp")

 (:package cl-user))) ; LISP is the default type�

10.6. Compiling and Loading a Pascal System

Compile System and Load System compile and load your Pascal system, respective-

ly. These commands load the system declaration file if (1) you create a system site

file or (2) you have a ������������������������� form in your init file. Otherwise

use the Load File command to load the system declaration file.

Load File analysis:analysis;finite-element-analysis-sysdcl.lisp�

To load and compile the system files of finite-element-analysis, type:

Compile System finite-element-analysis :Load :newly-compiled�

Page 70

Page 71

11. Executing Pascal Programs

11.1. No Link-and-Load Step

��������������

Symbolics are large-scale virtual memory, single-user computers. Routines compiled

by the Pascal Tool Kit remain in the environment until replaced by recompilation

or until you cold boot the machine, that is, until you load a new version of Genera.�

��������������������

The ���������� ������, as most Pascal programmers understand the term, does not

exist. Rather, once routines are brought into virtual memory by compilation in an

editor buffer or a Pascal system is loaded via the Load System command, they are

immediately executable. Thus, the Tool Kit requires no separate link-and-load step.

Compilation is incremental; consequently, the absence of the link step is of great

significance when making small changes to large Pascal programs, since the link

step in traditional computing environments is time-consuming.�

11.2. How to Run a Pascal Main Program

������������

Since only a Pascal main program initializes input/output facilities and program

data, it is not valid to invoke a Pascal routine ������ in the dynamic scope of a

main program.

All Pascal programs are compiled into Lisp object code. Invoke these programs 
once they are in memory  in one of the following ways:

• Lisp: ��������������

• Zmacs: ��� Execute Pascal Program or Compile and ��� Execute Pascal Pro-

gram

• Command processor: Execute Pascal�

��������������

To run your code in a Zmacs buffer, compile the program to virtual memory using

������ or a related command. Place the cursor near the program you want to run

and issue the ��� Execute Pascal Program command. The command checks to see

that the cursor is near a valid, compiled Pascal program and then executes the

program. Execute Pascal Program does not accept any of the run-time options

available with ��������������. The predefined files’ input and output are bound to

the editor typeout window.

Compile and Execute Pascal Program performs identically to Execute Pascal Pro-

gram, except that it first compiles the program to virtual memory before executing

it.�

Page 72

�����������������

The Execute Pascal command runs a valid, compiled Pascal program. The com-

mand takes a Pascal main program name and accepts the same set of keywords as

��������������. See the section "Pascal Main Program Options", page 73.

Note, however, that command keywords use underscores, not hyphens. For exam-

ple, the ������������� option for �������������� is rendered as the :Init_to_zero
keyword to Execute Pascal.

Example: You can invoke (pascal:execute pascal-user:mean :init-to-zero t) from

the command processor as follows:

Execute Pascal pascal-user:mean :Init_to_zero yes�

�������������

��������������� ��������������������������&key��������������������

���

���

������������������

Runs a Pascal program, where ���� is a symbol representing the name of

the main program. ���������� is a synonym for ��������������.

The Pascal run-time system supports numerous keywords: �������������,

������, �������, ������������������, �������� �����������������, �������

����, �������, and ���������������.

See the section "Pascal Main Program Options", page 73.

���������

To run a main program convert, invoke a Lisp Listener and type:

(pascal:execute ’pascal-user:convert)�

���������

To run a main program convert, which reads a single line of parameters from the

standard text file input, invoke a Lisp Listener and type:

(pascal:execute ’pascal-user:convert)1 2 3 �������

���������������������

Run a Pascal main program from a Lisp Listener. But be careful: An error results

if you attempt to invoke a main program when its package differs from that of the

current Lisp Listener and you do not specify the package of the Pascal program.

For example, assuming that the Lisp Listener package is ������� and the Pascal

program package is �����������, then the following invocation of convert signals

an error:

(pascal:execute ’convert)

The ���� package does not recognize convert as a Pascal program.

Determine the package of the Lisp Listener as follows:

At a top-level Lisp Listener the package is the default �������, unless you have

explicity changed it. In the editor, the Lisp Listener package corresponds to that

of the Zmacs buffer. If you display two or three windows at a time and associate

Page 73

the contents of each with a different package, the package of the Lisp Listener

is the same as that of the window in which the breakpoint was invoked.�

Example: If the cursor was sitting in the middle window of a three-window

screen when you invoked a Lisp Listener, the package of the Lisp Listener is

the same as that of the middle window.�

If your main program resides in a different package than that of the Lisp Listener,

specify the package name at run time, for example:

(pascal:execute ’pascal-user:quadratic)

Note: Be careful when using the ����������� function to change to the �����������

package or any package declared with no superiors; specifically note that ���

requires a package prefix.

11.3. Pascal Main Program Options

������������

All Pascal main programs accept several pairs of keywords and values. Still, these

keywords are recognized:

• �������������

•� ������

• �������

•� ������������������

•� �������

•� �����������������

•� �����������

•� ��������

•� ���������������

• ����������������

������

The options are specified as keyword-value pairs:

(pascal:execute ������������ ������� ����� ...)�

Example: Invoking the main program mean with multiple options looks like this.

(pascal:execute ’pascal-user:mean :input "f:>tr>abc.data"

 :save-environment t)�

11.3.1. :init-to-zero

Normally, the Tool Kit sets Pascal variables to the Lisp string "Undefined". The

hardware flags an error if any program attempts to manipulate this value as a

number. However, a problem arises if some of your programs actually depend on

the absence of checking for uninitialized values. To avoid this potential problem,

use the ������������� option.

Page 74

� Initializes memory-resident Pascal variables, space for which is allocated

at run time, to zero.

��� Sets Pascal variables to the Lisp string "Undefined". ��� is the default.�

Example: To run the program mean, setting all variables to zero, type:

(pascal:execute ’pascal-user:mean :init-to-zero t)�

Note that this option controls initialization of arrays, common variables, and other

global variables. To control initialization of local variables by the compiler, set the

���������������������������� compiler option.�

11.3.2. :input and :output

In the call to the main program, you can specify the ������ and/or ������� key-

words with an argument of �����������. ����������� refers to the files associated with

Pascal standard input and output files and are either:

• A file specification string, giving the pathname of a file.

• A pathname flavor instance.

• A stream.�

The file specification string and the pathname are merged with the system path-

name default (the variable ������������������������������), as modified by the

������������������ main program option, if present. Then the file is opened and

passed into Pascal. On exit from the program, the file is closed.

If you specify a stream, it will not be closed on exit from the Pascal program.

Example: When you run the main program mean, standard input is associated with

the file "f:>tr>abc.pascal" and standard output with Lisp stream *error-output*.

(pascal:execute ’pascal-user:mean :input "f:>tr>abc.pascal"

 :output *error-output*)�

11.3.3. :pathname-defaults

The ������������������ option specifies the pathname used as the default by the

Pascal I/O system when parsing file names specified in the ������ or �������

option to �������������� or in such file-opening predefined procedures as reset or

rewrite. See the section "Extensions to Pascal", page 17.

The pathname specified as the default is merged with the prevailing default. If the

������������������ option is not specified, then the prevailing default is used.

Example: Assume that the prevailing pathname default is "s:>tc>kr.lisp".

You run payroll supplying the ������������������ option:

(pascal:execute ’pascal-user:payroll :pathname-defaults ".pascal")�

The pathname system constructs a new default "s:>tc>kr.pascal".

Page 75

Assume also that the statement in your program calling reset reads:

�����(f, ’name = >tc>payroll-dir>’)�

When the program is executed, the pathname of the reset file is constructed from

the new prevailing default and the value of the name parameter:

"s:>tc>payroll-dir>sr.pascal"�

For more information: see the section "Pathname Defaults and Merging" in ����

��������������������������.

11.3.4. :reload

Builds a new environment.

����� �������

� Discards any previously saved environments and builds a new one. Use

this option when you radically change programs and need to recoup

storage after a large number of incremental loads.

��� Does not build a new environment; ������� has no effect. ��� is the

default.�

Example: Suppose, after running mean numerous times, you want to flush the

environment and then rerun the program, performing all data initialization only

once.

(pascal:execute ’pascal-user:mean :save-environment t

 :reload t)

11.3.5. :save-environment

For very large programs, allocating the global data is time consuming. For this

reason, the Pascal run-time system supports the ����������������� keyword. ����:

An environment remains saved until you explicitly discard it using the �������

option.

����� �������

� The old environment, if any, is incrementally modified to reflect the

current compilation state before running the program.

��� The old saved environment is ignored when running the program. ��� is

the default.�

Example: Suppose you want the global variables allocated only once instead of

every time you run mean. Type:

(pascal:execute ’pascal-user:mean :save-environment t)�

Page 76

11.3.6. :stack-size

The ����������� option specifies the initial size of the memory stack used when

beginning execution of a Pascal program. Variables declared immediately inside a

Pascal program are allocated their own arrays and do not take up space in the

stack. Thus, for many programs, the stack space used is modest. If, however,

substantial amounts of data are declared in procedures and functions inside the

program, or if there is some memory data allocated in each frame of a deeply

recursive program, this option is useful.

If you do not specify a �����������, the initial stack size is 8192. The Pascal Tool

Kit allocates more stack if the default stack overflows, whether or not you supply

this option.

Example: To run program ������ with an initial stack size of 50,000, type:

(pascal:execute ’pascal-user:towers :stack-size 50000.)�

Note the period after 50000, which denotes a decimal number.�

11.3.7. :streams

The �������� keyword option allows Pascal I/O routines to operate on streams

created in the Genera environment. The value of �������� is a list of dotted lists,

specifying the input and output streams. The format is

�������� ‘((������������������ . ,�����������) ...)

Example: �������� and ��������� are generated in Lisp and used during the execu-

tion of the Pascal program run_tool. The following call takes input from an editor

buffer specified by the parameter ��������������� and creates an editor buffer

named code.data, sending the output to the buffer rather than to the terminal.

(defun foo (definition-name)

 (with-editor-stream

 (outstream :buffer-name "code.data"

 :no-redisplay t

 :kill t :start :beginning

 :create t)

 (with-editor-stream

 (instream :buffer-name definition-name

:kill nil :start :beginning)

 (pascal:execute ’pascal-user:run_tool

 :streams ‘((outstream . ,outstream)

 (instream . ,instream))))))�

11.3.8. :trap-underflow

If an underflow is too small for expression as a double-precision floating point

number  less than ~1.175 x 10-38 and less than ~2.2 x 10-308respectively  your

machine may signal an error.

Page 77

You can turn off trapping mode using the ��������������� option, which sets the

result in this case to 0 or to a denormalized number "See Jerome Coonen, et al.,

"A Proposed Standard for Binary Floating Point Arithmetic: Draft 8.0 of IEEE

Task P754", Microprocessor Standards Committee, IEEE Computer Society, ����

�����, March 1981. Bear in mind that your result might lose some accuracy.

����� �������

��� Turns on nontrapping mode. Sets the result to 0 or a denormalized

number, if it is too small for expression as a normalized floating-point

number.

� Turns off nontrapping mode. Underflow is detected if a result is too

small for expression as a normalized floating-point number. � is the

system default.�

Example: To prevent the detection of underflow while running a main program

add, type:

(pascal:execute ’pascal-user:add :trap-underflow nil)�

11.3.9. :use-abort-mode

Enables you to specify whether open files are closed in abort mode or normal mode

when aborting a Pascal program. � deletes and expunges the incomplete file, ���

writes the incomplete file.

Page 78

Page 79

12. Debugging Pascal Programs

12.1. Overview of Debugging Pascal Programs

Genera enables you to debug Pascal programs from the Pascal source level. In the

Debugger you examine Pascal variables, values, and types. In addition, you can

evaluate expressions and statements from the Debugger.

If you are unfamiliar with the Genera Debugger, you can refer to the Genera doc-

umentation set for background information. See the section "Debugger" in �������

����������� ���������. This discussion assumes you have some knowledge of Debug-

ger concepts and capabilities. In particular, it refers to these terms:

Stack frame A frame from the control stack that holds the local variables

for the routine.

Current stack frame

The context within which Debugger commands operate. The

Debugger uses the current frame environment to perform oper-

ations according to the suspended state of your program. It

evaluates forms in the lexical context of the function suspend-

ed in the current frame.

�����������������

You can use the Debugger from a Lisp Listener or from the Display Debugger.

The Display Debugger is a version of the standard Debugger that uses its own

multi-paned window. For further information,

See the section "Using the Display Debugger" in ����������������������������.

To invoke the Display Debugger, press c-m-W from the Pascal Debugger prompt.

For an example of a Pascal program in the Display Debugger, see Figure 7.

Page 80

Figure 7. A Pascal program in the Display Debugger

Page 81

12.2. Invoking the Debugger for Pascal

����������������������

You use the Debugger in these cases:

• When you encounter a run-time error and are automatically thrown into the

Debugger.

• When you use m-SUSPEND or c-m-SUSPEND to deliberately use the Debugger con-

text.

• When you set a breakpoint from the editor.

��������������������

To exit the Debugger, use the ����� key, the :Abort command, or invoke a restart

option.

If you are in the middle of a series of recursive Debugger invocations, pressing

����� returns you to the previous invocation. Keep pressing ����� until you leave

the Debugger and return to top level. Pressing ������� from a recursive Debugger

invocation brings you back to top level immediately. The ����� key is disabled by

default in the Display Debugger. The command :Enable Aborts enables it.

�����������

The Debugger offers you online help. Pressing the ���� key inside the Debugger

displays several help options for you to choose:

• ������ displays documentation about all Debugger commands. This documenta-

tion consists of brief command descriptions and available key-binding accelera-

tors.

• The ����� key takes you out of the Debugger. (You can enter the :Abort com-

mand or press ��� instead of pressing �����.)

• ����� brings you into the Window Debugger. (You can enter the :Window De-

bugger command instead of pressing �����.)

The ������� key, the :Show Frame command, or the :Show Frame command accel-

erator ��� clears the screen, then redisplays the error message for the current

stack frame.

You can also ask for help with keywords. If you do not remember what keywords

are available for the command you are entering, press the ���� key after you re-

ceive the keywords prompt. The Debugger displays a list of keywords for that

command. For example:

Page 82

→ :Previous Frame (keywords) HELP

You are being asked to enter a keyword argument

These are the possible keyword arguments:

:Detailed Show locals and disassembled code

:Internal Show internal interpreter frames

:Nframes Move this many frames

:To Interesting Move out to an interesting frame

12.3. Pascal Frames in the Debugger

When you use the Debugger on a frame compiled in Pascal, you can get informa-

tion about local and global variables and about the type and value of variables at

various points in the source. You can also evaluate expressions and statements.

The Debugger prompt indicates whether the frame is compiled in Pascal or in

Lisp. The Lisp prompt is a plain arrow. The Pascal prompt is labeled Pascal. You

can use most Genera Debugger commands after this prompt.

The next example shows the Debugger operation in the context of a Pascal frame.

Using ��� at the Pascal prompt causes the Debugger to display a list of local

variables, their values for the current procedure, and the source code in the vicini-

ty of the error (see the figure on the following page). You can use the mouse to

manipulate these variables and values, as well as the source code displayed. For

example, you can use the mouse to set a breakpoint in the source code, or display

a value for a variable. The mouse documentation line at the bottom of the screen

describes the options for each item. For further information: See the section "Look-

ing At Variables, Types, and Values in Pascal", page 83.

Page 83

12.4. Looking At Variables, Types, and Values in Pascal

Debugger output from Pascal frames is mouse-sensitive. In fact, you can operate

on local variables and their values solely through the use of the mouse. When you

point the mouse cursor at an item, the mouse documentation line displays what ac-

tion is associated with each mouse click. The following table summarizes opera-

tions for variables, values, and types.

�������� �����������

������

���� ������ �����

�������� :Show value :Show type menu

����� returns the value Describes the value menu

���� :Show type :Show type detailed menu

Using the mouse enables you to inspect a variable, value, or type. In addition, you

can get a complete description of a user-defined type as shown in the following

example.

Page 84

This example shows the result of pointing the mouse at the local PREC and click-

ing the Middle button and then pointing at MYTYPE and again clicking the Mid-

dle button.

��������������������������

You can evaluate Pascal expressions and statements from the Debugger. Type the

expression in following the Pascal prompt; press ��� to evaluate the expression.

12.5. How Pascal Values Are Displayed in the Debugger

Uninitialized values

An uninitialized value prints out as the symbol: ���������

Values that exist out of range of an object

When you try to access a value beyond the range of the ���������� allo-

cated Lisp object, the value prints out as the symbol: �����������_������

Because many language objects are allocated within a Lisp object, there

is no one-to-one correspondence between a Lisp object and a Pascal lan-

guage object. Thus, violating the bounds of a language object does not

always yield the symbol �����������_�������

Summarized values

Summarized values are given for objects whose values are too large to

be printed out by default. For instance, unless requested explicitly by the

user, arrays and structures are printed out in summary form between

the characters ≤≥. The summary form contains an abbreviated type indi-

Page 85

cation followed by a unique number that helps distinguish two different

values.

For instance, the following example shows the summarized values for

MY_PREC, a user-defined record and MY_TYPE, a user-defined type,

such as a record.

≤��_������������≥
≤��_������������≥

Values not of the Declared Type

Values are printed between horseshoes when the value as indicated by

the tags in the hardware does not correspond to the declared type for

the value. For example, an attempt to obtain the value of a variable de-

clared as an integer but actually a real yields a result in this form.

For example,

⊂1.3⊃�

12.6. Pascal Language Debugger Commands

����������������������������

The following table summarizes the Debugger commands that work in Pascal

frames and give specific information for Pascal variables, values, and types. The

left column represents Command Processor commands and accelerators, the right

column shows corresponding menu choices.

�����������������������

:Show Locals (���)

��������������������

:Show Variable’s Value

Examine the value associated with this

variable�

�������������������

:Show Variable’s Type

Examine the type associated with this vari-

able

:Describe Type Detailed

Describe the type in greater detail

:Show Type Name Show the type name

������ Edit Viewspecs (menu only)�

Page 86

�������� ����������

���������������������

 :Statement Step For Function

 Program execution stops in the debugger

 before the execution of each statement

 :Clear Statement Step For Function

 Clears the :Statement Step For Function

 enabling the program to execute normally

The following debugging commands are useful when using the stepping

feature. In order to see a complete list of all debugging commands,

specify :language help from the debugger. �

�����������������

 c-X c-D Show the source code for the function in the current frame.

�����������

 c-N, � Move down a frame (takes numeric argument), skipping invisible frames.

 m-sh-N Move down a frame, not skipping invisible frames.

 m-N Move down a frame, displaying detailed information about it.

 c-m-N Move down a frame, not hiding internal interpreter frames.

 ���������������

 c-P Move up a frame (takes numeric argument), skipping invisible frames.

 m-sh-P Move up a frame, not skipping invisible frames.

 m-P Move up a frame, displaying detailed information about it.

 c-m-P Move up a frame, not hiding internal interpreter frames.

 c-m-U Move to the next frame that is not an internal interpreter frame.

�

���������������

 c-B Displays a brief backtrace, hiding invisible frames,

 but not censoring continuation frames.

 c-sh-B Displays a brief backtrace of the stack, censoring invisible

internal (continuation) frames. Use a numeric

argument to indicate how many frames to display.

 m-B Displays a detailed backtrace of the stack.

 m-sh-B Displays a brief backtrace, without censoring invisible

 or continuation frames.

 c-m-B Displays a detailed backtrace of the stack, including internal frames.�

Page 87

12.7. Genera Debugger Commands for Use with Pascal

You can use Genera Debugger commands from the following areas of functionality

in debugging Pascal programs. For more information, see the Genera documenta-

tion set.

• Commmands for viewing a stack frame.

• Commands for stack motion.

• Commands for general information display.

• Commands to continue execution.

• Trap commands.

• Commands for breakpoints and single stepping

• Commands for system transfer

Page 88

Page 89

13. Pascal-Lisp Interaction

13.1. Overview

13.1.1. Contents

This chapter discusses the interface between Lisp and Pascal, including the follow-

ing issues:

• lispobject: a new data type representing Lisp objects in Pascal programs.

• lisp: a new Pascal routine directive allowing the declaration of an existing Lisp

function, which you can subsequently call from a Pascal routine.

• Calling Pascal from a Lisp function.

• Calling a Lisp function from Pascal.�

13.2. lispobject: Pascal Data Type for Handling Lisp

13.2.1. Description

In addition to the data types defined in the Standards, the Tool Kit supports a new

scalar data type, called lispobject, which facilitates interaction with Lisp. By

declaring a variable a lispobject, you can represent any Lisp data object. You can

form arrays of lispobjects and declare lispobject functions.

However, the only valid operations on objects of the lispobject type are assign-

ment and parameter passing: they are not read, written, or even compared against

each other. No other type is coerced into a lispobject.�

13.3. lisp: Pascal Routine Directive

������������

The Pascal Tool Kit supports a new routine directive, known as lisp, allowing you

to declare a Lisp function you can call from a Pascal procedure or function.�

������

The format for declaring a Lisp function in a Pascal procedure is:

procedure ���������������������������� (��������������);

lisp ’�����������������’ ;�

The format for declaring a Lisp function in a Pascal function is:

function ���������������������������� (��������������) : �����������;

lisp ’�����������������’ ;�

Page 90

�������������������������������

Declaration pascal-name-for-lisp-routine routine

name | directive

| | parameter-list output-type | lisp-routine-name

| | | | | |

↓ ↓ ↓ ↓ ↓ ↓
function length (list: lispobject) : integer; lisp ’global:length’ ;�

��������������������������������

Declaration pascal-name-for-lisp-routine

name | lisp-routine-name

| | parameter-list routine directive |

| | | | |

↓ ↓ ↓ ↓ ↓
procedure ball (i, j, k : integer) ; lisp ’user:ball’ ;�

�����������

���������������������������� Specifies the name by which Pascal calls the Lisp

routine.

���������������������������� is the name of an existing, valid Lisp function

(predefined or user-defined) or any valid Pascal identifier that you select to

represent a Lisp function.

When the Pascal name for the Lisp routine is identical to the Lisp function

name, it is not necessary to specify the ����������������� argument. If you

do not specify the the �����������������, the Lisp function must have the

same name as ���������������������������� and must be in the same package

as the Pascal file. Bear in mind, however, that it is considered bad practice

to compile Pascal in a package that inherits from ������.

Make sure the ���������������������������� is a valid Pascal identifier and

that it does ��� contain hyphens, colons, and other nonalphabetic charac-

ters.

�������������� Specifies the names and types of the parameters,

and follows the same syntactic rules as any Pascal parameter list. The

standard Pascal scalar data types are permitted: integer, real, shortreal,

boolean, char, enumerated type, or lispobject. These scalar data types are

passed by value to Lisp, ��� by reference. See the section "Passing Real

Numbers in Pascal", page 93.

Array and record parameters are passed either by value or by reference.

Multidimensional arrays and records containing arrays are treated as if

they were single-dimensional Lisp ����� arrays. Note that packed arrays

and packed records do not necessarily have one element per Lisp array

word. Also, arrays of reals, which by default are double-precision floating-

point numbers, are stored unpacked.

Page 91

You can pass packed arrays of characters and Pascal/VS string types to

Lisp by value or by reference. The Lisp array type ���������� is used to

hold the characters.

Enclose the list of all parameters in parentheses.

����������������� Optional if ���������������������������� is identical to

����������������� and both are in the same package. Required if the Lisp

function is in a different package than the Pascal program, or if the Lisp

function name contains characters which are invalid in a Pascal identifier,

such as "-", ":", and "*". If present, ����������������� is specified as a Pascal

string literal, whose contents are the print name of a Lisp function.

����������� Specifies the type of the value returned from the

function �����������������. Supply any of the standard Pascal scalar data

types  integer, real, shortreal, boolean, char, an enumerated type, or

lispobject. See the section "Passing Real Numbers in Pascal", page 93.�

���������

Declare the Lisp function ������ in a Pascal routine; it returns an integer corre-

sponding to the length of a list.

.

.

�������� length (list : ����������) : �������;

 lisp ’global:length’;

��� a : ����������;

.

.�

Use the function ������ in the routine.

w:=2*length(a);�

���������

The following program passes a Pascal array to the built-in Lisp function

���������, which returns a list of the elements. It then calls the Lisp function

������� to reverse the lispobject list returned, and finally calls the Lisp function

����� to display the result on the console: the list (10 9 8 7 6 5 4 3 2 1),

assuming the Lisp output radix is 10. Note that all the parameters are passed by

value, except for the ��� parameter to ���������.

{-*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*- }

Page 92

������� revarray ;

���� INTARRAY = �����[1 .. 10] �� integer;

��� a : intarray;

��� list : lispobject;

��� i : integer;

 �������� listarray (��� arr : intarray) : lispobject;

 lisp ’global:listarray’;

 �������� reverse (list : lispobject) : lispobject;

 lisp ’global:reverse’;

 ��������� print (any_object : lispobject); lisp ’global:print’;

�����

 ��� i := 1 �� 10 ��

 a[i] := i;

 list := listarray(a);

 list := reverse(list);

 print(list)

���.�

���������

The Lisp function ������������ refreshes the screen and then ���� draws a filled-in

circle.

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 8 -*-

(defun screen-clear ()

 "Clears the screen"

 (send *standard-output* :clear-history))

(defun ball (center-x center-y radius)

 "Draws a ball whose center is (center-x, center-y)"

 (send *terminal-io* :draw-filled-in-circle

center-x center-y radius tv:alu-xor))�

The Pascal program throwball declares the Lisp function ����.

{-*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*- }

 ������� throwball;

 ��� i : integer;

 ��������� ball (i, j, k: integer) ; lisp ’cl-user::ball’;

 ��������� beep ; lisp ’tv:beep’;

 ��������� screenclear ; lisp ’cl-user::screen-clear’;

�����

 screenclear;

 ��� i := 2 �� 15 ��

 ball(i*20, i*20, 10);

 beep {��������������������������}
���.�

Page 93

13.4. Passing Real Numbers in Pascal

�������������������������

real numbers are represented as ����� numbers in the Lisp world, and as �������

numbers in Pascal. Pascal routines expect to receive data of type real in unboxed

form. They also return their results unboxed. Note that in the following example

the caller of �����������������←��������� first unboxes a double-precision float-

ing-point number to pass to Pascal, and when it gets the result, it boxes the

answer.

When Pascal calls a Lisp routine, it boxes any arguments of type real; however, it

expects real results to be unboxed. Therefore, the function ������ doesn’t have to

box its input, but it has to unbox its result.

To pass real numbers to Pascal, you have to first unbox the Lisp number by

calling �������������������� or ������������������������� on the Lisp double.

They return two "integers", � and �, representing the high and low portions of the

number. Conversely, you can call ��������������� on � and � to produce a boxed

double for Lisp to manipulate.�

�������

;;; -*- Mode: LISP; Package: CL-USER; Base: 10; Syntax: COMMON-LISP -*-

;;;Calls the Pascal routine addup, which adds an

;;;integer, a single-float, and the square of a

;;;double-float. Returns the answer as a double-float.

(defun callpascal (integer single double)

 (si:with-double-components (double double-hi double-lo)

 (multiple-value-bind (result-hi result-lo)

(pascal-user:addup←calculate nil integer single

 double-hi double-lo)

 (si:%make-double result-hi result-lo))))

;;;Takes a double-float number from Pascal and

;;;returns the square of the number.

(defun square (double)

 (si:with-double-components ((* double double) hi lo)

 (values hi lo)))

{-*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*- }

������� calculate;

 {��}
 �������� square(dub: real): real; lisp ’cl-user::square’;

Page 94

 {��}
 {������������������������������������}
 �������� addup(int: integer; sng: shortreal; dub: real): real;

 �����

 addup := int + sng + square(dub);

 ����

�����

����

13.5. Calling Pascal from Lisp

Before reading this section: see the section "Executing Pascal Programs", page 71.

see the section "Lisp Syntax for Pascal Users", page 3.

If you are passing real numbers to Pascal or receiving a real number as a result:

see the section "Passing Real Numbers in Pascal", page 93.�

13.5.1. Calling a Main Program From Lisp

A Lisp function can call a Pascal main program directly.

Example: To call the Pascal main program writeones from the Lisp function

���������� and specify Pascal standard output at run time, type:

(defun callwrites (file)

 (pascal:execute ’pascal-user:writeones :output file))�

To run ���������� designating Pascal standard output as "s:>stryker>ones.data",
type:

(callwrites "s:>stryker>ones.data")�

or

(pascal:execute ’writeones "s:>stryker>ones.data")�

In figure 8, the Lisp function ����������, shown in the top pane, calls the Pascal

program writeones, associating Pascal standard output with the output file

"s:>stryker>ones.data". The bottom pane displays the Pascal source code.

13.5.2. Calling a First-level Internal Routine From Lisp

The format of a Lisp function calling a top-level Pascal routine is as follows:

(package:top-level-routine-name compiler-display arguments)�

�������. The name of the pascal package or ����, the default package.

����������������������. The symbol made from the concatenation of the name of a

top-level routine with that of the calling program, with a backarrow character (←)

in between. For example, the symbol of a first-level routine first called by pro-

gram main is �����←����.

Page 95

Figure 8. A Lisp function calls a Pascal main program.

����������������. The lexical environment of ���������������������� generated by the

Pascal compiler. For procedures and functions at top level the display is always

���.

���������. The arguments to ����������������������.

Example: The Lisp routine ������ calls the Pascal routine factorial. The source

code of both routines is shown.

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

Page 96

(defun factor ()

 (let ((x (prompt-and-read

 :number

 "Find the factorial of what number? ")))

 (format t "Factorial of ~D is: ~D "

 x (pascal-user:factorial←factor nil x))))

{-*- Mode: PASCAL; Dialect: ISO; Package: PASCAL-USER -*- }

������� factor;

��� x : integer;

 �������� factorial (n : integer) : integer;

 ��� i : integer;

 �����

 factorial := 1;

 ��� i := n ������ 1 ��

 factorial := factorial * i

 ���� {��������������������}

�����

 writeln;

 write(’Find the factorial of what number? ’);

 readln(x);

 writeln(’Factorial ’,x:1,’ is ’,factorial(x):1)

�����

Page 97

�

Appendix A
Editor Extensions for Pascal

This section contains a brief summary of the commands available for editing Pas-

cal programs in Zmacs, as well as for finding out about and interacting with your

Pascal program. Note: these commands represent modifications of the standard

language-sensitive editing commands. They perform roughly the equivalent func-

tion of the editing commands for Lisp.

Most of these commands allow a preceding argument in the form c-�. Example:

The cursor is positioned in the middle of a routine. To move forward from the cur-

rent routine to the end of the next routine, type:

c-2 c-m-E�

For more general editing commands: See the section "Summary of Standard Edit-

ing Features", page 100.

����� Moves the cursor backward to the beginning of a

Pascal routine.

����� Moves the cursor forward to the end of a Pascal

routine.

������ Compiles the currently defined ������, a contiguous

delimited section of text in the editor buffer. If none is defined, it compiles

the routine nearest the cursor. This command does not take a numeric argu-

ment. Region commands are explained in Region Operations: See the section

"Summary of Standard Editing Features", page 100.

The echo area at the bottom of the screen displays the names of the routines

being compiled. An unsuccessful compilation results in the display of compiler

warnings and suggested actions in a typeout window at the top of the screen.

Typing any character causes the window to disappear.

��� Clear All Breakpoints Clears all breakpoints in the buffer.

��� Compile And Execute Pascal Program

Checks to see that the cursor is positioned near a valid, compiled Pascal pro-

gram and then compiles and executes the program, without run-time options,

with predefined files’ input and output bound to the editor typeout window.

��� Compile Buffer Compiles the entire buffer to memory. With a nu-

meric argument, it compiles from ����� (the cursor position) to the end of the

buffer. This feature is useful for resuming compilation when a previous at-

tempt has failed.

��� Compile File Compiles a file, offering to save it first if the buffer

has been modified. It prompts for a file name in the minibuffer, using the file

associated with the current buffer as the default. The command writes a com-

piled-code file to disk but does not create object code in memory.

Page 98

��� Compile Region Compiles to memory the currently defined ������, a

contiguous delimited section of text in the editor buffer. If none is defined, it

compiles the routine nearest the cursor. Same as ������.

��� Compiler Warnings Places all pending compiler warnings in a buffer

and selects that buffer. It loads the compiler warnings database into a buffer

called *Compiler-Warnings-1*, creating that buffer if it does not exist.

��� Edit Compiler Warnings Edits some or all routines whose compilation caused

a warning message. It queries you, for each file mentioned in the compiler

warnings database, whether you want to edit the warnings for the routines in

that file. It splits the screen, placing the warning message in the top window

and the source code whose compilation caused the error in the bottom window.

Use ��� to move to the next pair of warning and source code.

��� Edit Definition or ��� Edits the definition of a compiled Pascal routine.

When it prompts for a name of the routine, subroutine, and so on, you can ei-

ther (1) type the name in the minibuffer at the bottom of the screen or (2)

use the mouse to select a name in the current buffer. The command finds the

routine, places it in an editor buffer, and positions the cursor there.

The echo area displays a message indicating multiple occurrences of the defi-

nition, if any. Use ��� to move to the next occurrence.

This command is especially useful because it can find any definition in a load-

ed Pascal system, whether or not it is in a file that is currently in a buffer.

��� Pascal Mode Sets the mode in an editor buffer to Pascal, en-

abling you to use the special Pascal-mode commands described in this ap-

pendix. The mode line at the bottom of the screen changes to ZMACS

(Pascal) The command also offers to set the mode in the attribute list. If

you respond y, it creates the following: {-*- Mode: PASCAL -*-}. Once the at-

tribute list mode is set to Pascal, you need not set the mode again upon re-

invoking the file; the mode is set to Pascal automatically.

��� Electric Pascal Mode Turns on Electric Pascal mode, or, if it is on, turns

it off. This command works only when the buffer is in Pascal mode.

��� Execute Pascal Program Checks to see that the cursor is positioned near a

valid, compiled Pascal program and then executes the program, without run-

time options, with predefined files’ input and output bound to the editor type-

out window.

��� Format Language Region Adds formatting (face, case, and correct capitaliza-

tion) to an editor region (just as if the code were typed in Electric Pascal

mode). If no region is defined, it acts on the current Pascal routine definition.

With a numeric argument, it removes the formatting.

��� List Breakpoints Lists all currently active breakpoints.

��� List Definitions Displays the definitions from a specified buffer.

Type the buffer name of choice in the minibuffer at the bottom of the screen,

or press ������ to select the default (the current buffer).

Page 99

It displays the list of names of programs, procedures, and functions in a type-

out window. You can (1) press ����� to make the typeout window disappear or

(2) use the mouse to select individual names; upon selection, the cursor is po-

sitioned at the name in the editor buffer.

��� Reparse Attribute List Causes all changes made to the attribute list to

take effect.

��� Set Dialect Sets the dialect for the buffer. When it prompts for

a name, type either ��� or ��; the default is to toggle the dialect. It offers to

set the dialect for the attribute list as well as for the buffer. All routines in

the buffer will be compiled in the chosen dialect.

��� Set Package Sets the package for the buffer. When it prompts

for a name, type the name of a package. It offers to create the package if it

does not exist. The commands also offers to set the package for the attribute

list as well as for the buffer.

��� Show Dependent Units Prompts for the name of a Pascal unit specification

and displays a list of those units dependent on that specification.

��� Show Units Depended On Prompts for the name of a Pascal program or unit

and displays a list of those units depended on by that program or unit.

��� Update Attribute List Creates or updates the attribute list for the file. Ex-

ecuting the command after entering Pascal mode causes the attribute list to

include the phrase:

��������������

.�

Page 100

�

Appendix B
Summary of Standard Editing Features

Use ������ � to select Zmacs. The standard Zmacs commands are very similar to

those of the EMACS editor. This section summarizes some categories of Zmacs

commands. All editor commands can take a preceding numeric argument in the

form �� or �� to modify their behavior in some way.

See the section "Zmacs" in ����������������.

2.1. Zmacs Help Facilities

������� Aborts the function currently executing.

��� Aborts a command when entered, unselects the region, or un-

merges a kill.

������������� Shows every command containing ������ (try ���� � ������ or

�������������).

������ � Explains the action of any command (try ���� � ��� as an ex-

ample).

������������� Describes a command (try ����������������).

������ Displays the last 60 keys pressed.

������ Offers to undo the last change to the buffer.

������������� Shows all Zmacs variables containing �������

������ Prompts for an extended command and shows its keybinding.

��������� Displays these ���� key functions.

���������� Repeats the last ���� command.

������� Starts a Lisp Listener (return from it with ������).

2.2. Zmacs Recovery Facilities

��� Undo Undoes the last command.

������ Undo.

��� Redo Undoes the last undo.

������ Redo.

��� Yanks back the last thing killed.

��� After a ���, successively yanks back older things killed.

������ Prompts for a string to yank.

������ After ������, successively yanks back older things containing

string.�

Page 101

2.3. Extended Commands

Extended commands (the ��� commands) put you in a small area of the screen

with full editing capabilities (a ����������) for entering names and arguments. Sev-

eral kinds of help are available in a minibuffer.

�������� Completes as much of the current command as possible.

���� Gives information about special characters and possible comple-

tions.

��� Shows possible completions for the command currently being en-

tered.

��� or ������ Completes the command, and then executes it.

��� Does an apropos on what has been typed so far.

2.4. Writing Files

������� Writes the current buffer into a new version of the current file

name.

������� Writes the current buffer into a file with a different name.

��� Save File Buffers Offers to save each file whose buffer has been mod-

ified.�

2.5. Buffer Operations

������� Gets a file into a buffer for editing.

����� Selects a different buffer (prompts; default is the last one).

������� Displays a menu of available buffers; lines are mouse-sensitive.

����� Kills a buffer (prompts; default is current buffer).

��� Moves to the beginning of the current buffer.

��� Moves to the end of the current buffer.

����� Selects the most recently selected buffer in this window.

2.6. Character Operations

��� Moves left (back) a character.

��� Moves right (forward) a character.

������ Deletes a character left.

��� Deletes a character right.

��� Transposes the two characters around point; if at the end of a

line, transposes the two characters before point, ht -> th.

Page 102

2.7. Word Operations

��� Moves left (back) a word.

��� Moves right (forward) a word.

�������� Kills a word left (��� yanks it back at point).

��� Kills a word right (��� yanks it back at point).

��� Transposes the two words around point (if only ->
only if).

��� Capitalizes the word following point.

��� Lowercases the word following point.

��� Uppercases the word following point.

2.8. Line Operations

��� Moves to the beginning of the line.

��� Moves to the end of the line.

��� Moves down (next) a line.

��� Opens up a line for typing.

��� Moves up (previous) a line.

������� Closes up any blank lines around point.

����� ����� Kills from the beginning of the line to point (��� yanks it back at

point).

��� Kills from point to the end of the line (��� yanks it back at

point).

2.9. Sentence Operations

��� Moves to the beginning of the sentence.

��� Moves to the end of the sentence.

���������� Kills from the beginning of the sentence to point (��� yanks it

back at point).

��� Kills from point to the end of the sentence (��� yanks it back at

point).

2.10. Paragraph Operations

��� Moves to the beginning of the paragraph.

��� Moves to the end of the paragraph.

��� Fills the current paragraph (see ����������������).

������� Sets the fill column to � (example: �������������).

Page 103

2.11. Screen Operations

������ or ��� Shows next screen.

�������� or ���Shows previous screen.

������� Moves the line where point is to the top of the screen.

����� Repositions the window to display all of the current definition, if

possible.

2.12. Search and Replace

���������� "Incremental" search; searches while you are entering the string;

terminate search with ���.

���������� "Incremental" backward search; terminate search with ���.

������� Enter String Search. See the section "String Search" in �������

��������.

���������������������������������

Replaces ������� with ������� throughout.

���������������������������������

Replaces ������� with ������� throughout, querying for each occur-

rence of �������; press ����� meaning "do it", ������ meaning

"skip", or ���� to see all options; (see ����������).

2.13. Region Operations

������� Sets the mark, a delimiter of a region. Move the cursor from

mark to create a region. The region is highlighted. Use with ���,

���, ��� and region commands, for example, ��� Hardcopy Re-

gion.

��� Kills region (��� yanks it back at point).

��� Copies region onto kill ring without deleting it from buffer (���

yanks it back at point).

��� Yanks back the last thing killed.

2.14. Window Operations

����� Splits the screen into two windows, using the current buffer and

the previously selected buffer (the one that ����� would select).

����� Resumes single window, using the current buffer.

����� Moves cursor to other window.

����� Shows next screen of the buffer in the other window; with a nu-

meric argument, scrolls that number of lines  positive for the

forward direction, negative for the reverse direction.

Page 104

����� Splits the screen into two windows and asks what to show in the

other window.

Page 105

�

Appendix C
Summary: Pascal Editor Mode Commands

������������������������

��������� �������

����� Moves the cursor to the end of the current or next lan-

guage-specific unit.

����� Moves the cursor to the start of the current or previous

language-specific unit.

����� Moves the cursor to the start of the current or previous

language definition.

����� Moves the cursor to the end of the current or next lan-

guage definition.

������ Moves the cursor to the end of the current or next lan-

guage expression.

������ Moves the cursor to the start of the current or previous

language expression.

����� Moves the cursor to the start of the current language

definition and marks the entire definition as a region. The

editor underlines the region.

����� Moves the cursor to the next template in the buffer, if

any.

����� Moves the cursor to the previous template in the buffer,

if any.�

�����������������

��������� �������

������ Deletes the language expression to the left of the cursor.

������ Deletes the language expression to the right of the cursor.

���������� Deletes the language construct to the left of the cursor.

����� Deletes the language construct to the right of the cursor.

������ Deletes the language construct around point (the cursor).

������ Deletes the language token (for example, an identifier or

comment) to the right of the cursor.

������ Deletes the language token (for example, an identifier or

comment) to the right of the cursor.

Page 106

�������������������������������

��������� �������

������ Finds the nearest syntax error to the right of the cursor,

if any, and moves the cursor there. With a numeric argu-

ment, it finds the last syntax error in the buffer.

������ Finds the nearest syntax error to the left of the cursor

and moves the cursor there. With a numeric argument, it

finds the first syntax error in the buffer.

��������������������������������

��������� �������

��� Inserts a template that matches the keyword to the right

of the cursor.

����� Inserts whatever uniquely closes a language construct to

the left of the cursor. For example, ���� inserts a close

bracket ("]") to match a ("["), or an ���� to match an ��.

�������� Completes a keyword to the left of the cursor or further

fills in the current template.

������ Provides a list of templates for valid language constructs

to be inserted at the cursor.

��� Lists in an editor typeout window the possible completions

of predeclared identifiers for the name immediately to the

left of the cursor. This usage is specific to Pascal editor

mode.

��� Remove Template Item Deletes the next template to the right of the cursor.

����� Deletes the next template item to the right of the cursor.

����� Moves the cursor to the next template in the buffer.

����� Moves the cursor to the previous template in the buffer.

��������������������

��������� �������

����� Corrects the indentation of the language structure follow-

ing point (cursor position).

���� Indents the current line correctly with respect to the line

above it. It also positions the cursor on the next line and

aligns it with the preceding line. ���� opens a new blank

line. If a syntax error is found on that line, the editor

points out the error.

Page 107

��� Indents the current line correctly with respect to the line

above it and positions the cursor at the first character on

the line.

��� Save Indentation After using ��� to change global indentation of Pascal

language constructs, the command produces a Lisp form

reflecting the new indentation values; evaluate this form

after the Pascal editor is loaded.�

�������������������

��������� �������

��� Adjust Face and Case Modifies the face and case settings for a particular

language or dialect.

��� Blink Matching Construct

Allows you to check that block constructs are balanced.

When you turn the feature on and position the cursor at a

reserved word that closes a block statement, the editor

flashes the reserved word that opens the block statement.

For example, positioning the cursor at ��� �� makes the

matching �� construct blink. Invoke the command again to

turn this feature off; off is the default condition.

��� Electric Pascal Mode Turns on Electric Pascal mode, or, if it is on, turns

it off. Once the mode is on, you can use the Adjust Face

and Case command. The Electric Pascal Mode command

works only when the buffer is in Pascal mode.

��� Format Language Region Conforms the face and case in the region to the

settings for the buffer. A numeric argument removes any

special typefaces from the region but leaves the case un-

touched.

Page 108

�

Appendix D
Sublicense Addendum for Symbolics Pascal

Your purchase of Symbolics Pascal under the ����� ��� ���������� �������� ���

������ ��� ������� (3/89) allows you to use this product on a designated processor.

Customers who distribute an application that includes the Pascal run-time system

���� sign a ���������� �������� �� ��� ����� �������������� �� ����� �������

��� ������� (3/89). This agreement spells out the terms and conditions under

which you can sublicense any application that contains the Symbolics Pascal run-

time system. The Sublicense Addendum appears on the next page. If you have not

done so already, read the Sublicense Addendum carefully, sign it, detach it, and re-

turn it to your Symbolics sales representative.

����� ��� ��� �������� �� ���� ��� ���������� ��������� ���� ������ ���� ����������

���� ����������� ����������  �� ��������� ��� ���� ��� ���� �������� �� ���� ���

���� ��� ������� �� ������ �������� �� ��� �������� ������� ��������� �������� ���� ���

���

Page 109

Sublicense Addendum to Symbolics Inc. Terms and Conditions of Sale, License and
Service (3/89)

Addendum made this _____ day of __________, 198__, ("this Addendum") to

Symbolics, Inc. Standard Terms and Conditions of Sale, License and Service (3/89)

dated, _______, 198__, (the "Agreement"), both of which are by and between Sym-

bolics Inc. and Customer. All capitalized terms used in this Addendum, if not de-

fined in this Addendum, shall have the meanings assigned to them in the Agree-

ment.

1. ��� ��������. The Software to which this Addendum applies is defined as

follows:

����� ����������� �������

SLAN-Pascal Symbolics Pascal 5.2

2. �������������������.

Customer may sublicense all or any portion of the run-time system binary

code (the "Code") of the Software to Customer’s end users provided that:

(i) such Code is part of Customer’s application software program subli-

censed to such end users;

(ii) the Customer’s application software program is licensed by Cus-

tomer to Customer’s end users to run on a Symbolics computer system or proces-

sor; and

(iii) Symbolics’ copyright and trademark notices shall not be removed

from the Software.

3. ��������.

The term "end user" for the purposes of this Addendum shall mean Cus-

tomer’s customers and includes Customer’s own internal end users of its applica-

tion software programs.

CUSTOMER SYMBOLICS, INC.

______________________________ ______________________________
Name Name

______________________________ ______________________________
Title Title

______________________________ ______________________________
(Address) (Address)

Page 110

Page 111

�

Index

%include Directive, 19

access option of file-opening procedures, 20
Arbitrary-Precision Integers, 17
Attribute list, 23
base type of sets, 44
Buffer Operations, 101
Building Pascal Applications with Run-time

Systems, 53
��� Zmacs command, 35, 37, 105
�����, 37
����� Zmacs command, 105
������, 37
����� Zmacs command, 27, 97, 105
����� Zmacs command, 27, 105
����� Zmacs command, 27, 97, 105
����� Zmacs command, 27, 105
����� Zmacs command, 27, 105
����� Zmacs command, 31
����� Zmacs command, 29, 105
����� Zmacs command, 37, 105
����� Zmacs command, 37, 105
���������� Zmacs command, 29, 31, 105
������ Zmacs command, 97
������ Zmacs command, 105
������ Zmacs command, 10, 47, 49, 97
������ Zmacs command, 105
������ Zmacs command, 29, 105
������ Zmacs command, 31
������ Zmacs command, 31
������ Zmacs command, 29, 37, 105
������ Zmacs command, 29, 105

Calling a First-level Internal Routine From Lisp, 94
Calling a Main Program From Lisp, 94
Calling a Unit, 60
Calling Pascal from Lisp, 94
Changing face and case global defaults, 39
Changing face and case in the curent buffer, 39
Changing global indentation, 39
Changing the dialect entry, 13
Character Operations, 101
cl-user predeclared package, 65

Page 112

Comparison of the Pascal Tool Kit with Other
Implementations, 5

Compilation, Execution, and Error Recovery in the
Example, 10

Compile File command processor command, 47
Compiler Option: Initializing Pascal Program Data,

50
Compiler Option: Setting the Default Pascal

Dialect, 51
Compiler warnings, 47
Compile System command processor command,

69
Compiling and Loading a Pascal System, 69
compiling a region, 49
Compiling Pascal Files to Execute in Run-time

Systems, 54
Compiling Pascal Programs, 47
Compiling Small and Large Pascal Programs, 49
�������� Zmacs command, 37, 105

Completion commands, 105
Contents, 89
Conversion Functions, 20
Cursor movement commands, 105
Customizing Electric Pascal Mode, 39
ddname option of file-opening procedures, 20
Debugger Help, 81
Debugging Pascal Programs, 79
Declaring a Pascal Package, 63
Declaring a Pascal System, 66
Deleting definitions, 29
Deleting expressions, 29
Deleting Language Units, 29
Deleting statements, 29
Deletion commands, 105
Description, 89
Detection of Uninitialized Variables, 18
Dialect Constraints, 16
Dialect entry in attribute list, 13
Differences and Similarities: ISO Pascal and

Pascal/VS, 14
Discussion of Extensions, 17
double, floating-point conversion function, 20

Editing Basics, 23
Editor Extensions for Pascal, 97
editor region, 49
Electric Pascal Mode, 38
��� key, 45

Page 113

��� Zmacs command, 37, 105

EOF input from an interactive stream, 45
EOLN input from an interactive stream, 45
Executing Pascal Programs, 71
Extended Commands, 101
Extensions to Pascal, 17
Features of the Pascal Compiler, 47
Finding Syntax Errors, 31
floating-point data types, 19, 20
Formatting commands, 105
�������� ��� keys, 45

Genera Debugger Commands for Use with Pascal,
87

How Pascal Values Are Displayed in the Debugger,
84

How to Assign a Pascal Package, 65
How to Make a Pascal Package Declaration, 64
How to Run a Pascal Main Program, 71
Incorporating the Run-time System as Part of a

Pascal Application, 54
Incremental compilation, 47
Indentation commands, 105
:init-to-zero, 73
:input and :output, 74
Installing Pascal, 7
Interaction with Lisp, 20
Introduction, 7, 13, 43
Introduction to Creating Pascal Run-time Systems,

53
Introduction to Large Pascal Programs, 57
Introduction to Pascal Mode Completion and

Templates, 32
Introduction to the Pascal Tool Kit, 5
Introduction to the Pascal User’s Guide, 1
Invoking the Debugger for Pascal, 81
Invoking the display debugger, 10
ISO Pascal Restrictions, 16
ISO Pascal Standard, 1
Large Pascal Programs, 57
Length of Symbolic Names, 20
���� command, 31
���� key, 45

Line Operations, 102
lisp routine directive, 20
lispobject Pascal data type, 20
lispobject: Pascal Data Type for Handling Lisp,

89

Page 114

lisp: Pascal Routine Directive, 89

Lisp Syntax, 3
Loading Pascal, 8
Load System command processor command, 69
Looking At Variables, Types, and Values in Pascal,

83
��� Zmacs command, 97
������ Zmacs command, 29, 37, 105
������ Zmacs command, 29, 105
��� Adjust Face and Case Zmacs command, 39,

105
��� Blink Matching Construct, 27
��� Blink Matching Construct Zmacs command,

105
��� Compile And Execute Pascal Program Zmacs

command, 97
��� Compile Buffer Zmacs command, 47, 97
��� Compile Changed Definitions of Buffer Zmacs

command, 97
��� Compile File Zmacs command, 47, 49, 97
��� Compile Region Zmacs command, 47, 97
��� Compiler Warnings Zmacs command, 47, 97
��� Edit Compiler Warnings Zmacs command, 47,

97
��� Edit Definition Zmacs command, 97
��� Electric Pascal Mode Zmacs command, 23,

97
��� Execute And Execute Pascal Program Zmacs

command, 47
��� Execute Pascal Program Zmacs command,

97
��� Format Language Region Zmacs command,

38, 105
��� Format Pascal Region Zmacs command, 97
��� List Definitions Zmacs command, 97
��� Load File Zmacs command, 49
��� Pascal Mode Zmacs command, 8, 23, 97
��� Remove Template Item Zmacs command, 37
��� Reparse Attribute List Zmacs command, 13,

23, 97
��� Save Indentation Zmacs command, 39
��� Set Dialect Zmacs command, 13, 23, 97
��� Set Package Zmacs command, 65, 97
��� Show Dependent Units Zmacs command, 57,

97
��� Show Units Depended On Zmacs command,

57, 97

Page 115

��� Update Attribute List Zmacs command, 8, 13,

23, 97
Moving by definition, 27
Moving by expression, 27
Moving by statement, 27
Moving the Cursor, 27
name option of file-opening procedures, 20
namespace, 15
No Link-and-Load Step, 71
otherwise Clause, 19
otherwise clause, 14, 16

Overview, 89
Overview of Building Pascal Applications , 53
Overview of Debugging Pascal Programs, 79
package system, 15, 16
Paragraph Operations, 102
pascal:*pascal-default-dialect* variable, 51
pascal:*pascal-init-to-zero* variable, 50
Pascal/VS Restrictions, 15
Pascal/VS Standard, 1
pascal:*pascal-default-dialect* compiler option,

13
Pascal Data Representation, 43
pascal:def-program function, 66
Pascal Dialect Restrictions, 15
Pascal Dialects, 13
Pascal Editor Mode, 26
pascal:execute function, 72
Pascal File Types, 44
Pascal file types, 8
Pascal Frames in the Debugger , 82
Pascal Implementation-dependent Values, 43
Pascal Language Debugger Commands, 85
Pascal-Lisp Interaction, 89
Pascal Main Program Options, 73
Pascal Mode Templates, 33
pascal:package-declare-with-no-superiors

special form, 64
Pascal Package System, 21
pascal-user predeclared package, 65
Passing Real Numbers in Pascal, 93
:pathname-defaults, 74
pdsin file-opening procedure (Pascal/VS), 20
pdsout file-opening procedure (Pascal/VS), 20

Predeclared Pascal Packages, 65
procedure for declaring a system, 62

Page 116

Program Configurations: Development System and
Run-time System Options for Pascal
Systems, 55

real data type, 14, 19, 20

Redo, 100
Region Operations, 103
:reload, 75
Removing formatting from Pascal code, 38
reset file-opening procedure, 20

������ key, 45
rewrite file-opening procedure, 20

:save-environment, 75
Scope and Purpose of the Pascal User’s Guide, 1
Screen Operations, 103
Search and Replace, 103
Second Parameter to File-Opening Procedures, 20
seek file-opening procedure (Pascal/VS), 14

Selecting a Pascal Dialect, 13
Sentence Operations, 102
Set Constructors for Unconstrained Integers, 44
Setting Editor Defaults, 25
Setting editor defaults in your init file, 25
Setting the attribute list, 8
Setting the buffer dialect, 23
Setting the buffer mode, 8, 23
Setting the buffer package, 23
Setting the default dialect, 13
, 97
shortreal data type, 14, 20
shortreal Data Type, 19
single, floating-point conversion function, 20

����� Zmacs command, 105

:stack-size, 76
Standard Pascal, 1
Standard Pascal Functions, 45
:streams, 76
string data type (Pascal/VS), 14

string data type (Pascal/VS), 16
Strong Data-Type Checking, 19
Sublicense Addendum for Symbolics Pascal, 108
Summary, 17
Summary of Standard Editing Features, 100
Summary of the Pascal Tool Kit, 5
Summary: Pascal Editor Mode Commands, 105
Symbolics Common Lisp references, 1
Symbolics Genera references, 1

Page 117

Syntax error detection commands, 105
Template and Completion Commands, 37
Template commands, 105
template items, 33
termin file-opening procedure (Pascal/VS), 20
termout file-opening procedure (Pascal/VS), 20

The ������ Command, 34
The �������� Command, 35

:trap-underflow, 76
Turning Electric Pascal mode on and off, 38
Turning on Electric Pascal mode, 8
Undo, 100
unimplemented features of Pascal/VS, 15
Unit Implementation, 59
Units Facility, 57
units facility, 17
Unit Specification, 58
unit_implementation reserved word, 57
unit_specification reserved word, 57
update file-opening procedure (Pascal/VS), 14, 20

:use-abort-mode, 77
:using option to pascal:def-program, 66
Using the Editor for the First Time, 8
Using the Editor to Write Pascal Programs, 23
Using the mouse in debugging Pascal programs,

83
Using the Pascal Tool Kit for the First Time, 7
using_units reserved word, 57

What Is a Pascal System?, 62
Window Operations, 103
Word Operations, 102
Writing Files, 101
Yank, 100
Zmacs Help Facilities, 100
Zmacs Recovery Facilities, 100
zwei:change-syntax-editor-defaults special form,

39

